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In the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the 

EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to 
investigate the steady-state thermal-hydraulic performances of the DEMO divertor cassette cooling system. The 
research activity has been focussed onto the most recent design of the Cassette Body (CB) cooling circuit, 
consistent with the DEMO baseline 2017 and equipped with a liner, whose main function is to protect the 
underlying vacuum pump hole from plasma radiation. The research campaign has been carried out following a 
theoretical-computational approach based on the finite volume method and adopting the commercial 
Computational Fluid-Dynamic (CFD) code ANSYS-CFX.  

The CB thermal-hydraulic performances have been assessed in terms of coolant and structure temperature, 
coolant overall total pressure drop and flow velocity distribution, mainly in order to check its aptitude to provide 
a uniform and effective cooling to both CB and liner structures. Moreover, the margin against coolant saturation 
has been evaluated in order investigate whether any risk of its bulk vaporisation is prevented. 

The outcomes of the study have shown some criticalities, mainly in terms of structure maximum temperature 
and coolant vaporization occurrence within the liner. As a consequence, some minor design variations have been 
suggested within the paper. 

Models, loads and boundary conditions assumed for the analyses are herewith reported and critically 
discussed, together with the main results obtained. 
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1. Introduction 

The recent European roadmap, drafted to realize 
commercially viable fusion power generation, has 
defined reliable power exhausting as one of the most 
critical missions. Heat-exhaust systems must be capable 
of withstanding the large heat and particle fluxes of a 
fusion power plant, allowing, at the same time, as high 
performance as possible from the core plasma [1].  

The divertor is the key in-vessel component to 
accomplish this mission as it is responsible for power 
exhaust and impurity removal via guided plasma 
exhaust. As a consequence, the divertor has to sustain 
very high heat and particle fluxes arising from the 
plasma (up to 20 MW/m2), while experiencing an intense 
nuclear deposited heat power, which could jeopardize its 
structure and limit its lifetime. Therefore, attention has to 
be paid to the thermal-hydraulic design of its cooling 
system, in order to ensure a uniform and proper cooling, 
without an unduly high pressure drop. 

Within the framework of the Work Package DIV 1 - 
“Divertor Cassette Design and Integration” of the 
EUROfusion action [2, 3] and in line with previous 
activities [4-6], in 2018 a research campaign has been 
jointly carried out by University of Palermo and ENEA 
to theoretically assess the steady-state thermal-hydraulic 
performances of the DEMO divertor cassette cooling 
system, focussing the attention on the Cassette Body 
(CB) cooling circuit. 

A theoretical-numerical approach based on the finite 
volume method has been followed adopting the 
commercial Computational Fluid-Dynamic (CFD) code 
ANSYS CFX v.19.2 [7], previously used in similar 
studies [8] and adopted to evaluate concentrated 
hydraulic resistances to be used in system codes [9, 10]. 

During 2018, CFD analyses have been carried out to 
investigate the steady-state thermal-hydraulic 
performances of the latest water-cooled CB design 
equipped with a shielding structure called liner. In 
addition, the aptitude of the cooling circuit to provide a 
uniform and effective cooling to both CB and liner 
structures has been assessed and potential solutions 
devoted to its improvement have been suggested. The 
assumptions relevant to these thermal-hydraulic analyses 
are herein reported and critically discussed, together with 
the main results obtained. 

 

2. Cassette body thermal-hydraulic analysis 

The DEMO divertor configuration has recently been 
adapted to the DEMO Baseline 2017 [11]. Conversely to 
the previous one, articulated in 54 toroidal cassettes, this 
new divertor concept is articulated in 48 cassettes, each 
composed of a CB, equipped with a shielding liner and 
supporting two Plasma Facing Components (PFCs), 
namely an Inner Vertical Target (IVT) and an Outer 
Vertical Target (OVT) (Fig. 1) [12]. 
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and a commercial CFD code has been adopted to run a 
steady-state, fully coupled fluid-structure, thermofluid-
dynamic analysis of the considered cooling circuit under 
the nominal operative conditions. 

Results obtained have indicated that the CB cooling 
circuit seems to be able to provide a sufficiently uniform 
and effective cooling to the main part of the cassette 
steel structure without overcoming the coolant pressure 
drop limit of 1.4 MPa. Anyway, some small regions have 
been observed where the fluid experiences vaporization 
at the interface with steel walls, suggesting that a further 
slight revision of the flow path and/or the coolant 
operative conditions is needed. Moreover, the peculiar 
structure of the liner supports does not allow them to be 
properly cooled, resulting in a unviable maximum 
temperature of 1419 °C. Nevertheless, a straightforward 
design revision is suggested that would allow to maintain 
the topology already selected for the supports, while 
improving their thermal performances. 
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