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We show that the combination of charge and dipole conservation—characteristic of fracton
systems—leads to an extensive fragmentation of the Hilbert space, which in turn can lead to a
breakdown of thermalization. As a concrete example, we investigate the out-of-equilibrium dy-
namics of one-dimensional spin-1 models that conserve charge (total Sz) and its associated dipole
moment. First, we consider a minimal model including only three-site terms and find that the
infinite temperature auto-correlation saturates to a finite value—showcasing non-thermal behavior.
The absence of thermalization is identified as a consequence of the strong fragmentation of the
Hilbert space into exponentially many invariant subspaces in the local Sz basis, arising from the
interplay of dipole conservation and local interactions. Second, we extend the model by including
four-site terms and find that this perturbation leads to a weak fragmentation: the system still has
exponentially many invariant subspaces, but they are no longer sufficient to avoid thermalization
for typical initial states. More generally, for any finite range of interactions, the system still ex-
hibits non-thermal eigenstates appearing throughout the entire spectrum. We compare our results
to charge and dipole moment conserving random unitary circuit models for which we reach identical
conclusions.

I. INTRODUCTION

Recent years have seen a great deal of effort—both the-
oretical and experimental—to understand quantum ther-
malization: the question of how closed quantum systems,
evolving under unitary dynamics, reach a state of ther-
mal equilibrium [1–9]. Thermalization is believed to be
characterized in terms of the Eigenstate Thermalization
Hypothesis (ETH) [7, 10–12]. According to this, each
eigenstate of a thermalizing Hamiltonian essentially be-
haves like a thermal ensemble as far as expectation val-
ues of local observables are concerned. While no proof
of ETH exists, there are many cases where it has been
shown numerically that indeed all eigenstates satisfy this
hypothesis [7, 12, 13].

Given its supposed generality, there has been much
interest in systems that violate ETH. Two well-known
instances are integrable systems [14, 15] and the many-
body localized (MBL) phase [16–19], both of which avoid
ETH due to the existence of extensively many conserved
quantities [20–22]. These conservation laws lead to non-
ergodicity even at high energy densities. One important
question concerns whether behavior similar to MBL can
appear in systems without spatial disorder [23–30].

Another key question is about the possibility of sys-
tems that exhibit interesting intermediate behavior, nei-
ther localized, nor fully ergodic. In particular we can dis-
tinguish between strong and weak ETH: the former says
that all eigenstates in the bulk of the spectrum become
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FIG. 1. Thermalization and its absence in the auto-
correlation function. Panel (a) shows the auto-correlation
function Cz0 (t) ≡ 〈Sz0 (t)Sz0 (0)〉 in the full Hilbert space at infi-
nite temperature for N = 13 (transparent curves) and N = 15
(opaque curves) spins. For Hamiltonian H3 in Eq. (1), Cz0 (t)
saturates to a finite value at long times, closely matching the
lower bound in Eq. (4) (dashed line). The auto-correlation
function of the combined Hamiltonian H3 +H4 decays to zero
at long times. Panels (b) and (c) show the spatially resolved
correlator 〈Szn(t)Sz0 (0)〉 for H3 and H3 +H4 respectively.

thermal in the thermodynamic limit, while the latter al-
lows for the presence of outlying non-thermal states, as
long as their ratio is vanishingly small at any given en-
ergy [31–33]. It is important to stress that if only weak
ETH is satisfied, then we can always find initial condi-
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tions which have narrow energy distributions but nev-
ertheless fail to thermalize [8]. Indeed, generic systems
are expected to exhibit the strong version of ETH [13].
Recently, however, several exceptions have been discov-
ered [34–38]. Systems with constrained dynamics [39, 40]
are an especially promising avenue where non-thermal
eigenstates, dubbed scar states, can occur [33, 41–45].
These are believed to be responsible for persistent oscilla-
tions observed in a recent Rydberg atom experiment [46].

Constrained dynamics occurs naturally in so-called
fracton systems, which are characterized by the existence
of excitations that exhibit restricted mobility [47, 48].
On one hand, these systems have been studied in three-
dimensional exactly-solvable lattice models with discrete
symmetries, where fractons are created on the corners
of a membrane or fractal operator [48–53]. On the other
hand, different approaches for fractons with U(1) symme-
try have shown that their mobility constraints are related
to the conservation of the dipole moment which localizes
isolated charged excitations. [54–60] An analytical con-
nection between the two approaches has been discussed
in Refs. 61 and 62. The exotic behavior of fractons also
gave rise to the study of their non-equilibrium physics
[63, 64], and it has been argued that fracton models with
discrete symmetries show glassy dynamics [49, 63, 65].

In this paper, we study the consequences of dipole con-
servation associated with a global U(1) charge (i.e., the
conservation of total spin Sz) in one-dimensional (1D)
spin systems, for which a numerical study is feasible.
Apart from fracton systems, such charge and dipole con-
serving Hamiltonians also occur naturally in other con-
texts, for example in the quantum Hall effect [66–70] and
in systems of charged particles exposed to a strong elec-
tric field [29, 30]. Interestingly, a recent work [71] has
argued that random local unitary dynamics with such
symmetries fails to thermalize. We find the same non-
ergodic behavior in a minimal Hamiltonian that con-
tains only three-site interactions. We discover that the
source of non-ergodicity is an extensive fragmentation of
the Hilbert space into exponentially many disconnected
sectors in the local z-basis. In particular, based on the
Hilbert space structure, we obtain a lower bound for the
long-time auto-correlation, which remains finite in the
thermodynamic limit. This is a novel type of non-ergodic
behavior, arising in a translation invariant system, but
nevertheless sharing certain features of MBL, which we
denote by strong fragmentation of the Hilbert space.

However, we find that this strongly non-ergodic be-
havior disappears once we add longer-range interactions,
such as a four-site term. In this case, the dipole con-
straint is no longer sufficient to violate ergodicity, and
the infinite temperature autocorrelator decays to zero.
Nevertheless, the model still violates the strong version
of ETH and exhibits exponentially many non-thermal
eigenstates, disconnected from the bulk of the spectrum,
and co-existing with thermal eigenstates at the same en-
ergies. We term this behavior, which is reminiscent to
quantum many-body scars, weak fragmentation and give

an analytical lower bound on the number of product
eigenstates for arbitrary finite range of dipole-conserving
interactions. We compare our results to random unitary
circuit dynamics, and find the same behavior: while cir-
cuits constructed from three-site gates fail to thermalize,
adding four-site gates is sufficient to delocalize the sys-
tem and lead to thermalization for typical initial states.
We numerically verify that the invariant subspaces for
Hamiltonian and random circuit dynamics coincide ex-
actly.

The remainder of the paper is organized as follows.
In Sec. II we introduce the Hamiltonians we study, and
describe their relevant symmetries. In Sec. III we inves-
tigate the minimal model containing only three-site in-
teractions and show that it fails to thermalize. We prove
that the Hilbert space fragments into exponentially many
invariant subspaces, some of which we construct analyt-
ically, and connect these to the finite saturation value of
the auto-correlation function. In Sec. IV we extend the
model by adding four-site interactions and argue that
while these are sufficient to make the majority of eigen-
states thermal—leading to ergodic behavior for typical
initial states—the system still violates strong ETH. In
Sec. V we compare our results to random unitary cir-
cuit dynamics and find similar behavior. We conclude
in Sec. VI with a summary and outlook. The appen-
dices provide further comparisons of our numerical re-
sults on auto-correlations for different system sizes, as
well as other dynamical quantities, such as entanglement
growth and operator spreading. App. D shows an ex-
plicit construction, relating the minimal Hamiltonian we
consider to the PXP model [41, 72] that appears in the
context of quantum many-body scars [73].

II. MODEL AND SYMMETRIES

We consider two spin-1 Hamiltonians on a chain of
length N of the form

H3 =−
∑
n

[
S+
n

(
S−n+1

)2
S+
n+2 + H.c.

]
(1)

and

H4 =−
∑
n

[
S+
n S
−
n+1S

−
n+2S

+
n+3 + H.c.

]
, (2)

acting on three and four consecutive sites, respectively.
Apart from being translation and inversion symmetric,

both Hamiltonians share two additional global symme-
tries: they conserve a U(1) charge Q and its associated
dipole moment Pn0

:

Q ≡
∑
n

Szn and Pn0
≡
∑
n

(n− n0)Szn, (3)

with respective eigenvalues q and p defining the symme-
try sector Hq,p [74]. Since [Q,Pn0

] = 0, the local Sz-
basis, denoted by |+〉, |0〉, |−〉, is a common eigenbasis
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of Q and Pn0
. The definition of the dipole symmetry

Pn0
also depends on the reference position n0, except

when Q = 0. Unless specified otherwise, we choose open
boundary conditions [75] and take N = 2m + 1 odd,
labeling sites n = −m, . . . , 0, . . . ,m. We choose the ref-
erence site n0 to be the center site, n0 = 0, and de-
note P ≡ Pn0=0. The operator P does not commute
with spatial translations and changes sign under inver-
sion; thus, it is not an internal symmetry [60]. Dipole
conservation is the relevant global symmetry appearing
in the description of fracton phases of matter with U(1)
symmetry group [54–60]. Motivated by this, we use the
following notations: we call the states |±〉 on a given site
a fracton with charge q = ±1, and a two-site configura-
tion |+−〉 (|−+〉) a dipole with zero charge and dipole
moment p = −1 (+1). Notice that the dipole moment
of a (±)-fracton on a site n is p = ±n. Thus, in order
to conserve the total dipole moment, a fracton can only
move by emitting dipoles [54, 71].

There also exists an operator that anti-commutes with
H3, but commutes with Q and P (see App. A for details).
Consequently, the spectrum of H3 is symmetric around
zero in every (q, p)-sector. The same is also true when H4

is considered separately, but not for the combined Hamil-
tonian H3 +H4. These anti-commuting symmetries can
also be broken by adding terms diagonal in the Sz basis,
which would not change any of the physics observed in
the following.

We note in passing that similar charge and dipole
conserving Hamiltonians can be written for any spin
representation, in any spatial dimension, as well as for
fermionic systems. For the latter, the dipole symmetry
becomes the center of mass of the particle number op-
erator and the corresponding Hamiltonian consists of a
symmetric redistribution of charges with respect to the
center sites. A similar fermionic Hamiltonian appears
in the study of fractional quantum Hall on a torus in
the Tao-Thouless limit [66–70]. In addition, such dipole-
conserving chains can arise naturally in the presence of
strong electric fields, as we discuss in the outlook.

III. HAMILTONIAN H3

We start by investigating the three-site Hamiltonian
H3 in Eq. (1), as a minimal model that conserves both
the total charge Q and the dipole moment P . We de-
tail its unusual non-ergodic dynamics and identify it as
a consequence of extensive fragmentation of the Hilbert
space into invariant subspaces. In Sec. IV we will add
longer-range terms to this minimal model and describe
their effect on the dynamics.

A. Lack of thermalization

We first investigate the behavior of the auto-
correlation function Cz0 (t) ≡ 〈Sz0 (t)Sz0 (0)〉 at infinite tem-

perature. Relying on quantum typicality [76–78], we
compute Cz0 (t) for a random state on the full Hilbert
space. For thermalizing and translational invariant spin-
1 systems, Cz0 (t) is expected to decay to 2/(3N) for a
chain of length N , up to potential boundary contribu-
tions [79]. In Figure 1(a) we show Cz0 (t), obtained via an
iterative Krylov space based algorithm [80], for system
sizes N = 13, 15. Instead of relaxing to the thermal ex-
pectation value, the auto-correlation saturates to a finite
value Cz0 (t) − 2/(3N) ∼ 0.2 at long times. In App. B
we confirm that this finite saturation value persists up
to long times, t ∼ 1010, with no sign of decay. More-
over, the long-time values appear to be largely indepen-
dent of N , indicating truly localized behavior that per-
sists even in the thermodynamic limit. Figure 1(b) shows
the spatially resolved correlation function 〈Szn(t)Sz0 (0)〉,
which exhibits a peak in the center site at all times. We
conclude that the system exhibits non-ergodic behavior.
This is also supported by calculating the growth of en-
tanglement starting from a random product state, which
saturates to a sub-thermal von Neumann entropy density,
as we show in App. C

B. Hilbert space fragmentation

In this section, we demonstrate that the constrained
dynamics of H3 leads to a fragmentation of the many-
body Hilbert space: most (q, p) symmetry sectors split
into many smaller invariant subspaces in the local Sz-
basis, such that the total number of such subspaces grows
exponentially with system size. These disconnected sec-
tors come in a variety of different sizes; they include
‘frozen’ states (product eigenstates of H3) and finite di-
mensional subspaces, where the chain splits into spatially
disconnected regions.

1. Frozen states

We begin by constructing a family of exponentially
many exact eigenstates of the Hamiltonian, which are
all product states in the local z-basis. We will refer to
these as frozen states. The simplest example is the vac-
uum state |0〉 ≡ |· · · 0000 · · ·〉, which is annihilated by
all terms in H3, due to (S±)2 |0〉 = 0. We can easily
construct other frozen states by adding blocks of at least
two contiguous charges of equal sign on top of the vac-
uum, e.g., |0 · · · 0 + +0 · · · 0−−− 0 · · ·〉. These are an-
nihilated by all terms, since S+

n S
−
n+1 |±±〉 = 0. We con-

clude that any configuration where charges always occur
in blocks of at least two consecutive sites are zero energy
(mid-spectrum) eigenstates of H3. It is clear from the
construction that their number is exponentially large in
system size.

We can follow Pauling [81, 82] to estimate the to-
tal number of frozen states. To do this, we map the
spin chain of length N to a triangular ladder with spins
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FIG. 2. Fragmentation of the Hilbert space into
smaller subspaces. (a) Exponential scaling of frozen states,
which correspond to invariant subspaces of dimension D = 1,
and comparison to the Pauling estimate, (b) example of higher
dimensional sectors, in the form of spatially separated 2-level
‘bubbles’. (c-d) Time evolved charge density 〈Szn(t)〉 for the
two initial states indicated under each figure. (c) The ++
block in the middle cuts the system in half when (+)-fractons
are placed on each side. (d) When they are replaced by (−)-
fractons, the block melts and the two halves become con-
nected.

placed on the vertices as shown in the inset of Fig. 2(a).
Treating the constraints on each triangle as independent,
and using that there are N − 2 triangles and 19 frozen
states per triangle, we estimate their total number to be
3N ×

(
19/27)N−2 ≈ 2.02 × 2.11N . In Fig. 2(a), we nu-

merically verify that the estimate is quite close to the
actual number of frozen states, as obtained by exact di-
agonalization. The numerical results together with an
explicit computation for small system sizes, suggest that
this estimate gives a lower bound of the actual number
of frozen states. However, we do not have a proof of this
general statement. Nevertheless, in Sec. IV B we pro-
vide an analytical lower bound for arbitrary finite-range
dipole-conserving Hamiltonians.

2. Larger dimensional sectors

Above we saw that blocks of two or more consecutive
charges of equal sign are annihilated by the local terms
in H3 that act on them. Let us now consider the empty
region (|00 · · · 0〉) between two such frozen blocks and fill
it with a random configuration of charges. These charges
can now move around and potentially destroy the blocks
on the two sides. However, we argue that there are ini-
tial configurations where this cannot happen: when the
sign of the rightmost charge within the region matches
the charge of the frozen block to its right, then this block
remains inert at all times. The same holds for the frozen

block on the left when its charge is of the same sign as
the leftmost charge within the region. When the charges
match on both sides, then both blocks are stable and
the charges in the middle bounce back-and-forth between
them, disconnected from the rest of the chain. This ap-
pears as a direct consequence of the general rule: For a
region surrounded by empty sites, the signs of the left-
and rightmost charges are invariant under the dynamics
generated by H3.

The simplest example where we can observe this be-
havior, is as a 2-level system shown in Fig. 2(b), defined
by the states |+ + 0 + 0 + +〉 and |+ + +−+ + +〉. We
can check that these two states can only evolve to
each other under H3, defining a small invariant sub-
space. More generally we can consider states of the form
|+ + 0 · · · 0+0 · · · 0 + +〉: an isolated fracton surrounded
by two ‘walls’ of positive charge. Acting on this state
with H3, maps the configuration 00+00 in the middle
to 0+−+0, showing that the (+)-fracton can move by
emitting a dipole +− (or −+) in the opposite direc-
tion [54, 71]. The fracton can then move forward by
emitting further dipoles, until it reaches one of the walls.
However, when it eventually hits the wall, we end up with
the configuration + + +, which is annihilated by H3; the
wall therefore remains intact and the fracton bounces
back harmlessly. Consequently, if the fractons on both
sides of a ++ block have positive charge, the chain is
cut into two disconnected halves, as shown in Fig. 2(c).
To destroy the wall, we would need to flip the charge of
the isolated fracton to get a (−)-fracton: the resulting
− + + configuration can then peel off a freely-moving
−+ dipole, eventually melting the walls that surround it
as shown in Fig. 2(d).

A similar situation occurs for the initial configuration
|− − 0 · · · 0−+0 · · · 0 + +〉. In this case the walls on the
two sides have opposite charges and a single dipole is
placed between them. For a single dipole surrounded by
empty sites, the Hamiltonian H3 acts as a free hopping
term, moving the dipole from site n to n± 1 [83]. Even-
tually it reaches one of the surrounding walls, but since
the charges in the dipole are aligned with those of the
walls, it always bounces back, effectively defining a sin-
gle particle hopping problem on a finite region. If, on
the other hand, the initial dipole in the middle was of
the form +− it could again peel off charges from the two
walls, eventually melting them.

The previously stated general rule, together with the
fact that blocks with a given charge are frozen, allow
us to construct more general spatially disconnected re-
gions in the chain: take an arbitrary configuration in
some finite interval and surround it with walls that have
the same charge as the one closest to them on the in-
side. One can then cover the entire chain with such re-
gions, each of which has its own conserved charge and
dipole moment, giving rise to many invariant subspaces
within each global (q, p) symmetry sector. The resulting
eigenstates clearly break translation invariance and have
small amounts of entanglement, limited by the size of the
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(a) (b)

FIG. 3. Sector size and weight distributions. (a) Dis-
tribution of invariant subspaces of size D and (b) operator
weight WD (see text for its definition) of the operator Sz0 in
each invariant subspace Hi of dimension D in the full Hilbert
space. The vertical dashed lines indicate the averaged sector
size of the distribution, which is exponentially smaller than
the largest sector.

largest connected spatial region.
These constructions highlight the intertwined relation

between dipole conservation, spatial translations, and lo-
cality. After the dipole quantum number is fixed, trans-
lation/inversion symmetry is generically broken, which
allows us to derive conservation laws within different spa-
tially disconnected regions. Our construction also shows
that in order to determine which invariant subspace a
given initial configuration belongs to, one has to con-
sider it on the entire chain: even if a certain region looks
initially frozen, it can eventually be melted by additional
charges coming from the outside. This indicates that
it might not be possible to systematically label all in-
variant subspaces in terms of quantum numbers of local
conserved quantities.

3. Distribution of dimensions of invariant subspaces

Above we explicitly constructed invariant subspaces of
H3 of various dimensions within given (q, p) symmetry
sectors. The distribution of these invariant subspaces
can be studied by numerically identifying the connected
components of the Hamiltonian written in the Sz basis.
The resulting distribution is plotted in Fig. 3(a), show-
ing exponentially many sectors with a broad distribution.
We point out that since the sectors are obtained in the
local z-basis, they remain invariant under any perturba-
tion that is diagonal in this basis. However, such diago-
nal perturbations would have the effect of changing the
energy of the different frozen states, moving them away
from zero energy, and distributing them throughout the
entire spectrum.

Based on the constructions in the previous section, we
infer that the existence of these invariant subspaces is a
consequence of the interplay between the conservation of
dipole moment (which fails to commute with translation
and inversion) and the locality of interactions. In par-
ticular, in Sec. IV B we prove that exponentially many
invariant subspaces exist for any extension of the model

that only involves dipole-conserving interactions with fi-
nite range.

We close this section by noting that, apart from the
overall fragmented structure of the Hilbert space, which
is our main concern in this paper, there is also the pos-
sibility of interesting dynamics within certain connected
components. For example, as we show in App. D, there
are particular subspaces where the Hamiltonian H3 maps
exactly to the so-called PXP Hamiltonian [73], studied in
the context of quantum many-body scars [41, 42]. A sim-
ilar mapping has been uncovered in a spin-1/2 version of
this model in a recent preprint [84].

C. Saturation value of Cz0 (t)

Equipped with the knowledge of the fragmented
Hilbert space structure, we are now able to explain the
long-time value of the auto-correlation function observed
in Fig. 1(a). To this end, let us define Pi as the pro-
jection onto the connected subspaces Hi. These pro-
jectors form an orthogonal set of conserved quantities
(PiPj = δijPi), such that one can use Mazur’s inequal-
ity [85–87] to lower bound the infinite time average of the
charge auto-correlator as

lim
T→∞

1

T

∫ T

0

dt 〈Sz0 (t)Sz0 (0)〉 ≥
∑
i

[
tr
(
Zi
)]2

3N Di
≡ Cz0 (∞),

(4)

where Zi ≡ PiSz0Pi = PiSz0 is the projection of Sz0
onto Hi, and Di = tr (Pi) is the dimension of the sub-
space. The bound Cz0 (∞) is shown in Figure 1(a) for
N = 15 by the dashed horizontal line; we observe that
it is close to being tight, indicating that the main cause
of the lack of ergodicity is indeed the fragmentation of
the Hilbert space. We computed the estimated value for
Cz0 (∞) − 2/(3N) for a variety of different system sizes,
and found that the result appears to remain finite in the
thermodynamic limit, even increasing slightly with N for
the system sizes available in our numerics (blue dots in
Fig. 4).

Since the Hi’s are invariant and disjoint subspaces,
the weight of the operator Sz0 within a given sec-
tor, tr

(
Z2
i

)
, remains constant under time evolution.

Therefore, we introduce the operator weight WD ≡∑
Di=D

tr
(
Z2
i

)
/tr
[(
Sz0
)2]

as a function of the sector size
D for all invariant subspaces Hi. This defines a probabil-
ity distribution, shown in Fig. 3(b). We find a wide dis-
tribution with significant weight on small sectors. While
the number of frozen states scales as ∼ 2.2N , the size
of the largest sector in the entire Hilbert space scales
as ∼ 1.9N , both much smaller than the total dimension
3N . This suggests that sectors of all sizes have signifi-
cant contributions to the evolution of Sz0 (t), even in the
thermodynamic limit. We also confirm the same behav-
ior when considering only the largest symmetry sector
(q, p) = (0, 0) (see Appendices A and B); this emphasizes
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FIG. 4. Saturation value of the autocorrelator. Finite-
size study of the lower bound in Eq. (4) for the time-averaged
correlation function Cz0 (t) as a function of system size. We

have substracted the thermal value Czth ≡ 1
N

tr
[(
Sz0
)2]

/((2S+

1)N ) for a general spin S and a chain of lengthN . For the min-
imal spin-1 model H3 (blue dots) the lower bound is slightly
increasing with system size. On the other hand, it decays
to zero exponentially for the combined Hamiltonian H3 +H4

(blue squares). For comparison, we also show results for other
local spin S: the larger the on-site Hilbert space dimension,
the easier it is for the system to thermalize [88].

the relevance of the fragmentation within each (q, p)-
sector.

IV. COMBINED HAMILTONIAN H3 +H4

So far we have only considered the ‘minimal model’,
defined by the Hamiltonian H3 in Eq. (1). We will now
investigate to which extent the features found above are
robust against local perturbations that preserve the sym-
metries Q and P .

A. Thermalization for H3 +H4

In the following, we add the four-site terms defined in
Eq. (2) and consider the combined Hamiltonian H3 +H4.
We find that, while this Hamiltonian shares certain fea-
tures with H3—in particular, it has exponentially many
invariant subspaces—it nevertheless thermalizes at infi-
nite temperature. Indeed, the auto-correlation function
Cz0 (t) for the Hamiltonian H3 +H4 decays to zero at long
times, in contrast to the dynamics governed by H3 alone;
see Fig. 1 for a comparison. This is accompanied by
the spatially resolved correlation function, 〈Szn(t)Sz0 (0)〉,
becoming approximately homogeneous at long times, as
shown in Fig. 1(c). The remaining small peak is due to
finite size effects, as we show in App. B. Moreover, as
we discuss in App. C, for a random product state evolv-
ing under H3 +H4, the entanglement entropy approaches
its thermal value at long times, providing an additional
indication that the system thermalizes.

This qualitative difference suggests that the Hilbert

(a) (b)

FIG. 5. Comparison of the Hilbert space connectivity.
(a) Sector size distribution for H3 (red dots) and H3 + H4

(blue stars). (b) The operator weight WD distribution for Sz0
is qualitatively different, dominated by large sectors in the
latter case.

space structure uncovered in Sec. III B should also be
modified by adding H4 to the Hamiltonian. Figure 5(a)
compares the distribution of sector sizes D for H3 + H4

(blue stars) with the minimal Hamiltonian H3 (red dots).
While exponentially many invariant subspaces still exist,
their total number is drastically reduced, as many pre-
viously disconnected sectors are coupled to each other
by the perturbation H4. Thus the number of sectors of
small dimension D decreases and there are new larger
blocks appearing; in fact, the largest global symmetry
sector, q = p = 0, becomes almost (but not exactly) fully
connected, as we discuss in Sec. IV C. This effect is even
more apparent in the distribution of the operator weight
WD (defined in Sec. III C) for the operator Sz0 , which we
show in Fig. 5(b). Most of the weight is now concen-
trated around the largest sector, similarly to the case of
a single global U(1) symmetry. Thus, even though invari-
ant subspaces within symmetry sectors still exist, they do
not appear to be sufficiently relevant to make the system
non-ergodic. This is also reflected in the long-time value
of the auto-correlation function as predicted in Eq. (4):
plugging in the invariant subspaces of H3 + H4 we find
that Cz0 (∞) approaches the thermal value, 2/(3N), expo-
nentially in the thermodynamic limit, as shown in Fig. 4.

From these results we infer that including longer-range
interactions makes the system sufficiently ergodic to ther-
malize. One possible reason for this qualitative difference
is that the 4-site terms break the rule stated at the begin-
ning of Sec. III B 2, thus allowing for the desctruction of
blocks of charges that would be inert under the dynamics
of H3. A different path to break the non-ergodicity of H3

would be to increase the local Hilbert space dimension,
making the dynamics less constrained. Consequently, we
expect that for larger spin, even a three-site Hamilto-
nian of the form (1) would lead to thermalization. In-
deed, computing the lower bound Cz0 (∞) for the charge
autocorrelator using Eq. (4) for H3 acting on a spin-2
chain, we find that it decays to zero in the thermody-
namic limit, as shown in Fig. 4. Similarly, if we consider
spin-1/2 chains, the shortest range non-trivial model is
H4, which appears to be non-ergodic, while adding 5-site
interactions restores ergodicity.
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B. Constructing frozen states

While the combined Hamiltonian H3 + H4 appears
thermalizing at infinite temperature, it nonetheless vio-
lates the strong version of the Eigenstate Thermalization
Hypothesis [10–13]. In particular, certain frozen states
continue to exist not only for H3 + H4, but even in the
presence of longer-range local interactions. In fact, as
we now prove, for a spin-1 chain that conserves charge
and dipole, and involves only local terms with range at
most `, there exist at least 2 · 5N/` frozen states. While
for ` = 3 this lower bound is not as tight as the Paul-
ing estimate discussed in Sec.III B 1, it provides useful
insight into generic longer-range Hamiltonians and can
be generalized to any spin representation.

We begin our construction by considering the configu-
ration shown in Fig. 6(a), with a center site surrounded
by a block of ` − 1 (+)-fractons on one side and ` − 1
(−)-fractons on the other. We now prove that this con-
figuration is an eigenstate of any dipole-conserving term
with range at most `, where without loss of generality
we can measure the dipole moment relative to the center
site. It is sufficient to consider off-diagonal terms (in the
z basis), consisting of spin raising and lowering opera-
tors. Due to the way we constructed the state, the only
such terms that do not annihilate it are those that have
only S− on one side and S+ on the other. However, any
such term would lead to a change in the dipole moment
and is thus prohibited. Terms only acting on the center
site do not change P but they are also excluded due to
charge-conservation. We conclude that this configuration
is frozen, independently of the state of the center spin,
as promised.

Next, we consider a similar configuration, but one
where the center spin is surrounded by blocks of the same,
rather than opposite, charges, as shown in Fig. 6(b). Let
these blocks be made out of (+)-fractons. Then the only
off-diagonal operators that can act on them are powers of
S−, decreasing the total charge Q. One has to compen-
sate for these charges by adding additional charges on the
center site. Therefore the only allowed terms that could
change this configuration are of the form S−−n(S+

0 )2S−n ,
and only when the central spin is occupied by a (−)-
fracton. When it is either 0 or +, the state is frozen.

One can combine these two types of ‘frozen patches’ we
constructed above to cover the entire 1D chain, resulting
in a globally frozen state. These states are made up by
blocks of + or − charges, with a single site between any
two consecutive blocks, as shown in Fig. 6(c). As we
showed above, these sites host flippable spins: the ones
separating blocks of equal charge can take two values
(e.g + or 0 between blocks of + charge), while those that
separate blocks of opposite charge can be in any of the
3 possible spin states. This construction then results in
exponentially many frozen states, coming from both the
possible arrangements of ± blocks and from flipping the
spins between blocks within a given arrangement.

We can count the total number of frozen states result-

(a) (b)

(c)

FIG. 6. Constructing frozen states for arbitrary finite-
range interactions. For interactions of maximal range `,
one can create frozen patches of 2` − 1 sites with a flippable
spin surrounded by domains of (a) opposite or (b) the same
charges (shown here for ` = 4, relevant for H3 + H4). These
can then be combined to cover the entire chain, resulting in
exponentially many frozen states, such as the one in panel (c).

1.5 2.5 3.5 4.5 5.5
N/`

36

38

310

312

#
F

ro
ze

n
st

at
es

`=3: 1.74× 10.73N/`

`=4: 2.65× 9.94N/`

`=5: 3.54× 10.79N/`

FIG. 7. Scaling of the number of frozen states for
Hamiltonians with at most range ` terms. We consider
Hamiltonians with all possible combinations of charge and
dipole conserving terms, quartic in spin operators of range at
most `, for ` = 3, 4, 5. The number of frozen states grows
exponentially with system size N , with an exponent that de-
creases with `, but is larger than the analytical lower bound
2 · 5N/l.

ing from this construction iteratively, starting from the
left edge of the system (assuming open boundaries). We
cut the systems into blocks of ` sites, consisting of a wall
of `−1 positive/negative charges, followed by a flippable
spin. Let F±k denote the number of different such con-
figurations to the left of the k-th wall (but before the
flippable spin), ending in a (±)-block. Then the consid-
erations outlined above lead to the following recursion
formula:(

F+
k+1

F−k+1

)
=

(
2 3
3 2

)(
F+
k

F−k

)
=

(
2 3
3 2

)k (
1
1

)
= 5k

(
1
1

)
,

(5)
where we have used that F+

1 = F−1 = 1. Since each step
k → k + 1 corresponds to a shift by ` sites, we conclude
that the number of frozen states we constructed scales as
2·5N/`. This is only a lower bound on the total number of
frozen states, which can include other configurations not
captured by this construction. In particular one could
systematically improve the bound by allowing blocks to
be separated by more then one site.
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We compare the lower bound ∼ 5N/` to the numerical
results on the number of frozen states for Hamiltonians
with interactions of range at most ` = 3, 4, 5 in Fig. 7,
where we extract the asymptotic scaling. The compari-
son to numerical data in Fig. 7 shows that the scaling is
relatively close to ∼ 10N/` [89]: 10.73N/3 (` = 3), 9.94N/4

(` = 4) and 10.79N/5 (` = 5). Thus, the lower bound is
not tight but it proves the exponential scaling of frozen
states.

We conclude this section with some comments about
the construction we presented. First, while above we did
not distinguish between different overall (q, p)-sectors,
one could similarly construct frozen states with a given
q and p. For example one can apply the construction
on only the left half of the chain and for each state re-
peat the same configuration on the right half to obtain
a state with p = 0. Second, the bound can be easily ex-
tended to chains with local spin S > 1. For example one
can consider blocks that have maximal positive/negative
charge; repeating the same arguments then gives a scal-
ing [90] (2S + 3)N/`. Last, we note that in the limit
` → ∞ the lower bound tends to one, consistent with
the fact that for all possible charge and dipole conserv-
ing infinite-range interactions every (q, p) sector becomes
completely connected.

C. Strong vs. weak fragmentation

As the previous section shows, the combination of
dipole conservation and strictly local interactions is suffi-
cient to lead to an emergence of exponentially many dy-
namically disconnected sectors in the many-body Hilbert
space, even after fixing q and p. While we only showed
this rigorously for the case of one-dimensional sectors,
we find numerically that others with larger dimension
also exist (see Fig 5). While both H3 and H3 +H4 share
this feature, their behavior with respect to thermalization
appears to be quite different, as we already observed in
Fig 1. This motivates us to distinguish two cases, dubbed
weak and strong fragmentation, which violate strong and
weak ETH, respectively.

Let us first make precise what we mean by violation
of ETH. In defining ETH we consider expectation values
of few-body observables for all eigentates of the Hamil-
tonian within a fixed global (q, p) symmetry sector (we
do not consider off-diagonal matrix elements here). By
strong ETH we then mean the statement that the expec-
tation values are the same for all eigenstates at the same
energy density in the thermodynamic limit. Weak ETH,
on the other hand, means that this statement only holds
up to a small number of outlying states, where ‘small’
means here ‘measure zero in the thermodynamic limit’.
Here we take the point of view of fixing only local sym-
metries, as non-local ones usually do not lead to distinct
distributions for the diagonal matrix elements [91–93].
In our case, this means fixing Q and P , but not the
additional symmetries that correspond to the invariant

(a) (b)

(c)

FIG. 8. Ergodicity breaking due to strong and weak
fragmentation. Expectation value of the local operator
(Sz0 )2 for eigenstates within the (q, p) = (0, 0) sector as a
function of energy for different system sizes. (a) Strong frag-
mentation: for the minimal Hamiltonian H3, the width of the
distribution does not decrease with N , violating the Eigen-
state Thermalization Hypothesis. (b) Weak fragmentation:
for H3 +H4 most eigenstates appear thermal, and the bulk of
the distribution narrows withN , but outlyers remain, showing
that the system obeys weak, but not strong ETH. (c) Half-
chain entanglement entropy of the eigenstates for H3 (red
dots) and H3 +H4 (blue stars), for N = 13, leads to the same
conclusion. The black dashed line shows the entanglement
entropy of a random state in the (q, p) = (0, 0) sector.

subspaces, since we expect these to be non-local [94].

Our construction in the previous section then proves
that any dipole-conserving, strictly local Hamiltonian has
weak fragmentation in the above sense, i.e., non-thermal
eigenstates are present in the middle of the spectrum.
Apart from the aforementioned frozen states, these also
include other low entanglement eigenstates, stemming
from small invariant subspaces, analogous to the ones
discussed in Sec. III B 2. Generically, however, their ratio
compared to thermal ones is vanishingly small within any
energy shell in the thermodynamic limit; this is the case
of H3 +H4 as we argue below. Thus the weak version of
ETH [31–33] is still obeyed, and the system thermalizes
for typical initial states, provided they have narrow en-
ergy distributions. On the other hand, we argue that the
Hamiltonian H3, discussed in Sec. III, has strong frag-
mentation in the sense that at least a finite fraction of
the eigenstates is non-thermal, leading to the manifestly
non-thermalizing behavior we observed.

The difference is illustrated in Figs. 8(a,b), which
shows the expectation value of a simple observable
((Sz0 )2, where 0 is the central spin) for all energy eigen-
states within the q = p = 0 symmetry sector, for H3 and
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FIG. 9. Diagnosing strong and weak fragmentation.
Ratio between the dimension of the largest invariant subspace
Hi within the (0, 0) symmetry sector, and the total dimension
of the (0, 0) sector D(0,0). For H3 (red dots), this ratio van-
ishes exponentially fast with system size while it approaches
one for H3 +H4 (blue stars).

H3 + H4. For the combined Hamiltonian, H3 + H4, the
majority of eigenstates, which all belong to the same in-
variant subspace, behave as predicted by ETH: 〈(Sz0 )2〉
takes similar values for states within a narrow energy
shell, with the width of its distribution decreasing with
system size. Nevertheless, we also observe outlying eigen-
states, stemming from small invariant subspaces, that
do not approach this line, violating strong ETH. The
minimal Hamiltonian, H3, on the other hand, violates
even the weak version of ETH: the distribution of 〈(Sz0 )2〉
does not become narrower with increasing N , as shown
in Fig. 8(a). This is in contradiction with ETH, which
predicts a vanishing width in the thermodynamic limit.
Similar behavior occurs in the half-chain entanglement
entropy of the eigenstates, shown in Fig. 8(c): the non-
thermalizing nature of H3 is reflected by the fact that
the entropies of its eigenstates do not fall on a line when
plotted as a function of the energy, instead being dis-
tributed over values much smaller than what is predicted
at infinite temperature, as realized by a random state in
the (0, 0) sector.

The above discussion suggest that the difference be-
tween strong and weak fragmentation can be diagnosed
by considering the sizes of the connected subspaces, in
comparison with the size of the global (q, p) symmetry
sector they belong to. In the strongly fragmented case of
H3 studied above, for a typical (q, p) symmetry sector,
the dimension of the largest connected subspace is expo-
nentially smaller than the dimension of the full symme-
try sector, i.e., max[Di

(q,p)]/D(q,p) ∝ exp(−αN) for some

α > 0. In Fig. 9 we verify that this is indeed the case
for the largest symmetry sector (0, 0) of H3. We propose
that this decay indicates strong fragmentation, naturally
leading to the absence of thermalization for physical ob-
servables such as the auto-correlation function considered
above.

In the weakly fragmented case, the symmetry sec-
tors can still split into many subspaces. However, the

largest of these spans almost the entire (q, p)-sector:
max[Di

(q,p)] ≈ D(q,p), with the ratio approaching 1 in

the thermodynamic limit. Figure 9 shows that this is
the case for H3 +H4. Consequently, the vast majority of
eigenstates within any energy shell in a given (q, p) sym-
metry sector belong to the same large invariant subspace,
and look thermal as a consequence. Thus, while weakly
fragmented systems violate strong ETH—due to outly-
ing non-thermal eigenstates—they nevertheless thermal-
ize for typical (but not all) initial states. This weak frag-
mentation is reminiscent to what has been observed in
other models in the context of many-body quantum scars:
although the majority of the eigenstates obey ETH, non-
thermal eigenstates exist even in the bulk of the spec-
trum [33–35, 41, 42]. However, while the number of these
‘scarred’ states is usually O(N), in our case we find expo-
nentially many such states. Note that the non-thermal
eigenstates belonging to low-dimensional invariant sec-
tors in our system have finite overlap with simple product
states which can potentially be prepared in experimental
settings. This implies that a lack of thermalization up
to infinite times could be observed, even in the weakly
fragmented case, for appropriately chosen initial states.

In the above we observed that the ratio
max[Di

(q,p)]/D(q,p) either decays (exponentially) to

zero or approaches unity. It is an interesting and open
question, whether systems with intermediate behavior—
with either slower than exponential decay or convergence
to a finite fraction—can exist, and whether they exhibit
strong or weak fragmentation.

V. COMPARISON TO RANDOM UNITARY
CIRCUITS

We now argue that our findings are not specific to the
Hamiltonians we considered so far, and generalize to ar-
bitrary systems with the same global symmetries and a
fixed range of interactions. In particular, we compare
with random unitary circuits of the form originally intro-
duced in Ref. 71. These define a discrete time evolution,
the building blocks of which are unitary gates acting on
` sites, each of which is required to be block diagonal
in Q and P , but is otherwise chosen randomly (i.e. ev-
ery block is independently Haar random). In Ref. 71
it was argued that such circuits always lead to localized
behavior. Here we argue that this is in fact only the case
for gates with ` = 3, where the circuit exhibits exactly
the same Hilbert space structure as the Hamiltonian H3

above, and is therefore indeed similarly localized. When
introducing larger gates of size ` = 4, we find that the
system thermalizes, also in complete agreement with our
results on the Hamiltonian H3 +H4.

The two circuit geometries, with gates of size ` = 3 and
4, are shown in Fig. 10. In both cases we compute the
connectivity of the Hilbert space. Instead of the Hamil-
tonian, we consider the unitary operator defined by the
first ` layers of the circuit. This is a matrix with random
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FIG. 10. Thermalization in charge and dipole conserv-
ing random circuit models. The two versions of the cir-
cuit, with (a) three-site (b) four-site gates resemble the Hamil-
tonians H3 and H3 + H4 respectively. Consequently, (c) the
auto-correlator obtained for the three-site circuit has a finite
long-time value, while (d) in the four-site circuit it slowly
decays to zero. The curves correspond to the infinite temper-
ature correlator, averaged over 50 random state and circuit
realizations for N ≤ 13 and 20 realizations of N = 15.

entries, but its connected components are independent
of the particular realizations. We find numerically that
the connected components for ` = 3 (` = 4) coincide
exactly with those of the Hamiltonians H3 (H3 + H4),
shown previously in Fig. 5. This follows from the fact
that the allowed local transitions are the same in the
Hamiltonian and the random unitary circuit. The fact
that the invariant subspaces coincide supports the idea
that the additional invariant subspaces are a consequence
of dipole conservation and locality alone, and do not de-
pend on any additional structure that might be present
in the Hamiltonian case. Based on our previous analy-
sis, we therefore expect that the three-site circuit does
not thermalize, but the four-site circuit does. This is
confirmed by calculating the autocorrelator Cz0 (t), which
(after subtracting its thermal value) goes to a constant
in the former case, while it decays to zero in the latter, as
shown in Fig. 10. In App. E we also consider the spatial
spreading of an initial Szn operator and similarly find that
for ` = 4 the operator is delocalized at long times. We
therefore conclude that the localized behavior observed
in Ref. 71 is particular to the case of the circuit with
three-site gates, contrary to what is suggested there.

The fact that the Hilbert space fragmentation coin-
cides exactly between the random circuit and Hamilto-
nian cases also means that the conclusions we drew re-
garding non-thermal eigenstates in Sec. IV C also gener-
alize to time-periodic (Floquet) models built out of sim-
ilar local gates. In particular this implies the presence of
exponentially many frozen eigenstates for such models,
especially for the ` = 3 case where we predict that the
majority of eigenstates should be nonthermal.

VI. SUMMARY AND OUTLOOK

In this work, we studied the out-of-equilibrium dy-
namics of spin chains conserving a charge and its asso-
ciated dipole moment. For the minimal spin-1 Hamil-
tonian which is restricted to only three-site interactions,
we found non-ergodic behavior in the charge-charge auto-
correlation function. We explained this finding in terms
of a strong fragmentation of the Hilbert space into ex-
ponentially many disconnected sectors which all con-
tribute significantly to the dynamics even at infinite tem-
perature. We found that a weaker form of fragmen-
tation survives for more general, longer-range Hamilto-
nians, and while it is no longer sufficient to make the
infinite-temperature dynamics non-ergodic, it neverthe-
less results in exponentially many non-thermal eigen-
states. Furthermore, we showed numerically that the
fragmentation of the Hilbert space exactly matches that
of random circuit dynamics with the same range of inter-
actions, giving rise to similar dynamical behavior.

The observed fragmentation lies in-between the known
cases of systems with a few global symmetries and that of
integrable or many-body localized systems. The former
have at most polynomially many symmetry sectors —
most of which are exponentially large—while the latter
have ∼ N independent local conserved quantities. In
our case, however, sectors of all sizes co-exist and in the
case of strong fragmentation they all are relevant for the
dynamics, even at infinite temperature. Understanding
how these different sector can be consistently labeled and
what the corresponding conserved operators look like is
an interesting open problem.

Another interesting problem for future work is to in-
vestigate the equilibrium properties and dynamics of the
system at finite or zero temperature, both within the
whole Hilbert space and within individual subspaces, as
well as to clarify the requirements for strong and weak
fragmentation. It would be also worth investigating the
relationship between the phenomenon of Hilbert space
fragmentation and the concept of reducibility in classi-
cal constrained models [96]. Moreover, the extension of
the current analysis to higher spatial dimensions seems
promising, where disconnected sectors also appear but
different roads to thermalization can be present. It is
also worth exploring further the connections to: many-
body localization [22, 97], quantum scars [41, 98], gauged
formulations of the considered systems [55, 99] as well
as Stark localization [29, 30]. The latter also provides
a potential experimental platform for realizing dipole-
conserving Hamiltonians of the type studied here in the
limit of strong electric fields [100], which perturbatively
lead to the kind of terms we have considered above. Fi-
nally, it would be interesting to search for connections
between the models discussed in this work and type I
fracton models [48, 50], as well as for the possible connec-
tion between the discussed fragmentation of the Hilbert
space and the emergence of superselection rules in the
cubic code model [101].
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Appendix A: Symmetries of the ‘minimal’ Hamiltonian H3

Here we discuss some additional symmetries possessed by the ’minimal model’ represented by the Hamiltonian H3

in Eq. (1). One of these is the sublattice parity symmetry Πz
odd. However, one can easily prove that this quantity is

fixed by the dipole moment as

Πz
odd = exp

(
iπ
∑
n odd

Szn
)

= exp
(
iπ
∑
n

nSzn
)

= exp
(
iπP

)
, (A1)

where in the second step we have used that for spin-1, a 2π rotation is equal to the identity. From this it is clear that the
total parity Πz = exp

(
iπ
∑
n S

z
n

)
is obtained as Πz = Πz

oddΠz
even and is related to the total charge as Πz = exp

(
iπQ

)
.

In general, the terms in H3 are also invariant under the parity transformations given by Πx = exp
(
iπ
∑
n S

x
n

)
and

Πy = exp
(
iπ
∑
n S

y
n

)
, which map

S+
n1
S−n2

S−n3
S+
n4

Πx,Πy

←→ S−n1
S+
n2
S+
n3
S−n4

(A2)

for all n1, n2, n3, n4. Note that Πx and Πy do not commute with Q or P .

Moreover, as stated in the main text, there exists an operator C =
∏
n e

iπ
(
Sz
4n+Sz

4n+1

)
which anti-commutes with H3.

Since C commutes with Q and P , the spectrum of H3 is symmetric around zero in every (q, p)-sector. However, when
additional terms diagonal in the Sz basis are considered, which by construction do not change the fragmentation of
the Hilbert space as we discussed in the main text, C does not anti-commute anymore with the resulting Hamiltonian.

There is also at least one additional anti-commuting operator C̃ =
∏
n e

iπ
(
Sz
4n+2+Sz

4n+3

)
but since CC̃ = Πz, they are

not independent. Note that since C commutes rather than anti-commutes with H4, the spectrum of H3 + H4 is no
longer symmetric as can be seen e.g., in Fig. 8. Nevertheless, there also exists a separate anti-commuting operator
for H4(2) taking the form C4 =

∏
n e

πSz
4n , which does not anti-commute with H3.

In Fig. 11(a) we show the density of states, ρ(E), of H3 for a chain of length N = 13, which has a divergent delta
peak at zero energy. This peak contains all the frozen states described in the main text, among other zero energy
eigenstates that arise as a consequence of the aforementioned anti-commuting symmetry. One could remove the peak
at zero energy by adding e.g. a finite mass term of the form m

∑
n(Szn)2 to H3, which breaks the anti-commuting

symmetry. This term also has the effect of shifting the energy of the frozen states to finite values and distributing
them throughout the spectrum.

In Fig. 11(b) we show the size of the symmetry sectors with different global quantum numbers q and p. Note that
this distribution is independent of the specific Hamiltonian under study. Each curve corresponds to a fixed value of
the charge quantum number q. The dimension D(q,p) decreases with increasing absolute value of the charge. The
distributions for +q and −q coincide due to time reversal invariance, the way we have chosen the reference site n0, and
labeling the sites in the chain. A different labeling of sites, would simply shift the mean value of both distributions
symmetrically with respect p = 0. We also observe that the distribution attains a maximum at the (0, 0)-sector, as
claimed in the main text. In addition, we obtain symmetric distributions because P changes sign under inversion,
while Q is invariant.
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Finally, we show the sector size and the operator weight distributions with WD ≡∑
Di=D

tr
(
Z2
i

)
/
(∑

D

∑
Di=D

tr
(
Z2
i

))
for invariant subspaces within the largest (q, p)-sector, q = p = 0. Fig. 12(a)

shows qualitatively the same sector size distribution as in Fig. 2(c) in the full Hilbert space. Fig. 12(b) also reflects
the main properties of the operator weight distribution, featuring a wide distribution with significant weight on small
sectors.

Appendix B: Finite-size scaling of the autocorrelator

In this section we present in more detail the finite size scaling of the auto-correlation function and its lower bound.

First, we discuss the scaling of the auto-correlation function 〈Sz0 (t)Sz0 〉 at infinite temperature in the full Hilbert
space in Fig. 13 for both the minimal model H3 in Eq. (1) and the combined Hamiltonian H3 +H4. On the one hand,
the minimal model realizes a finite saturation value at long times which slightly grows with system size as can be seen
in Fig. 13(a). On the other hand, when the combined Hamiltonian H3 +H4 is considered, the auto-correlation decays
to zero with system size. This agrees with the discussion in the main text, where it was argued that for longer range
Hamiltonians, the system thermalizes and the correlation decays to zero at long times in the thermodynamic limit.

Moreover, as we discussed in the main text, not only the auto-correlation function in the full Hilbert space shows
a non-thermal (thermal) behavior for H3 (H3 + H4). We can also realize this behavior within a specific restricted
symmetry sector. In Figs. 14(a) we show the behavior of the auto-correlation function 〈Sz0 (t)Sz0 〉(0,0) in the largest

(q, p)-symmetry sector, q = p = 0, and size N = 15 showing the same qualitative behavior: a finite saturation value
at long times for H3 (panel (a)) and thermalization for the combined Hamiltonian H3 + H4 (panel (b)). Note that
since charge is conserved and we evaluate the correlation within the q = 0 sector,

∑
n 〈Szn(t)Sz0 (0)〉 = 0 at all times

and thus the surface under the peak must add up to zero.

Moreover, in Fig. 15, we show the persistence of the non-thermalizing behavior for H3 at longer times t = 1010 for
smaller system size N = 13 and within the (0, 0)-sector. The space resolved correlation function is also shown in the
inset showing the absence of thermalization even at long time scales.

In Fig. 16(a) we show the scaling of the lower bound Cz0 (∞) in Eq. (4) with system size N restricted to the (0, 0)
symmetry sector of H3. In this case the lower bound takes the form

lim
T→∞

1

T

∫ T

0

dt 〈Sz0 (t)Sz0 (0)〉(0,0) ≥
1

D(0,0)

∑
Hi⊂H(q,p)

1

Di

[
tr
(
Zi
)]2

. (B1)

We observe that the value increases with N and realize an even-odd dependence on N decreasing with system size.
In addition, Figs. 16(b-c) show, respectively, how the number of frozen states and the size of the largest invariant
subspace within the (0, 0) symmetry sector grow with system size. Since the largest sector does not scale with the
size of the entire Hilbert space, the lower dimensional sectors become thermodynamically important. Compare for
example with a spin 1/2 chain with charge conservation only. The dimension of the full Hilbert space is 2N and the

largest (zero charge) subspace scales as
√

1/N · 2N ; hence, the exponents are the same up to logarithmic corrections.

(a) (b)

FIG. 11. (a) Density of states (DOS) for the Hamiltonian H3 in Eq. (1) for system size N = 13. (b) Distribution of dimensions
D(q,p) for the H(q,p) invariant subspaces. Each curve corresponds to a subspace with fixed charge q.
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(a) (b)

FIG. 12. (a) Distribution of sector sizes D with Hi ⊂ H(0,0) for the Hamiltonian H3. (b) operator weight distribution WD.
Both plots are similar to the full distributions shown in the main text. The vertical dashed lines in (b) indicates the average
sector size, which grows exponentially in system size, but is nevertheless exponentially smaller than the largest sector.

(a) (b)

FIG. 13. Finite size scaling for the auto-correlation function 〈Sz0 (t)Sz0 〉 at infinite temperature in the full Hilbert space after
substracting the thermal value. Panel (a) shows a finite value for the auto-correlation under the evolution of H3 in Eq. (1).
The dashed lines show the lower bound in Eq. (B1). (b) The auto-correlation function decays to zero with system size once
the longer range-interaction H4 in Eq. (2) is added to H3.

(a)

(b) (c)

FIG. 14. (a) Auto-correlation function (upper panel) 〈Sz0 (t)Sz0 〉(0,0) in the symmetry sector q = p = 0 at infinite temperature

for H3 (red curve) and H3 +H4 (blue curve) for N = 15. Spatially resolved correlation functions for (b) H3 and (c)H3 +H4.
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FIG. 15. Evolution of the auto-correlation function 〈Sz0 (t)Sz0 〉(0,0) for the Hamiltonian H3 and system size N = 13, where

longer time scales t ∼ 1010 can be numerically reached. We observe the same qualitative behavior as in Fig. 1.

(a) (b) (c)

FIG. 16. Scaling within the q = p = 0 sector for Hamiltonian H3. (a) Scaling of the lower bound

limT→∞ 1/T
∫ T
0
dt 〈Sz0 (t)Sz0 (0)〉(0,0) with system size. (b) Scaling of the number of frozen states. (c) Scaling of the largest

sector dimension (blue dots) in comparison to the dimension of the (0, 0) sector (green line).

Appendix C: Entanglement growth from random product states

In this appendix we complement our results on auto-correlations with a different measure of thermalization: en-
tanglement growth from a (random) product state. By choosing the initial state Haar randomly on each site and
averaging, we ensure that the dynamics explores all (q, p) symmetry sectors. For an ergodic system, the long-time
state is then expected to resemble a global random state in the entire Hilbert space. In particular, the entangle-
ment between two halves of a bi-partition is expected to be given by the Page formula, which in our case (maximal
bi-partition of a spin-1 chain with odd lengths) reads [102] SPage = N−1

2 log 3− 1
6 .

We evaluate the time evolution starting from the aforementioned random product states exactly, for both the
minimal Hamiltonian H3 and the combined Hamiltonian H3 + H4. In the former case, shown in Fig. 17(a), we find
that while the entanglement quickly saturates to a volume law, the associated entropy density is smaller than the
expected Page value, indicating a non-thermal state. This is consistent with our results on auto-correlation functions
in Fig. 1, as well the entanglement of eigenstates in Fig. 8, all consistent with non-ergodic behavior. The entanglement
growth for H3 + H4 is shown in 17(b) where we observe that the entanglement saturates to a value close to SPage.
There is still a constant offset, which we associate to the influence of the remaining non-thermal eigenstates, but this
does not affect the entropy density in the thermodynamic limit.
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(a) (b) (c)

FIG. 17. Half chain entanglement entropy (EE) growth for an initial random product state for different system sizes. The
dashed line signals the Page value [102]. Panel (a) shows the behavior of the EE for the minimal model H3. The entanglement
reaches a size dependent saturation value below the Page value. This can be understood from the exponential fragmentation
of the Hilbert space. However, when the combined Hamiltonian H3 +H4 is considered in panel (b), the EE almost reaches the
Page value. We associate the offset between them to the existence of still exponentially many invariant subspaces. (c) Scaling
of the time-averaged saturation value for EE reached at long times. While for H3 the slope is different from that of the Page
value, signalling a sub-thermal entropy density in the steady state, the off-set for the combined Hamiltonian appears to be
constant.

Appendix D: Mapping to the PXP model

In this appendix we explain the relation between the dipole-conserving Hamiltonian H3 introduced in Eq. (1) and
the PXP model [73], that appears in the context of quantum many-body scars [41–43, 103]. Such relation has been
already obtained in Ref. [84] in the spin-1/2 version of the models we study (see e.g., Fig. 4) in the context of fractional
quantum Hall. The PXP model describes a chain of interacting Rydberg atoms [46], which in the limit of strong
nearest-neighbor interactions is effectively described by the spin-1/2 Hamiltonian

HPXP =

L∑
n=1

Pn−1σ
x
nPn+1, (D1)

where the projectors Pn ≡ (1 − σzn)/2, ensure that not two adjacent Rydberg atoms become simultaneously excited
into the |↑〉 state, a phenomenon known as Rydberg blockade. Restricted to the lowest energy subspace with no
adjacent excited states, the dimension of the constrained Hilbert space can be shown to be [42] dL = FL+2 for
open (OBC) —in the presence of additional boundary terms [104]— and dL = FL−1 + FL+1 for periodic boundary
conditions (PBC), where Fn is the nth Fibonacci number. Note that in particular, this subspace contains the Néel
states |Z2〉 = |↓↑↓↑ · · ·〉 and |Z′2〉 = |↑↓↑↓ · · ·〉, whose atypical real-time dynamics has been experimentally realized [46]
and has been identified as a probe of the existence of quantum many-body scars [42].

In the following we show that the dynamics of certain connected subspaces Hi discussed in the main text, are
governed by the PXP Hamiltonian in Eq. (D1) and identify the analogs to the Néel states in the fractonic language.
Let us consider states of the form

|F2〉 =

∣∣∣∣∣. . . −+− −
2(k−1)

−+−
2k
−

2(k+1)

−+− − −+− . . .

〉
, (D2)

with a |+〉 state on every fourth site separated by three |−〉’s. In the following we fix the length of the chain to be
a multiple of four, such that we contain an integer number of unit cells. For OBC the dipole moment is given by
p(n+) = L/2(1−L/2 +n+), where n+ is the location of the first |+〉 state starting from the left boundary. Thus, the
location n+ labels different symmetry sectors containing the same spin pattern. However, due to the periodicity of the
configuration, there only exist four different dipole moments p(n+) containing such configuration. When considering
PBC, the dipole is defined modulo L.

Recalling that every local term hn in the Hamiltonian H3 =
∑
n hn takes the form

hn ≡ S+
n−1

(
S−n
)2
S+
n+1 + H.c., (D3)

it is clear that the only non-trivial local actions of H3 on the state |F2〉, are those contained within the blocks shown
in Eq. (D2). After applying two local terms hn centered around the location of |+〉 states at sites n = 2(k ± 1), |F2〉
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becomes

|F2〉 −→ h2(k−1)h2(k+1) |F2〉 =

∣∣∣∣∣. . . −+− − 0
2(k−1)

−
2k

0 − 0
2(k+1)

− 0 − −+− . . .

〉
. (D4)

Now the action on the intermediate site 2k becomes non-trivial

h2(k−1)h2(k+1) |F2〉 −→ h2kh2(k−1)h2(k+1) |F2〉 =

∣∣∣∣∣. . . −+− − 0
2(k−1)

−
2k

−+−
2(k+1)

− 0 − −+− . . .

〉
. (D5)

One can then realize that only terms h2k centered around even sites generate non-trivial dynamics conditioned to
the states on odd near sites, such that the only allowed local transition is |−+−〉 ↔ |0− 0〉. Then, the restriction of
the Hamiltonian H3 to subspaces containing configurations of the form given by Eq. (D2) becomes

H3|PXP
=

L/2∑
k=1

h2k = 4

L/2∑
k=1

|−+2k −〉 〈0 −2k 0|+ H.c.. (D6)

Note also that there are never two |+〉 states in adjacent even sites, i.e., the local configuration |+〉2k |+〉2(k+1) is not

generated under the evolution of H3. This effectively implements the Rydberg blockade as imposed by the projectors
in Eq. (D1). With these observations in mind, we can construct a reversible map relating local spin-1 configurations
centered around even sites {2k− 1, 2k, 2k+ 1}, to spin-1/2 configurations on even sites {2(k− 1), 2k, 2(k+ 1)} in the
PXP model via

|0− 0〉 ↔ |↓↓↓〉 , |−+−〉 ↔ |↓↑↓〉 , |0−−〉 ↔ |↓↓↑〉 , (D7)

|− − 0〉 ↔ |↑↓↓〉 , |− − −〉 ↔ |↑↓↑〉 , (D8)

such that Eq. (D6) becomes

H3|PXP
= 4

L/2∑
k=1

|↓↑↓〉 〈↓↓↓|+H.c. = 4

L/2∑
k=1

|↓〉 〈↓|2(k−1) ⊗ |↑〉 〈↓|2k ⊗ |↓〉 〈↓|2(k+1) +H.c. = 4HPXP, (D9)

i.e., the restriction of H3 into this family of connected subspaces becomes equivalent to a PXP model on a chain
of length L/2 up to a factor of 4. Thus, there exist eight different symmetry sectors (the other four subspaces are
obtained applying the Πx parity symmetry (see App. A) to the configuration |F2〉), whose evolution is governed by the
PXP Hamiltonian. This explicitly shows that quantum many-body scars appear in the dipole conserving Hamiltonian
H3, similarly to Ref. [84].

Appendix E: Operator spreading of Sz0 (t)

Here we consider another measure of localization, that contains complementary information about the Heisenberg
picture evolution of the charge density operator Sz0 (t) compared to its auto-correlation function. In particular we look
at how Sz0 spreads out in the space of all possible operators, becoming a complicated superposition of many operators,
and how its spatial support grows in time.

In order to do this, we first need to introduce a local basis in the space of operators acting on a single site of
the spin chain. For the spin-1 models we consider, such a basis constists of 9 linearly independent operators that
span the entire space of on-site operators. A possible choice is given by the 8 Gell-Mann matrices, together with the
identity 11. Let us denote these as λa for a = 0, . . . , 8, where λ0 ≡ 11. A basis of operators on the entire chain is then

given by products of such local basis elements of the form λ~a ≡ ⊗N/2
n=−N/2 λ

an
n , labeled by a list of N indices {an}.

These operator string form an orthonormal basis in the Hilbert space of operators with respect to the Frobenius inner
product 〈A,B〉 ≡ tr(A†B)/3L where A and B are two arbitrary operators.

Given such a basis, one can always expand the time evolved operator as

Sz0 (t) =
∑
~a

c~a(t)λ~a. (E1)

The coefficients c~a(t) characterize how Sz0 (t) spreads out in the space of all possible operators. In particular, focusing
on spatial spreading, it is useful to classify the basis strings λ~a according to their right endpoints (assuming open
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FIG. 18. Operator spreading of Sz0 (t) for random circuits with gate sizes l = 3 and 4. Panels (a) and (d) show the circuit
geometries, slightly modified from the ones in the main text in order to ease numerical calculations. (b) and (e) show the profile
of right endpoint weights ρR(n, t) at different times for a 10-site chain, for l = 3 and l = 4 respectively. Both have a peak near
the origin, but in the former case it is much larger and stops decaying after a few time steps, while in the latter case it keeps
decaying to longer times. Finite size flow of the size of the peaks as a function of time, shown in (c) and (f) indicates that
while for ` = 3 the system saturates to a finite value, this is not the case for ` = 4, where the long-time value scales to zero for
large system sizes.

boundary conditions), i.e., the rightmost site n such that λan 6= 11 but λam>n = 11. Denoting this site by RHS(~a) we
can define the right endpoint density of Sz0 at time t as [105–107]

ρR(n, t) ≡
∑

RHS(~a)=n

|c~a(t)|2. (E2)

At time t = 0 this is a delta function at the initial position of the operator, ρR(n, 0) = δn0. During time evolution, as
the support of Sz0 (t) increases, ρR(n, t) moves to the right, ballistically for generic clean systems. At the same time,
its value near the origin decays to zero, exponentially when symmetries are not present [106], and as a power law
when the operator is a conserved density [108, 109]. A possible alternative measure of localized behavior is therfore
to look at the spreading of the right endpoint density and look for a finite weight remaining near the origin at infinite
times, even in the thermodynamic limit.

We first consider the evolution of ρR(t) in random circuits, first with 3- and then with 4-site gates. In order to
evaluate ρR(n, t) we represent Sz0 (t) as a matrix product operator [110] (MPO) and apply the random gates to that to
evolve it in time. In order to simplify the calculations, we consider slightly modified circuit geometries, which allow us
to use the well known time-evolving block decimation (TEBD) algorithm, after blocking pairs of sites together [111].

Our numerics only allow us to access small systems of size N = 6, 8, 10. To compute the spreading of ρR(n, t), we
place an operator Sz on the third site from the left end of the system and calculate ρR(n, t) at different positions and
times. For a circuit made out of 3-site gates, we find a persistent peak near the original position, whose size decays
only slightly with system size (Fig. 18(a)-(c)). For the circuit with gate-size l = 4 on the other hand, we observe a
much smaller peak, which keeps decreasing until finite size effects kick in, similar to the behavior observed for the
autocorrelator in the main text, and consistent with the perdiction that in the thermodynamic limit the peak would
eventually disappear (Fig. 18(d)-(f)). We also observe a larger peak at the rightmost site, where most of the operator
weight accumulates at long times.

The same difference in behavior between 3-site and 4-site interactions is also present in the Hamiltonian case. For
H3 we find that the peak in ρR(0, t) is almost independent of system size, in agreement with the non-ergodic behavior
observed in the autocorrelator in the main text. This is shown in the left panel of Fig. 19. This behavior changes,
however, once we add 4-site terms to the Hamiltonian. In particular we consider the perturbation

H ′4 =−
∑
n∈2Z

[
S+
n S
−
n+1S

−
n+2S

+
n+3 +H.c.

]
. (E3)
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FIG. 19. Height of the peak in ρR of Sz0 (t) obtained for Hamiltonians H3 (left) and H3 +H ′4 (right).

This is the same as in Eq. (2), except that only terms with even n are present. This is done in order to simplify
numerical calculations (making the Hamiltonian nearest neighbor after blocking pairs of neighboring sites together).
We expect that if H3 + H ′4 does not exhibit a presistent peak in ρR, then neither should H3 + H4, therefore it is
enough to show its absence in the former case. This is indeed what we find as shown in the right panel of Fig. 19
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Vermersch, Christine Maier, Ben P. Lanyon, Peter
Zoller, Rainer Blatt, and Christian F. Roos, “Probing
entanglement entropy via randomized measurements,”
(2018), arXiv:1806.05747.

[7] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,

“From quantum chaos and eigenstate thermalization to
statistical mechanics and thermodynamics,” Advances
in Physics 65, 239–362 (2016), arXiv:1509.06411 [cond-
mat.stat-mech].

[8] Christian Gogolin and Jens Eisert, “Equilibration, ther-
malisation, and the emergence of statistical mechanics
in closed quantum systems,” Reports on Progress in
Physics 79, 056001 (2016).

[9] Florian Meinert, Michael Knap, Emil Kirilov, Katha-
rina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler,
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