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ARTICLE INFO ABSTRACT

Keywords: Cross-frequency coupling (CFC) between neuronal oscillations reflects an integration of spatially and spectrally
Nonlinear interaction decomposition distributed information in the brain. Here, we propose a novel framework for detecting such interactions in
NID . Magneto- and Electroencephalography (MEG/EEG), which we refer to as Nonlinear Interaction Decomposition
I(\:/[rgés'ﬁequemy coupling (NID). In contrast to all previous methods for separation of cross-frequency (CF) sources in the brain, we propose
EEG that the extraction of nonlinearly interacting oscillations can be based on the statistical properties of their linear

Nonlinear neuronal interactions mixtures. The main idea of NID is that nonlinearly coupled brain oscillations can be mixed in such a way that the

Independent component analysis resulting linear mixture has a non-Gaussian distribution. We evaluate this argument analytically for amplitude-

ICA modulated narrow-band oscillations which are either phase-phase or amplitude-amplitude CF coupled. We
validated NID extensively with simulated EEG obtained with realistic head modelling. The method extracted
nonlinearly interacting components reliably even at SNRs as small as —15 dB. Additionally, we applied NID to the
resting-state EEG of 81 subjects to characterize CF phase-phase coupling between alpha and beta oscillations. The
extracted sources were located in temporal, parietal and frontal areas, demonstrating the existence of diverse local
and distant nonlinear interactions in resting-state EEG data. All codes are available publicly via GitHub.

activity is primarily associated with sensorimotor processing (Bayr-
aktaroglu et al., 2011; Kilavik et al., 2013; Klimesch, 2012; Salmelin and

1. Introduction

Oscillatory neuronal activity has been associated with almost all brain
operations including sensory, motor and cognitive processes (Buzsaki
and Draguhn, 2004). In humans, these oscillations can be measured with
magneto- and electroencephalography (MEG/EEG), where the frequency
content is classically divided into specific frequency bands, namely &
(0.5-4 Hz), 6 (4-8 Hz), a (8-12 Hz), p (12-25 Hz), y (25-70 Hz).! Each
frequency band has been associated with specific functional roles. For
example, alpha oscillations are known to be relevant for attention/sen-
sory processing (Groppe et al., 2013; Klimesch, 2012), while beta-band

Hari, 1994). While specific neuronal operations can be carried out by
oscillations in distinct frequency bands, there should be neuronal
mechanisms integrating such spatially and spectrally distributed pro-
cessing (Palva et al., 2005). In this way, neuronal communications can be
considerably enriched via coupling of neuronal oscillations within one
frequency band (Engel and Fries, 2010; Fries, 2015) as well as between
different frequency bands. Various types of cross-frequency (CF) in-
teractions among neural oscillations, namely phase-phase, amplitu-
de-amplitude, phase-amplitude coupling have been observed in human
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electrophysiological recordings (e.g. MEG/EEG) (Canolty and Knight,
2010; Jensen and Colgin, 2007; Nikulin and Brismar, 2006; Palva et al.,
2005) and have been linked to diverse perceptual and cognitive processes
(Canolty and Knight, 2010; Fell and Axmacher, 2011; Hyafil et al., 2015;
Palva et al., 2005; Sauseng et al., 2008; Siebenhiihner et al., 2016). In this
study, we focus on the extraction of these interactions from
multi-channel MEG/EEG. While the novel approach introduced here is
applicable to different types of CFC, a special emphasis is dedicated to
phase-phase coupling for the following reasons.

The phase of neuronal oscillations is known to represent the timing of
the firing of a neuronal population generating the oscillation (Fries,
2009, 2015; Palva et al., 2005; Siegel et al., 2012), while its amplitude
reflects the strength of local spatial synchronization (Siegel et al., 2012).
The interaction of the activities of distinct neuronal populations is
manifested in the locking of phase/amplitude of the observed oscilla-
tions. Phase-phase coupling is a type of CFC that operates with milli-
second precision for both oscillations (Fell and Axmacher, 2011; Marzetti
et al., 2019; Palva et al., 2005; Siegel et al., 2012) and investigating it
with MEG/EEG recordings can provide a unique possibility to study
synchronization of the spiking of distinct neuronal populations
non-invasively (Palva and Palva, 2018).

A number of previous studies have investigated CF phase synchro-
nization in sensor-space (Darvas et al., 2009; Nikulin and Brismar, 2006;
Palva et al., 2005; Tass et al., 1998). However, volume conduction does
not allow the disentanglement of individual components. In order to
resolve this issue, some previous studies have investigated the phase
synchrony in the source-space using inverse modelling (Siebenhiihner
et al., 2016; Tass et al., 2003). Yet, source-space analysis is computa-
tionally exhausting and source reconstruction methods are ill-posed,
which may lead to inconsistent outcomes (Mahjoory et al., 2017). On
the other hand, due to a linear mapping of the neuronal source signals to
the sensors, multivariate methods can increase the signal-to-noise ratio
(SNR) and accuracy of localizing the neuronal activity (Parra et al.,
2005). At the same time, these methods alleviate the problem of multiple
testing in sensor- or source-space analysis. While most of the multivariate
source-separation methods focus on the extraction of independent sour-
ces (e.g. independent component analysis - ICA), there are only a few
studies utilizing multivariate methods to extract dependent sources from
the electrophysiological recordings of the human brain (Chella et al.,
2016; Cohen, 2017; Dahne et al., 2014; Nikulin et al., 2012; Volk et al.,
2018). These methods optimize a contrast function of the desired type of
coupling. However, we show that the coupling can be reflected in the
statistical properties of the signal constructed through the linear mixing
of nonlinearly coupled processes. We refer to our method as Nonlinear
Interaction Decomposition (NID).

The rest of the manuscript is organized as follows. In section 2 we
provide some preliminary background about the amplitude-modulated
narrowband oscillations and their linear mixture. Section 3 is dedi-
cated to explaining the proposed method (NID) and its algorithmic steps.
In section 4 the experimental data and the analysis/testing approaches
are described. The results of applying NID to simulated as well as resting-
state EEG data are presented in section 5. Finally, a discussion and a
conclusion are provided in the last section.

2. Preliminary background

In this section we introduce the main assumptions and the core idea of
NID.

2.1. Nomenclature

We start with defining the key phrases used throughout the manu-
script. An amplitude-modulated (AM) signal is a signal with a non-
constant envelope. An amplitude-modulated narrow-band (AM narrow-
band) signal is an AM signal whose energy is concentrated in a specific
narrow bandwidth. For instance, alpha-waves in M/EEG are AM narrow-
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band signals, whose energy is in the bandwidth of 8 — 12 Hz.
2.2. Linear mixture of cross-frequency coupled brain oscillations

In order to understand the idea of NID, it is helpful to consider non-
sinusoidal brain oscillations. Note that NID does not require oscilla-
tions to be non-sinusoidal, they are rather used here for the demonstra-
tion of the method. The frequency content of such signals is concentrated
at two (or more) narrow bandwidths, whose central frequencies are
multiples (known as harmonic frequencies (Oppenheim et al., 1983)) of
the fundamental frequency. This means that such a non-sinusoidal signal
can be decomposed to narrow-band components which are phase-phase
coupled to each other. Fig. 1 depicts an example of this observation in
real data. Interpreting a non-sinusoidal signal as a linear mixture of
narrow-band phase-coupled signals, led to the idea that the linear
mixture of nonlinearly coupled narrow-band oscillations has a
non-Gaussian distribution, regardless of the location of the oscillation.
Fig. 2 illustrates an example from real data, where two signals in alpha
and beta frequency band are phase-coupled to each other and their linear
mixture is more non-Gaussian than each of them. Supplementary code
(2) provides some simulations for further illustration of NID’s core idea.

We assume that the distribution of AM narrow-band brain oscillations
do not deviate strongly from Gaussian distribution. It is also discussed in
(Hyvarinen et al., 2010) that the amplitude modulation of brain oscil-
lations is the key property that results in the observation that the dis-
tribution of AM narrow-band oscillations does not deviate strongly from
Gaussian distribution. Note that a sufficient amount of data points is
needed so that the histogram of data can become a fair estimation of its
distribution. For example, if the signal is filtered with a very narrow
band-pass filter, more data points are needed to capture the fluctuations
of the amplitude modulation compared to filtering with a broader
band-pass filter.

Our proposed method (nonlinear interaction decomposition-NID) is
based on the idea that if two narrow-band oscillations are independent or
only linearly coupled, the distribution of their linear mixture is closer to
Gaussian distribution in comparison to the distributions of linear mix-
tures of nonlinearly coupled oscillations. We have analytically proved
that CFC phase-phase and amplitude-amplitude coupled AM narrow-
band oscillations can be linearly mixed to a non-Gaussian distributed
signal (supplementary text, section 1) Fig. 3 illustrates the principle of
NID. Note that we assess the non-Gaussianity of a random variable by
means of kurtosis, skewness, or fifth order moment, all of which are zero
for Gaussian random variables.

3. Method
3.1. Notation

We use boldface lower-case letters (e.g. x) to denote vectors, while
boldface capital letters (e.g. X) are used for matrices. Regular letters, (e.g.
X), indicate scalars. Vectors are used to denote the time series of a signal
or spatial filters/activation patterns. Matrices are used to denote the
concatenation of vectors. The operators [.,.] and [.; ] stand for horizontal
and vertical concatenation of two matrices respectively.

3.2. Measuring cross-frequency coupling

Depending on the type of the coupling, there are different measures to
quantify CFC. In this paper, we worked with phase-phase and amplitude-
amplitude coupled oscillations. As described below, the phase locking
value (PLV) was used for measuring phase-phase coupling, while
amplitude-amplitude coupling was quantified with the envelope corre-
lation. Both of these measures are calculated from the instantaneous
phase and amplitude of oscillations, which are computed as the phase
and magnitude of the complex analytic signal based on the Hilbert
transform.
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Fig. 1. A non-sinusoidal oscillation obtained from
spatial filtering of EEG of a subject of LEMON

dataset (Babayan et al., 2019) with the spatial filter
in panel D. Panel (A) shows a segment of the time
series of the oscillation with a power spectral
density (PSD) shown in panel (B). The PSD of the
oscillation has clear peaks in alpha and beta bands.
Panel (C) shows a segment of the narrow-band
components (alpha and beta) of the oscillation in
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1.250
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Phase-phase coupling. Oscillations with frequencies f, and f, = 2f,, n,
m € N are called n:m phase-coupled if |[m®,(t) — n®y(t)| < const, where
®,(t) and @, (t) define the instantaneous phases of the two oscillations at
fa and f,,; respectively. To quantify n: m phase-phase coupling, phase-
locking value (PLV) is widely used (Palva et al., 2005; Sauseng et al.,
2008; Scheffer-Teixeira and Tort, 2016; Siebenhiihner et al., 2016) and it
is defined as | < &¥w(®) > |, where ¥ () = (M®Pp(t) — NPy (1)), < . >
stands for computation of the mean over time samples, j is the imaginary
number, and |.| is the absolute value operator.

Amplitude-amplitude coupling. In the case of amplitude-amplitude
coupling, the instantaneous amplitudes of oscillations are correlated.
Therefore, the correlation coefficient of the oscillations’ envelopes in-
dicates the strength of the amplitude-amplitude coupling.

3.3. Detection of cross-frequency coupling: problem formulation

We assume that there are N non-linearly coupled pairs of source

N
signals {(s§“),s§m>)}i:1 at frequencies f, and f,,;, where f, = nf; and f,, =
mfy. fp is a base-frequency relating f, and f,, to each other. In the rest of

the paper, all the criteria and equations mentioned for frequency f;, holds
for frequency f, as well. sl(") € RYT is a narrow-band source signal at f;,,

A B

(A). The two components are phase-coupled. Panel
(D) depicts the spatial filter and mixing pattern
(Haufe et al., 2014) of the oscillation, computed
with NID.

10 20 30
frequency (Hz)

Mixing pattern

where T is the number of time samples. The electrical (or magnetic) ac-
tivity measured at the sensors can be modeled as a linear mixture of the
sources as in the following (Baillet et al., 2001; Haufe et al., 2014):

x=PUSM 4 pegin 1 g m

where X € R¢*T is the matrix of multi-channel measured signal with C as
the number of channels. P® = [p{ ... p®]. We call p{” € R the
mixing pattern of source s\" . Additionally, ™ = (s ;s ] € RV T is
the matrix of source signals at f,, which are CF coupled to sources in
matrix S™ = [s(1m>; s s;\,m) ]. In equation (1), & denotes the noise signal,
which cannot be explained by the linear model. Note that the superscript

of the variables is an indication of their frequency, e.g the superscript (n)
(n)

ins;” is related to the subscript n of f,,. As mentioned in section 3.2, the

coupling is called n : m coupling if (sﬁ"),si(m)) are phase-phase coupled.
However, we use this notation for amplitude-amplitude coupling as well
so that we can denote the frequency ratios easier.

We provide an example here. Assume that we have two coupled
source signals in a and p frequency band, i.e. N = 2,n =1,m = 2, and

fo = 10Hz, fi = 10 Hz, f, = 20 Hz. Then S = [s{!;s(!)] and §? =

Fig. 2. Two phase coupled sources in alpha (x) and

beta (y) band extracted with NID using real EEG

90 data of a subject from LEMON dataset (Babayan

120 60 et al., 2019). Panel (A) shows a segment of alpha
and beta oscillations and their spatial patterns.

150 30 Panel (B) depicts the histogram of 2®, — ®,, where
® stands for the phase of a signal. The fact that the
180 phase difference is located in a small sector of the
phase diagram indicates a strong coupling between
alpha (x) and beta (y) oscillations. Panel (C) shows
210 330 the value of the fifth moment (denoted as M5) of
the narrow-band signals in panel (A) and their
240 300 linear mixture, indicating more non-Gaussianity for
210 the mixture than for the constituent oscillations.
C Note that the fifth moment is used as a measure of
non-Gaussianity in NID’s algorithm.
M5(x)=-0.002
M5(y)=-Te-4
M5(x+0.2y)=0.156
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Fig. 3. The core idea of the proposed method (NID). The signals in the bottom
of the figure represent linear mixtures of signals S; and S;,i = 2, 3. The shaded
histograms are the amplitude distributions of the signals. S; and S; are CF
phase-phase coupled, while S; and S, are independent signals with different
central frequencies. The distribution of the linear mixture is non-Gaussian only
when there is a nonlinear dependency between the two amplitude-modulated
narrow-band oscillations. Supplementary code (2) provides some simulations
regarding this idea.

[s§2>; s<22) ] are the CF coupled source signal matrices at frequencies f; and
f respectively.

The main problem here is the retrieval of the sets of interacting
sources and their corresponding mixing patterns from the multi-channel
signal X. In other words, there is an additional question compared to
typical source separation problems, i.e. detection of the coupling be-
tween the sources.

The above mentioned problem can be generalized to more coupled

sources: for instance, triplets of coupled source signals

m (m Py N i i
{(s;",s;",8; )};_;- As an example, one can think of coupling of source

i 0% 000
signals with central frequencies of 10 Hz (), 20 Hz ($), and 30 Hz (low y)
source signals, which we call 1:2:3 coupling. In this manuscript, we
mainly focus on the source model in equation (1) for pairs of coupled
source signals. However, we test the performance of the method with
simulated data for extraction of triplets of source signals with 1:2:3

coupling.

3.4. Nonlinear interaction decomposition (NID)

As discussed in section 2, the working principle of NID is that phase-
phase and amplitude-amplitude coupled amplitude-modulated narrow-
band signals can be linearly mixed in the way that the linear mixture has
non-Gaussian distribution. On the other hand, the linear mixture of in-
dependent oscillations is approximately normally distributed.

The NID algorithm consists of two main steps: first, applying a
method to extract approximate estimates of the sources at f, and f;,;; and
second, maximizing the non-Gaussianity of the weighted sum of pro-
jected signals (refer to section 2). A block diagram of NID is depicted in
Fig. 4.

In the first step, Spatio-Spectral Decomposition (SSD) (Nikulin et al.,
2011) is applied to extract N oscillations from the multi-channel mixed
signal. SSD is a method based on generalized eigenvalue decomposition,
which calculates the spatial filters that maximize the SNR at the fre-
quency band of interest. We denote the source model of SSD as X =

AMX™ where X € RE*T contains mixed, narrow-band, multi-channel
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signal with central frequency f,. X") € RN*T is the matrix of SSD com-

ponents, and A"} € REN is the SSD mixing matrix.

In the second step of NID, the objective is to find a subspace, in which
linear mixtures of SSD components are maximally non-Gaussian, which
results in separating the cross-frequency coupled oscillations (Appendix
A). This is done through applying a non-Gaussianity maximization

decomposition (NGMD) on an augmented matrix Xa,, = [XQ;XEQ]. In
this way, NGMD finds the linear mapping, which maximizes non-
Gaussianity of the linear mixtures of the source signal estimates. The

NGMD can be formulated as Xa,, = AngRng, Where Ryg includes the
linear mixtures of SSD components. Ayg = [A%'G); Ag’g] is the NGMD linear

mapping and A%’é is the NGMD linear mapping corresponding to SSD
components of frequency f,. The final mixing matrix, revealing an esti-
mation of the activation patterns of the coupled oscillations can be

computed by back-projecting AI(\',?; from SSD space to sensor space:

P = AVAY @

5

We refer the reader to Appendix A and B for more discussion on
NGMD and some practical details about computing the final mixing
patterns. Additionally, the MATLAB® codes of the NID algorithm are
publicly accessible on GitHub (https://github.com/minajamshidi/NID).

3.5. Statistical testing of coupling

Statistical testing has been applied in order to control for the effects of
overfitting when extracting coupled components. For this purpose, the
SSD components of the lower frequency were cut into one-second seg-
ments, which were then randomly permuted. The NGMD was applied to
the augmented matrix of permuted SSD components of the lower fre-
quency and SSD components of the higher frequency. For each iteration
of the permutation test, the strongest PLV of the extracted source pairs
was taken as the PLV of that iteration. Finally, the NID components
(extracted from the non-permuted components), whose PLVs were larger
than at least 95% of the PLVs of the permutation iterations were kept as
significant components.

4. Experimental data
4.1. Simulated EEG

We used realistic head modelling to simulate EEG, consisting of cross-
frequency coupled sources and additive pink noise (also known as 1/f
noise). In these simulations, the strength of the coupling, the number of
cross-frequency coupled pairs, and their mixing patterns were known a-
priori; thus, allowing the calculation of the PLV of extracted source sig-
nals and errors for the extraction of activation patterns.

64-channel EEG signals were simulated using MEG/EEG toolbox of
Hamburg (METH), based on a three-compartment realistic head model
(Nolte and Dassios, 2005), with channel positions corresponding to the
standard positions of EEG on the Montreal Neurological Institute head
(Evans et al., 1994). The sources were modeled as dipoles located in the
triangularly tessellated cortical mantle. The spatial direction and location
of the dipoles were chosen randomly. The orientations’ polar angles
(azimuth-0 and elevation-@) were drawn from a uniform distribution.
Therefore, all the direction in the unit-sphere were used with equal
probability. The locations of the oscillations’ sources were randomly
selected from the nodes on the cortical surface. For the noise sources’
locations the Cartesian coordinates of the cortex voxels were binned into
5 bins and therefore the cortex was divided to 125 regions. From each
region, one voxel is selected randomly (drawn from a uniform distribu-
tion). Note that it can happen that a binned region does not include any
voxels, meaning that there is no voxel with those coordinates. Those
regions with no voxel were ignored. We took this approach to make sure
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Fig. 4. Block-diagram of NID. The input is the multi-channel mixed signal. Then
SSD is applied to extract estimates of the source signals at f, and f,,. The SSD
components are concatenated vertically to build an augmented matrix with its
rows being estimates of source signals in the two frequency bands. The
augmented matrix is then passed to a non-Gaussianity maximization (NGM)
algorithm for the separation of the coupled sources. In the last step the weights
computed by NGM algorithm are combined with the mixing matrices of SSD in
order to build the mixing patterns of the narrow-band oscillations. In the output,
the time course and the mixing patterns of the coupled sources are extracted.

that the noise dipoles are homogeneously distributed over the cortical
mantle and are not located at a specific region. Only when comparing
NID to the other methods (section 4.1.1), the number of noise dipoles
were varied to test for the sensitivity of the methods to this parameter.

N independent coupled pairs of oscillatory sources were generated
based on the type of interaction. Unless it is mentioned otherwise, two
pairs of coupled oscillations (N = 2) were produced. In the rest of the
paper, we continue with phase-phase coupled sources; however, com-
parable results were achieved for amplitude-amplitude coupling.

For phase-phase coupled pairs (with PLV = 1) at f, = nfy and f;, =
mfy, a narrow-band signal centered at f, was produced by band-pass
filtering an array of white-Gaussian noise. The phases of the sources at
frequencies f, and f;, were obtained by frequency-warping (Nikulin et al.,
2012) of the phase of the signal at f,, meaning that the phase of the
oscillation at f, was multiplied by n and m. For each of the signals at f,
and f,,, the amplitude envelope was set equal to the envelope of an in-
dependent array of band-passed white-Gaussian noise at the same fre-
quency band. We set f, = 10 Hz in the simulations with the motivation of
having o band as the base frequency. The cut-off frequencies of the
band-pass filter was 8 Hz and 12 Hz. Supplementary code (5) provides a
comprehensive tutorial to the simulation pipeline and its details. Addi-
tionally, the simulation pipeline code is available via GitHub.

Note that, a fourth-order Butterworth filter was used in all cases of
band-pass filtering, applied backward-forward to prevent phase distor-
tion. Additionally, the sampling frequency was set to 500 Hz.
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4.1.1. Evaluating NID using simulated data

4.1.1.1. Evaluation criteria. For each simulation, the dissimilarity be-
tween the original, a-priori known (p) and the extracted (p) mixing
patterns was measured using the following index for each extracted
oscillation:

p-p

dp,p)=1—-—=
®-P)=1-1r]

3

Since the estimated mixing patterns are compared with the ground
truth when working with the simulated data, the above dissimilarity
index is called the error of mixing patterns. Having N pairs of coupled
sources in each simulation, 2N errors are computed. The median of these
errors was reported as the representative error of the source recovery.

Another parameter that helps to evaluate the performance of the al-
gorithm is the PLV of the extracted sources. For each simulation, the
mean PLV of all extracted pairs of sources (average of N values) was
reported.

4.1.1.2. Evaluation conditions. NID’s performance was examined at
various signal-to-noise ratios (SNR), values for strength of coupling, and
number of pairs of coupled oscillations. For each condition, 100 five-min
EEG signals were simulated comprising pairs of coupled oscillations at
frequencies (10 Hz, 20 Hz), (10 Hz, 40 Hz), and (20 Hz, 30 Hz), which we
refer to as 1:2, 1:4, and 2:3 coupling, respectively. SNR was defined as the
ratio of the mean power of the projected oscillations to the power of
projected pink noise at each frequency.

4.1.1.3. Dipole locations and orientations. We examined the impact of the
location and orientation of the dipoles on NID’s performance. The details
are provided in supplementary text, section 2.1.

4.1.1.4. Overfitting analysis. Another important issue was to investigate
whether the method overfits the data when finding the coupled sources.
We checked this for NID considering two aspects: frequency specificity
and noise overfitting. This is explained in the next two paragraphs.

Firstly, we investigated how NID performs in separating coupled
source signals with the frequency ratio of n: m when the algorithm’s
parameters are not set equal to n and m. To verify this, coupled sources
with the frequency ratio of 1:4 were simulated, while the frequency ratio
parameters of NID was set to 1:2.

Additionally, we investigated whether the algorithm overfits the
noise of the data by extracting spurious sources. For this purpose, the EEG
signal was first simulated without any oscillations being added (i.e. the
EEG channels contained only projected noise). Second, NID was applied
on the simulated EEG consisting of pink noise and two independent os-
cillations at each of two frequency bands of interest, i.e. [8,12]Hz and
[16,24]Hz. The frequency ratio parameters of NID were then set to 1:2.
The performance of NID was evaluated in 100 simulations where NID
was applied to find two 1:2 coupled sources. The significance of the
coupling of the extracted sources was assessed through the statistical
testing described in section 3.5.

4.1.1.5. NID for triplets of sources. To test the reliability of NID for
recovering triplets of the coupled sources (refer to section 3.4), two
triplets of 1:2:3 coupled sources (oscillations at 10 Hz, 20 Hz, and 30 Hz)
were simulated at different SNRs and the performance of NID was eval-
uated by assessing the error of mixing patterns and the mean PLV of the
extracted sources. Note that for each set of coupled oscillations, the PLV
is computed as the mean PLV of 1:2 and 1:3 coupled signals.

4.1.1.6. Comparison to other methods. There are not many methods for
detection of n:m phase-phase coupling. Cross-frequency decomposition
(CFD) (Nikulin et al., 2012) is a multivariate method for the detection of
1:n (n € N) phase synchrony in MEG/EEG. Generalized CFD (gCFD)
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Volk et al. (2018) is a generalization of CFD for n : m (n,m € N) coupling.
We compared the performance of NID with these two methods. For this
purpose, in 100 Monte Carlo runs, we simulated two pairs of phase-phase
coupled oscillations with frequency ratios 1:2, 1:3, 1:4, and 2:3 with f, =
10 Hz at SNR = — 10dB. Additionally, 27 and 125 dipoles were gener-
ated for noise sources in order to test the impact of the number of noise
sources on the performance of the methods. In each run the three
methods were used to extract the coupled source signals.

For statistical comparison of the methods within each condition
(number of noise dipoles), Wilcoxon-rank test has been used. For
comparing the performance of each method to itself in simulations with
different number of dipoles, Wilcoxon-sum test has been employed.

4.2. Real EEG

While the validation of a method is done with realistic simulations, it
is important to apply a new method to real data since simulations might
not take into account all the complexity of EEG generation. Specifically,
for a CFC source separation method, it is important to check if the method
can extract both remote and local neuronal interactions including those
relating to the presence of harmonics in the EEG/MEG signals.

We applied NID to resting-state EEG data from the open access
database of the LEMON study (the Leipzig study for mind-body-emotion
interactions). This study was carried out in accordance with the Decla-
ration of Helsinki and the study protocol was approved by the ethics
committee at the medical faculty of the University of Leipzig (Babayan
et al., 2019). The dataset includes 16-min, 62-channel resting-state EEG
recordings, which consist of 16, interleaved, 1-min blocks of eyes-closed
(EC) and eyes-open (EO) conditions. The EEG was recorded with a
band-pass filter between 0.015 Hz and 1 kHz and a sampling frequency of
2500 Hz.

For our analysis, we have used the recordings of young (20-35 years
old), right-handed men, which totaled 81 subjects. From the total EEG
available (16 min), only the EC condition was used, resulting in 8-min
resting EEG data for each of the subjects.

The preprocessed EEG data from the LEMON study is publicly avail-
able in the database. In the preprocessing steps, the signal has been
downsampled to 250 Hz, band-pass filtered within [1,45]Hz with a
fourth-order Butterworth filter (applied backward-forward), and split
into EO and EC conditions. Artifact rejection has been done through vi-
sual inspection, principal component analysis (PCA), and ICA. For more
details of preprocessing procedure we refer the reader to (Babayan et al.,
2019).

4.2.1. Extraction of interacting sources from real data

We used NID for extracting phase-phase coupling between alpha (8 -
12 Hz) and beta (16 — 24 Hz) frequency bands. The purpose of extracting
alpha-beta coupling is that there is already some knowledge about the
properties of this interaction (Nikulin et al., 2012; Nikulin and Brismar,
2006) and therefore, the outputs of the method can be compared to the
previous results.

For each subject, five pairs of coupled oscillations were initially
extracted. The significance of the extracted sources for each subject was
determined with the permutation test explained in section 3.5. From the
extracted pairs of coupled source signals, those that their PLVs could
survive the permutation test were kept as significant and used in the
further analysis.

4.2.2. Evaluating NID using real data

While decomposing real data, it is not possible to examine the validity
of the extracted mixing patterns. Therefore, we can only test the method
for its efficacy to extract interacting components and to relate corre-
sponding spatial locations to the known neurophysiological results. In
this regard, we firstly, examined the PLV of the extracted source signals.
In the next step, in order to inspect the relationship of the spatial location
of the paired oscillations, the dissimilarity of their activation patterns
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was calculated using equation (3). The smaller the computed index, the
more similar the activation patterns. A dissimilarity of zero would indi-
cate that the cross-frequency interactions can be due to the presence of
multiple harmonics, while non-zero dissimilarities is likely to indicate
the presence of genuine interactions. Spatially distinct interactions are
mostly interesting for us, because they can demonstrate remote in-
teractions in the brain. Additionally, we investigated the relationship
between the PLV of the extracted coupled oscillations and the dissimi-
larity between their activation patterns to assess whether the spatial
location of the extracted coupled oscillations has any impact on the PLV
of their coupling.

Note that with synthetic data the ground truth is a-priori known;
therefore, equation (3) gives the error of the estimated mixing patterns.
However, with real biological data this equation is used to estimate the
dissimilarity of the two mixing patterns, which shows if the two oscil-
lations have similar spatial locations.

4.2.3. Localizing the activation patterns

We localized each of the extracted components in the source space
using the eLORETA inverse modelling (Pascual-Marqui, 2007) and the
New York head model (Haufe et al., 2015; Huang et al., 2016) with
approximately 2000 voxels. The MATLAB® implementation of the
eLORETA algorithm is available in MEG/EEG Toolbox of Hamburg
(METH). The voxels of the head model are attributed to regions of in-
terest (ROI) based on the Harvard-Oxford atlas, which has 96 cortical
ROIs. In order to analyze the relationship of the localization of alpha and
beta sources at the group level, we pooled all the extracted oscillations of
all subjects together. In the inverse model of each source, the voxel values
were thresholded by 95% of the maximum activity across all voxels.
Therefore, for the inverse model of the i-th pair, N;, and Nj; voxels
remained with non-zero values for the o and § oscillations respectively,

from which N\") and N f'/,) voxels were in ROI 7.

In order to quantify the activity in each ROI, the following value was
computed for all ROIs (r = 1,---,96):

Np r

o) 21:11\’5,,3 /Ni.a

Na = Np ar(r) , r=1,-,96 “
max3 ;" Nig / Nia

where N, is the total number of extracted pairs for all the subjects.
Similar equation is used to compute N/(,') by replacing all the o indexes by

p. N, computed in equation (4), reflects the total amount of o activity in
the r-th ROI, which is related to the number of active voxels in this ROI in
all the activation patterns of all subjects.

To investigate how ROIs interact with each other, a 96 x 96, non-
symmetric matrix R was calculated. Element R(r;,r;) of the matrix re-
flects the amount of interaction between «a oscillations in ROI r; and
oscillations in ROI ry. R(r,7r2) is not a measure of the strength of the
interaction (PLV) but how often § activity is observed in ROI r, when
there is a activity in ROI r;. The following equation is used to compute
R(r1,1m2):

Nl(_'lfz) NL("(AI’J.I)
R(Fl,rz)izﬁ.l\}i‘ (5)
i 1 nLa

where N{} 72) (N"2)) for the i-th a-p pair is the number of voxels with p
(o) activity in ROIr (1) when the coupled o (B) oscillation has activity in
ROI r: 1 (rg).

R is an asymmetric adjacency matrix of a graph. For the visualization
purposes, we converted it to a bipartite graph, which has 96 nodes in
each part. It means that the (r1,r2) element of R translates to the edge
between node r; of part 1 and node r; of part 2.
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Fig. 5. The performance of NID with simulated EEG, for the extraction of two pairs of cross-frequency phase-phase coupled oscillations at different SNRs and fre-
quency ratios. Main plot: Box-plots of errors of mixing patterns. Subplot: Mean PLV vs. SNR for extracted components.The small median errors as well as the relatively
large mean PLVs show that the performance of NID in untangling the coupled source signals is reliable.

5. Results

In most cases, box-plots are used for reporting the results. The band
displayed within each box is the second quartile (the median), and the
box expands between the first and the third quartiles. The whiskers have
a maximum length of 1.5 times the Interquartile range (IQR). Note that
all the analysis were performed in MATLAB® R2017b.

5.1. Simulations

5.1.1. NID has reliable performance at different SNRs

The simulations were performed with SNR = —15,—-10, 5,0 dB for
two coupled pairs of sources. Fig. 5 depicts the error box-plots of mixing
patterns and the graph of the mean PLV of the extracted sources. One can
see that the median error is < 0.05 and the mean PLVs are > 0.1 even for
the very low SNR of —10 dB (meaning that the power of noise is 10 times
larger the power of the signal of interest). This shows that in the most
simulation runs NID successfully recovers the activation patterns of the
components. Comparable results were achieved for oscillations with
amplitude-amplitude coupling: at SNR —15 dBwith median errors of <
0.03 and mean PLVs of > 0.4 (Fig. S5 of supplementary text).

5.1.2. NID can extract multiple pairs of coupled sources reliably

We also investigated the impact of the number of interacting pairs on
the performance of NID. In the previous section, two pairs of source
signals were simulated. Here, five independent pairs were simulated. The
box-plots of the errors of mixing patterns and mean PLVs of the extracted
oscillations at SNR = —10 dB are illustrated in Fig. 6. The median errors
of < 0.05 indicate that NID is successful in extracting even five pairs of
interacting oscillations even at a low SNR of —10 dB.

5.1.3. NID can extract weakly coupled oscillations

In this section, the simulations were performed for different syn-
chronization strength at SNR = —10 dB. Details of generating coupled
sources with different synchronization strength are presented in section

2.2 of the supplementary text.

Fig. 7 depicts how median errors of mixing patterns change with
mean PLV of the underlying coupled sources. It is clear that even for very
weak couplings, NID successfully recovers patterns of the interacting
components with the corresponding errors being < 0.05.

5.1.4. NID performs equally good for different dipoles’ orientations and
locations

We could see that NID’s median errors do not differ substantially for
different dipole orientations/locations. This indicates that NID can
extract interactions between neuronal components generated with
different locations and orientations. The details are included in supple-
mentary text, section 2.1.

5.1.5. NID does not overfit

As mentioned in section 4.1.1, we investigated the behavior of NID in
the case where the frequency ratios are specified with mismatches, or
where there are no coupled sources in the data.

For checking the frequency specificity, 1:4 phase-phase coupled
sources were simulated at SNR = —10 dB, while NID’s frequency ratio
parameter was set to 1:2. Such mismatch in frequencies lead to very large
errors (median error > 0.3, Supplementary Fig. S4), indicating that the
successful extraction of the coupled components requires a-priori
knowledge of frequency information.

In addition, NID was applied to simulated EEG consisting of only
noise, or with 2 uncoupled sources at each of the frequencies of interest.
In the former case, the median of the PLV of the extracted pairs was
0.025, and non of the pairs of the extracted sources survived permutation
test (Bonferroni multiple testing corrected).

5.1.6. NID is able to detect triplets of coupled sources

As mentioned in section 3, NID can easily be generalized to extractn :
m : p coupling (triplets of coupled sources). Fig. 8 shows the box-plots of
errors of mixing patterns and mean PLVs of the extracted sources when
two triplets of 1:2:3 (with base frequency of 10 Hz) coupled sources exist
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in the simulated EEG. NID can extract the oscillations reliably even at
SNR = —15 dB with median error < 0.05 and mean PLV of the extracted
sources > 0.3.

5.1.7. Comparison of NID with other methods

For the extraction of phase-phase coupled sources, we compared
NID’s performance with cross-frequency decomposition (CFD) (Nikulin
et al., 2011) and generalized CFD (gCFD) (Volk et al., 2018). Fig. 9 de-
picts the error boxplots from the three methods for different frequency
ratios and different number of noise sources. In the simulations, we used
two pairs of coupled oscillations at with base frequency of 10 Hz, with
SNR = —10 dB.

While for 27 noise dipoles, NID always outperforms the other two
methods, for 125 noise dipoles the performance of NID is either similar or
better than the performance of other algorithms.

In comparison of each method with itself between the two conditions
(due to a number of noise dipoles) it appears that when the number of
noise dipoles is smaller, CFD and gCFD perform poorer in comparison to
the simulations with 125 noise dipoles. The performance of NID does not
change when the number of noise sources are varied, while CFD and
gCFD perform better when there are more source dipoles. With 125
source dipoles, the performance of the three methods is almost similar,
However, for 27 noise dipoles, NID outperforms both methods.

5.2. Resting-state EEG

With the procedure explained in section 4.2.1, a total number of 243
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Fig. 8. The performance of NID for the extraction of two 1:2:3 coupled triplets of oscillations at different SNRs. (A) Mixing pattern error box-plots. (B) Mean PLV of the

extracted sources. NID extracted the source signals reliably.
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alpha-beta, significant, interacting pairs of oscillations were extracted
from all the subjects.

5.3. NID-component analysis

As mentioned in section 4.2.2, the dissimilarity between the mixing
patterns of each pair of source signals was computed using equation (3).
Fig. 10-A illustrates the relation between the strength of coupling and the
similarity of the activation patterns of each pair. No significant linear
correlations was observed between these two variables. Additionally,
Fig. 10-B shows a box-plot of the PLVs of the extracted pairs of osciall-
tions. Comparing these PLVs with the PLVs in the sensor-space, one can
clearly see a two-fold improvement in the estimation of PLV using NID. A
box-plot representation of the sensor-space PLVs (median of 0.06) of the
subjects is presented in Supplementary Fig. S7.

5.4. Localization of NID components

Referring to section 4.2.3, Fig. 11 illustrates the ROI-based localiza-
tion of NID components using the values calculated with equation (4).
For both frequencies, subjects have non-linearly interacting sources pri-
marily in occipital regions extending to parietal regions, as well as in the
sensorimotor areas extending to the frontal regions. Additionally, beta
activity in the sensorimotor areas occurred more frequent than alpha
activity.

Computed in equation (5), we have a measure of the interactions
between different brain regions, which is depicted in Fig. 12. These in-
teractions can be depicted with a weighted, bipartite graph, whose nodes
are the ROIs and where the edges denote the interactions between two
ROIs. The connection between nodes r; of the upper part and r, of the
other part indicates that there is alpha-activity in ROI ry that is inter-
acting with beta-activity in ROI ry. The weight of the edges are propor-
tional to the number of active voxels in the two regions. Fig. 12-A depicts
the bipartite graph representing the adjacency matrix of ROI-
interactions. (pre-)Frontal areas, and pre- and post-central gyri of both
hemispheres have beta sources which interact with alpha sources of other
ROIs. Additionally, in precuneous cortex and occipital areas both alpha-
and beta-sources have interactions with the sources of alpha and beta
oscillations at multiple ROIs. Some medial ROIs show interactions for
their beta-sources in one of the hemispheres. The most connected regions
in Fig. 12 can also be observed in Fig. 11.

6. Discussion

We introduced a novel, general framework for the extraction of cross-
frequency coupled sources from EEG/MEG, namely Nonlinear Interac-
tion Decomposition (NID). The idea of assessing the distribution of a
mixture of coupled oscillations is introduced for the first time and pro-
vides a novel perspective for investigating non-linear interactions in
EEG/MEG.

We validated the method with extensive simulations in different
conditions. NID showed reliable performance in the extraction of cross-
frequency phase-phase and amplitude-amplitude coupled oscillations in
simulated EEG even at a very low SNR of —15 dB and also for weak
coupling strengths. Additionally, we confirmed that NID’s performance is
not dependent on the orientation and location of the source dipoles. To
investigate the behavior of the method on real data, we also used NID for
extracting phase-phase coupled sources in human resting-state EEG data.
The PLV was found to be considerably higher compared to the PLV ob-
tained for each of the single channels, while multiple testing and un-
certainty caused by volume conduction were avoided by projecting the
data to the lower dimensional space of NID.

NID can be used for the extraction of coupled sources originating from
different recording modalities or investigating the interactions between
different subjects. NID is also generalizable to the investigation of in-
teractions between more than two frequency bands, e.g. alpha-beta-
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gamma, which is not possible through other methods. In addition, the
algorithm has the potential to be tuned for a specific type of coupling
through the contrast function of the non-Gaussianity maximization step,
although this latter aspect requires a more systematic investigation.

6.1. Remote interactions are captured by NID

An important feature of NID is that it separates coupled oscillations at
distinct spatial locations. We tested this by computing the dissimilarity
between the topographies of the extracted sources where larger values
indicate spatially distinct sources. It could be the case that sources which
have similar topographies are harmonic components of a non-sinusoidal
source signal. Therefore, we can investigate the remote interactions by
assessing the dissimilarity of mixing patterns of coupled sources. The
relation between the PLV of the source pairs and the dissimilarity of their
topographies is plotted in Fig. 10, which shows that they are not linearly
correlated. Thus, one can conclude that strong interactions (high PLV)
exist for sources with similar topographies as well as for those with
different topographies, showing that NID is able to extract spatially
distinct oscillations with large PLVs. This finding can also be observed on
the bipartite graph of Fig. 12, which illustrates the existence of remote
interactions between different ROIs. From this graph, diverse in-
teractions between the two hemispheres, or between central, parietal,
and occipital areas can be observed.

There is a rich literature focused on alpha and beta oscillations in the
brain. The oscillations in the alpha-frequency range, are particularly
prevalent in parietal and occipital regions, while beta-oscillations are
pronounced over sensorimotor cortex (Groppe et al., 2013; Tewarie et al.,
2016). In line with these observations, Fig. 11 shows the presence of
alpha activity in occipital and beta activity in sensorimotor regions.
Moreover, Fig. 12 suggests the existence of interactions between beta
oscillations in central and alpha oscillations in occipital areas. These may
be viewed as a functional substrate for visuo-motor integration (Tewarie
et al., 2016). There is actually an anatomical evidence that these two
areas are indirectly connected which might be important for sensory
guidance of movement (Glickstein, 2000; Kravitz et al., 2011; Strigaro
et al., 2015). Our results can suggest that such indirect anatomical con-
nectivity can be manifested electrophysiologically through alpha-beta
phase-phase coupling in resting-state.

6.2. Cross-frequency coupled oscillations with similar spatial locations

Oscillatory activities with non-sinusoidal waveform mimic cross-
frequency coupling (CFC) of two narrow-band oscillations with similar
spatial location (Palva et al., 2005). Fig. 1 is an example of such CFC.
However, since M/EEG signals do not have enough spatial resolution,
one cannot say if such activity reflects a single process or two coupled
processes. Therefore, the main focus in the cross-frequency research is on
the interactions between distinct locations.

For a source-separation method e.g. NID, a non-sinusoidal oscillation
is a linear mixture of two (or more) coupled narrow-band oscillations.
Therefore, in such a case, it is expected that a coupling between spatially
similar oscillations would be detected. For instance, the activity depicted
in Fig. 1-A will be decomposed as a linear mixture of the narrow-band
oscillations in Fig. 1-C with their mixing patterns depicted in Fig. 1-D.
If one is interested in spatially distinct interactions, such components can
be excluded from the further analysis. However, if there is an interest in
the extraction of such non-sinusoidal sources, one can spatially filter the
data using the spatial filter of the corresponding “coupled” sources. We
illustrated the extraction of a non-sinusoidal source using NID in sup-
plementary code (3).

Furthermore, NID provides the opportunity to investigate CFC be-
tween two different multi-channel signals. These two multi-channel
signals can be related to two different subjects, or two different subsets
of sensors of one subject, etc. In such a case, one would not ignore the
sources with similar spatial patterns, because those are from different
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Normalized number of active voxels

Fig. 11. ROI-based analysis of NID source signals based on equation (4) for (A) alpha and (B) beta oscillations. For both frequencies, subjects have mainly activities in
occipital, parietal, sensorimotor, and frontal regions. The beta-activity in motor regions are more pronounced than alpha-activity.

subjects or sensor subsets. Therefore, it is important for a source- 6.3. Relation to previous methods
separation method to be able to separate sources with arbitrary similar
or different patterns - the property which is fully met by NID. ICA is frequently used for the extraction of EEG/MEG sources signals.

Since NID has a non-Gaussianity maximization decomposition (NGMD)
step, it is necessary to emphasize the distinction between NID and ICA.
The main technical difference between NID and ICA is that in NID an
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Fig. 12. The bipartite graph illustrating the alpha-beta interactions among ROIs of Harvard-Oxford atlas, computed for 82 subjects. A connection between node r; of
the upper and node r, of the lower part indicates that alpha oscillations in ROI r; interact with beta-oscillations in ROI ry; the weight of the connecting edge is
proportional to the number of active voxels (across subjects) in the two ROIs. The weight of an edge is coded by the width and color-strength of the edges. The degree
of the nodes are color-coded. Panel B depicts the Harvard-Oxford atlas ROIs of left hemisphere, and panel C depicts the color-codes.
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augmented matrix of different frequency contents is decomposed to
maximally non-Gaussian components. This is in contrast to ICA methods
(e.g. JADE, fastICA, InfoMax), where the broad-band multi-channel
signal is decomposed. This very difference gives the NGMD algorithm the
flexibility to select different weights for the components at different
frequencies. Therefore, the weights of the linear mixture of the coupled
sources are selected flexibly to make the mixture maximally non-
Gaussian, while ICA forces all frequency contents to be mixed with the
same weights. Moreover, the SNR has been improved in the two fre-
quency bands of interest via the application of SSD in the first step of NID,
which clearly contributes to its successful performance.

There are not many multivariate methods for the extraction of cross-
frequency coupled sources. The novelty of NID lies in the extraction of
the coupled sources based on the statistical properties of the coupled
oscillations. Other methods are optimized for the detection of a specific
coupling; however, they can also be sensitive to other types of coupling.
As an example, our simulations show that cSPoC (Dahne et al., 2014),
optimized for detection of oscillations with power dependencies, is also
able to detect phase-phase coupled sources.? Although it is not surprising
that NID outperforms cSPoC in the extraction of phase synchronized
sources, we emphasize that there is no explicit optimization of any
contrast function based on the type of coupling in NID’s algorithm. NID is
at least as good as cSPoC (Dahne et al., 2014) in detection of
cross-frequency amplitude-amplitude coupling (Fig. S6 of supplementary
text), while being 1.5 times faster. It is worth mentioning that it has been
shown that cSPoC outperforms other methods in the extraction of oscil-
lations with power dependencies (Dahne et al., 2014).

Cross-frequency decomposition (CFD) (Nikulin et al., 2012) is a
multivariate method for the detection of phase synchrony in MEG/EEG.
While NID imposes no restriction on frequency ratios (n : m coupling, n,
me N), CFD only works for the case where n = 1. Eneralized
cross-frequency decomposition (gCFD) (Volk et al., 2018) is a general-
ization of CFD for arbitrary frequency ratios n: m (n,m € N). gCFD ex-
tracts the phase-phase coupled sources by finding the spatial filter that
optimizes the correlation of frequency-warped SSD components. This
approach results in a reliable extraction of the coupled sources; however,
it is asymmetric (i.e. depends on which band is used as a regressor) and
computationally expensive. Additionally, frequency-warping (multi-
plying the phase of a signal by a factor) distorts the frequency content of a
signal; therefore, the relations of frequency-warped signals may not
directly reflect true oscillations in the brain. Results of section 5.1.7 show
that when the number of noise dipoles is lower (=27) NID outperforms
CFD and gCFD for different frequency ratios. For the case of more noise
dipoles, NID is at least as good as the other two methods. In Fig. 9, we see
that the performance of CFD and gCFD depends on the number of noise
dipoles. The reason for this behavior could be the way SNR is defined in
our simulations. In each frequency band, we defined the SNR as the ratio
of the signal power and noise power. Therefore, if there are fewer
number of noise sources, then each individual noise source would be
stronger and therefore interfering stronger with the signal of interest.
Thus, CFD and gCFD, which are based on phase warping, would be more
sensitive to phase interference from the noise sources.

6.4. Future work

Our observation is that the distribution of the mixture of cross-

2 This phenomenon that methods designed for detecting a specific coupling
detect other types of couplings is also reported in the literature (Hyafil, 2015).
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frequency coupled sources differs depending on the type of coupling.
For example, we observed that the distribution of the mixture has longer
tails for amplitude-amplitude coupled source signals, while it is skewed
and has “shoulders” for phase-phase coupled sources. These properties
can be better explained by different measures. For instance, “tailedness”
is expressed best by kurtosis, while skewness can be described the dis-
tributions skewed to one side. Additionally, we know that higher order
odd moments of a Gaussian signal are zero; therefore, they can explain
some features of non-Gaussian signals. Consequently, one of the future
works for extending the NID algorithm is how to define the NGMD
contrast function to get even better results for different types of coupling.

In recent years, there has been a considerable interest to whole-brain
connectivity and its relation to cognitive performance (Palva et al., 2010;
Palva and Palva, 2012; Siebenhiihner et al., 2016; Siebenhuehner et al.,
2019). In this regard, brain networks demonstrating cross-frequency in-
teractions are becoming popular as well (Siebenhiihner et al., 2016;
Siebenhuehner et al., 2019; Tewarie et al., 2016), reflecting the impor-
tance of spectrally distributed information processing in the brain. Using
multivariate methods like NID for extraction of a subspace of brain os-
cillations with cross-frequency coupling, can be helpful for alleviating
signal mixing problem and extracting meaningful interacting compo-
nents. These components can then be used for further MEG/EEG analysis
e.g. to investigate the properties of cross-frequency brain networks in
resting-state or during the cognitive, sensory and motor task
performance.
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Appendix A
Further discussion about NID

In this section we discuss that the non-Gaussianity maximization step of the NID algorithm is able to separate the non-linearly coupled sources.
SSD components and patterns can be modeled as a mixture of the true sources and their mixing patterns according to:

X\ =L0s" (6)

Al =PWH" @

The i-th row of H” € R¥*M includes the contribution weights of p{™ in SSD patterns. Also, the i-th column of L™ € RN*N represents the contribution

weights of s in SSD components.
Without the loss of generality, for the sake of simplicity, we assume the case of n : m coupling, i.e. coupling of pairs of sources.

Let w = [W(", -, wid wi™ ... wi] = [w" w™] be the filter relating to one of the dimensions of NGMD subspace, then r = wXa,, would be the

projection of the SSD sources on this dimension. We can rewrite r as follows:
M N M M
e 3o(Sow ) 3 (Sw
i=1 =1 =1 j=1
M
=S s = Y,

(8)

where g = (wm 1™y, and L™ = [I1”, ... 11V]. Additionally, y; = g”'s"” + g™s{™ is defined as the weighted sum of signals of pair i. By assuming that
each coupled pair is independent from other pairs, y; is independent of y; for i # j. Since, by assumption, the sources at each frequency have
approximately the same distribution, we expect y;, Vi to be roughly identically distributed. From central limit theorem we know that the sum of i.i.d.

random variables is “more Gaussian” than each of them separately. Thus, we can claim that the non-Gaussianity of r is maximized if it is equal to one y;,

meaning that 3k : gl(") = glgm) = 0,1 # k. This means that the i source of NGMD is the mixture of signals of the k™ pair.
Algorithms of ICA can be used as the non-Gaussianity maximization decomposition. In addition, any contrast function maximizing the non-
Gaussianity can be exploited. For instance, we suggest the following contrast function:

T =E{} +5E{r) ©

where r is the random variable representing r. .7 is a combination of fifth order moment of the projected signal and its skewness. It is known that the
fifth order moment and skewness of a Gaussian variable are zero; therefore, by maximizing the contrast function in equation (9) we are maximizing the
non-gaussianity.

Our strategy to maximize the non-Gaussinity of projected sources is to take the advantage of both the contrast function in equation (9) and JADE
(Cardoso and Souloumiac, 1996) algorithm. Therefore, both contrast functions (JADE and equation (9)) are optimized and the optimization procedure
which produces projections with maximum negentropy (maximum non-gaussianity (Hyvarinen and Oja, 2000)) is selected.

Appendix B

Practical details of computing the final mixing patterns

Each of B” and B™ in equation (2) contain 2N patterns and N of them should be selected (i.e. N pairs of interacting sources should be selected). For
this purpose, we firstly find the similar pairs; i.e. those pairs i and j, for which d(p{", p}")) < e and d(pgm),p}")) < &, where d(.,.) is computed as the

dissimilarity between the two patterns as in equation (3). Among the similar pairs the one with largest negentropy (largest non-Gaussianity (Hyvarinen
and Oja, 2000)) is selected and others are omitted. Afterwards, from the remaining pairs, pairs with the largest PLV (or envelope correlation) are
selected as the final mixing patterns.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.116599.
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