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Abstract: Plant functional diversity (FD) is an important component of biodiversity. Evidence shows
that FD strongly determines ecosystem functioning and stability and also regulates various ecosystem
services that underpin human well-being. Given the importance of FD, it is critical to monitor its
variations in an explicit manner across space and time, a highly demanding task that cannot be resolved
solely by field data. Today, high hopes are placed on satellite-based observations to complement
field plot data. The promise is that multiscale monitoring of plant FD, ecosystem functioning,
and their services is now possible at global scales in near real-time. However, non-trivial scale
challenges remain to be overcome before plant ecology can capitalize on the latest advances in Earth
Observation (EO). Here, we articulate the existing scale challenges in linking field and satellite data
and further elaborated in detail how to address these challenges via the latest innovations in optical
and radar sensor technologies and image analysis algorithms. Addressing these challenges not only
requires novel remote sensing theories and algorithms but also urges more effective communication
between remote sensing scientists and field ecologists to foster mutual understanding of the existing
challenges. Only through a collaborative approach can we achieve the global plant functional diversity
monitoring goal.
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1. What Are the Opportunities for Measuring FD Offered by New Generation Satellites?

Today, a new generation of Earth observation (EO) satellites scans large parts of the Earth’s
surface at ever higher spatial, temporal, and spectral resolutions (Table 1). For instance, the recently
launched Sentinel-2 satellites allow us to monitor vegetation properties every 5–10 days globally at 10
m resolutions [1]. High-resolution hyperspectral satellites that resolve the full optical domain are also
being launched [2]. These optical reflectance measurements are complemented by new spaceborne
Synthetic Active Radar (SAR) and Light Detection and Ranging (LiDAR) instruments [3]. Both SAR
and LiDAR are active remote sensing technologies as they essentially measure their own echo and allow
inference of vegetation biomass and its three-dimensional structure with much improved accuracy,
spatial coverage, and resolution than previous sensors [4]. Furthermore, the free and open access of
historically collected Landsat imagery brings new opportunities for monitoring ecological changes
spanning time periods longer than four decades [5].
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Table 1. List of some new generation spaceborne Earth observation (EO) missions that can be used to infer plant traits and functional diversity.

Multi-/Hyperspectral Radar and LiDAR Thermal Infrared Fluorescence

Sentinel-2 DESIS PRISMA GF-5 Sentinel-1 PALSAR-2 Tandem-X GEDI ICESat-2 EcoSTRESS Landsat 8-TIRS TROPOMI FLEX

Space Agency ESA DLR ASI CNSA ESA JAXA DLR NASA NASA NASA NASA/USGS ESA ESA
Instrument

Type multispectral hyperspectral hyperspectral hyperspectral C-band SAR L-band SAR X-band SAR LiDAR LiDAR Thermal
infrared

Thermal
infrared

Chlorophyll
fluorescence

Chlorophyll
fluorescence

Launch June 2015 June 2018 March 2019 May 2018 April 2014 May 2014 June 2010 November
2018

September
2018 June 2018 February 2013 October 2017 2022

Bands 13 235 240 200 4 4 1 - - 6 2 - -
Resolution 10/20/60 m 30 m 30 m 30 m 10 m 25 m 20 m 25 m 100 m 70 m 100 m 7 km × 3.5 km 300 m

Retrievable
variables

Canopy traits,
vegetation
phenology

Canopy traits Canopy traits Canopy traits Forest cover Forest cover Forest height,
Forest cover

Forest
structure,

Forest
height,

biomass

Forest
structure,

Forest
height,

biomass

Canopy
temperature,

plant
water-use-

efficiency and
transpiration

rates

Canopy
temperature,

plant water-use-
efficiency and
transpiration

rates

Canopy
photosynthetic

traits and
primary

productivity

Canopy
photosynthetic

traits and
primary

productivity
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In short: the breadth of potential ecological applications based on these new generation EO
sensors is huge [6–8]. One key question is how to capitalize on these unprecedented amount of data
streams to truly understand changes in plant diversity, ecosystem functioning, and services at the
global scale in light of the global environmental change and biodiversity crisis [9]. The objective of this
technical note is to shed light on the emerging opportunities offered by the latest innovations in EO
technologies in bridging the existing scale challenges, so that plant traits and functional diversity data
collected by field ecologists can be better scaled across space and time using satellite measurements.

2. What Do Satellites Measure?

Measurements from space are the result of the complex physical interaction between
electromagnetic radiation and vegetated surfaces at different wavelengths—an “electromagnetic
signature” that encodes fundamental information on vegetation states, function, and structure.
Signatures from the visible to shortwave infrared spectral region are related to the biophysical and
biochemical properties of top canopy leaves [10,11]. In the thermal infrared region, instead, one can
infer canopy surface temperatures from which canopy transpiration rates can be further estimated [12].
In electromagnetic wavelengths longer than the thermal infrared region (microwave region), one can
detect even deeper structural properties and the vertically integrated water content [13]. Essentially,
one can assess plant traits, vegetation structure and functioning, and phenology at an aggregated pixel
level integrating signals from all individual plants and species present in the pixel [14]. Given that
remote sensing measurements resolve these properties in space and time, they are key for investigating
changes in plant diversity, ecosystem functioning, and services, globally and in near real time [15–19].

3. Do Satellites “See” the Same FD as Field Ecologists?

Plant functional diversity (hereafter referred to as FD), often defined as the within-community
range and dispersion of those plant traits that influence ecosystem functioning or how plants respond
to environmental factors, is an important component of plant diversity [20,21]. Alternatively, FD
can be defined as the number of functionally disparate species within a population (e.g., different
feeding mechanisms and mortality rate), also known as functional richness [22]. Evidence shows
that FD strongly determines ecosystem functioning and stability [20,22–26] and also regulates various
ecosystem services (e.g., fodder production and maintenance of soil fertility) that underpin human
well-being [27]. Recently, efforts have been made to derive FD from retrievals of plant physiological
traits (e.g., chlorophyll and water content) and structural traits (e.g., plant height, plant area index) from
airborne hyperspectral and LiDAR instruments [28,29]. High-spatial resolution satellite measurements
of spectral reflectance across the visible to near infrared spectrum have also been used to directly
upscale plant FD from a plot to a regional scale via statistical modelling [30]. However, common
practices for in-situ observation in plant ecology as well as the definition of traits and FD do not really
match what we can retrieve today from remote sensing observations. We argue that there are several
potential issues and scale mismatches that call for novel field measurement strategies and remote
sensing algorithms as well as novel concepts and theory related to plant FD. Considering the practical
side first, field and satellite measurements typically “see” different objects for different reasons:

First, there is a critical spatial scale mismatch. Field surveys rely on the direct measurement or
traits of sampled plant organs to characterize traits at the individual plant level [31]. Trait values
are typically averaged to the species level and then aggregated to community estimates of plant
FD accounting for species abundance. Remote sensing of plant FD, instead, implies first retrieving
plant traits from images and estimating the plant FD as the variance of trait values among pixels [28].
Other methods rely on the use of statistical models to predict FD directly from remote sensing data,
typically optical [30,32]. Obviously, there is no easy mapping method to infer information from these
spaceborne sensor-dedicated scales to individual plants and species. Different from an ecologist’s view
on plant FD that represents inter-species trait variability, remote sensing-derived plant FD represents a
broader scale view of the plant FD by measuring spatiospectral variability of biochemical properties



Remote Sens. 2020, 12, 1248 4 of 13

and structure among pixels or patches [32]. For instance, in savannah biomes, there is much sub-pixel
variability in plant traits due to the contrasting tree and grass layers, but any two adjacent pixels that
contain similar fractions of trees and grasses would have the same reflectance values detected by
spectral sensors, resulting in an underestimation of true FD in such ecosystems.

Second, there is a critical temporal scale mismatch. Co-existing species in a plant community can
have different phenologies, plus the traits themselves may vary over the seasons [33–35] (Figure 1).
As such, not only trait values for each species, but also their community means, should vary across
seasons (Figure 1). This directly leads to the insight that plant FD varies temporally (Figure 1). However,
it is common practice in field data collection to measure traits for each species at a certain time in a
growing season. Though studies can also take repeated sampling of traits via multiple field campaigns,
this is demanding in terms of both labor and economic costs and hence not readily applicable in practice.
Taking leaf traits as an example, standard trait sampling protocols recommend that “relatively young
but fully expanded and hardened leaves from adult plants need to be selected” [31]. Following this
practice implies that plant functional ecology is based on the assumption of a static ecosystem—any
subsequent estimation of FD for a plant community represents some trait potential that may never
have physically existed in reality. By contrast, remote sensing can potentially lead us to a phenological
view of traits and FD by revealing the temporal signatures of plant traits and community composition.

Remote Sens. 2020, 12, x 6 of 14 

 

 
Figure 1. Hypothetical View of Time-Varying Plant Trait and Functional Diversity Here, the first three 
panels show the hypothetical seasonal profiles of three traits for three species (equal abundance). In 
the bottom panel, the temporally varying FD and community-weighted mean (CWM) of each trait are 
computed at any day of the year by applying the multivariate FD algorithm, the functional dispersion 
[36], and the CWM algorithm, respectively. The dashed lines in the bottom panel indicate the values 
of FD and CWMs computed using a species–trait matrix with traits of each species reaching their 
maximum value within a growing season, which is a common practice in plant ecology. The decrease 
in FD around June/July indicates the moment when the mean distance from each species to the 
centroid in the multidimensional trait space reaches the minimum value within a growing season, or, 
in other words, when species appear to be most similar to each other in terms of the values of the 
three traits selected. Such a temporally varying phenological aspect of traits has been documented in 
previous literature [34–35]. 

Third, there is a critical vertical scale mismatch. A plant community consists of not only canopy 
species but also sub-canopy species. Field measurements have the potential to sample all of them but 
due to the limited penetration capacity, remote sensing (especially in the optical domain) has a 
limited capability in measuring the vertical profile of canopy spectra [14]. This leads to an 
underrepresentation of sub-canopy species in remote sensing-based FD. 

In addition, there can be other intrinsic differences between satellite and in-situ measurements. 
For instance, satellite measurements can potentially have larger uncertainties than in-situ sampling 

Figure 1. Hypothetical View of Time-Varying Plant Trait and Functional Diversity Here, the first
three panels show the hypothetical seasonal profiles of three traits for three species (equal abundance).
In the bottom panel, the temporally varying FD and community-weighted mean (CWM) of each
trait are computed at any day of the year by applying the multivariate FD algorithm, the functional
dispersion [36], and the CWM algorithm, respectively. The dashed lines in the bottom panel indicate
the values of FD and CWMs computed using a species–trait matrix with traits of each species reaching
their maximum value within a growing season, which is a common practice in plant ecology. The
decrease in FD around June/July indicates the moment when the mean distance from each species to
the centroid in the multidimensional trait space reaches the minimum value within a growing season,
or, in other words, when species appear to be most similar to each other in terms of the values of the
three traits selected. Such a temporally varying phenological aspect of traits has been documented in
previous literature [34,35].
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Third, there is a critical vertical scale mismatch. A plant community consists of not only canopy
species but also sub-canopy species. Field measurements have the potential to sample all of them but
due to the limited penetration capacity, remote sensing (especially in the optical domain) has a limited
capability in measuring the vertical profile of canopy spectra [14]. This leads to an underrepresentation
of sub-canopy species in remote sensing-based FD.

In addition, there can be other intrinsic differences between satellite and in-situ measurements.
For instance, satellite measurements can potentially have larger uncertainties than in-situ sampling due
to the influence from the atmosphere, cloud, topography, soil background, and sun–sensor geometry.
Attention needs to be paid by ecologists before using satellite data in their studies, and much efforts
are needed to correct these uncertainties by the remote sensing community; only through these efforts
can reliable links be established between satellite and in-situ measurements of plant traits and FD.

4. How Can We Address the Scale Challenges?

The above-mentioned mismatches in spatial scale, temporal perspective, and vertical
understanding make up today’s multidimensional research frontier towards achieving the global plant
FD monitoring goal (Figure 2). There are hopes to bridge the described scale mismatches between
remote sensing and field data of FD thanks to both technical advances in EO satellite remote sensing
and dedicated efforts in field campaigns (Table 2).
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Figure 2. Identifying the Frontier in Satellite-Based Remote Sensing used for Plant FD Research Field
measurement (red box) can resolve species details (including both canopy and understory) in a plant
community but field data is confined in space and time. Optical satellites (dark blue box) can resolve
top canopy layer traits but have limited penetration ability to resolve the vertical structure. Radar
and LiDAR satellites (light blue box) can complement optical satellites to characterize the full 3D
structure of a plant community. Satellites can repeat the measurements across space and time but can
only take measurements at a pixel level and cannot (to date) resolve the species or even individual
details. The new research frontier will be formed by moving the field measurements towards the right
(more frequent sampling across space and time) while moving satellite measurements towards the top
(more refined measurements so that we can resolve species details).
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Table 2. The three scale mismatches and the potential technical innovations that can bridge them.

Scale Mismatch Description Consequences Potential Solutions

Spatial
Field ecologists measure traits at the
species scale while satellites measure

traits at a pixel scale

FD that is computed directly from
remote sensing-generated traits images

represents inter-pixel variance instead of
inter-specific variance

1. Refining the spatial resolution of satellite sensors;
2. Developing effective algorithms for segmenting pixels
into individuals;
3. Applying a multi-scale upscaling strategy from sensors
onboard towers, drones, and aircraft to satellite pixels;
4. Collecting ground reference data about the accurate
location of different species within an image to help
develop a spectral library that can address the biological
entity labelling challenge.

Temporal

Field ecologists usually take trait
measurements at certain times of a

season while remote sensing has the
potential to repeatedly sample traits and

community composition across time

Plant FD can vary temporally. Following
the common practice of field trait
sampling, assume a static plant

community that may never have
physically existed in reality. By contrast,

remote sensing has the potential to
provide a phenological view of traits

and FD

1. Conducting repeated and consistent sampling of traits
and community composition to provide enough
high-quality calibration data for remote sensing;
2. Drone/field-based high throughput phenotyping using
image-acquisition systems.

Vertical

Field ecologists can sample both canopy
and sub-canopy species while satellite
remote sensing has a limited capability

in measuring the vertical profile of
canopy spectra

There can be an underrepresentation of
sub-canopy species in remote

sensing-based trait and FD
measurements

Exploring cutting-edge hyperspectral LiDAR to
characterize the foliar traits in full 3D
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From a remote sensing perspective, to solve the spatial scale mismatch, the spatial resolution
of current spaceborne hyperspectral and LiDAR sensors needs to be improved to less than 10 m.
However, data alone do not solve the problem: only if we augmented these data by the combined use
of hyperspectral and LiDAR measurements via latest artificial intelligence technologies will we be
able to solve the scale mismatches. Much work has been done with the use of airborne instruments
that usually offer very high spatial resolutions capable of segmenting pixels into canopy species with
LiDAR data [37–39] and further retrieval of chemical and structural traits for each individual tree
using hyperspectral data [40]. For instance, in the humid tropical forests of Malaysian Borneo, airborne
hyperspectral measurements were used to successfully map multiple foliar traits, at high precision
and accuracy, for each individual sunlit canopy crown that was delineated by concurrent LiDAR
measurements [41]. The transferability of experience gained from airborne applications now needs to
be tested with the refined resolutions of satellite sensors.

To better bridge the spatial scale mismatch, measurements taken by sensors onboard towers,
drones, and aircrafts (near-surface remote sensing) can be used to scale up FD from field plots to
satellite pixels; this is the so-called multi-scale sampling & upscaling strategy [42]. A study has used
hyperspectral sensors onboard small UAVs to map multiple plant traits over grassland; the mapped
traits over much larger scales than field plots can then be used as a link to satellite measurements [43].
To solve the vertical scale mismatch, optical and radar/LiDAR instruments need to be integrated to
better characterize vegetation 3D structural change across time. Besides, the cutting-edge hyperspectral
LiDAR technology should be explored to characterize the foliar traits in full 3D [44,45] and hence make
remote sensing-derived FD comparable to field-based FD in terms of the representativeness of canopy
and understory species. The capability of using hyperspectral LiDAR for retrieving the distribution of
foliar chlorophyll content among different Scots pine shoots has been demonstrated, showing a greater
advantage than the conventional approach using optical sensors that can only resolve the canopy
biochemical contents integrated across the vertical foliage profile [46].

From a field measurement perspective, to solve the temporal scale mismatch, repeated and
consistent sampling needs to be done across time to provide enough high-quality calibration data
for remote sensing. In this sense, the emerging drone/ground-based high-throughput phenotyping
technology using a range of image acquisition systems (so-called “phenomics”) offers a consistent,
direct, cost-effective, and rapid method to bridge the temporal scale mismatch [47–50]. With the
progress made in sensors, aeronautics, and high-performance computation, the cost of high-throughput
phenotyping is becoming more affordable, and the entire process is becoming more automatic [51].
Meanwhile, as spatial variability in remote sensing signals can essentially come from both intra- and
inter-specific variability, and much intra-specific variation in leaf chemistry has been reported [52],
comprehensive field sampling that can provide such information would be extremely valuable in
achieving a better match with satellite measurements. To help remote sensing to identify which
species are presented in each pixel, ground reference data about the accurate location of different
species are highly desirable, as then we could obtain the spectral signatures of each species, by which
a species–spectral library can be established. Such an image-based species–spectral library would
greatly facilitate assigning species codes to segmented individuals in the imagery or even enabling
spectral unmixing techniques to directly decompose pixels into fractions of different species [53,54].
In this sense, the ongoing efforts dedicated to the development of open-access species-level spectral
library databases (e.g., EcoSIS) are particularly promising and should be encouraged.

5. Statistics-Based Data Integration as an Alternative Pathway for Upscaling FD

Statistics-based data integration can also facilitate a direct upscaling of plant FD from field plots
to the regional scale [30,55,56]. Figure 3 shows how the multi-faceted biological and environmental
information from new generation EO sensors can be fed into the statistical models to predict FD
from field plots. This statistics-based upscaling concept has several advantages. First, it bypasses the
non-trivial challenge of segmenting pixels into individual plants and further labelling them as species.
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Second, the FD that is predicted from a statistical regression framework is compatible with field-based
FD, as the model is essentially trained with field FD as a targeting variable. Third, considering the rich
information from new generation EO sensors (optical, radar, LiDAR, thermal, fluorescence, and other
environmental variables), the statistics-based upscaling approach also has the potential to maximize the
predictive power of FD and even offer insights into the underlying mechanisms driving FD patterns,
hence simplifying the mapping of FD from space.
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Figure 3. A Conceptual Workflow for Upscaling Plant FD Using Satellite Measurements. In the bottom
panels, there are variations in plant leaf traits, vegetation structure, and phenology within a plant
community that can be directly measured on the ground, from which a multi-dimensional FD measure
can be computed. In the upper panels, there are satellite measurements that are capable of measuring
leaf, structural, and phenological traits. Taking the in-situ FD and satellite measurements as input,
innovative statistical models (e.g., machine learning) can be calibrated for mapping plant FD at regional
or even global scales.

A prerequisite in linking spaceborne measurements directly to field-estimated FD is that the spatial
resolution of satellite imagery should be comparable to the size of the field plots. The ever refining
spatial resolutions of EO sensors have enabled promising opportunities in applying the statistics-based
FD upscaling approach. For instance, a recent study linked multispectral measurements from the
Sentinel-2 satellite directly to FD derived from a suite of plant traits measured in field plots [30].
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Sentinel-2 offers improved spatial (up to 10 m), spectral (13 bands in visible, red-edge, near infrared,
and shortwave infrared regions), and temporal resolutions (3–5-day revisit) from previous spaceborne
sensors. As such, a good comprise is reached between spatial resolution, which is needed to link field
plot measurements (plot size: 30 × 30 m), spectral resolution, which is required to infer FD computed
from multiple functional traits, and temporal resolution, which is necessary to match to the date and
phenological stages when field samplings were done. These advantages enabled the establishment
of a direct statistical regression model between Sentinel-2 measurements and field plot FD that can
predict more than 50% of the spatial variation in FD across European forests [30]. Another challenge in
operationalizing the statistics-based upscaling approach is the reliance of consistent field plot data of
both species composition and traits that are not usually available over large geographic extents. Such a
challenge may be overcome via the efforts in standardizing field plot design and trait collection, and
perhaps more importantly, making such data visible and available to a broad research community [57].

To achieve a better integration of satellite and field data, it would be highly beneficial to take into
consideration the linking to EO data as early as possible in the field plot design stage. For instance,
plot size should be large enough to match satellite pixels and if possible, accurate information about
geolocation and orientation of plots should be registered. Maintenance of field plots across a longer
time span is also crucial for validating EO products and for testing their ability to map not only spatial
patterns but also to track temporal changes. In short, effective communication between the ecology
and the EO communities will be essential to ensure coordinated efforts [58,59].

6. Do We Need to Rethink the Classical Plant FD Concept in a Satellite Era?

Scale mismatches are not merely of a technical nature, but rather lead us to more fundamental
questions: Do these new data from space require us to rethink the concept of plant FD and to revise
classic concepts? Taking the relationship between plant FD and ecosystem functioning, for example,
many mechanisms have been proposed. The “complementarity” hypothesis, for example, suggests
that a higher number of functionally dissimilar species will increase the efficiency by which relevant
resources are harvested. Plenty of studies have found that the diversity in certain plant ecophysiological
traits (e.g., maximum growth rate, leaf nitrogen concentration, leaf area, and root distribution pattern)
can contribute to this “complementarity” at the ecosystem scale [60,61]. Likewise, the heterogeneity
of canopy structures was found to have a positive effect on primary productivity by harvesting light
more efficiently [62–64]. In the same way, temporal partitioning can facilitate the partitioning of critical
resources such as light, water, nutrients and pollinators in the course of the season, which in turn
enhance the acquisition of available resources and productivity at community levels [65].

All the aforementioned dimensions of diversity in plant physiology, structure, and phenology can
in principle be monitored from space. Therefore, we can achieve a full spatiotemporal characterization
of plant FD that goes beyond what is achievable from field surveys, thereby offering new means to
relate to ecosystem functioning at different time scales. An apparent advantage of having FD measures
from space is that we can finally achieve a much improved spatial and temporal representativeness of
FD change. FD that encompasses phenological but also structural diversity, in addition to functional
trait diversity, can potentially help to better elucidate the links between species diversity and ecosystem
functioning. Despite the challenge in characterising FD due to the scale mismatches, remote sensing
has been increasingly and successfully applied in estimating community-weighted means of plant
traits, or functional identity, with the use of both airborne and spaceborne measurements over the
past decade [43,66]. The potentials in the electromagnetic spectrum are manifold: besides leaf traits
retrieved from hyperspectral measurements, spaceborne radar resolution and precision are continually
evolving. Characterising vegetation hyperspectral as well as 3D structure across space and time along
with estimates of ecosystem functions (e.g., water-use-efficiency, light-use-efficiency, among others)
will tell us if the classical ideas reflected, e.g., in the “insurance hypothesis” or the “complementary
hypothesis”, hold true across a broad environmental gradient and remain stable at seasonal and
interannual time-scales.
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7. Concluding Remarks

Currently, in-situ ecological data for monitoring FD are not spatially representative for large-scale
ecological gradients. Intensive data streams by new generation EO sensors are becoming more and
more available but their full potentials are yet to be realized. While this article is being read, satellites
are continuously measuring reflectance and echo over the entire planet. It is now the time to capitalize
them for the benefit of plant ecology and biodiversity research. However, it is more than a technical
challenge to solve the global biodiversity crisis where novel remote sensing technologies, in tandem
with sound ecological knowledge and in-situ observations, can make a unique contribution.
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