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and viral genes. His2 gene expression occurred in three main phases (early, middle,
and late), and by 4.5 hr p.i. the majority of genes were actively transcribed, includ-
ing those encoding the major structural proteins. Eighty host genes were differen-
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of their up- and downregulation postinfection. The altered host transcriptional pat-
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Sinica facilitate its own DNA replication and propagation. This study enhances the charac-

tern suggests regulation by His2 infection, which may reprogram host metabolism to

terization of many hypothetical viral genes and provides insights into the interaction

between His2 and its host.
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1 | INTRODUCTION Oksanen, & Bamford, 2014), of which more than 3,000 have been

formally classified (Munson-McGee, Snyder, & Young, 2018).

Viruses infect all three domains of life, and while there is a grow-
ing number of studies on virus-host interaction, there is surprisingly
little research trying to understand viruses of Archaea. Currently,
around 110 archaeoviruses have been described, and most have
been classified into 17 families and 1 unassigned genus (Krupovic,
Cvirkaite-Krupovic, Iranzo, Prangishvili, & Koonin, 2018; Prangishvili
et al., 2017). This compares to more than 6,000 known bacterio-
phages (Ackermann & Prangishvili, 2012; Pietild, Demina, Atanasova,

Identifying and understanding the interplay of viral and host factors
during cell entry, replication, and egress is critical to deciphering the
events that determine the fate of infection. The majority of the ar-
chaeal viruses isolated so far contain dsDNA as the genetic material
and infect halophilic or hyperthermophilic host species (Munson-
McGee et al., 2018; Prangishvili, Forterre, & Garrett, 2006).
Haloarcula virus His2 (family Pleolipoviridae) infects Haloarcula
hispanica (Bath, Cukalac, Porter, & Dyall-Smith, 2006) and is
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currently the only member of the genus Gammapleolipovirus
(Krupovic et al., 2018; Pietild et al., 2012). Virions are pleomor-
phic and possess a lipid membrane with two exposed spike pro-
teins (VP28, VP29) and two minor membrane-associated proteins
(VP27, VP32) (Pietild et al., 2012). The virus genome is dsDNA,
16 kb in length with long inverted terminal repeats and termi-
nal proteins, and is predicted to encode a putative type B DNA-
dependent DNA polymerase among its 35 annotated ORFs (Bath
et al., 2006). Genome replication is most likely by protein-priming.
At the nucleotide level, His2 shows little similarity to other viruses
while at the predicted protein level His2 shows mixed relation-
ships, with the DNA polymerase (His2V_gp14) being similar to that
of the spindle-shaped virus His1 (Salterprovirus) while the spike
protein (VP29; His2V_gp29) and the AAA ATPase (His2V_gp33)
share similarity to the corresponding proteins of betapleovirus
HHPV3 (Demina, Atanasova, Pietild, Oksanen, & Bamford, 2016).

In single-step growth studies, virus release begins at around 3 hr
postinfection (p.i.) and exit is thought to occur continuously via bud-
ding through the cell membrane, as suggested by the retardation of
host cell growth concurrent with lipid acquisition by the virus (Bath
et al., 2006; Pietild et al., 2012; Quemin et al., 2016). The lack of
cell lysis by His2 (Svirskaite, Oksanen, Daugelavicius, & Bamford,
2016) is a characteristic shared with other haloviruses, such as SH1
(Porter et al., 2005), as well as with members of Fuselloviridae such as
SSV1 (Frols, Gordon, Panlilio, Schleper, & Sensen, 2007) and STSV1
(Porter et al., 2005; Xiang et al., 2005). Its mode of replication ap-
pears to be very different from the well-studied lytic infections of
model bacterial caudoviruses such as T4 (Desplats & Krisch, 2003),
or T3 (Kriiger & Schroeder, 1981).

The host species of His2 is the extremely halophilic archaeon
Har. hispanica (Class Halobacteria, family Haloarculaceae), which
was isolated from a solar saltern in Spain and grows optimally at
25% (w/v) salinity (Juez, Rodriguez-Valera, Ventosa, & Kushner,
1986). It is an aerobic heterotroph, and like many haloarchaea,
the cells of this species have a simple cell envelope consisting
of the cell membrane enclosed by a thin, paracrystalline protein
layer (S-layer). The genome sequence of Har. hispanica has been
determined (Ding, Chiang, Hong, Dyall-Smith, & Tang, 2014; Liu,
Zhenfang, et al., 2011), and methods for genetic manipulation are
available (Liu, Han, Han, Liu, Zhou, & Xiang, 2011), making this
species an attractive model for studying the dynamics of virus in-
fections in haloarchaea.

In the ongoing struggle between viruses and hosts, host cells de-
velop mechanisms to defend against virus predation while viruses
evolve to evade host defenses. One approach to gaining more in-
sight into virus-host interactions is to measure and analyze differen-
tial gene expression using the microarray technique. This has been
used to study archaeal viruses of Sulfolobus, such as the fusellovirus
SSV1 (Frols et al., 2007) and the icosahedral virus STIV (Ortmann
et al., 2008), allowing the global surveillance host and virus genes
over the infection cycle, and revealing differentially regulated gene
expression. In more recent studies of Sulfolobus viruses, microarrays

were used to examine rudivirus SIRV2 infection (Okutan et al., 2013);

the dynamics and interplay between the fusellovirus SSV2, plasmid
pSSVi and host genes (Ren, She, & Huang, 2013); and the gene ex-
pression in SSV1- and SSV2-lysogens as well as in cells coinfected by
both viruses (Fusco, She, Fiorentino, Bartolucci, & Contursi, 2015).
One insight from these studies is that SSV1 infection does not in-
duce major changes in host (Sulfolobus) gene expression (Fréls et al.,
2007; Fusco et al., 2015), which is consistent with the continued (but
reduced) growth of the host while the virus is constantly shed.

In this study, we monitored changes in the expression of His2
and Har. hispanica genes during the infection cycle using a microar-
ray-based approach. Temporal expression and differential regulation
of both viral and host genes were observed and supported the idea
that His2 infection, at least over the first 4.5 hr, has a relatively low
impact on host gene expression.

2 | MATERIALS AND METHODS
2.1 | Strains and culture conditions

Haloarcula hispanica strain N601 is a derivative of Har. hispanica
ATCC 339607 (Ding et al., 2014; Liu, Zhenfang, et al., 2011). It was
cultivated in 23% Modified Growth Medium (MGM: 23% SW, 10M
Tris.Cl(pH 7.5),0.5% yeast extract, 0.2% peptone; Dyall-Smith, 2009)
at 37°C, agitated constantly at 200 RPM. Escherichia coli DH5«, used
as a host in cloning PCR products, was cultured in LB-Miller medium
(Sezonov, Joseleau-Petit, & D'Ari, 2007).

2.2 | Viralinfection

His2 virus stocks were produced by infecting early exponential
phase Har. hispanica strain N601 cultures (OD,,, = 0.2) with the
virus at a multiplicity of 1:10. For preparing infected-cell RNA, early
exponential phase Har. hispanica cells grown in 23% MGM medium
at 37°C were collected by centrifugation at 5,000 g for 15 min at
room temperature, the supernatant discarded and the pellet resus-
pended in 18% MGM medium containing His2 virus (10'° PFU), with
multiplicity of infection (MOI) in the ratio of 108:107 (cells:virus).
Mixtures were incubated for 15 min at 37°C to enable viral infec-
tion, after which the cells were pelleted by centrifugation at 5,000 g
for 15 min at room temperature and the supernatant discarded. Cells
were then washed twice with fresh 18% MGM medium, and the final
pellet resuspended in 100 ml of 18% MGM medium and incubated
at 37°C with slow shaking (100 rpm). About 1 ml samples were taken
at O (after the absorption, washing, and collection of the samples),
1, 2, 3,and 4.5 hr p.i. (postinfection) for RNA extraction, and an ad-
ditional 1 ml samples were taken at the same time to determine the
virus titer by plaque assay (Dyall-Smith, 2009). Cultured samples
were frozen in liquid nitrogen until further extraction. We used a TO
reference for this type of analysis, and the advantage is that the cells
are identical in every respect except one variable, time. The 15 min

infection incubation is short compared with the life cycle of His2,
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and washes were done at RT. In this way, the comparisons were T1/
TO, T2/TO, T3/TO, and T4.5/TO.

2.3 | Infected host cell RNA extraction

The TRI-reagent method (Dyall-Smith, 2009) was used to extract
total RNA from virus-infected cells. Culture samples (1 ml) were cen-
trifuged at 12,000 g (1 min, 4°C), homogenized in 1 ml TRI-reagent
solution (Invitrogen), and incubated at room temperature for 5 min,
and then centrifuged at 12,000 g (10 min, 4°C). The top (aqueous)
layer was transferred to a clean microfuge tube, 200 pl chloroform
added, and each mixture vortexed for 15 s, and then incubated at
room temperature for 15 min. After incubation, the samples were
centrifuged at 12,000 g (10 min, 4°C), and the top (aqueous) layer
transferred to a clean microfuge tube, 500 ul isopropanol added,
and the tubes vortexed for 10 s, and then incubated at room tem-
perature for 10 min. After centrifugation at 12,000 g (8 min, 4°C)
to pellet RNA, the supernatants were discarded. The RNA pellets
were washed twice in 1 ml 75% ethanol and centrifuged at 7,500 g
for 5 min at 4°C, and then air-dried before being resuspended in
nuclease-free water. DNase | (BioLabs) was used to remove residual
genomic DNA. Briefly, 2 units DNase | and 5 ul of 10x DNase | buffer
were added to 5 ug of RNA sample, and incubated at 37°C for 10 min.
Following the incubation, we added 0.5 M EDTA (final concentration
of 5 mM EDTA) and removed DNase | with Amicon Ultra-0.5 ml cen-
trifugal filters (Millipore, Ultra 100k) by centrifuging at 6,000 g for
6 min at 4°C. The RNA quantity was determined using a NanoDrop
ND-1000 UV-Vis Spectrophotometer (Nano-Drop Technologies)
and BioAnalyzer 2100 (Agilent 2100 Bioanalyzer) using the Agilent
RNA 6000 Nano kit, and RNA integrity was assessed by electropho-
resis on 1% agarose-guanidine thiocyanate gels (Figures A1 and A2).

2.4 | Microarray design and hybridization

A microarray chip was designed based on the 3,905 annotated genes
of Har. hispanica strain N601 (BioProject: PRINA227070). We as-
sayed three biological replicates (A, B, and C) of each sample time
using a two-color platform array and synthesized the complemen-
tary DNA from 15 pg total RNA using Superscript™ Plus Indirect
cDNA Labeling System (Invitrogen). Reference cDNA samples (O hr)
were synthesized using primers for downstream capture by Cy3, and
experimental samples (1, 2, 3, 4.5 hr) were synthesized using primers
for downstream capture by Cy5.

We used the Agilent Gene Expression Hybridization Kit for
hybridization. Briefly, the microarrays were scanned on an Agilent
Technologies Scanner G2505C using the one-color scan setting for
8 x 15 K array slides. The raw intensity data were then normalized
to a global average for each experiment, log, transformed and ana-
lyzed using GeneSpring GX7.3.1 (Agilent). A twofold change in gene
expression as compared to time O-hr was used as the minimum value

(or threshold) for describing differences. Z scores were calculated
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using the log, -transformed gene raw intensity data for each exper-
iment. Z ratio values for each experiment were then calculated by
taking the difference between the averages of the observed gene Z
scores and dividing by the SD of all of the differences for that partic-
ular comparison (Cheadle, Vawter, Freed, & Becker, 2003). A onefold
change in Z ratio gene expression was used to distinguish significant
changes in gene expressions throughout the experiment (Cheadle
et al., 2003). Hierarchical cluster analysis (Gene Cluster 3.0) was
used to analyze the gene expression profiles between the three rep-
licates. The raw data for all three biological replicates are provided in
Table S1 (https://doi.org/10.6084/m9.figshare.11800872).

3 | RESULTS AND DISCUSSION
3.1 | Viralinfection microarray

A microarray designed to detect the expression of 3,905 annotated
genes of Har hispanica strain N601, and 35 genes of halovirus His2
were hybridized to labeled cDNA transcripts of virus-infected cells
sampled from O to 4.5 hr postinfection. Three biological replicates
were used, and in all cases, virus release was detected at 3 hr p.i.
(Table S2; https://doi.org/10.6084/m9.figshare.11800872). The
results for genes showing significant regulatory changes have
been summarized in Figure 1 and Table 1, and the full compilation
of results is given in Table S1A (https://doi.org/10.6084/m9.figsh
are.11800872). A total of 114 genes (80 genes from the host and 34
from the virus) showing at least a twofold change among the three
biological replicates were detected. The heat map shown in Figure 1
provides a graphical summary of the changes in gene expression for
both virus and host (indicated at the right edge). The three replicates
for each time point are indicated at the top, and group together as
expected for the 1 and 2 hr sample times, while one of the 3 hr sam-
ples branches with the 4.5 hr group. Hierarchical clustering of genes
based on their expression patterns is shown at the left edge of the
map and groups genes into three major phases; early, middle, and
late. To extend and more confidently substantiate findings reported
here, future work should employ high-replicate designs based on the
protocols developed in this study, which will further resolve the un-

derstanding of His2 and its host.

3.2 | Regulation of His2 gene expression

Three phases of gene expression were observed; early (0-1 hr p.i.),
middle (2-3 hr p.i.), and late (4.5 hr p.i.). An overview of these phases
can be seen in Table 1 (virus, upper panel), where the peak upregu-
lated transcript values for the four sampling times are shaded (blue);
and in Table S1B (https://doi.org/10.6084/m?9.figshare.11800872)
where the up- and downregulation of genes are color shaded (blue-
to-red). In general, early gene expression is focused at the left end
of the genome (Figure 1b), then in the middle phase, these are

downregulated and genes at the right end are expressed, and by
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4.5 hr p.i. (late phase), most genes are strongly expressed (with the
conspicuous exception of the early genes, which remain strongly
downregulated).

In the early phase, transcription of the first three viral CDS
(His2V_gp01, His2V_gp02, His2V_gp03) was observed (Table 1,
Table S1B; https://doi.org/10.6084/m9.figshare.11800872), while
expression of the other genes was low. These three CDS are short
(123-156 nt), closely spaced, and leftwards oriented and are located
at the left end of the genome, near the terminal inverted repeat.
They encode small proteins (4.5-6 kDa) that show features (pl > 8
and/or CxxC motifs) suggesting they may bind to DNA targets, either
of the host or the virus genome (Tarasov, Schwaiger, Furtwangler,
Dyall-Smith, & Oesterhelt, 2011). Since His2 does not encode its
own RNA polymerase, transcription of virus genes must use the host
RNA polymerase, and early virus gene expression probably utilizes
a strong (consensus) haloarchaeal promoter sequence to recruit
the host enzyme (Babski et al., 2016). A good candidate sequence,
matching the consensus promoter motif SRnnRnnnTTWW (Babski
et al,, 2016), is found 27 nt upstream (nt 1028-1039) of the start
codon of His2_gp03 and could potentially direct the transcription of
all three CDS. In well-studied bacterial viruses, early gene expression
commonly includes the production of transcriptional regulators that
either suppress host gene expression (Patterson-West et al., 2018),
or facilitate the expression of middle and late genes from virus-spe-
cific promoters (Hinton, 2010; Kriiger & Schroeder, 1981). The fea-
tures of His2 proteins specified by the CDS His2V_gp01- gp03) are
consistent with these functions.

In the middle phase, the three early phase genes are strongly
downregulated and remain so until the last sampling time at 4.5 hr
p.i. In contrast, six viral genes (His2V_gp24, His2V_gp31-His2V_
gp35) are upregulated at 2 hr p.i. (Table 1, Table S1B; https://doi.
org/10.6084/m9.figshare.11800872), with the expression of His2V_
gp31-His2V_gp35 remaining upregulated until the late phase. On
the viral genome, His2V_gp31-His2V_gp35 are closely spaced, sim-
ilarly oriented, and located near the right terminal inverted repeat.
Most of these five CDS are overlapping and are probably transcribed
as a single mRNA. His2V_gp24 encodes a hypothetical protein of
unknown function, while His2V_gp31-His2V_gp35 specify two un-
characterized proteins with transmembrane domains (gp31, gp34), a
virus structural protein (VP32), an AAA family ATPase (gp33) and a
protein with CxxC motifs (gp35) that suggests a role in DNA binding
(Nagel, Machulla, Zahn, & Soppa, 2019; Wang et al., 2007).

In the late phase, at 4.5 hr p.i., most genes were upregu-
lated (Table 1, Table S1B; https://doi.org/10.6084/m?9.figsh
are.11800872), including two clusters of consecutive genes; His2V_
gp26-His2V_gp35, located near the right end of the genome, and
His2V_16-His2V_23. Among the first cluster are genes encoding
all four known virion proteins; the two virus spike proteins (VP28
and VP29) and the minor proteins (VP27, VP32) (Pietila et al., 2012).
They also include a potential packaging ATPase (His2V-gp33). Most
of the other six genes specify proteins with membrane domains
and their close genomic location and late expression pattern sug-

gest they are also likely to be involved in the assembly of mature
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(membrane-containing) virions. The second cluster of upregulated
genes are annotated as hypothetical and their functions have not
been determined; however, five specify small proteins that carry one

or more CxxC motifs suggestive of DNA binding (Nagel et al., 2019).

3.3 | Host cell gene expression changes during
virus infection

Only 80 out of 3,905 host genes (2%) showed significant change
(>twofold) in their expression after His2 infection (Table 1, Table S1C;
https://doi.org/10.6084/m9.figshare.11800872). Table 1 shows the
times of peak upregulation for these genes, while the color changes
in Figure 1, and the shading changes in Table S1, indicate that for
many of these genes, their differential expression changed over time
from 1 to 4.5 hr p.i. These changes allowed genes to be classified
by hierarchical clustering into three phases (early, middle, and late;

Figure 1, left and right sides) along with the virus genes.

3.3.1 | Early phase host genes

Twenty-one differentially regulated host genes were designated
as early expressed because they were upregulated within the first
hour of infection and subsequently downregulated (Figure 1, Table
S1C: https://doi.org/10.6084/m9.figshare.11800872.v2). The ten
most significantly upregulated early genes are shown in Table 1
(blue shading), and of these, seven specify protein components of
two different membrane transport systems; ZnuABC (HISP_05835,
05840, 05845), a specific and high-affinity Zn%* uptake system
(Pederick et al., 2015), and PstABCS (HISP_10570, 10575, 10580,
and 10585), a specific (and high-affinity) importer of phosphate. In
bacteria, PstA is not only used for phosphate uptake but is struc-
turally related to PII signal-transduction proteins and can bind
the secondary messenger molecule cyclic-di-AMP (c-di-AMP), so
influencing many different cellular processes (Miiller, Hopfner, &
Witte, 2015). The presence and significance of c-di-AMP in the
haloarchaeon Hfx. volcanii has recently been described (Braun
et al., 2019). Zn%" is not only an important and essential nutrient
but it is tempting to speculate that the presence of numerous po-
tential zinc-finger motifs (CxxC) in many His2 proteins (Nagel et al.,
2019), including those encoded by early genes, may be relevant in
the upregulation of znuABC.

Of the other four genes, two encode membrane-associated pro-
teins involved in energy production (COG category C); NADH dehy-
drogenase subunit L (HISP_18845) and V-type ATP synthase subunit
B (HISP_02210). The third gene (HISP_03090) encodes a cytosolic
enzyme, carbamoylphosphate synthase, which catalyzes the first
committed step in pyrimidine and arginine biosynthesis, and the
fourth gene is histidinol-phosphatase (HISP_17355).

In summary, most of the upregulated genes were involved in the
uptake of zinc and phosphate, while the remainder code for proteins

with roles in energy production or arginine/nucleotide synthesis.
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The upregulation of these early genes may reflect the cell responses
to membrane damage upon virus entry and/or the effects of early
virus proteins that enhance the expression of host genes that favor

virus replication.

3.3.2 | Middle and late phase host genes (2-4.5 hr
p.i.)

A total of 59 differentially regulated host genes were designated
as middle- or late-expressed, and as there were only 6 late genes
they will be described together with middle genes. These genes
were upregulated from 2 to 4.5 hr p.i. (Figure 1, Table S1C: https://
doi.org/10.6084/m9.figshare.11800872.v2). Twenty-seven of the
most significantly regulated (middle and late) genes are listed in
Table 1 and will be described in more detail. The times of their
peak upregulation have been shaded (light blue), and it can be seen
that ten genes were significantly upregulated at 2-3 p.i., while the
rest peaked at 4.5 hr p.i. (Table 1). Most genes in Table 1 specify
proteins that fall into three functional processes (see column 4,
Table 1); metabolism (16), information processing (5) and cellular
processes (3). At the category level of COG classification (Table
S1C,D:  https://doi.org/10.6084/m9.figshare.11800872.v2), a
number of themes become evident. Firstly, within the metabolism
group, four genes specify the protein subunits (E1a, E1lb, E2, and
E3; COG=C) of pyruvate dehydrogenase (PDH), a multicomplex
enzyme that feeds acetyl-CoA into the TCA cycle and is impor-
tant in maintaining the supply of energy and biosynthetic building
blocks to the cell (Figure 1, Table 1). Other members of the metab-
olism group include those involved in amino acid metabolism (e.g.,
HISP_04735, glutamate synthase; COG=E), coenzyme synthesis
(e.g., HISP_01730, riboflavin kinase, COG=H), uptake transport-
ers for phosphate/phosphonate (e.g., HISP_17215, COG=P), lipids
(e.g., HISP_11670, COG=l), and sugars (HISP_18900, COG=G), as
well as genes coding for proteins involved in energy production/
conversion (e.g., HISP_02180, V-type ATPase COG=C).

Among the information processing genes are four that en-
code ribosomal proteins (S4E, L3, L14, and L24; Table 1; COG=J),
which as components of ribosomes participate in protein trans-
lation. A fifth gene (HISP_10940) specifies ribonuclease P pro-
tein component-1, an enzyme that is also involved in translation
(Table 1, Table S1C, COG=J; https://doi.org/10.6084/m?9.figsh
are.11800872). Interestingly, the hierarchical clustering grouped
eight viral genes (His2V_gp16 - His2V_gp23) closely with four
host genes (Figure 1, Table 1), suggesting possible regulation by
virus gene products. The four host genes included those specify-
ing subunits of PDH (discussed above), an ABC sugar transporter
(HISP_18900) and phenylacetate-CoA oxygenase subunit PaaC
(HISP_17040).

Of the two late-expressed genes shown in Table 1, one encodes
a signal transduction histidine kinase (HISP_18340) and the other
specifies glycine cleavage system T protein (aminomethyltransfer-
ase) (HISP_19155).

Although relatively few host genes showed significant differ-
ential regulation during His2 infection, it is likely that the virus has
evolved to modify and redirect host cell metabolism in order to
optimize virus replication, assembly and exit (Sanchez & Lagunoff,
2015). Other archaeoviruses have previously been shown to have a
low impact on host cell metabolism, such as SSV1 (Frols et al., 2007;
Fusco et al., 2015), and in a similar study with the bacterial tectivi-
rus PRD1 and its host E. coli (Poranen et al., 2006), changes at the
whole-genome level were described as moderate. In the present
study, His2-infected Har. hispanica cells displayed significant upregu-
lation of many genes that are potentially advantageous for the virus,
such as pyruvate dehydrogenase (PDH) complex (energy/biosyn-
thesis) and ribosomal proteins (translation). The increased capacity
and output of biosynthesis systems could then be redirected into
the synthesis of virus components instead of cell growth (Sanchez
& Lagunoff, 2015). As many metabolic pathways are inter-related,
the exact mechanisms by which His2 gene products achieve optimal
growth of virus be challenging to understand. This study provides a
starting point for future investigations aimed at identifying the roles
of specific His2 genes in driving metabolic changes in the host, such

as the roles of the many small, zinc-finger motif proteins.

4 | CONCLUSION

The synchronization of His2 infection of Har. hispanica allowed
temporal and differential regulation of viral and host genes to be
examined. Eighty host genes were differentially regulated >two-
fold postinfection. Both viral and host genes could be grouped into
early-, middle-, and late-expressed genes, according to the times at
which their transcripts were upregulated. Infection, replication, and
propagation of His2 coincided with the regulation of host genes that
were involved in transport, energy production, translation, and me-
tabolism. Further studies will be needed to unravel and better un-
derstand the virus transcription program and the roles of individual

genes in the interplay and evolution of His2 and its host.
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APPENDIX A
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FIGURE A1 RNA electrophoresisin 1x TBE buffer. The RNA samples were analyzed on 1% agarose guanidine thiocyanate gel stained
with ethidium bromide. Electrophoreses were conducted at the voltage 50 V. The arrows indicate the 23S and 16S units of rRNA. TO: after
the absorption, washing, and collection of the samples, T1 ~ T4: infection at 1, 2, 3 and 4.5 hr

FIGURE A2 RNA quality and purity (a) The results of RNA analysis
by Agilent Bioanalyzer. Panel a is to show
one of the gel photographs by using the @&’” Replicate A ‘ 0011
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