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The human visual system derives a variety of information 
about the three-dimensional (3D) structure of the envi- 
ronment from different cues. This is illustrated in figure 
20.1, where computer simulations of surface properties of 
a simple geometric form under different lighting condi- 
tions can lead to quite different 3D impressions. If an 
ellipsoid of rotation with Lambertian reflectance proper- 
ties (like a table tennis ball) is simulated to be illuminated 
only by ambient light (equal amount of light from all 
directions), no inference of the 3D shape of the object can 
be made. The addition of a single point light source in the 
far distance (i.e.. parallel illumination) allows our visual 
system to interpret the shading variations as a three- 
dimensional form; in other words, it computes shape from 
shading. The 3D impression of the ellipsoid becomes 
stronger when a highlight is added to the image by using 
a different shading model (Phong, 1975) for the computer 
graphic simulation. We get the strongest impression of 
the 3D shape of the object in the lower right of figure 
20.1, where an additional source of information is avail- 
able through simulation of surface texture. Note that not 
only the form of the object but also the perceived orienta- 
tion of the object changes with the number of simulated 
depth cues. By observing figure 20.1 we can ask our- 
selves, what are the correct form and orientation of the 
object7 Can we infer the correct 3D shape from 2D 
images7 What are the best cues for shape7 Which are 
better for orientation7 We hope to answer some of these 
questions in the next few sections. 

The outline of this chapter is as follows. First we moti- 
vate the need for cue integration in human and machine 
vision. In the next section we describe different repre- 
sentations of depth and how they can be assessed in 
psychophysical experimenh. We discuss in detail two 
different techniques to measure shape-from-X, local and 
global shape probes, and how they are used to measure 
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shap from st- shadiw and texhue. In the following 
section we diseuac an important and 0 t h  neglected 
aspect of stereo vision: intensity-based stereo a sh8pe 
from &parate had@. Biilttrdf and Mallet (1988) 
showed that the human visual system can perceive depth 
in disparate images which have no diwmtinultie~ @era 
crogingr in the L a p b  of filtered images). This is a 
surprising finding because many theories in human and 
madrine stereo vision are b a d  on makhi i  discmtinui- 

this idomation in situations where only ambiguous in- 
formation abut naka shape is available, for example, in 
order to dimnbigunte the cnnra-ve ambiguity of 
shape-fmn-hding. This is a pnfect example of the "dis- 
arnbiition" type of m integmtion. Other types of 
cue integration are discussed in Integration of Depth 
Modules. In the linal sdon, a theoretical fmmewolc for 
cue integration is d&cussed b*. A more dehikd de- 
scription of this framewotk can be found in %Ithot7 and 
.,..:It̂  ,.I-\ lvuu \r77u,. 

ties in image intensities. An intensity-bPsed stereo mrch- 
aniw can be very wtul for " d i d  swface inkrpolation 
of nufaces with large smooth rrgiona and should ink- 
grak with more mbust measumnents of e d g e h d  
stereo. In the section entitled Shape b n  Hiihlighb we 
demonstrate an additional rouroe of shap information 
that has bean regarded previ~wly as more of a nuisance 
than a useful cue to shape. B W  and B i i l M  (19W) 
showed that the human visual system can make use of 
the relative dhparity of highlights in glosry image. For 

The Need lor lntepti011 

The shape and depth cues simuhted in Agure 20.1 (and 
others) have been formalized in tams of computsHonal 
theory and have been implemented as sin& modules in 
machine vision systems. Related studies from psydw- 
physics and computational v i s i i  exist mainly for stereo 
(Jules?., 1971: Marr & Poggis 1976, 1979; Mayhew & 
Frisby, 1981: Prazdny, 1985) and shading (Bblre Zirrer- 



man & Knowles, 1985; Ikeuchi & Horn 1981: MingoUa & 
Todd, 1986: Pentland, 1984). There are also a number of 
studies on depth from texture (Aiiomonos & Swain 1985; 
Bajay & Liebeman 1976: Cutting k Millard 1984: Ken- 
der, 1979: Pentland 1986; Witkin. 1981). line drawings 
(Barrow & Tenenbaum, 1981). surface contours (Stevens, 
1981; Stevens & Bmkes, 1987) and shucture-frorn- 
motion (Koenderink, 1986: Longuet-Higgiw & Prazdny, 
1981: Landy, 1987: Ulhan, 1979.1984). accommodation 
(Pentland 1985). and occlusion (Haynes and lain, 1987). 
Most implementations are quite successful for synthetic 
images but less reliable for natural images. On the con- 
trary, the human visual system more easily extracts depth 
from the multiple 3D cues available in nahual images 
compared to the isolated cues found in synthetic images 
(e.g., random dot stereogram). In order to study how the 
human visual system can integrate the information from 
multiple cues so suc~essli~lly, we developed methods for 
quantitative measurement of perceived depth and shape 
with stimuli that are closer to natural images than those 
used in most psychophysical experiments. Using compu- 
ter graphic techniies, we have precise control over the 
d i i t  shape and depth cues and we can use them in 
supportive or contradictory combinations to study the 
interadion between them and get a better idea how 
different cues are integrated into a stable representation 
of the 3D world. But before we d i m s  this, we will 
examine the question of what kinds of representations can 
be used by our visual system. 

How to Represent the Third Dimension? 
7 

Raw data, such as a range map frcin depth and shape cues 
can be thwght of as a trivial or u m d r  npmntafion of 
the spatial shucture of a scene. High-order d m i t o r s  can 
be derived from image data that make interestinn spatial I - - .  
properties of the viewed sene explicit. The question d 
what constitutes a useful 3D descriptor can be answered 
in the light of the action that it should subserve. For 
example, a pinhoist depth map can be usehl for precise 
manipulation of objects while N+CC cumtun (withwt 
exact range data) might be useful for the recognition of %. 20.2 

complex 3D shapes such as faces. 3D daoiptan Dilfnent depth cua pmvide infomutin, &bout 
different 3D daoiptaa. (cg, nnge, *.p., wienhh) .  Try to Which cues are relevant to one particular 3D desaip 
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tort Ocdusion contributes more readily to depth ordering ,d ,,, , kxt). (M- w t w  6r  lot, 1990.) 
than to surface auvature. Shading contributes more quali- 
tatively to curvature than quantitatively to a depth map. 



and texture more to  object orientation than to object 
form. This is illustrated in figure 20.2, where three pairs of 
ellipsoids are shown whose long axes of elongation are 
orthogonal to each other. The h e g o d  orientation is 
best seen in part C where texture and s p d a r  shading 
provide sufficient 3D information. if texture is used with- 
out shading (part A), the orientation of the objects can 
usually be pemived d y ,  while the objeek them- 
d v e s  appear flat. On  the contrary, if shading is the only 
cw (part B), the objects appear nicely curved but it is 
difftcult to see them orthogonal to each other. 

How to Assess Properties of Multiple 
Representations7 

Since the pemption d three-dimensional scenes relies on 
x, many different depth cues, which can lead to various 

descriptions of that scene in tams of distance, surface 
orientation, surface m a t u r e  and shape, we measured 
some of these 3D desaipton (depth map, curvature, and 
object orientation) for different depth cues (stereo, shad 
ing, highlight, texture, see figure MA). 

The relation of phadig (with and without highlights), 
stereo. and texture in the 3D perception of smooth and 
polyhedral m&es war studied with computer graphic 
psydrophysia (see appendix A). For polyhedral and tex- 
tured objects, stereo disparities were associated with l o ~ p  
lized features. that is, the intensity changep at the facet 
or texel boundarb, while for the smooth surfaces only 
shading disparities occurred. For most of our experiments 
we used ellipsoids of r d u t i o n  (viewed endon) for the 
following reasons: 

As is shown later (Images Without Zero-Crossings), 
images of Lambertian shaded smooth ellipsoids with 
moderate eccentricities do not contain Laplacian zero- 
crossings when illuminated centrally with parallel light. 
This allows us to study intensity-based stereo mechan- 
isms. 
The wrfaces are dosed and are naturally outlined by a 

planar occluding contour. This contow was placed in the 
zero d i i t y  plane and did not allow the subjects to 
derive depth from binocular disparities. 

Convex objects such as ellipsoids do not cast shadows 



or generate refkclions on their own surface. Therefom, 
shading (&ed shadows) could be studied without in- 
terference h cast shadows. 

End-on views of ellipsoids can be thought of as a model 
example of depth interpolation of a surfsce patch between 
sparse edge data 

Local and Global Depth Probes 

Depending on the type of representation we wanted to 
measure quantitatively, we used two diRerent types of 
probes (see appendix 8). The depth probe can measure 
locally perceived depth but has some disadvantages with 
depth cues which are better viewed mon&y (e.g., 
shadii and texture). The global shape probe is more 
appropriate for the latter case but cannot be used to 
derive a precise depth map for all points in the image: 

locnl depth. We mapped perceived depth with a small 
probc or cursor that was inkractively adjusted to match 
the depth of the perceived surfan (further details in ap- 
pendix 8). The depth of this probe was defined by edge- 
bad stereo diapuity and all other cue combinations 
were compared to the percept generated by edge-based 
stereo. AU images were viewed binocularly with the 
depth cursor superimposed and hence had a zero diar i ty  
cue in them Each adjustment of the pmbe gives a graded 
meamement of dishce, or local depth that b this ex- 
periment corresponds to the 3D demiptor de@h map 
in the scheme of figure 203. Note that the binocularly 
viewed local probe can interfere with monocular am, 
like shading and texture. Therefore, a more global shape 
probe was used to extend the range of possible shape 
measurements. . Global shape. The gl& shapes of two objects with 
dilkrrnt combinations of depth cues were compared di- 
rectly (further ddails in appndi  8). Sime all images 
showed end-on views of eUipsoids with difkent elongb 
tion, this measurement corresponds to nuwhn or fonn as 
a 3D descriptor. 

Global oricntution Object orientation can be -red 
in a matching task where long ellipsoids of d i b t  or- 
ientation are compared. While surface orientation is ap- 
parently hard to &tennine tor human h e r s  Win- 

golh & Todd 19W Todd & Mlngdla. 1983). the orienta- 
tion of entire objects (e.& orientation of gacmliud cy- 
lidcis) can be measured easily in a matching task. 

Shape Prom Stereo a d  Shading (Local 
Measluemenb)' 

In the k t  series of experimnts, 165 measments were 
performed each consisting of 45 adjushnenk of the depth 
probe to the perceived d a c e .  Reutlk were consistent in 
all three subjects and were pooled since the diRerences 
were noticeable only in the standard deviation. The 16 
plots of figure 20.4 show the avenged results of all wb- 
jects for the four types of experiments and four d i n t  
elongations of Lamkriian sided ellipsoids. 

The perceived elongation in the images with consistent 
cue combinations depends on the amount of information 
available. In figure 205 a measure of perceived elonga- 
tion is derived born the depth map shown in figure 20.4 
by a principle component analysis (see appendix C) and 
plotted as a hct ion of disphyed elongation. As can be 
seen from figure 20.5. the perceived elongation is almost 
camct when shading, intensity-based and edge-bad dis- 
parity information are available (DIE'). This is not too 
surprising because this condition involves basically a dis- 
parity-to-disparity match (the probe is a disparity cued 
probe). This disparity mat& should work pmfedly as long 
as the probe is not too distant from the grid inte&ons 
(edges) of the polygonal ellipsoid. In the case of smooth- 
shaded disparate images (D+F), the edges are missing 
and depth perception is reduced. When shading is the 
only cue (D-F), perceived elongation is much smaller 
and almost independent of the displayed elongation 
Phong shading (highlights) instead of Lambertian shading 
did not change perceived depth significantly (dashed 
lines). A much stronger influence on the type of shading 
can be m e d  with the shape probe (see below). 

In experiment D-F,  two identical images (zero dis- 
parity) of polykdral ellipsoids (edges) were shown. Al- 
though shading alone provided some depth information 
as shown in experiment D-E-. the fact that edges oc- 
curred at zero disparity was decisive. The perceived depth 
did not vary with the elongation suggested by the shad- 



Mayhew, 1989) might go unnoticed with this technique 
and therefore a more global shape probe was used in 
other experiments. 

Depth can still be puaived when no disparate edges 
are present. This is not surprising, sine shading infotma- 
tion was still available. A ompatison of the mdb (8- 
~0.5) for rnooth-shaded images with and without dis- 
parity information howwer, establiihcs a signikant con- 
bii t ion of shading disparitie (intensity-based stereo). 
The auves for D+E- and WE- are s i @ d y  q a -  
ated for Or elongations except 0.5. 
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ing (and perqedive) information and took slightly nega- 
tive values which, however, were not oignificpntly d i i -  
ent from zero. This veto type of relationship between 
stereo and shading is probably due to the depth probe 
technique, which enforces disparity-todisparity match- 
ing. A d&rent type of integration between stem and 
shading or texture (see, for example, Budcley, F d y  k 

As dimmed earlier, global shape cues Lie shape h 
shading and texture cannot be a s s 4  with the local 
depth probe without interfnrnoe with the shspe-from- 
stereo module. Therek we mewred dl  cues, which are 
better viewed monocularly to diminate tern disparity 
cues, with our global shape comparison technique (appen- 
dix B). All of our images with single monocular cues lead 
to large emom in perceived shape. With &ding and hr- 
fur# curvature is underestimated (@re 20.h B). with a 
highlight it is overestimated (figure 2 0 m  Nate that the 
rrterrncr ("given elongation'') was d i i y e d  in skno 
and that the elongation d the shaded or textured ellip 
soid was chosen by the subiect ("chosen elongation"). 
Underestimation of elongation corresponds thmfore to 
chosen values above the daJhcd line and o v ~ t i o n  
to values below the line. 

Shape from -%ding 

One remarkable result of the awnparison technique is that 
the shape-fro- pehmme is much better with 
this technique than with the local depth probe technique 
The adjusted shading d e s  with the diilayed elonga- 
tion of ihe stereosapically displayed reference ellipsoid 
and does not level oft as in the case of the depth probe 
measurements. There is su a strong underestimation of 
the elongation of the shaded ellipsoid for r given s(mo- 
scopiaUy displayed r e f e m  ellipsoid but in conjunc- 
tion with r texhuc cue (@m 20.6D) the slope of the 
shape-h-texture-and* a w e  is dose to 1.0 
(veridical). 
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Global shape. (A. B) S h s p - f m m a g  ud dwpe-han-texhrrr M 
b m ~ m H o n a b ~ ( r b p > 1 ) . ( Q l f r W & k &  
b the h e g  (Phone &ding mod& the shap k omdimated in 
the adwm€nt ksk. (4 If shading and t e x h  arc pnented 
simult-Iy t h e ~ i t l d i u r t c d ~ d y W o p =  1) 
with a bias to adid a h g u  elongation than MWSWIY. 0 If a 
highlight k added th. sbp staye t k  mn but t k  b b  dung= 
tow& n ovrrrtiMtion of+. (Redrawn fmn &ilM & 
wot. 1990.) 

Given Elongation 



Shape from Texlure intmiy often convey infomution about physical edges 

The performance of shape-from-texture and shape-frorn- 
shading is very similar. Both curves have almost the same 
offset and dope. This is not so surprising because the 
computational problem of shapctmm-texture and shape- 
from-shading is very similar (Aliomom & Swain, 1985). 
This similarity in the computational shucture could be the 
r eam for the strong cooperativity and almost veridical 
prception if both cues are present (figwe 20.6D). 

shape from Highlights 

A highlight on the shaded surface also seems to have a 
much larger influence with thii technique and leads to an 
overestimation of amahwe (&me 20- This owresti- 
mation can be m n  also if both texture and highlights are 
used (figtue 20.60. Again. in thii case the eooperativity 
between modules shows up in the much more veridical 
perception of shape than with single modules. But com- 
pared to texture with shading (figwe W.6D). the texture 
and highlight ctuve (tigure 20.60 signals an overestii- 
tion of shape. 

s h a ~  h Dhpante Shading (Intensity-Based 
-) 

As mentioned earlier, a very saprising findhg is the 
stffngth of depth perception (70 percent) obtained hwn 

in the m e .  The loeations of sharp dunges in i&ge 
intensity very &en comrpond to depth discontinuities 
in the scene. Many s t e m  algorithms use dominant 
changes in image intensity as features to compute dis. 
psrity between comsponding image points. In order to 
localize these sharp changes in image intensity, ~ o -  

crossings in ~apbdan-filtered images aw commonly used 
(Mam k Hildmth, 19W. 

The disadvantage of these featwe-based stereo algo- 
rithms is that only sparse depth data (at image feahues) 
can be computed This foms a additional stage in which 
sophisticated algorithms (Blake & Zissennm, 1987; Grim 
son, 1982) interpolate the surhae between data points. In 
order to kst for the ability of human stereo vision to get 
denser depth data by using features other than edge or 
even a completely featureless mechanism we wmprted 
images without shnrp changes in image intensity. We 
show that for an orthographically projected image of a 
sphere with Lambertian rekction function and parallel 
illumination. zerworsings in the Laplacian aw missing. 
Consider a hemisphere given in cylindrical coordinaks by 
the paramehic equation 

.= m. (1) 

In the special case of a sphere, the surface n o d  simply 
equals the radius, that is. 

n = (rcos~,rsin~,-). (2) 
disparate shadii Mder various illuminant conditions and 
r&- mOllA ~n computatiod theory, most shr- For the illuminant direction I = (0.0.1) and the h b e r -  

d b  have focused on h e - b a d  steno algorithms (for tian retlectance function we obtain the luminance profile 

review, see Poggio & Poggio, 1984). This is due to the I(r) = ~ ( 1 .  n) = L.R. (3) .. ". . "" . . 
o d l  supaiorih of d&d stereo, which is con- 
fid by the ~i~~ that e d g e - b ~  heo gives a bet- where b is a suitable constant, k the image luminance is 

ter depth estimate than disparate shading (Blake et al., again a hemisphere. For the Lapman of L we obtain 

1985).'Iiowever, in the abseke of edges &d for d a c e  1 r2 
inteipohtim graylevel disparities appear to be more im- Val(') = I"(r) - -P(fi r = -4 (1 - r 2 P '  (4) 
portant than is urually appreciated. 

This is a nonpositive h t i o n  of r, with V'l(0) = O, i.e, 
Images Wlthout Zem.crowings the Laplacian of I has no zemuosdngs. 

Unfortunately, this result does not hold for dlipwlds 
One of the most important constraints in eady virion with + A simikr for an with fw movering d a c e  properties is that the physical pm- elongation yields 
asses underlying image h a t i o n  are typically smooth 
The smoothness property is ophued well by standard 
regularization (Poggio, Tom & Kwh, 1985) and expbited (5) 

in its algorithms. On the other hand chnngcs of in+ 



which reduces to equation 3 for c = I. The luminurce- 
profiles for elongations c 2 2 an no longer convex. That 
is to say that the second duivatives of these profiles in 
faa have zerwossings, and a similar d t  holds for 
the Laplaciam. However, when filtering with the Lapla- 
cian of a Gaussian or with the difference of two Gaursianr 
(DOG) is consided it turn out that these nxoaow 
ins  are insignificant for the elongations used here. Pixel- 
based convolutions Failed to show the "edges" unequi- 
v&, and even a Gaussian integration algorithm M on 
the complete function rather than on the sampled m y  
produced no KI.o-crossings beyond the single-precision 
truncation nnn. We thmtore d u d e  that the slight 
zemaossings in the unfiltered Laplacian of our luminance 
profiles do not correspond to significant edges. For obli- 
que illumination we found numerically that the self sha- 
dow bwndary corresponds to a level rather than a zero- 
crossing in the DOG-filtered image. 

Independently of our own work images of ellipsoids 
may be useful in the study of the psychophysical re- 
levance of Lapladan zemamings. 

L d  or Global Mechanfsml 

Are there kalures other than m d n g s  that can ac- 
count for the shape-fmm-diite-shading performance 
found in our experiments7 Possible candidates indude the 
intensity peak as proposed by Mayhew and Frisby (1981) 
and level&gs in the DOG-filtered image whidr. ac- 
cording to Hildreth (1983, might accuunt for Mayhew 
and Frisby's data as well. 

in order to distinguish between a localized (feature- 
based) and a dishibuted mffhaniun for Aapfmm- 
disparak-shadhg we tested the &fed of a small disparate 
token displayed in front of a nondiiparak badrgrod 
with the depth probe (figwe 20.7). Ow data show that for 
large elongations, a singk stereo feature (ring) is not 
sufficient to produce the same percept as M d i i k  
shading (compare part A of figure 20.7 with parb B to D). 
For small elongations (0.5 to 2.0; not Jhown m figurr 
20.7) the d i c e s  were rrot pronounced We therefore 
conjecture that disparate shading does not rely on feature 
matching and thus can be used for surface interpolation 
when edges are sparse. This view is well in line with the 

Gnding that edge infonnation, whenever present, over- 
rides shape-hndkparate-shading (+ 20.8). 

Note, however, that we do not prop- the ruive idea 
ofpointwisintensitymatcJhgasamchanhforshape- 
homaisparate-shading because of its sensitivity to noise 
in bdh the data and in neural procdng. Even in the 
a h c e  of image noise, intensity-based algorithms (e.g., 
Gennert, 1987) can lead to severe matching ~ o r s  when 
M on our stimuli (see Psychophysical Support for the 
Bayesian F r a m m d .  A window-based correlation mech- 
anism like the one used for optical How computation 
(EilthoR, UHle & Poggio, 1989) might be more appmpri- 
ate for shape-froindi-ng. n s  type of algo- 
rithm has been s~ccessMy used for stereo (D. WeinrhaU 
personal communication). For a comparison see a h  the 
SWITCHER algorithm described in chapter 21. In the 
next section we will look at one additional cue high- 
lights) that is used by the visual system in eases where 
shape-froinding or shape-fromtexture does not pro- 
vide unambiguous shape information. 

Shape from Highlights2 

Many images of a & d  and natural scenes contain 
"highlights" generated by minudike &ledions from 
glossy mfaces. Computational mcdds of visual pnvaser 
have tended to regard these highlights as obmmw under- 
lying scene stnrchuc. Mathematical modeling shows that, 
on the conhary, highlights are rich in local geomehic 
information. This section will demowhak that the brain 
can apply that information. Stereoscopically viewed high- 
lights or "spccukrities" can serve as cues for 3D local 
surface geometry. The human visual system seems to 
employ a physical model of the intendion of l i t  with 
awed wfaces--a model M y  based on ray optics and 
d i i n t i a l  geometry. We develop such a model in the 
next section 

The Computational M d  

The basic principle of the "specuh stereo'' model is quite 
simple (figure 20.9). According to ray optics, the image of 
a light source-a specularity-appears behind a glossy, 
convex d a c e  and (gemally) in front of a concave one, 
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provided both viewer and source are dkiently distant 
hwn the wha But this simple idea must be expanded. 
How, for example, does a rprcularity appear in a 
that is hyperbolicl -her it appean behind or in front 
depwdsontheorientat ionoftheh.henonan 
elliptic & the apparent depth of the varier if 
thesurfaaisrotatedaboutthehofsight 

Infactwearebdtohsihteat  thenotionofappar- 
art "depthh What we d y  o h  is determined by 
lmhntul a d  d m 1  ~ O I  dispvfiicr. S e r e m q l c  dib 
parity is a vector quantity, conventionally taJm (May- 
hew & Lnnguet-Higgim 1982) to have a horiaontal and 
a vertical cnnponent equal to the d%mces i n s  y m- 
ordinates of cotresponding image points in left and rlght 
planar projections, H o w t a l  disparity is the component 
of the disparity vector parallel to the strreoeeopic bare- 
Iine(dinf@xe20.10)andwrtkaldisparityistheortho- 
gonal component. ILlafim disparity of i speahity is 
(roughly) the difference between its dbpadty and that of 

anearbypointonthesudre.SurhceFe.tvm(sarkhes, 
for example) obey the "epipolaf' constraint (Amold & 
Binford 1980; Mayhm & Frisby, 1981). Once the epi- 
pokr lines arr known-a nonhivial problem of camera 
calibration in computer vision (see drapter 21)-vertieal 
dipcity done& point rebfive tomotherbzero. 
SpdahWhowe~.arenotnufrafeatures(thatis, 
they are not stuck to a &) so they do not obey the 
epipolar anslraint. ll-q frequently have nonzero verti- 
cal relative disparities. Both h h n t a l  and vrrtial rela- 
tive disparities of a sporLrity vary as the surface is 
rotated about the line of sight. Now, the actual depth of 
a surfm feahue is approximately proportional to hor- 
imntaldispprity,butpaceiveddepthouldklfiatedby 
t h e i n t r o d u c H o n o f v c r N F a l ~ t y ~ & v a n  
Doom, 1976). Only in caw where mtieal dispatity is 
negligible (eg., on a spherical s u b  wIth dank less than 
lbout We) can we mnAdently talk about the depth of a 
m t y .  

Ray optics wt&Mea a direct relationship bchveen 
& shape nd msrund dirparity (Blake, 198.5; Blake 
& Brelstaff, 1988; Zisseimam Giblim 8 Blake, 1989). To a 
pod appmximation, the &Hve d i i t y  vector 8 de- 
pends linearly on the stereo baseline d and the d- 
dentsofthelinear&onmoddya~ionofsurkcc 
geometry (Agun ZO.10). suppose this madel were fully 
ufilloed by the vislul system and light soum position 
were known, then the relative disparity of a speahity 



would be consistent only with certain values of local 
surface curvature. Even if nothing is known about source 
position, relative disparity still constrains curvature: No 
convex surface can generate a negative horizontal relative 
disparity; a concave surface hardly ever generates a posi- 
tive one. The experiments described in this section aim 
to test whether the human visual system exploits such 
constraints. 

The idea that human vision employs physical con- 
straints is, of course, not new-it has been argued vigor- 
ously by Marr (1982) and is exemplified by surface con- 
tinuity and epipolar constraints in theories of stereo 
vision Uulesz, 1971; Man. & Poggio, 1979; Mayhew & 
Frisby, 1981). Continuity conshints also underly certain 
theories of motion perception (Bilthoff et al., 1989; Hil- 
dreth, 1984; Yuille & Grzywaa, 1988) that also have 
some psychophysical support. While continuity is a rna- 
thematically precise notion, its application to the physical 
world is intrinsically imprecise-it is scale dependent. 
However, the epipolar constraint is precise, and express- 
ible in terms of the equations of projective geometry. But 
it is "internal"-a consequence of the physics of the eye 
itself rather than of the external world. In the case of the 
analysis of specularities, however, it seems that the visual 
system may have summarized an algebraic theory that 
desuibes the physics of surfaces in the world. The theory 
is both "external" and precise. The next two sections 
describe two experiments aimed to test whether the hu- 
man visual system exploits such constraints. 

Surface Quality horn Highlights 

An adjustment task was devised in which the subject 
interactively changes both horizontal and vertical dis- 
parities of a highlight. Images of glossy, textured, curved 
surfaces are generated with a computer graphics work- 
station (Symbolics, Inc.) and displayed on a high-resolution 
color monitor with a stereo viewing system (see appendix 
A). The texture is of sufficient density to furnish strong 
cues for curvature from edge-based stereo. Simulation of 
surface gloss causes a specularity to appear superimposed 
on the texture, as in figure 20.11A. As discussed earlier. 
edge-based stereo cues can override cues such as monocu- 
lar or disparate shading. We might therefore expect also 
that specularity cues should be overridden; that is pre- 
cisely what happens. When the specular relative dispar- 
ities are veridical the whole surface appears glossy as in 

figure 20.11A and not just in the vicinity of the spec- 
ularity (Beck, 1972). However, when horizontal relative 
disparity is nonveridical the surface ceases to look glossy. 
For example, if the specularity is in front of the surface 
with large convergent (-) relative disparity, surface qual- 
ity is reported to be matte and opaque, with a puff of 
cloud in front of the surface (figure 20.IIB). The cloud 
patch is not perceived as a specularity and therefore there 
is no reason for the surface to look glossy. For excessively 
divergent ( + I  relative disparity, subjects usually report 
that the surface looks transparent, with a source of light 
behind it (like a frosted glass light bulb). Again, an in- 
correct position (relative disparity) of the specularity dis- 
counts the bright patch as a specularity and the visual 
system finds a different interpretation for the way in 
which the patch was generated. The interpretation of 
surface property changer from opaque to transparent. 
When the relative disparity is zero the simulated spec- 
ularity looks like a powdery patch on the surface and the 
surface does not look glossy. Note, however, that in 
nonstereo images (like any photograph) surfaces can look 
glossy even with zero relative disparity. In this case a cue 
conflict does not really exist because all surfaces are flat 
and relative disparity does not have any meaning in these 
images. 

In an informal two-alternative, forced-choice (2AFC) 
experiment, I1 out of 12 naive observers who were asked 
which of two presented surfacm was the "polished sur- 
face chose the surface shown in figure 20.rrA. in agree- 
ment with the prediction of the model. 

In an adjustment task naive subjects were asked to 
achieve the most realistic looking glossy surface. They 
repeatedly pressed buttons which (unknown to the naive 
subjects) caused the relative disparity of a specularity to 
vary. They were simply told that pressing the two but- 
tons would make the surface appear more or less shiny. 
Either vertical disparity was held constant (at the value 
determined by the ray-optic model) while horizontal dis- 
parity was varied or vice versa. Steps in specular disparity 
for each button press were sufficiently small (2 pixels or 
about 1.5 min arc) that most of the subjects did not 
perceive the specularity to be moving in depth. Four test 
surfaces were used in the adjustment task-a convex 
sphere, two convex ellipsoids and one concave ellipsoid. 

Results for the convex sphere (figure 20.11C) show 
that, on average, subjects' adjusted values were not 
significantly different from veridical for horizontal 
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(P < 0.001, F = 2). Note that the sign of the horizontal 
relative disparity after adjustment is always correct. This 
corresponds to robust discrimination between convex and 
concave surfaces as mentioned earlier. It is difficult to get 
significant vertical disparity effects for this surface because 
the veridical vertical disparity is close to zero (0.5 min arc). 
Four naive subjects adjusted the circumpolar disparity 
close to zero, but it is conceivable that there is some 
regression toward zero. Therefore, we tested a situation 
in which the correct vertical disparity of a specularity was 
quite different from zero. This is the case for the oblique- 
oriented ellipsoid. Five naive subjects and the two authors 
made adjustments whose signs were as predicted by the 
model. The visual system apparently has some dedicated 
competence for analysis of specularities and apparently 
"knows" enough about the physics of specularity to pre- 
dict the sign of the vertical disparity correctly. Similar 
results are obtained for the two convex ellipsoids: the 
average adjusted disparities are dose to veridical. Poorer 
agreement is obtained in the case of the concave ellipsoid, 
and the sign of the relative horizontal disparity after ad- 
justment is inconsistent. Subjects reported that, for this 
surface, the adjustment task was relatively difficult to 
perform. 

The conclusion of this experiment is that the human 
visual system models the physics of specular reflection 
well enough to predict relative disparity effects. Agree- 
ment with predictions is good qualitatively (sign is pre- 
served), and there even is a degree of quantitative agree- 
ment. In particular, in the case of a convex sphere for 
which we can associate horizontal disparity with depth. 
the visual system "expects"-correctly-that a specular- 
ity lies behind not on the surface. 

Surface Curvature from Highlights 

The second experiment is complementary to the first. Can 
the visual system accommodate to variations in spemlar 
relative disparities by changing its hypothesis about sur- 
face curvature, rather than its hypothesis of glossiness7 

We devised the stimulus of figure 20.IZA-a stereo, 
textured variant of an ambiguous (reversible) shaded 
surface. The texture elements all have zero disparity, con- 
sistent with a frontoparallel surface. Nonetheless, monoc- 
ular shadingltexture cues are not entirely overridden, so 
that subjects can usually see both convex and concave 
(like a dog bowl) interpretations. A superimposed spec- 
ularity (figure 20.129). with either convergent or diver- 

gent relative disparity (rt5') biases the interpretation. As 
the physics predicts, convergent relative disparity biases 
subjects' interpretation toward concave and divergent 
toward convex (figure 20.12C). The effect develops gra- 
dually with repeated exposures. Naive subjects made a 
forced choice (2AFC) between a convex or a concave 
interpretation. Time sequences (figure 20.12C) show that 
while initially subjects may be locked into one or the 
other interpretation, after around 20 exposures they reli- 
ably pick the interpretation that is consistent with the 
sign of horizontal relative disparity. Note that the change 
in position of the specularity is conkary to that of the 
surface-when the specularity is furthest away (diver- 
gent horizontal disparity) the center of the surface is near- 
est to the viewer (convex) and vice versa. Any explana- 
tion in terms of a pulling effect exerted by the specularity 
on the surface is thereby excluded. 

How Important are Specularities7 

It could be argued that specularity is a marginal visual 
phenomenon since specularities are relatively sparse in 
images compared with texture edges and other features. 
Moreover, it is associated more with artifacts, relatively 
recent on an evolutionary timescale, than with "natural" 
objects. Is it really likely, as we claim, that we have 
developed mechanisms to analyze specularities7 In reply, 
it is worth noting first that specularities do commonly 
occur on (hairless) faces and that facial recognition is, 
presumably, important for survival. More significant 
though, it is not necessary to claim that the ability to deal 
with specular motion and stereo developed via evolution. 
The processing of specularities, therefore, could simply be 
an extended usage of the parallax mechanism, lcnrned in 
a modem environment filled with specular artifacts. 

Cognitive w. Early Vision 

Naive observers, asked where a specularity appears to be 
in relation to the surface that generated it, usually reply 
that it appears to lie on the surface. What we tried to 
show with the first experiment is that the early visual 
system "knows" better, choosing configurations that are 
broadly consistent with the physics of specular reflection. 
The second experiment demonskates that the early visual 
system can use the information about the 3D position of 
the specularity to make some inference about the curva- 
ture of the underlying surface. One reason that the more 



Fig. 20.12 

Surface curvaturr. The perception of surface curvatwe m change 
with the parition of a spmiar highlight. In order to demonstrate that 
the human visual system knows the phyrio of light reflection we 
used an image of I surface whose three-dirnen.ion.1 interpretation 
can flip easily bdween two stater (convexlconcave). If a highlight 
is added to the image the 30 interpretation of the inner p u t  of the 
d a c e  is biared mare towards convex. A stereo pair was made 
with zero disparity for the texhved surface. and then a rperukrity 
ruperirnpor~d either in kont of (A) or behind (8) the texhved surface 
(unaosred view). flipping randomly between the two. with 5 or lo 
set exposures repanted by a m d o m d a t  marking kame. Subjects 
made a two-alternative f o r d  choice (MFQ htween convex and 
concave. After n Bort training period 120 exparures without 
feedback) they made mare choices that conform to the predictions of 
the model IC). A control experiment with a white dirk of about the 
rirc of the r p m l v i t y  that did not look like a highlight st dl, did not 
show m y  consistent effect between subjects on the perceived 
wrvahue. It might be diIfiNlt to experience the wrvahue effect if the 
imager are not displayed on a CRTmonitor b e c a w  of the limited 
contrast range in the print. In order to get the b e t  A c t  it is 
essential that the highlight look like a real refledion of the light 
source. (Redrawn kom Blake k BBlthoff, 1990.1 
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cognitive level ignores this position information might be 
that it is better to ignore the virtual images of light 
sources around us; otherwise, we would perceive them as 
obstacles and we would be very busy hying to avoid all 
those specularities around us. 

Integration of Depth Modules 

Before we get to the final section on a computational 
model of cue integration, we summarize the interactions 
of different depth cues (as derived from our depth probe 
experiments) in figure 20.13. In some experiments we 
presented conflicting information from stereo and shading 
cues. Whenever visible, edge-based disparities were deci- 
sive for the perceived depth (see figures 20.4, D-E', 
20.7, and 20.8). Edge-based stereo thus overrides both 
shape-from-shading and shape-from-disparate-shading in 
our experiments. It is possible, however, that this veto 
relationship occurs only in the locally derived depth map 
(disparity matching) because the global percept of the 
polyhedral ellipsoid in experiment (D-Ef) is not flat, but 
rather convex. Stevens and Brookes (1988) also reported 
that with conflicting monocular and stereo information 
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the 3D percept was dominated by the monocular in- 
formation and not by stereo. The& task involved cornpar- 
ing the relative depth d two points on a planar d a c e  
that had contradictory monoatlar and stereo idommkn 
and in addition, surface orientation had to be estimated 
-which is a dikult  task (see Todd & MingoUa 1983). 
A codtiding cue combination of shape-hn-shading and 
rhspfromdispratcshadhg was pmented in the exper- 
iment with smooth-shaded n o n d i i  images (D-F ). 
hl th i scare , rhape-~ irnotve toedbythe ladc  
d shading disparities but leads to a reduced depth per- 
ception of about 25 percent. An inhibitory interaction 
between HK two cues may aozount for this poor shape- 
fmm-dding performance and the ceiling effact in 6gure 
MS. 
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shape, orientation). The conhibution of single monocular 
cues is diirent for the JD dewiptors. Object orientation 
is bat  recovered from texture cues (Biikhoff & Mallot, 
1988) whik owface curvature (shape) can be inkmd more 
easily fmm shading. With bhoda r  shading (Lambertian 
or Phong shading) range perception is rather strong (70 
percent). It is even stronger for the perception of shape 
(100 percent). The addition of a highlight to a shaded 
surface has no effect in the range-match@ task, whik a 
strong effect was found in the shape comparison task. 
Highlights always led to an overestimation of shape, 
while dull surfaces (LamberHan shading) were judged too 
. 

Another summary dour data that inchuies both depth Bat, 

probe and shape cornpaison tedvliques b shown in figure 
2o.le This representation is bmd on the idea (sketched A B~~~~ ~~~~d for he 1 ~ ~ ~ ~ ~ ~ 3  
in figure 20.3) that the integration of d e n t  3D aus can 
lead to the perception of different 3D dsoipbts (range, In this section a theoretical formulation for cue integra- 

tion is introduced. This formulation is based on the bye- 



sian approach to vision, in particular in terms of coupled 
Markov random fields. This formalism is rich enough to 
contain most of the elements used in standard stereo 
theories with the additional advantage that it allows inte- 
gration of cues from different matching primitives. These 
primitives can be weighted according to their robustness. 
For example, depth estimates obtained by matching in- 
tensity are unreliable, since small fluctuations in intensity 
(due to illumination or detector noise) might lead to large 
fluctuations in depth, hence they are less reliable than 
estimates from matching edges. The formalism can also 
be extended to incorporate information from other depth 
modules (e.g., shading and texture) and provides a model 
for sensor fusion (Clark & Yuille, 1990). 

Unlike previous theories of stereo that first salved the 
correspondence problem and then constructed a surface 
by interpolation (Grimson. 1982). this framework pro- 
poses combining the two stages. The correspondence 
problem is solved to give the disparity field which best 
satisfies the a priori constraints. 

The model involves the interaction of several processes 
and is introduced here in three stages at different levels of 
complexity. 

At the first level, features (such as edges) are matched 
using a binary matching field V,. determining which fea- 
tures correspond. In addition, smoothness is imposed on 
the disparity field d(x), which represents the depth of the 
surface from the fixation plane. In this case the corre- 
spondence problem, determining the V,., is solved to give 
the smoothest possible disparity field. The theory is re- 
lated to work by Yuille and Grzywacz (1988) on motion 
measurement and correspondence and, in particular, to 
work on long-range motion. It can be shown that the 
cooperative stereo algorithms of Dev (1975) and of Marr 
and Poggio (1976) are closely related to this theory (Biil- 
thoff & Yuille, 1990; Yuille, Geiger & Bulthoff, 1989). 

At the second level, line process fields l(x) (which rep- 
resents depth discontinuities) (Geman & Geman, 1984) 
are added to break the surfaces where the disparity gra- 
dient becomes too high. For a different approach making 
use of the disparity gradient constraint, see chapter 21. 

The third level introduces additional terms correspond- 
ing to matching image intensities. Such terms are used in 
the theories of Gennert (1987) and Barnard (1986) which. 
however, do not have line process fields or matching 
fields. A psychophysical justification for intensity match- 

ing is given in the section Shape from Disparate Shading. 
Thus the full theory is expressed in terms of energy 
functions relating the disparity field d(x), the matching 
field V,,, and the line process field l(x). 

By using standard techniques from statistical physics, 
particularly the mean field approximation, one can elimi- 
nate certain fields and obtain effective energies for the 
remaining fields (see Geiger & Girosi, 1989; Geiger & 
Yuille, 1989). As discussed in Yuille (1989). this can be 
interpreted as computing marginal probability distribu- 
tions and allows us to show that several existing stereo 
theories are closely related to versions of the proposed 
framework. The three levels of this framework are pre- 
sented in more detail in appendix D. 

The Bayesian Formulation 

Given an energy function model one can define a cor- 
responding statistical theory. If the energy E(d, V, C) 
depends on three fields: d (the disparity field), V the 
matching field, and C (the discontinuities), then (using the 
Gibbs distribution: see Parisi, 1988) the probability of a 
particular state of the system is defined by 

where g is the data, fl is the inverse of the temperature 
parameter, and Z is the partition function (a normalization 
constant). 

Using the Gibbs distribution one can interpret the 
results in terms of Bayes' formula 

where P(gId, V, C)  is the probability of the datag given a 
scene d, V, C; P(d, V, C) is the a priori probability of the 
scene; and P(g) is the a priori probability of the data. Note 
that P(g) appears in the above formula as a normalization 
constant, so its value can be determined if P(gld, V, C) 
and P(d, V, C) are assumed known. 

This implies that every state of the system has a finite 
probability of occurring. The more likely ones are those 
with low energy. This statistical approach is attractive 
because the parameter gives us a measure of the un- 
certainty of the model (some refer to the temperature 
parameter T = rlp). At zero temperature (fl -+ m) there 
is no uncertainty. In this case the only state of the system 



that has nonzero probability, hence probability 1, is the 
state that globally minimizes E(d, V,C). In some non- 
generic situations there could be more than one global 
minimum of E(d, V, C). 

Minimizing the energy function will correspond to 
finding the most probable state, independent of the value 
of /3. The mean field solution. 

ii= C dP(d. V, Clg. 
4 Y . C  

(8) 

is more general and reduces to the most probable solution 
as T -t 0. It corresponds to defining the solution to be the 
mean fields, the averages of the f and I fields over the 
probability distribution. This allows one to obtain differ- 
ent solutions depending on the uncertainty. A justifica- 
tion for using the mean field as a measure of the fields 
resides in the fact that it represents the minimum variance 
Bayes estimator (Gelb, 1974). More precisely, the var- 
iance of the field d is given by 

where z i s  the center of the variance and the C.v,c 
represents the sum over all possible configurations of d, 
V, C. Minimizing Var(d:& with respect to all possible 
values of iiwe obtain 
a 
- Var(d : d7 = 0 -+ J =  C dP(d, V, C). 
aZ d.v.C 

(10) 

This implies that the minimum variance estimator is given 
by the mean field value. 

Statistical Mechanics and Mean Field Theory 

One can estimate the most probable states of the prob- 
ability distribution (equation 7) by, for example, using 
Monte Carlo techniques (Metropolis, Rosenbluth, Rosen- 
bluth, Teller & Teller, 1953) and the simulated annealing 
(Kirkpatrick, Gelatt & Vecchi, 1983) approach. The draw- 
back of these methods is the amount of computer time 
needed for the implementation. 

There are, however, a number of other techniqua from 
statistical physics that a n  be applied. They have recently 
been used to show (Geiger & Girosi, 1989; Geiger & 
Yuille, 1989) that a number of seemingly different ap- 
proaches to image segmentation are closely related. 

There are two main uses of these techniques: (I) we can 
eliminate (or average out) different fields from the energy 

function to obtain effective energies depending on only 
some of the fields (hence relating this framework to pre- 
vious theories), and (2)  one can obtain methods for 
finding deterministic solutions. 

There is an additional important advantage in elimina- 
ting fields-one can impose constraints on the possible 
fields by only averaging over fields that satisfy these 
constraints. For example. Geiger and Yuille (1989) de- 
scribe two possible energy function formulations of a 
winner-take-all network in which binary decision units 
determine the "winner" from a set of inputs. The con- 
straint that there is only one winner can be expressed by 
(1) introducing a term in the energy function to penalize 
configurations with more than one winner, or (2) comput- 
ing the mean fields by averaging only over configurations 
with a unique winner. The second method is definitely 
preferable in general because it enforces the constraint 
more strongly. Moreover, it leads to a very simple solu- 
tion of the winner-take-all problem. 

For the first level theory it is possible to eliminate the 
disparity field to obtain an effective energy &ll(V,,) de- 
pending only on the binary matching field V,,, which is 
related to cooperative stereo theories (Dev. 1975; Marr 
& Poggio, 1976). Alternatively, one can eliminate the 
matching fields to obtain an effective energy &,,(d) de- 
pending only on the disparity. The second approach 
seems to be better since it incorporates the constraints on 
the set of possible matches implicitly rather than impos- 
ing them explicitly in the energy function (as the first 
method does). 

One can also average out the line process fields or the 
matching fields or both for the second and third level 
theories. This leaves us again with a theory depending 
only on the disparity field. 

Alternatively, one can use mean field theory methods 
to obtain deterministic algorithms for minimizing the first 
level theory &II(V,,). These differ from the standard co- 
operative stereo algorithms and should be more effective 
(though not as effective as using kll(d)) since they can be 
interpreted as performing the cooperative algorithm at 
finite temperature, thereby smoothing local minima in the 
energy function. 

Psychophysical Support for the Bayesian Framework 

The experiments discussed earlier show that depth can be 
derived from images with disparate shading even in the 



absence of d i i t e  edges. The perceived depth how- 
ever, was weaker for shading dispaities (70 pment of the 
true depth). Putting in edges or features helped improve 
the accuracy of the depth perception L?ut in some cases 
thete additional features appeared to decouple from the 
intensity and w m  perceived to lie above the depth sur- 
face generated from the intensity disparities. 
These d t s  are in general agreement with the Baye- 

sian framework The edges give good estimates of dip 
parity and so little a priori smo&hnecs is required and an 
accurate perception mults. The disparity estimates from 
the intensity, however, are far less reliable ( d l  Ructua- 
tiom of intensity might yield large fluctuations in the 
disparity). Therefore, more a priori smaoihnerr is required 
to obtain a stable result. This gives rise to a weaker 
perception of depth. 
The use of the peak as a matchii feature is vital 

(at least for the edgeless case) since it awres that the 
image intensity is accurately matched (some stereo theo- 
r ia  based purely on intensity give an incorrect match for 
these stimuli IM. Gem&, v n a l  communication: see 
figure 20.151). For these images, however, the peak is 
difficult to localize and depth estimates bad on it are not 
very reliable. Thus the peak is not able to pull the rest of 
the surface to the hue depth. 

Pulling up did ocau for the edgeless case if a feature 
(ring) was added at the peaks of the images (figure 20.16). 
Thia is consistent with our theory since, unlike the peaks, 
features are easily l d i  and matching them would 
give a good depth estimate. Our present theory, how- 
ever, is not consistent with a pemption that sometimes 
occurred for this stimulus. In some cases the dots were 
perceived as lying above the surface rather than being 
part of it. This may be explained by the extension of our 
theory to transparent surfaces (Yuille, Yang k Geiger, 
1990). 

Additional support for this framework comes from the 
experiment of Biilthoff and Fa& (1989: see aka BBlthoff, 
Fahle k Wegman, 1990) in which perceived depth for 
different matching primitives and disperity gradients was 
~recisely measured. The d t s  of these experiments sug- 
gest that several types of primitives are used for cone- 
~pondence, but that some primitives are better than others. 
Perceived depth decreased as a function of the d i i t y  
gradient. This eRect was &cagest for horizontal lines, 
strong for pairs of dots or similar kaeatun and weak for 
dissimilar features and nonhorizontal lines. An explana- 
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tion in terms of the Bayesian framework assumes that 
thew effects are due to the matching strategy ad are 
based on the second level theory. The idea is that the 
smoothness term is required to give unique matching but 
that its importance, measured by I increases as the ka- 
ture become more similar. If the features are m&iently 
similar, then smoothness (or some other a priori assump 
tion) must be used to obtain a unique match, leading 
to biascs towards the frontoparallel plane. The greakr 
the similarity between features, the more the need for 
smoothness and hence the stronger the bias toward the 
frontoparallel plane. The fall-off of p d v e d  depth with 
increasing disparity gradient is modeled in detail by 
means of the second level theory in Yuille et al. (1989). 

In this chapter we discusmi different modules for shape 
perception and their interaction. One can catego& these 
interactions in two broad classes. In one. the cues are 
consmwnl (noncontradlctory). For example, consider view- 



ing a golf ball with both eyes. There will bc consistent 
depth information from stereo, ohad& and texture cues. 
Viewing an image of the same golf ball in a photograph, 
however, puk the stereo cue into conflict with shading 
and texture. 

Psychophysicists have attempted to deal with the k t  
case by taking weighted linear combinations with some 
s u m f s  (Emno & Cutting, 1988; D&, Sperlimg & 
Wurst, 1986). Some experiments discussed in this chapter, 
however, do not seem consistent with such a model. 

The case dcontlicting cues seems to require significant 
nonlinearity and usually requires a different, and inde- 
pendent, mechanism. For example, this case is expiidtly 
exduded in the statistid framework for &don of depth 
informstion proposed by Maloney and Landy (1989). 

Workers in computer vision have tended to use an 
alternative viewpoint. A recent book on sensor fusion 
(Clark & Yuille 1990) proposed a distinction between 
weak methods in which modules Ewnpute depth inde- 
pendently and combine their results (perhaps by linear 
combination) and dnmg methods in which two modules 
interact during computation, usually in a very nonl i i r  
way. They argue that strong methods are preferable since 
individual modules may be wing conflicting assumptions. 
These theories also seem rich enough to encompass both 
the categories d e w  by psychophysicists. 

These theories are erprsosed in a Bayesian hamework 
that can be used both for describing the individual mod- 
ules and for their integration. Although there are many 
other methods for dealing with individual modules, the 
Bayesian approach subsumes a number of these methods 
by isolating the key ceymptions used by these theories. 

The work in the hst  part of this chapter was done in dose 
collaboration with Hanspeter Mallot and paits of it were 
publied in Biilthoff and Mdot  (1988,1990). The shape 
from highlights section is based on artides with Andrew 
Blake (Blake & BUthoff 1990. 1991; Biilthdf & Blake, 
1989). The computational rnodd Eor the integration d 
early vision models is b a d  on a collaboration with Alan 
Yuille and Davi Geiger (Yuille, Geiger & Biilthoff, 1989). 
I thank all d them for many interesting diiawsions and a 
vny enjoyable collaboration. 
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tween the twoeyes on a CRT Color Monitor (Mitsubishi 
UC-6912 High-Resolution Color-Display Monitor, Re- 
solution (H x V) 1024 by 874 pixels: bandwidth +3 dB 
between 50 Hz and 50 MHz. short persistence phosphor). 
The disparate images were interlaced (even lines for the 
left image and odd lines for the right image) with a frame 
rate of 30 H z  This technique allows one to display the 
left and right view at about the same location on the 
monitor and therefore treats any geometric distortion of 
the monitor equally for both eyes. Errors in displayed 
disparities due to geometric distortions of the monitor 
are therefore avoided. Both disparate and nondisparate 
images were viewed binocularly through shutter glasses 
(Stereo-Optic Systems, Inc.) which were triggered by the 
interlace signal to present the appropriate images only to 
the left and right eye. The objects were shown in black 
and white with a true resolution of 254 graylevels using 
a 10-bit D/A-Converter. The background was uniformly 
colored in half-saturated blue. The screen was viewed in 
complete darhess. 

Local Depth Probe Technique 

Perceived depth was measured by adjusting a small, red, 
square (4 by 4 pixel) depth probe to match the perceived 
depth of the surface interactively (with the computer 
mouse). This probe was displayed in interlaced mode 
together with the disparate images. This is a computer 
graphics version of a binocular rangefinder developed 
by Gregory (1966) called "Gregory's Pandora's Box" by 
some investigators with the additional advantage that the 
accommodation cue is eliminated. Measurements were 
performed at 45 vertices of a Cartesian grid in the image 
plane in random order. The initial disparity of the depth 
probe was randomized for each measurement to avoid 
hysteresis effects. Subjects were asked to move the cursor 
back and forth in depth until it finally seemed to lie 
directly on top of the displayed test surface. After some 
training sessions, subjects felt comfortable with this pro- 
cedure and achieved reproducible depth measurements. 
Subjects included the authors (corrected vision) and one 
naive observer, all with normal stereo vision as tested 
with natural and random dot stereograms. 

useful for cues that are processed more globally and 
would be hindered by focussed attention on the local 
probe. Depending on the task, this technique was used in 
two different ways. To measure shape from shading and/ 
or texture with the global probe we displayed a stereo- 
scopically viewed reference object in the same orientation 
as the probe. The task of the subject was to change the 
shading or the texture (or both together) in order to 
match the shape with the reference object. This could be 
done almost in real-time by fast recall from computer 
memory of precomputed images of different shapes and/ 
or orientations. The reference object did not contain any 
shading or texture cue beside the disparate rings on its 
surface to avoid any cross-comparison with the depth 
cues to be tested. 

C. Data Evaluation 

Depth Probe Technique 

The depth probe technique leads to a depth map mea- 
sured locally at 45 positions in the image plane. In order 
to derive a global measure of perceived depth we per- 
formed a principal component analysis on all data sets, 
treating each one as a point in 45-space. Variance of the 
perceived shapes was found mainly (94 percent) along the 
first principal axis, whose corresponding loading was very 
close to an ideal ellipsoid (or sphere). The second compo- 
nent accounted for only 1.4 percent of the total variance. 
We therefore chose the overall elongation, namely, the 
coefficient associated with the first principal component, 
as a measure of perceived depth for a given cue combina- 
tion (see figure 20.5). 

Global Shape Comparison Technique 

The depth comparison data were averaged over different 
Nns and over two to four subiects. The mean number of 
runs was about 180 and the average correlation between 
displayed and estimated shape was 0.83. In order to dis- 
tinguish easily between over or underestimation of depth 
we give the mean slope for each depth cue. A slope of 1.0 
is naturally the veridical perception and a slope > 1 is an 
underestimation of curvature (see figure 20.6). 

Global Shape Comparison Technique 

The global shape comparison technique was used mainly 
for those cues that required monocular viewing. It is also 



D. A Bayesian Framework for Stereo 

The First Level: Matching Field and Disparity Field 

The basic idea is that there are a number of possible 
primitives that could be used for matching and that these 
all contribute to a disparity field d(x). This disparity field 
exists even where there is no source of data. The primi- 
tives considered here are features such as edges in image 
brightness. Edges typically correspond to object bound- 
aries, and other significant events in the image. Other 
primitives, such as peaks in the image brightness or tex- 
ture features, can also be added. In the following, the 
theory is described for the one-dimensional case. 

One can assume that the edges and other features have 
already been extracted from the image in a preprocessing 
stage. The matching elements in the left eye consist of 
features at positions xtL, for iL = 1. ..., N,. The right eye 
contains features at positions x.,, for a, = 1 ,..., N,. A 
mntckittg field is defined as a set of binary matching ele- 
ments V,,, such that V,," = I if point iL in the left eye 
corresponds to point a, in the right eye. and V,," = 0 
otherwise. A compnHbility JeM A,," is defined over the 
range 10.11. For example, it is 1 if i, and a, are compatible 
(i.e., features of the same type), 0 if they are incompatible 
(an edge cannot match a peak), 

One can now define a cost function E(d(x), V,,J of the 
disparity field and the matching elements. There are sev- 
eral methods to estimate the fields d(x), V,,, given the 
data. A standard estimator is to minimize E(d(x), VIM") 
with respect to d(x), VILnn. 

E(d(x), vi,J = 1 A,,., %,,(d(x,,) - (x, - I,,))' 
ir... 

+ y J (%)2dx. (11) 
M 

The first term gives a contribution to the disparity 
obtained from matching iL to a,. The fourth term imposes 
a smoothness constraint on the disparity field imposed 
by a smoothness operator 5. 

The second and third term encourage features to have 
a single match, they can be avoided by requiring that each 

column and row of the matrix V,," contains only one I. 
Minimizing the energy function with respect to d ( d  and 
V;," will cause the matching that results in the smoothest 
disparity field. The coefficient y determines the amount of 
a priori knowledge required. If all the features in the left 
eye have only one compatible feature in the right eye 
then little a priori knowledge is needed and y may be 
small. If all the features are compatible then there is match- 
ing ambiguity which the a priori knowledge is needed to 
resolve, requiring a larger value of y and hence more 
smoothing. This gives a possible explanation for the depth 
reduction effects discussed in Biilthoff, Fahle & Wegman 
(1990). 

The theory can be extended to two dimensions in a 
straightforward way. The matching elements V,," must 
be constrained to only allow for matches that use the 
epipolar line constraint. The disparity field will have an 
additional smoothness constraint perpendicular to the 
epipolar line which will enforce figural continuity. 

Finally, and perhaps most importantly, a form for the 
smoothness operator S has to be chosen. Marr (1982) 
proposed that, to make stereo correspondence unambig- 
uous, the human visual system assumes that the world 
consists of smooth surfaces. This suggests that one should 
choose a smoothness operator that encourages the dispar- 
ity to vary smoothly spatially. In practice the assump- 
tions used in Marr's two theories of stereo are somewhat 
stronger. Marr and Poggio I (1976) encourages matches 
with constant disparity, thereby enforcing a bias to the 
frontoparallel plane. Marr and Poggio 11 (1979) uses a 
coarse to fine strategy to match nearby points, hence 
encouraging matches with minimal disparity and thereby 
giving a bias towards the fixation plane. 

An alternative approach is to introduce discontinuity 
fields that break the smoothness constraint. For these 
theories the experiments described in Biilthoff et al. (1989. 
1990) are consistent with S being a first order derivative 
operator. This is also roughly consistent with Marr and 
Poggio 1 (1976). A default choice is therefore S = alax. 

The Smond Level: Adding Discontinuity Fields 

The first level theory is easy to analyze but makes the a 
priori assumption that the disparity field is smooth every- 
where, which is false at object boundaries. There are sev- 
eral standard ways to allow smoothness constraints to 
break (Blake. 1983; Geman & Ceman. 1984; Mumford & 



Shah, 1985). Here, a discontinuity field l(x) is introduced (1988). although this theory did not involve discontinuity 
which is represented by a set of curves C. fields. 

Introducing the discontinuity fields C gives an energy 
function 

References 
E(d(x), Kcaa,C) = x AtLanVtLa.(d(~tL) - (G, - xi$' 

1r.a. Aliomonos. 1. k Swdn. M. 1.(1985). Shape from texture. IEEEJoint 

where smoothness is not enforced across the curves C, 
and M(C) is the cost for enforcing breaks. 

The Third Level: Adding Intensity Terms 

The final version of the theory couples intensity based 
and feature based stereo. The psychophysical results sug- 
gest that this is necessary. The energy function becomes 

If certain terms are set to zero in equation 13, it reduces 
to previous theories of stereo. If the second and fourth 
terms are kept, without allowing discontinuities, it is simi- 
lar to work by Gennert (1987) and Barnard (1986). 

Thus the cost fundion (13) reduces to well-known 
stereo theories in certain limits. It also shows how it is 
possible to combine feature and brightness data in a na- 
tural manner. In addition it can be modified to include 
monocular cues (Clark & Yuille, 1990). 

A similar theory for integrating different cues for mo- 
tion perception was proposed by Yuille and Grzywacz 

Conference on Artificial Intelligence, 926-931. 

Arnold. R. D. & Binford, T. 0. (1980). Geometric ranrhintr in 
stereo virion. 5oriely of Pholo.Opliml lwln~nmzlalion and Etngincrring. 
238,281-29L 

Biicry, R. k Lieberman. L (1976). Texture gradient as r depth me. 
Cor#lpz~lcr Vi$ien. Gmphirr, a d  lnugc Rwmi8v$, I, 52-67, 

Barnard. S. (1986). Proreding of lhr lmngr U,!dnrlR?u(in$ Worulop, 
Lor Angeles. 

h o w .  H. G. k Tenenbaum. L M. (1981). Interpreting line dnwingr 
as threedimenrind wfacer. Artifirinl Irrlellismrr. 17. 75-116. 

Beck. 1. (1972). S ~ W ~ N I  rdor prrrpliott. New York Comell University 
Press. 

Blake, A. (1983). The lead disturbance principle and weak conrtraintr. 
PnHm R e ~ i t i a z  Mlm. 1.393-399. 

Blake. A. (1985). Spcular stereo. Rorrndit*~ ofthe 9th I]CAI 
Conrfmmtrr, 973-976. 

Blake. A. k Brelrtaff, G. 1. (1988). Geometry ham rprarluitier. 
In Procnding~ ofthr lnlmralionnl Cor#mnrr on Cancprtln Vision 
(pp. 394-403). Washington. DC: IEEE. 

Blake, A. k Bilthoff, H. H. (1990). Doer the brain h o w  the physics 
of rpeculu reflectiod Nnhcn. 343.165-168. 

Blake, A. & Btilthoff, H. H. (19911. Shap fmm rpeculuitier 
Computation and prychophysin. Pl~ilmopl~iml Tmnwlciionr afthe 
Royal brirly L0nrl.n B, 331.2.37-252. 

Blde, A. & Zirre- A. (1987). Virul rrco%l.lndion. Cambridge. 
MA: MIT Press. 

Blake. A,. ZirremUri, A. k Knowler, G. (1985). Surface description 
k m  rtereo and shading. bwge artd Vkon Compuling, 3, 183-191. 

h n 0 .  N. k Cutting. 1. E (1988). Minimodularity a d  the pemption 
of layout. Jounml of Erprrintmial Pryrholog,: Gc#mnl, 117, 161-170. 

Buddey, D. Fri~by, 1. P. & Mayhew, I. E. W. (1989). Integration of 
rtereo and texture cues in the formation of discontinuities during 
three-dimemional surface interpolation. Perrrplion. 18. 563-588. 

Bathoff. H. H. br Blake. A (1989). Doer the seeing brain b o w  
In~li8alior Ophthln~ology and VirtmI %rnw Suppl. 30, 262. 

Bfilthoff. H. H. k Fahlc, M. (1989). Disparity gradients and depth 
scaling. MIT Arlifiriaf lnlrll~mrr Meno. 1175. 

Btilthoff. H. H.. Fahle. M. k Weg- M. (19W). Perceived depth 
scaler with disparity gradient. Pmrplia. in press. 



Biillhoff. H. H.. LitHc. I. I. k Poggio. T. (1989). A parallel algorithm 
for real-time computation of motion. Nnltnrr. 337. 549-553. 

BGlthoff, H. H. k Mallol, H. A. (19881, Inlegration of depth moduler: 
rterco and shading. Io~,mnl of ILt Q>ticnl SoricIy ofA,nnirn. 5. 
1749-1758. 

B8lthoff. H. H. k Mallot. H. A. (1990). Intcgrrtion of rterco. shading 
and texture. In A. Blake k T. Trorcianko (Edr.), Alnnrl l la q r  New 
York: lohn Wilry and Sons. 

BGlthoff. H. H. k Yuillc. A. (1990). Models for swing rurfaccr and 
shapes. Comntcnb in Tl~~omlia,l Biolofi. in prerr. 

Clark. I. k Yuillc. A. (1990). Dnlnfirrion for w r w y  b#fon,mlion 
procori~~g. Nonvell. MA: Kluwer Academic Prru. 

Cutting. 1. E. k Millard. R. T. 11984). Three grsdimts and the 
pcrccption of flat and ~ l v c d  surface+. jotwtrnl of G~r imrn ln l  
Pn,cIsloet: Cm~mnnl. 113. 198-216. 

Dev. P. (1975). Perception of depth surfacer in random-dot 
rtereognms. IEEE Tr~trunrlior. otn Pnllcn# A~lmleir ntld Mnrl!i~a 
b~ldl<prr~rr. PAMI-2. 333-340. 

Doshcr. B. A,. Spcrling. G. k Wurst. S. (19861 Tradcaffs bchvcen 
rtrrcopir and proximity luminance covariance as defcminmts of 
perceived 3D rtrudure. Virior, Rrsenrrb 26. 973-990. 

Celb. A. (1974). Applid oplinml rrlbmlion. Cambridge. MA: MIT 
Prrrr. 

Ccmaa S. k Geman. D. (1984). Stochastic relaxation. Gibbr 
dirtributionr and the Bayesian restoration of images. IEEE 
Tmrwwrrlionr opt Pnllrn# Atmlyrir nvd Mndoirtr b~blligm<t, PAMI-6. 
721-741. 

Ccigcr. D. k Girosi. F. (1989). Pardlel and debminirlic algorithms 
from MRFr: Integration and surface rcconrtmrtion. M I T  Arlifirinl 
btlel l iptr Lnbornloy Mtnno. 1114. 

Ccigar. D. k Yuille. A. (1989). A mrrtntort frnmnumkfor imngr 
wpnotlnlion (Harvard Robotia Laboratoy Technical Report No. 
89-7). 

Gcnncrt. M. A. (1987). A cornpulational framework for 
understanding problems in stereo vision. M l T  Arlijiml b~lrNisnnrr 
Lnlarnroy Tlmir. 

Crcgory. R. L (1966). Eyenrul brain. New York: McCnw-Hill 

Crimson. W. E. L. (1982). A mmputational theay of visual surface 
inlrrpolation. P l ~ i l ~ p l ~ i r n l  Tmnmrliom lb Roynl Soricly Lrtdon 
B. 298.395-427. 

Hayncs. 5. M. k Jain. R. (1987). A quditattve approach for 
r~over ing  dcpth in dynamic rcener. Prorndivrxr of ihr of IEEE 
Workboll 088 Conm!,lrr Visioet. Miami Beach. 66-71. 

Hildrelh. L C .  (1983). The dct~ction of intensity changer by 
computer and biological virion ryrtcm~. Compr~hr Viriaz. Gmnjjlniu 
nnd hrrlpr PmtsU#,p. 22, 1-27. 

Hildrclh. E C. (1984). Computations underlying the mearurement of 
visual motion. Arlificial lr1blligr8!crjoumnl. 23. 309-354. 

Ikeuchi. K. k Ham, 8. K. P. (19811. Numerical shape from shading 
and occluding boundaries. Arfificinl b~ltllign~rr, 17. 141-184. 

Julrrs 8. (1971). Foardalba ofryrlopn pmeplion. London: The 
University of Chiwgo Press. Ltd. 

Kendcr, I. R. 11979). Shape from texture: An aggregation transform 
lhnt maps a class of texturcs into surface orientation. In Pmrtdirlpr. 
blrmdiorurljob~l Co,tfcrtme on Adificinl htlrllisnr<e, Tokyo, Japan. 

Kirkpatrick. 5.. Celatt, C D. Jr. and Vecchi. M. P. (1983). 
Optimiwtion by simulated annealing. %mrr. 220. 671-680. 

Koendcrink. ). 1. (1986). Optic flow. ViriDn Rntnrrk. 26. 161-160. 

Kocndcrink. I. I. k van Doom. A. I. (1976). Cwmetry of binocular 
virion and r model for rtercoprir. Biolqpirnl Cybtmrlie. 21. 19-35. 

Landy. M.  S. (1987). Parallel model of thc kinetic dcplh effect using 
local computalionr. jo,,ntnl of lhr Opliml Soritly of Anrerim A, 4, 

864-877. 

longuet-Higginr. H. C. k Pndny. K. (1981). The iderprebtian of 0 

moving retinal image. Roctdingr olllrr Roynl *illy Lovadan 8.208. 
385-397. 

Maloney. L T. k hndy. M. S. (1989). A rlrlirtical framework for 
robust fusion of depth information. In W. A. Pearlmm (Ed.). Viwnl 
Co,amrmirnlio,rr nad bnqt  Pmrarit~g IV. Pm&i!m of llw SPIE. 1199. 
1154-1163. 

Man. D. (1982). Visioz~. San Francisco: Frwmn. 

Man. D. k Hildmth. E. (1980). Throry of edge detection. R d i n p s  
of thr Roy1 Soritly Ladm 8. 207. 187-217. 

Man. D, k Poggio. T. (19761. Cooperative computation of rtcreo 
disparity. Scirnrc. 194. 283-287. 

Man. D. k Poggio. T. (1979). A computational theory of human 
stcrro vision. R d i n s s  oflhr Row1 Lardon B. 204. 301-328. 

Mayhew. I. E. W. k F.sby. I. P. 11981). Prychophyrical and 
computational studies towards a theory of human itcrcoprir. Arfificinl 
btlrllise,trr. 17. 349-386. 

Mayhew, 1. E. W. k LongueCHiggins, H. C. (19821. A rompul~tiond 
model of binocular dapth perccplion. Nnltm. 297. 376-379. 

Melropolir. N. Rorrnblulh A.. Rmenbluth. M., Tellor. A.. and Teller. 
E. (19531. Equation of state cal~lalionr by fast computing machines. 
jot#mnl Pltyricnl CLmn~irly, 21, 1087-1091. 

Mingollr. E. k Todd I. T. (19%). Perception of solid shape from 
  ha ding. Bioleirnl Cybmtelirr. 53. 137-151. 

Mumford. D. and Shah. I. (1985). Boundary dctertion by minimizing 
funclionalr. I. Prorredingr of 111~ lEEE Ca,fmnrr OH Cornrptalrr Visiatl n,d 
Pnllrn! Rmo~nilio,n. Sm Francirco. 

Pariri. G. (19881. Slnlirlimlfidd Ilerory. Reading. MA: 
Addiron.Werlry. 

Shapc from X 



Pentland. A. P. (1984). Local shading roolyrir. IEEE Tnl,mdionr Drt 

Pnllmr A8mfysir n#rl Mnd~ba b~lrlli,~c,rce. PAMI-6. 170-187. 

Pentland. A. P. (19851. A new wnre for depth of field. fEEEloi#tr 
Catfcrnrea,! Arlilirisi hldii~ymrc. 988-994. 

Pentland. A. P. (19861. Shading into texture. Arlificinf btlclli~ctrce, 29. 
147-170. 

Phong. B.T. (1975). Illumination for mmpuler generated pictures. 
C i l i  ofllrr ACM. 18. 31 1-317. 

Poggio. C,  k Poggio. T. (19841. The analysis of rtcmoprir. A,tnaml 
Rruiw o / N e a r o r ~ i ~ ~ c t ,  7.379-412. 

Poggio. T.. Tonc. V. k Kwh. C. (1985). Computational virion 2nd 
regulariwtion theory. Nnlrlrc, 317. 314-319. 

Prardny. K. (19851. Detrdian of binocular dirprrilies. Biologirnl 
Cyhn!nlrlis, 52  93-99. 

Stevens. K. A. (19811. The visual interpmtulian of surface contourr. 
Ariifirinf l ~ ~ l ~ f f i , ~ ~ ~ ~ ~ e ,  17. 47-73, 

Stevens. K. A. k Brookcr. A. (19871. Probing dcpth in monocular 
imager. B;ofogirnf C y h l i r r .  56. 355-366. 

Stevens. K. A. k Brooka. A. (1988). Integrating ~tcrmprir with 
monocular interpretations of planar rurfaccr. Visioa Rtmrrl!. 28, 
371-386. 

Todd. I. T. k Mingolla. E. (1983). Perq l ion  of surface curvature and 
direction of illumin~tion from patterns of shading. lontmni of 
Erpen'nmflnl Rycl~ofo~y: H!a,tmn Rrccpfion nvri Perfontmnrr, 9. 
583-595. 

Ullman. S. (1979). T h e  inlrrprclnlion of uinml molio,#. Csmbridgc. MA: 
M I T  Prtsl. 

Vllman. S. (19841. Mtximiring rigidity: The incrcrn~ntal remvery of 
3-D rtruclure fmm rigid and non-rigid motion. Perrrplion. 13. 
255-274. 

Witkin. A. P. (1981). Rerovering surface rhspc and orientation h.om 
lexture. Adificinl Inltlfigoirr. 17, 17-47. 

Yuille. A. L (19891. (Haward Robotics hbomtory Techniml Report 
89-12). 

Yuille. A. L Geiger, D. k Bilthoff H. H. 119891. Slrrro i~alqrnlioc 
stmn field ldmV rind pryr1,opIryrilr (Harvard Robotics hboratory 
Technical Report 89-1). 

Yuille. A. L. k C n y w a a  N. M. (1988). A compulational theory for 
the perception of coherent visual motion. Nnblrt. 333. 71-74. 

Yuillc. A. L.. Tang Yang. k Geiger. D. (19901. Rolruf dofirliu. 
Im,aynm~qnnd r o n s p d c ~ v c e  (Harvard Robotics hboratory 
Technical Report 90-7). 

Zirrerman. A,, Giblin. P. 6. Blake, A. (1989). The information 
available to a moving observer from rperularilier. Ir,tnst tzrld Vision 
Co,t!pt<litlg. 7. 38-42. 

330 3 D  Shap 


	shape_final_Page_01.jpg
	shape_final_Page_02.jpg
	shape_final_Page_03.jpg
	shape_final_Page_04.jpg
	shape_final_Page_05.jpg
	shape_final_Page_06.jpg
	shape_final_Page_07.jpg
	shape_final_Page_08.jpg
	shape_final_Page_09.jpg
	shape_final_Page_10.jpg
	shape_final_Page_11.jpg
	shape_final_Page_12.jpg
	shape_final_Page_13.jpg
	shape_final_Page_14.jpg
	shape_final_Page_15.jpg
	shape_final_Page_16.jpg
	shape_final_Page_17.jpg
	shape_final_Page_18.jpg
	shape_final_Page_19.jpg
	shape_final_Page_20.jpg
	shape_final_Page_21.jpg
	shape_final_einfueg_Page_1.jpg
	shape_final_einfueg_Page_2.jpg
	shape_final_einfueg_Page_3.jpg
	shape_final_einfueg_Page_4.jpg
	shape_final_einfueg_Page_5.jpg



