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ABSTRACT 

Metabolomics experiments can employ non-targeted tandem mass spectrometry to detect 
hundreds to thousands of molecules in a biological sample. Structural annotation of molecules is 
typically carried out by searching their fragmentation spectra in spectral libraries or, recently, in 
structure databases. Annotations are limited to structures present in the library or database 
employed, prohibiting a thorough utilization of the experimental data. We present a computational 
tool for systematic compound class annotation: CANOPUS uses a deep neural network to predict 
1,270 compound classes from fragmentation spectra, and explicitly targets compounds where 
neither spectral nor structural reference data are available. CANOPUS even predicts classes for 
which no MS/MS training data are available. We demonstrate the broad utility of CANOPUS by 
investigating the effect of the microbial colonization in the digestive system in mice, and through 
analysis of the chemodiversity of different Euphorbia plants; both uniquely revealing biological 
insights at the compound class level.  

INTRODUCTION 

Liquid chromatography mass spectrometry (LC-MS) can detect large numbers of small molecules 

from fractional amounts of samples, and has been widely adopted by the metabolomics community. 

LC-MS, when performed in an untargeted fashion, allows us to detect hundreds to thousands of 

metabolites from a single sample, but annotation of these metabolites remains highly challenging. 

Annotations are typically reached by searching fragmentation spectra (MS/MS) in spectral libraries1, 2 

or, more recently, structure databases3
. Yet, only a fraction of metabolites can be annotated in this 

fashion4. Spectral libraries are clearly limited in size and largely have been created with commercially 

available compounds 5; but even molecular structure databases, which can be orders of magnitude 

larger, usually do not cover all biomolecular structures from a particular sample. We do not expect 

that this situation is going to change fundamentally during the next decade. This means that for 
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most of the data that is acquired in such metabolomics experiments, little structural insights can be 

obtained. In particular, it is currently not possible to obtain a comprehensive structural picture of 

which metabolites are present in a sample, and which are up- or down-regulated between two 

experimental conditions. Here, we present CANOPUS, a computational method that addresses this 

problem by assigning compound classes to every metabolite MS/MS feature in an LC-MS/MS run; 

this includes “unknown” metabolites with structures not recorded in any database or publication. 

The problem of predicting the presence or absence of certain substructures has been considered 

since the 1960s, predominantly for GC-MS data6-8. FingerID9 and CSI:FingerID10 predict molecular 

fingerprints that encode several hundreds or thousands of substructures in a molecule, respectively. 

Substructures describe local parts of the molecule, such as the presence of a hydroxy group; in 

contrast, compound classes are usually substantially more complex. Compound classes have been 

defined in, say, the ChEBI ontology11 or the MeSH thesaurus12, but class annotations are available for 

only a small fraction of molecular structures. In contrast, ClassyFire13 enables deterministic 

assignment of classes solely from structure, allowing us to classify all molecular structures. ClassyFire 

definitions involve the use of logical expressions, substructures with variable length, and 

substructure count constraints. 

To understand what compound classes are detected from a sample, we need a method that can 

predict these classes directly from MS/MS data. Unfortunately, this task comes with fundamental 

challenges which have never been addressed so far, and which make class assignment an even 

harder problem than searching in molecular structure databases: First, can we predict classes for 

which limited or no MS/MS data are available in spectral libraries? As libraries are notoriously 

incomplete and most classes are sparse, we have, for the majority of classes, minimal reference data 

belonging to the class.  The second challenge is more subtle and simultaneously more problematic: 

Even if enough MS/MS data appear to be available for some class, it is possible that compounds for 

which we have reference spectra are not distributed evenly (or not at all) among subclasses. As an 
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extreme case, assume our training data contain reference spectra for pregnane steroids but no other 

steroids. Training a model for steroids using this data will in fact only predict the subclass pregnane 

steroids, whereas all compounds from other subclasses (say, ergostane steroids) will be misclassified 

as “not a steroid” with high confidence.  We will show that this seemingly theoretical issue can have 

massive practical consequences. For known class/subclass pair, we can identify and point out such 

“misguided classifiers” from the training data; but this is not possible for class/subclass pairs that are 

not part of the classification scheme.  Third, can we predict classes for a compound that is truly 

unknown, meaning that not even its molecular structure has been recorded in any structure 

database?  These “novel compounds” are arguably the ones for which class prediction is desired 

most; but how can we evaluate whether a method is able to target such “novel compounds”?  

At present, three strategies for structural classification exist: a) Cluster compounds based on 

spectral similarity, then propagate compound class annotations from database search in a semi-

automated manner14-16 b) Search for the query compound in a spectral library17, 18 or a structure 

database19, 20; consider the top k hits for assigning compound classes. c) Use machine learning 

methods to directly predict compound classes from the MS/MS spectrum19, 21. None of these 

strategies can address all challenges mentioned above, as we detail in the Methods section; 

furthermore, no ready-to-use computational tools for automated compound class annotation from 

LC-MS data are publicly available. 

Results 

Here, we present the two-step approach CANOPUS (Class Assignment aNd Ontology Prediction Using 

mass Spectrometry) that addresses all of the abovementioned challenges. The workflow of 

CANOPUS is depicted in Fig. 1: Given an MS/MS spectrum as input, we use a series of support vector 

machines (SVM) to predict establish a probabilistic fingerprint of the query compound9, 10.  This 

probabilistic fingerprint is used as input of a Deep Neural Network (DNN)22, which then predicts all 

compound classes simultaneously. SVMs are trained using reference MS/MS spectra; in contrast, the 
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DNN is trained on 1.11 million compound structures and does not require any MS/MS data. To train 

the DNN, we have to simulate a “realistic” probabilistic fingerprint for any given molecular structure, 

although no MS/MS data for this structure is available. This integration of two machine learning 

techniques allows CANOPUS to reach high-quality predictions for 1,270 compound classes. Because 

the predictions are now independent from the availability of MS/MS reference data, CANOPUS can 

predict compound classes even when there are no MS/MS spectra for training the method. Equally 

important, it can predict classes for which MS/MS training data is missing for a complete subclass. 

Uniquely, CANOPUS permits a global over view of the compound classes measured in a biological 

sample, but also the differences between cohorts at the compound class level  

 

Figure 1. CANOPUS workflow. In the training phase, we train a battery of kernel support vector 
machines for predicting molecular fingerprints from fragmentation spectra, and we train one deep 
neural network to predict compound classes from molecular fingerprints (multi-label classification).  
In the prediction phase, we classify the query compound from its MS/MS spectrum by computing 
the fragmentation tree, predicting its molecular fingerprint, and predicting the compound classes 
from the fingerprint using the deep neural network. Numerous applications of compound 
classification exist, some of which are highlighted throughout this paper. 
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CANOPUS evaluation 

To evaluate CANOPUS we used reference MS/MS libraries, as we need to know the true answer for 

evaluation. The kernel SVMs for predicting the molecular fingerprint were trained on MS/MS spectra 

from 23,965 compounds. We used structure-disjoint ten-fold cross-validation on the training data, 

and structure-disjoint evaluation on an independent MS/MS dataset of 3,385 compounds. This 

ensures that all compounds are novel in evaluation, meaning that no reference MS/MS spectra are 

available for dereplication. The DNN was trained on 1.12 million structures with compound classes 

assigned by ClassyFire13. All structures for which MS/MS spectra are available, were removed from 

the DNN training data. Again, this ensures that all compounds are truly novel in evaluation, meaning 

that both the MS/MS and the structure are unknown to the method. 

For compounds from the SVM training dataset, CANOPUS reached an average accuracy of 99.4%, 

and 1,094 of 1,270 classes were predicted with accuracy at least 99%. However, compound classes 

are very sparse, so the Matthews Correlation Coefficient (MCC) is a more suitable performance 

measure23. The MCC is between -1 and +1; it is 0 if a classifier performs no better than random, and 

+1 for a perfect classifier. See Supplementary Figure 1 for the MCC of all 732 compound classes with 

at least 50 examples. CANOPUS predicted 370 compound classes with MCC at least 0.8 (Fig. 2a, 

Supplementary Material 1), including phosphocholines (MCC 0.954), flavonoid O-glycosides (MCC 

0.918), and pregnane steroids (MCC 0.867); 943 of 1,270 classes can be predicted with MCC at least 

0.5. 

For the independent dataset, CANOPUS reached an average prediction accuracy of 99.4%, and 1,093 

classes were predicted with accuracy at least 99% (Supplementary Material 2). The independent 

dataset is substantially smaller than the SVM training dataset; but MCC estimation can be inaccurate 

and misleading if too few positive examples are available.  We therefore distinguished between rich 

classes with at least 20 positive examples (400 classes), and sparse classes with fewer examples (870 
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classes). The average MCC for rich classes was 0.729 (Fig. 2b). For the sparse classes, we computed 

the microaveraged MCC, which sums up true positives, true negatives, false positives, and false 

negatives over all sparse classes. The microaveraged MCC for all sparse classes was 0.531. 

 

Figure 2. Method evaluation histogram plots. (a) Histogram of Matthews Correlation Coefficients 
(MCC), recall, and precision for CANOPUS; SVM training dataset, compound classes with at least 20 
examples. (b) Histogram of MCC for four methods; independent dataset, compound classes with at 
least 20 positive examples. Recall that MCC of 0 corresponds to random predictions. “CSI Kernel 
SVM” is the direct prediction from MS/MS spectra using a kernel SVM. “MetFrag KNN-5” and 
“CSI:FingerID KNN-5” search in PubChem using MetFrag or CSI:FingerID, “Spectral library KNN-5” 
searches in the SVM training dataset using cosine similarity.  All KNN-5 methods use majority vote of 
the top 5 search results for each compound class. 

We further evaluated CANOPUS against four other methods for compound classification (Fig. 2b). 

The first two methods search in a structure database using an in silico tool, then perform a majority 

vote of the top 5 candidates for each compound class individually. We evaluated two widely used in 

silico tools, MetFrag24, 25 (MetFrag KNN-5) and CSI:FingerID10, 26 (CSI:FingerID KNN-5) for this purpose. 

These methods cannot provide any classifications if the query molecular formula is absent from the 

structure database. Third, we evaluated against searching in a spectral library (Spectral library KNN-

5). We do not restrict the search by precursor mass but instead, compare the query spectrum with 

all spectra in the SVM training dataset. We then assign each compound class individually by a 

majority vote of the top 5 candidates17. Lastly, we evaluated direct class prediction from MS/MS 

spectra. Here, we employed the kernel support vector machine setup of CSI:FingerID as, to the best 

of our knowledge, this is currently the best-performing classifier for this task. In short, the molecular 

fingerprint of CSI:FingerID was replaced by a “ClassyFire fingerprint”, a binary vector where each 
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position indicates the membership of a molecule to a certain compound class. We again ensured 

structure-disjoint evaluation. We cannot evaluate against propagating class annotations through 

clustering or molecular networking27-29, because such propagation is semi-automated at best and still 

requires a lot of manual interpretation; see also Fig. 4 below. 

CANOPUS clearly outperformed the other methods, as we demonstrate for the independent dataset 

(Fig. 2b, Supplementary Material 2): The average MCC for rich classes was 0.683 for CSI:FingerID 

KNN-5, 0.532 for spectral library KNN-5, 0.465 for MetFrag KNN-5, and 0.677 for direct prediction 

from the MS/MS spectrum (0.729 for CANOPUS). The microaveraged MCC for sparse classes was 

0.505 for CSI:FingerID KNN-5, 0.338 for spectral library KNN-5, 0.315 for MetFrag KNN-5, and 0.493 

for direct prediction (0.531 for CANOPUS).  

Predicting compound classes without MS/MS training data 

CANOPUS can predict compound classes for which no training MS/MS spectra exist at all. To 

demonstrate this, we re-trained the SVM battery such that all 491 MS/MS spectra of flavonoid 

glycosides were removed (Supplementary Figure 2, Supplementary Material 1). CANOPUS was still 

able to predict this compound class with MCC 0.861, compared to 0.922 when flavonoid glycosides 

were contained in the MS/MS training data. Similarly, the MCC for the parent class flavonoid was 

0.850 when flavonoid glycosides are absent from training data, compared to 0.880 otherwise. In 

both cases, the drop of performance is surprisingly small, and the classifiers without training MS/MS 

spectra still reached outstanding performance. 

By concept, direct prediction is not able to predict compound classes without any MS/MS training 

spectra. Beyond that, the lack of training spectra for one particular subclass can also substantially 

affect the performance of the parent class predictor. To demonstrate this, we trained a kernel SVM 

for predicting flavonoids from MS/MS data but, again, left out all 491 spectra of flavonoid glycosides. 

We then evaluated the flavonoid predictor on the flavonoid glycosides MS/MS spectra. Only 6 % of 

the compounds were correctly classified as flavonoids. For comparison, CANOPUS correctly 
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recognized 85% of the flavonoid glycosides as flavonoids, although the CANOPUS MS/MS training 

data did not contain a single flavonoid glycoside spectrum (Supplementary Figure 2, Supplementary 

Material 1). 

We repeated the above analysis on a second compound class: Bile acids, alcohols and derivatives. 

We trained CANOPUS and an SVM classifier without the MS/MS data of 127 bile acids. We found 

that CANOPUS still shows good prediction performance for bile acids (MCC 0.534, compared to MCC 

0.757 when bile acids are part of the MS/MS training data). The MCC of the superclass remains 

almost constant (0.852 and 0.898, respectively). CANOPUS correctly predicts 90% of the left-out bile 

acid spectra as steroids; in comparison, direct prediction recognized only 57 % of those spectra as 

steroids. 

CANOPUS and metabolomics data analysis  

Metabolomics aims at establishing changes in the metabolite profile between different experimental 

conditions, time points etc. Today, these changes are usually monitored at a “per feature” level; but 

doing so cannot uncover complex changes in metabolite profiles, just like a complex trait usually 

cannot be attributed to a single genetic variant. We now demonstrate how monitoring differences 

on a compound class level allows for a more comprehensive view of the biological system. For that, 

we re-analyzed the data from Quinn et al.30, where tissue samples from different organs of germ-

free (GF) and specific-pathogen-free (SPF) mice were measured by non-targeted LC-MS/MS. This 

study led to the discovery of novel conjugated bile acids in the digestive system of SPF absent in GF 

mice, and found that these conjugated bile acids are produced by gut microbes that reside in the 

duodenum, jejunum and Ilium region in healthy mice. 

We sorted metabolites by fold change in intensity between GF and SPF samples. MS/MS spectra of 

each metabolite were classified using CANOPUS; then, classes were statistically tested for 

overrepresentation (Mann-Whitney U test). The most significant compound classes are Bile acids, 

alcohols and derivatives (p-value 3.39 × 10-104) as well as its subclasses and parent classes. Other 
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highly significant classes are triterpenoids (5.86 × 10-74) and glucuronic acid derivatives (p-value 5.36 

× 10-27) (Supplementary Table 1). See Fig. 3a for the classes of the 200 most discriminating 

compounds. 

 

Figure 3. Comparing the digestive system of germ-free and specific-pathogen-free mice. (a) 
Compound classes of the top 200 most discriminating compounds in the digestive system of germ-
free mice (GF) and specific-pathogen-free mice (SPF). (b-d) Summed intensity of all compounds 
belonging to the class bile acids (b), prenol lipids excluding glucuronic acids (c), and glucuronic acids 
(d) in the digestive system of GF (blue) and SPF (orange). Standard deviation shown as error bars. 

We found that the abundance of bile acids is similar for GF and SPF in the small intestine, but 

substantially different in the large intestine (cecum, colon) and in stool (Fig. 3b), consistent with the 

findings of Quinn et al.30. Our results also showed that glucuronic acids (includes related saccharides) 

were among the most discriminating compounds; most of them were also classified as prenol lipids 

and isoflavonoids. In SPF, non-glycosylated prenol lipids appeared to be increasing through the 

digestive system from stomach to stool (Fig. 3c). In contrast, the abundances of prenol lipids in GF 

did not change notably through the digestive system. For the glucuronic acid derivatives class, we 

observed an opposite trend: these had a relatively lower abundance in SPF and did not show a 

noticeable trend, but accumulated through the digestive system of GF with highest abundance in 

stool (Fig. 3d). These results suggest the involvement of the microbiota in the metabolization of the 
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glycosylated prenol lipids by cleaving off the sugar acids. To check this hypothesis, we considered 

two glycosylated compounds detected in GF but undetectable in SPF: We searched for the 

deglycosylated derivatives in both GF and SPF. Using CSI:FingerID, we annotated the first of these 

compounds as a glycosylated derivative of the isoflavone genistein. The glycosylated derivative was 

detected only in the GF samples, whereas genistein was detected in both SPF and GF samples. The 

second compound was annotated as glycosylated daidzein. We found that daidzein and its 

glycosylated derivative daidzein 7-(6-O-acetyl-β-D-glucoside) are both abundant in GF but 

undetectable or low abundant in SPF (Fig. 4b-d), which appears to contradict the above hypothesis. 

However, daidzein is known to be metabolized into equol31 and, indeed, equol was detected only in 

the SPF samples (Fig. 4d). Unfortunately, such an in-depth verification is not possible in general, as 

for many compounds, the molecular structure cannot be confidently annotated. 

Molecular networks are a popular method for pushing the boundaries of database search by 

propagating annotations via spectral network similarity32. The underlying idea is that spectral 

similarity often implies structural similarity, so that annotations from spectral library search can be 

propagated through connected subnetworks28. For the mouse samples we find 344 molecular 

subnetworks with at least three compounds, but only 92 of these subnetworks have at least one 

spectral library match enabling subnetwork annotation; an additional 376 compounds are singletons 

and do not cluster with any other compound in the samples.  Furthermore, propagation of 

compound classes to the full subnetwork, as proposed in ref. 16, can lead to partial or imprecise 

annotations. As an example, see the molecular subnetwork containing the compound daidzein (Fig. 

4a). Spectral library search allowed us to annotate structures for four nodes of the molecular 

network, all of them isoflavonoids. But inferring that all other compounds in this subnetwork are 

isoflavonoids, too, is most likely incorrect: CANOPUS annotated flavonoids and terpene glycosides in 

this subnetwork. Furthermore, most of the compounds in the network were annotated as 

glycosylated compounds (either phenolic glycosides or terpene glycosides) by CANOPUS, whereas 

none of the spectral annotations belong to these classes. While daidzein 7-(6-O-acetyl-β-D-
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glucoside) and daidzein are part of the same network, equol, their metabolic product, is a singleton 

and is not contained in the network as the MS/MS spectrum itself is quite different and therefore 

does not align (Fig. 4a). CANOPUS correctly annotated two additional isoflavonoids that form 

singleton subnetworks and, hence, are missing from the daidzein network; these isoflavonoids were 

annotated by CSI:FingerID as acacetin and formononetin, which are structurally similar to daidzein. 

On a larger scale, we find that CANOPUS compound class annotations and molecular networks 

usually agree well, see Supplementary Figures 3 and 4. 

Figure 4. Molecular network of the compound daidzein. Spectral library hits in the network (a) 
colored in yellow; spectra without spectral library annotation colored in turquoise. Nodes are 
labeled with the SIRIUS molecular formula annotation. Solid lines are edges in the molecular 
network with high cosine similarity (0.9 to 1.0), dashed and dotted lines are edges with low cosine 
similarity (0.75 to 0.9 and 0.7 to 0.75, respectively). CANOPUS compound classifications are 
indicated as boundaries in the network or written in brackets next to the node. The compound equol 
(red) is not part of the network but is classified correctly as isoflavonoid by CANOPUS. (b-d) Three 
compounds were annotated by CSI:FingerID as (b) daidzein 7-(6-O-acetyl-β-D-glucoside), (c) 
daidzein, and (d) equol. Pie charts show the relative intensity of the compounds in GF samples (blue) 
and SPF samples (orange) for the large intestine and stool. 

Comparative metabolomics of Euphorbia species 

We use CANOPUS to study the chemical diversity among representative plant species of Euphorbia 

subgenera20. This time, we are not considering the fold change of compounds or compound classes, 

but rather the change of metabolite diversity: How many compounds of a certain class do we find in 
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each sample? To answer this question, it is crucial to annotate the entire set of molecules detected, 

as done by CANOPUS. Annotating only a small subset by, say, spectral library search will often result 

in misleading findings: Neither is the identified subset an unbiased subsample of the complete 

metabolome, nor is the spectral library unbiased for compound classes. Ernst et al.20 classified 

around 30% of the detected compounds, using a combination of spectral library search with GNPS2, 

in-silico search with network annotation propagation28, MS2LDA33, CSI:FingerID, and also manual 

inspection. The study showed that the diversity of Euphorbia diterpenoids, a type of bioactive 

compounds actively studied for their antiviral and drug-resistance reversal properties34,  was larger 

in the Esula and Euphorbia subgenus than in the Chamaesyce and Athymalus subgenus. This change 

in diversity agrees with the geographic co-location of these plants with certain herbivores, given that 

Euphorbia diterpenoids are known feeding deterrent. 

Re-analyzing this dataset with CANOPUS allowed us to reproduce the above biological findings, but 

also to derive new findings. Different from Ernst et al.20, compounds were not aligned across 

Euphorbia species but each species was annotated individually. For each species, we counted the 

number of compounds belonging to each class, but ignored peak intensities of compounds. First, we 

consider the seven compound classes investigated in ref. 20, see Fig. 5a. For each class, our workflow 

detected and annotated substantially more compounds than the original study. For diterpenoids and 

triterpenoids, we observe a similar class distribution pattern: The Esula and Euphorbia subgenera 

have a larger diversity of diterpenoids than the other two subgenera (Fig. 5a, Supplementary Figure 

); the species from the two subgenera Euphorbias and Athymalus that are mainly distributed in dry 

regions, have a slightly higher variety of triterpenoids (Supplementary Fig. 7). Cholestane steroids 

and steroid lactones do not show a notable distribution pattern here or in ref. 20. 

For benzoic acid esters, we observe a notable distribution pattern: These show large variety for the 

Esula and medium variety for the Euphorbia subgenus, and no notable variety for the other two. This 

is in sharp contrast with the findings by Ernst et al.20 where one to three benzoic acids were found 
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across all species, corresponding to no notable variety. Many compounds annotated as diterpenoids 

were also annotated as benzoic acid ester, fatty acid esters or dicarboxylic acids (Supplementary 

Fig. 8). This is characteristic for Euphorbia “lower” diterpenes that are often esterified with various 

acyls34. The Esula subgenus shows the highest variety of benzoic acid esters, followed by the 

Euphorbia subgenus. For the E. cyparissias species, 300 of 500 compounds annotated as diterpenoids 

were also annotated as benzoic acid esters. This agrees well with observations by Yang et al.35 on 

E. esula, a species very closely related to E. cyparissias36. Diterpenoids in Euphorbia species are 

frequently observed with benzoyloxy substituents34 ; yet, it was not known that the occurrence of 

this acylation differs to this extend for different Euphorbia subgenera.  

Next, we used hierarchical clustering to cluster Euphorbia species based on CANOPUS class 

annotations (Fig. 5b). The resulting chemodendogram shows good agreement with a phylogenetic 

tree of Euphorbia computed from genomic data20, 37, 38: The subgenera Esula, Athymalus and 

Chamaesyce form almost perfect clades in the chemodendogram. In contrast, the clustering from 

ref. 20, computed from a spectral similarity-based distance metric39, shows little similarity to the 

phylogeny.  
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Figure 5. Compound class distribution in euphorbia species. (a) Heatmap of the number of 
compounds for seven compound classes in the euphorbia species, grouped in a phylogenetic tree 
computed from genomic data. (b) Clustered heatmap with dendrogram showing hierarchical 
clustering on compound class distributions. Color on the left indicates the clade a row belongs to: 
Chamaesyce (blue), Euphorbia (violet), Athymalus (red) and Esula (green). (c-d) Distribution of 
compound classes in E. cyparissias (c) and E. balsamifera (d). Numbers within the pie charts are the 
absolute number of compounds of the class annotated in this species. 

Exploring the distribution of compound classes allowed us to spot differences and common features 

between samples (Supplementary Material 3). Consider E. cyparissias (Fig. 5c) and E. balsamifera 

(Fig. 5d): The variety of diterpenoids observed in E. cyparissias (640 diterpenoids) was higher than in 

E. balsamifera (37 diterpenoids).  CANOPUS annotated 9 and 17 compounds as bile acids in 
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E. cyparissias and E. balsamifera, respectively. It is noteworthy that these are no annotation errors: 

The ClassyFire ChemOnt ontology does not distinguish between bile acids and phytosteroids. 

Discussion 

CANOPUS is an automated method for the systematic classification of compounds from 

fragmentation spectra. CANOPUS predicts 1,270 compound classes and is best-of-class for this task. 

Surprisingly, CANOPUS can reliably predict numerous compound classes, even for which little or no 

MS/MS training data are available, and is not distracted if MS/MS data is available only for a 

subclass. Its integration into SIRIUS allows us to perform the entire workflow from feature detection 

to compound classification in one tool and on complete datasets. CANOPUS can also import data 

from popular mass spectrometry frameworks such as MZmine40, OpenMS41, and XCMS42. 

We demonstrated how to use CANOPUS for comparative metabolomics applied to microbiome 

research and chemotaxonomical investigations in plant. Class annotations allowed us to infer novel 

biological findings, without the need for annotating all MS/MS spectra with a spectral library or 

structure database. Findings include that gut microbiota are likely involved in the metabolization of 

glycosylated lipids such as plant saponins, and characteristic distribution pattern for benzoic acid 

esters in diterpenoids across the Euphorbia subgenera. CANOPUS classifications can be used as part 

of semiquantitative and qualitative metabolomics data analysis; in particular, class distributions 

allow us to compare samples or species that have little or no overlap in compounds. We anticipate 

that in the foreseeable future, a large fraction of compounds detected by non-targeted mass 

spectrometry will remain without structural annotation; CANOPUS can classify these unannotated 

fragmentation spectra and allows us to directly deduce information from compound class 

distribution. In the future, CANOPUS can predict classes outside the ClassyFire ontology, and other 

chemical properties for which few or no MS/MS training data are available; examples are the 

prediction of antiobiotic activity or toxicity of compounds. 
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Methods 

Training and evaluation data 

For training the kernel support vector machines (SVMs) we use mass spectral data from 23,965 

compounds with 16,701 unique 2D structures; 13,912 compounds are from NIST 2017 (commercial; 

NIST, v17), 7,680 compounds are from GNPS2, and 2,373 compounds are from MassBank1. This 

MS/MS dataset is referred to as SVM training dataset, to differentiate it from the structure dataset 

used to train CANOPUS. As an independent dataset, we use mass spectral data from 3,385 

compounds in the “MassHunter Forensics/Toxicology PCDL” library (Agilent Technologies, Inc., Santa 

Clara, USA). We use only compounds measured in positive ion mode, as these are more abundant. 

The training set for the deep neural network (DNN) consists of molecular structures from numerous 

public databases like KNApSAcK43, HMDB44, KEGG45, UNDP, and others. We excluded all structures 

from the DNN training dataset that were contained in the SVM training dataset or the independent 

dataset. In total, the DNN training set consists of 1,106,938 structures along with their ClassyFire 

compound classes and molecular fingerprints. 

Chemical Classes 

The ChemOnt ontology of ClassyFire consists of 4,825 classes13 which are organized in a tree. In 

practice, every compound is assigned to several classes. For many classes, we do not find a single 

positive example in any biological structure database. We use 1,270 classes for which at least 500 

example structures are present in the DNN training set. In the future, we will classify larger parts of 

PubChem to increase the number of training data and, thus, also the number of trainable classes. 

Historically, biomolecules have been classified based on common biosynthetical origin, or chemical 

characteristics. However, doing so, automated classification of compounds has been a non-trivial 

problem even if the compound structure is known46.  In contrast, ClassyFire classes do not depend 

on biological precursors or characteristics but instead, can be deterministically computed from the 

molecular structure.  This allows us to assign each class for every compound in a structure database. 
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Molecular fingerprints and fingerprint prediction 

As described by10, 26, we use molecular properties from several known molecular fingerprints: 

Namely, CDK Substructure fingerprints, PubChem CACTVS fingerprints, Klekota-Roth fingerprints47, 

FP3 fingerprints, MACCS fingerprints, and Extended Connectivity Fingerprints48. Molecular properties 

are computed from molecular structure using the Chemistry Development Kit (CDK) 2.1.149. In 

addition, we use 490 molecular properties that describe larger substructures and will be added to 

SIRIUS and CSI:FingerID in an upcoming release. For CANOPUS, the additional molecular properties 

did not result in an improved prediction performance, so we leave out the details. We discard 

molecular properties with less than 20 positive examples and that cannot be predicted with 

reasonable quality (F1 above 0.25) during cross-validation. In total, CSI:FingerID predicts 3,609 

molecular properties. 

We find that building molecular structures from InChI (IUPAC International Chemical Identifiers) 

results in inconsistent representations of molecules, as structures are not standardized. Hence, we 

now build molecular structures from PubChem canonical SMILES (Simplified Molecular Input Line 

Entry Specifications) in all cases50. 

Training the CSI:FingerID kernel SVMs is done as described in26. We train ten models in tenfold cross-

validation, such that every model is trained on 90% of the structures. Cross-validation is performed 

structure-disjoint: Whenever we predict the molecular fingerprint of a query compound in 

evaluation, we use the cross-validation model that has not seen the query structure during training. 

We do so for both the SVM training dataset and the independent dataset. To this end, all 

compounds are novel, in the sense that none can be identified by dereplication (spectral library 

searching). 

Predicting compound classes from molecular fingerprints 

Assume that we know the exact molecular fingerprint and molecular formula of a query compound, 

but not its structure; can we predict whether it belongs to a certain compound class? We use a Deep 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.04.17.046672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.046672
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

18 
 

Neural Network (DNN)22 for this purpose, simultaneously predicting all compound classes.  DNNs can 

be trained with millions of training examples in reasonable time.  Molecular formulas are encoded as 

feature vectors containing the number of atoms for each element, the mass, the RDBE value, as well 

as the ratios between some elements (see Supplementary Table 2 for all features). The binary 

molecular fingerprint and the molecular formula features constitute the input of the DNN. 

The above DNN appears to be of no practical use: To compute the exact fingerprint of a compound, 

we have to know its molecular structure; but if we know the molecular structure, there is no need to 

apply the DNN, because we can deterministically find the correct answer using ClassyFire. The trick is 

that we can use a predicted fingerprint as input of the DNN: We use the probabilistic molecular 

fingerprint predicted by CSI:FingerID as well as the molecular formula computed by SIRIUS (see 

below) as input. The predicted fingerprint can either be transformed to a binary fingerprint, or we 

can directly use the probabilistic fingerprint as input of the DNN. We found that the latter option 

performs substantially better (data not shown). 

Simulating probabilistic fingerprints 

It turns out that we can improve the performance of the above DNN as follows: During training of 

the DNN, we use binary fingerprints (computed from structure) whereas in application, we use a 

probabilistic fingerprint predicted from the query MS/MS spectrum; the later fingerprint contains 

errors and uncertainties. To improve the DNN performance, we present two probabilistic methods 

to introduce errors and uncertainties into the training fingerprints. Due to the probabilistic nature of 

the methods, one molecular structure will result in different probabilistic fingerprints, all of which 

we can use to train the DNN. 

The first method of sampling probabilistic fingerprints considers all molecular properties individually: 

For each molecular property 𝑖, we have trained an individual SVM to predict the property from 

MS/MS data.  We record all Platt probabilities that were estimated for positive property 𝑖: Let 𝒫𝑖  be 

the set of all Platt probability estimates in cross validation, for all MS/MS spectra in the training set 
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where the SVM should have predicted a positive outcome for property 𝑖.  Analogously, we record 

Platt probability estimates for negative property 𝑖 in 𝒩𝑖.  Given a compound from the structure 

database, we know its exact binary fingerprint.  Consider a molecular property 𝑖: If the property is 

present in the compound, we can uniformly sample from 𝒫𝑖  to simulate a Platt probability; if is not 

present, we uniformly sample from 𝒩𝑖.  But this may result in overfitting of the DNN, as we are using 

exactly the same real numbers for training which are later used for evaluation.  To this end, we also 

sample from the “holes” between values in 𝒫𝑖: We sort the set 𝒫𝑖 ∶= {𝑝1, … , 𝑝𝑛}  such that 𝑝1 ≤

⋯ ≤ 𝑝𝑛, and assume 𝑝0 ≔ 0 and 𝑝𝑛+1 ∶= 1.  We uniformly draw a random number 𝑥 ∈ (0, 𝑛 + 1) 

and then interpolate between values 𝑝𝑘 and 𝑝𝑘+1, with 𝑘 ≔  ⌊𝑥⌋. That is, 

𝑦 ← (1 − 𝑥 + 𝑘) ∙ 𝑝𝑘 + (𝑥 − 𝑘) ∙  𝑝𝑘+1 

is the simulated Platt probability. Analogously, we can do so for 𝒩𝑖 . This can be interpreted as 

drawing random numbers using a kernel density estimate of the observed Platt probabilities; we 

avoid elaborate kernel estimates to guarantee swift running times. 

The disadvantage of drawing every position independently is that we completely ignore correlations 

between fingerprint positions. If two molecular properties are highly correlated with each other, we 

can assume that prediction errors correlate, too. To this end, our second sampling method draws 

multiple positions at once. First, we define further sets of Platt probabilities for each position in the 

fingerprint, namely 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝑇𝑁𝑖, and 𝐹𝑁𝑖. These are defined analogously to 𝒫𝑖  and 𝒩𝑖, but contain 

Platt estimates for true positives, false positives, true negatives and false negatives for molecular 

property 𝑖. Let ℱ be a binary fingerprint from the structure database for which we want to simulate 

a probabilistic fingerprint. We measure the similarity of two fingerprints using the Tanimoto 

coefficient (Jaccard index)51. We first sort all structures from the SVM training dataset in descending 

order of their Tanimoto coefficient to ℱ. We then pick the 𝑘-th structure and its binary fingerprint 𝐵, 

together with its predicted probabilistic fingerprint �̃�. Here, 𝑘 is a random number drawn from a 

geometric distribution with small parameter 𝑝; here, we use 𝑝 = 0.2. For each molecular property  𝑖 

with 𝐵𝑖 = ℱ𝑖, we randomly draw a Platt probability from the appropriate set 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝑇𝑁𝑖, and 𝐹𝑁𝑖, 
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using the procedure described above. For example, if 𝐵�̃� ≥ 0.5 and 𝐵𝑖 = 1, then this is a true positive 

prediction and we sample from 𝑇𝑃𝑖; if 𝐵�̃� ≥ 0.5 and 𝐵𝑖 = 0, then this is a false positive prediction 

and we sample from 𝐹𝑃𝑖, and so on. The remaining positions differ between ℱ and 𝐵; for these, we 

repeat the above procedure: This time, we only use the subset of remaining positions to calculate 

the Tanimoto between ℱ and the structures from the SVM training data and for sampling the 

probabilities. 

We can think of the second sampling method as sticking together the simulated fingerprint using 

parts of probabilistic fingerprints available for training. One may assume that this sampling method 

yields “more realistic” probabilistic fingerprints. On the other hand, it may lead to probabilistic 

fingerprints which are “too similar” to the training data and, thus, may result in overfitting of the 

DNN. As both sampling strategies have advantages and disadvantages, we do not decide for one, but 

simulate fingerprints using the first and the second sampling strategy alternately. 

DNN architecture and training 

Both input layers are centered feature-wise: For centering the molecular fingerprint, we calculate 

the mean for every predicted molecular property in the SVM training dataset. We stress that no 

structures from the SVM training dataset are used for training the DNN, but only statistics about 

these structures such as the mean of each molecular property, as this is needed for centering the 

feature vectors; we also use the SVM training dataset for determining the early stopping of the DNN 

training. Recall that no structures from independent dataset are used for training the DNN, either. 

The molecular formula feature vectors are normalized such that every feature has unit variance; we 

use all molecular formulas from the DNN structure training database to calculate the empirical mean 

and variance. 
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Figure 6. Heterogeneous training for compound class prediction. First, a battery of kernel SVMs is 
trained on spectral training data (blue area left) to predict the molecular fingerprint. Second, a DNN 
predicts compound classes from the molecular fingerprint (orange area right) and the molecular 
formula. The network consists of several fully connected layers with ReLu activation function, and 
dropout layers in-between. Platt calibration is used to transform the network output to posterior 
probabilities. The main trick is that the molecular fingerprints used for training the DNN are 
computed directly from the structure database, without the need of spectral training data. 

Instead of concatenating both input layers directly, we first connect the fingerprint input layer with a 

fully connected inner layer of 3,000 neurons, and the molecular formula input layer with a fully 

connected inner layer of 16 neurons (see Fig. 6). The outputs of both inner layers are concatenated 

and fed into two additional inner layers with 3,000 and 5,000 neurons. All inner layers are using the 

ReLu activation function, a learnable bias, an 𝐿2 regularization as well as a dropout of 50 % of the 

neurons52. The output layer is linear and predicts 1,270 compound categories. We use the sigmoid 

cross-entropy as loss function and Adam as optimizer53. The DNN training is performed using the 

TensorFlow library54. Training is done in minibatches of roughly 6,000 structures; we draw 

compounds from the pool of all available training compounds such that every compound class is 

present in each minibatch at least one time. The sign of each output neuron encodes whether a 

compound belongs to the respective compound class. We stop training as soon as the MCC on the 

SVM training dataset did not improve anymore; this usually happened after about 15,000 iterations. 

We do not report epochs, as our training data is randomized. 
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The following is not performed as part of our method evaluation, but only when applying the 

method to biological data: We transform the linear outputs of the DNN into posterior probabilities 

using Platt calibration55. For learning the parameters of the logistic function, we use the predicted 

fingerprints from the SVM training dataset. If we do not have enough positive examples (less than 30 

examples), we add simulated probabilistic fingerprints. After the calibration, we update the weights 

of the network a last time, using the SVM training dataset as input.  

Assigning molecular formulas 

Using the molecular formula as input of the DNN requires us to first identify the correct molecular 

formula. But this is necessary anyways, as the kernel support vector machines from ref. 10 operate 

on fragmentation trees, which are an outcome of the molecular formula identification with SIRIUS56. 

As our method is targeting novel compounds, we must not assume that the molecular formula of the 

query compound is recorded in any molecular structure database.  We initially use both isotope 

patterns and fragmentation patterns to determine the molecular formula using SIRIUS 426. 

Unfortunately, molecular formula identification rates severely drop for compounds above 500 Da, 

see Fig. 5 in ref. 56. ZODIAC improves molecular formula annotations of complete LC-MS runs using a 

network-based approach where compatible molecular formula assignments support each other, and 

assignments for the complete dataset are estimated by Gibbs sampling; in evaluations, ZODIAC 

reaches substantially smaller error rates than SIRIUS57. We add all reference compounds from GNPS, 

MassBank and NIST as anchors into the ZODIAC network. 

Method evaluation 

We evaluate against four other methods for compound class assignment: direct prediction, k-Nearest 

Neighbor (k-NN) using either MetFrag24 or CSI:FingerID10 as the underlying search engine, and k-NN 

searching in a spectral library. 

Direct prediction. We can think of the compound classes as additional molecular properties of a 

compound, and directly predict the corresponding fingerprint from MS/MS data. This approach has 
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been suggested repeatedly in the literature, in particular for Gas Chromatography (GC) MS data, but 

usually targeting compound classes defined by the presence or absence of a certain substructure. 

Here, we employ the kernel SVM machinery behind CSI:FingerID for direct prediction, following the 

usual CSI:FingerID training and evaluation setup. We argue that this setup is currently best-in-class 

for direct prediction. By design, direct prediction cannot predict compound classes for which there is 

no positive MS/MS training data; it cannot predict compound classes if training data are available for 

a subclass only, as the resulting predictor is in fact targeting the subclass; and, as we do not 

distinguish between compounds with known structure and compounds with MS/MS data, it is not 

possible to evaluate if direct prediction will show reasonable performance for truly novel 

compounds with unknown structure. 

k-Nearest Neighbor (k-NN). MetFrag and CSI:FingerID are methods for compound structure 

identification by searching MS/MS spectra in some structure database such as PubChem. Given an 

MS/MS spectrum, both tools report a ranked list of structure candidates. This approach must fail for 

novel structures that are not contained in structure databases. However, for the task of compound 

classification it is sufficient that the top-ranking candidates belong to the same compound class as 

the query compound. The compound classes for any given candidate structure are computed using 

the ClassyFire webservice (http://classyfire.wishartlab.com/). A k-NN uses the compound class 

annotations of the top k candidates and, for each compound class, decides via majority vote (yes/no) 

of the top k candidates whether the class is assigned to the query. We search in the PubChem 

structure database, considering all structures with the same molecular formula as the query, and use 

MetFrag or CSI:FingerID, as the search engine. We removed structures in the independent dataset 

from PubChem and the SVM training dataset before searching, as it was done for training the DNN. 

This corresponds to the situation that the measured compound is a novel structure. We evaluated 

parameters k=1 and k=5, and found that k=5 performs slightly better for both MetFrag and 

CSI:FingerID (data not shown).  
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It is noteworthy that this approach has a number of conceptual shortcomings. We noted that if there 

exist no molecular structures with the query molecular structure, then the method cannot assign 

any compound classes. This shortcoming is the most obvious but only indicates an underlying issue, 

resulting in numerous similar problems: As an example, for k=5, we need at least three positive 

examples with this molecular formula so that a compound class can be positively assigned. 

Presented an outlier structure substantially different from all other structures with the same 

molecular formula, we will predict all corresponding compound classes wrong even if the correct 

structure is part of the structure database we search in. More generally, if a certain compound class 

is over- or underrepresented for a particular molecular formula, then it is more likely to be predicted 

“yes” or “no”, respectively, independent of the actual data. These shortcomings do not result in bad 

evaluation statistics, though: Considering any reference compound used for evaluation, not only its 

structure is present in PubChem, but also several structures with high similarity and identical 

molecular formula. To this end, evaluation statistics of the k-NN classifiers must be interpreted with 

care. It is also noteworthy that the abovementioned issues are not the ones usually attributed to k-

NN classifiers (curse of dimensionality, label noise). 

Instead of searching in a structure database, we can also compare the query spectrum against 

spectra in a spectral library, and obtain a ranked list of reference spectrum candidates. Considering 

the small size of the spectral library, we do not filter by the precursor mass of the query. For 

comparing two spectra, we use the cosine similarity of the two spectra, as well as of the inverse 

spectra (obtained by subtracting each peak mass from the precursor mass) and sum up both values. 

Using the spectrum and its inverse allows for comparing spectra of compounds that differ in mass 

but are structural very similar14, 58. We search in the SVM training dataset as our spectral library. For 

each query, we removed all spectra from the spectral library corresponding to the query structure. 

We found that hybrid search works better than just comparing spectra by their cosine (data not 

shown). All of the abovementioned issues also apply to the spectral library k-NN, considering the size 

of the spectral library; in addition, it suffers from all issues of direct prediction. 
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Matthews correlation coefficient. The Matthews correlation coefficient (MCC) is defined as 

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
, 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 are the numbers of true positives, true negatives, false positives and false 

negatives of a binary classification, respectively23. The MCC lies between -1 and +1, where +1 

corresponds to a perfect classification, 0 to a random classification, and -1 to a “perfectly wrong” 

classification. The MCC is considered more informative than F1 score and accuracy, because it takes 

into account the balance ratios of these four values; in particular, the F1 score of a random 

classification is non-zero and depends on the actual classification task, rendering predictor 

performance incomparable. The MCC is equivalent to the Pearson correlation coefficient between 

observations and predictions. 

LC-MS data processing 

For the processing in SIRIUS 4.4, one or more LC-MS/MS runs must be provided in mzML or mzXML 

format. Feature detection in SIRIUS 4.4 is similar in spirit to a targeted analysis: instead of searching 

for all features in a run, SIRIUS is first collecting all MS/MS spectra and their precursor information. It 

then searches for features that are associated with those MS/MS spectra: these are the precursor 

ions, adduct ions and isotope peaks. The precursor information reveals the retention time and mass 

range where the precursor ions can be detected. Adducts and isotopes can be found using 

predefined lists of mass differences. Fragmentation spectra assigned to the same feature (precursor 

ion) are merged. SIRIUS 4 is using the same feature alignment method as MZmine40. 

Mice dataset 

We analyzed 834 LC-MS runs from MassIVE (id: MSV000079949)30. The corresponding samples were 

taken from different organs of eight mice; four have an intact microbiome (specific-pathogen free, 

SPF), while four are germ-free (GF). Feature detection and feature alignment were performed using 

SIRIUS 4.4. We only kept features for which we had MS/MS measurements in at least two samples. 
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We used ZODIAC to improve molecular formula annotation57. To speed up running times, only 

compounds below 860 Da were considered. 

This resulted in a feature quantification table, where each row corresponds to compound and each 

column to its intensity (maximum peak height) per sample. We predicted compound classes for each 

compound. We subtracted the blank intensities from the table, and performed quantile 

normalization to make the samples comparable. Next, we analyzed which compound classes have a 

different abundance between GF and SPF in the digestive system. In the following, we only consider 

samples from the organs mouth, esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, as 

well as from stool. 

Summing up all intensities over all compounds of a class already gives helpful insights, see Fig. 3b-d. 

However, this assumes that all compounds of a class change their intensity in the same direction. A 

better indicator is the fold change, which is calculated as the median of all intensities in GF samples 

divided by the median of all intensities in SPF samples. A pseudo-count must be added beforehand, 

to avoid division by zero. We use the 1% percentile of non-zero intensities in the quantification table 

as a pseudo-count. 

We sorted compounds by absolute logarithm (base 10) of their fold changes. Values below 1 (fold 

changes between 0.1 and 10) were set to zero, as we do not consider such fold changes to be 

informative.  For each compound class, we checked if compounds of this class appear more often in 

the higher discriminative region; this is done using a one-tailed Mann-Whitney-U permutation test59. 

We then sort compound classes based on their p-value. Compound classes with the lowest p-value 

belong to classes which trigger the metabolic difference between GF and SPF samples 

(Supplementary Table 1). 

We uploaded quantification table and input MS/MS spectra to GNPS and performed feature-based 

molecular networking2, 60. We downloaded the Cytoscape files for the network visualization. We 

mapped CANOPUS class annotations to each node in the network. For evaluating results, we 
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compared selected class annotations with GNPS library hits and with CSI:FingerID database search 

results (searching in PubChem). 

Euphorbia dataset 

We use LC-MS runs from the study by Ernst et al.20 downloaded from MassIVE (id: MSV000081082). 

In total, we analyzed samples from 43 different Euphorbia species. Feature detection was performed 

by SIRIUS 4.4. In contrast to ref. 20 we did not align features, because samples were taken from 

different species and, therefore, have a different metabolic composition; see Fig. 3b in ref. 20. For 

most samples, SIRIUS detected more compounds than ref. 20 (Supplementary Fig. 5). For molecular 

formula annotation we used SIRIUS and ZODIAC26, 57. ZODIAC processed the plant samples of all 

species within one network. Compound classes were predicted for all compounds using the best 

scoring ZODIAC molecular formula. For counting the number of compounds per class, we considered 

all compound class assignments with a probability greater than 0.5.  

Chemotaxonomy 

We used WPGMA hierarchical clustering for computing the dendrogram in Fig. 5b. As the distance 

metric, we chose the Euclidean distance over the normalized compound class distribution; this is the 

vector with the logarithmized number of compounds per compound class plus one, centered to zero 

mean and unit variance. This turns out to be critical, as the number of detected compounds differ 

substantially between species (Supplementary Fig. 5). We used the scipy library for clustering61.  
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Supplementary 

 

 

Supplementary Figure 1. CANOPUS performance sunburst plot. Matthews correlation coefficient 
(MCC) for the 732 of 1,270 compound classes with at least 50 positive examples. SVM training 
dataset. A darker green coloring corresponds to better prediction performance for the class. The size 
of each slice is chosen such that all classes fit into the figure and has no further meaning. Inner slices 
represent parent classes of outer slices. Two basal classes (organic oxygen compounds and 
organooxygen compounds) included in the plot for completeness. 
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Supplementary Figure 2. Effect of removing a subclass from the MS/MS training data. (a-c) Regular 
evaluation setup: classes and subclasses are distributed into cross-validation folds, ensuring that 
methods are never evaluated on the same MS/MS data or structures they were trained on. (d-f) We 
remove all flavonoid glycosides (the subclass) from the MS/MS training data (d), and then evaluate 
the predictor for glycosides (the class) on these removed MS/MS spectra (e). A perfect method 
would still classify all flavonoid glycoside MS/MS spectra as glycosides (f). CANOPUS exhibits only a 
small drop (85% to 96%) in correct classifications (c,f). In contrast, direct prediction performed 
mostly on par with CANOPUS before removing flavonoid glycosides from the MS/MS training data 
(c), but misses almost all of them (94%) afterwards (f). We were able to attribute this to the 
presence of isoflavonoide glycosides in the training data; these do not belong to the flavonoid class, 
but have highly similar structures and MS/MS spectra, except for the presence of a sugar residue. 
We observed that direct prediction in (d-f) uses the presence of a sugar residue to infer that a 
MS/MS spectrum is not a glycoside. In contrast, CANOPUS does not fall for this “bait”; 
heterogeneous training allows us to integrate the substantially more comprehensive structure data 
in its predictions. 
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Supplementary Table 1. The sixty most discriminative compound classes for differentiating 
between germ-free and specific-pathogen-free mice. Reported p-values are calculated using the 
one-tailed Mann-Whitney-U test and corrected via Bonferroni-correction. Column ‘#’ contains the 
number of compounds annotated with this compound class. 

Compound class p-value # Compound class p-value # 

Steroids and steroid derivatives 2.84E-141 505 Oxacyclic compounds 4.63E-05 1046 

Cyclic alcohols and derivatives 3.06E-118 616 Monosaccharides 4.99E-04 289 

Bile acids, alcohols and 
derivatives 

3.39E-104 223 Carboxylic acids 7.35E-03 1179 

Hydroxysteroids 4.57E-98 314 
Organosulfonic acids and 
derivatives 

1.02E-02 156 

Hydroxy bile acids, alcohols 
and derivatives 

7.38E-84 182 
Organic sulfonic acids and 
derivatives 

1.02E-02 156 

Triterpenoids 5.86E-74 113 Flavonoid glycosides 2.11E-02 12 

3-hydroxysteroids 2.69E-72 173 Acetals 2.27E-02 451 

Prenol lipids 5.41E-43 241 Sulfonyls 2.64E-02 177 

Secondary alcohols 5.81E-39 1651 1-benzopyrans 4.66E-02 64 

Alcohols and polyols 1.27E-27 2119 Flavonoids 7.72E-02 17 

O-glucuronides 5.36E-27 43 Isoflavonoids 8.08E-02 10 

Sugar acids and derivatives 5.36E-27 43 Ethers 9.04E-02 1073 

Glucuronic acid derivatives 5.36E-27 43 Thiazoles 9.55E-02 14 

Glucuronides 7.39E-26 42 Cyclohexenones 1.07E-01 17 

Beta hydroxy acids and 
derivatives 

2.06E-23 50 Sulfuric acid esters 1.43E-01 10 

Hydroxy acids and derivatives 2.35E-22 49 Benzopyrans 2.22E-01 70 

Steroid esters 5.43E-15 43 Sulfuric acid monoesters 3.54E-01 11 

Ketones 8.51E-15 172 Oxanes 3.56E-01 505 

Pyrans 2.14E-13 90 5-hydroxyflavonoids 5.22E-01 16 

Terpene glycosides 8.03E-13 27 Vinylogous acids 7.89E-01 29 

Polyols 8.66E-12 502 
Carbohydrates and 
carbohydrate conjugates 

8.96E-01 472 

Phenolic glycosides 1.52E-11 16 Steroidal glycosides 1.01E+00 21 

Tetrahydrofurans 1.46E-10 38 Pyranones and derivatives 1.33E+00 41 

Alkanesulfonic acids 3.20E-09 102 Hydroxyflavonoids 1.47E+00 18 

Organosulfonic acids 3.20E-09 102 
Monocarboxylic acids and 
derivatives 

1.67E+00 1487 

Chromones 4.22E-09 21 Flavones 3.08E+00 11 

Alkanesulfonic acids and 
derivatives 

5.15E-09 103 Tertiary alcohols 3.63E+00 92 

Oxosteroids 9.43E-09 34 7-hydroxyflavonoids 3.72E+00 11 

Lipids and lipid-like molecules 2.49E-05 2918 Hexoses 5.66E+00 69 
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Supplementary Figure 3. Molecular network and compound class annotations for the mice 
digestive system. Node colors indicate the compound class annotated by CANOPUS; displayed 
compound classes were manually selected. When a compound is annotated with multiple classes, 
the class with the larger structural pattern is selected. Nodes are connected by an edge if the 
spectral similarity is 0.7 or higher. 
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Supplementary Figure 4. Molecular network and compound class annotations for the mice 
digestive system. Node colors indicate the compound class annotated by CANOPUS; compound 
classes are the same as in Supplementary Figure 3. Compounds belonging to multiple classes 
displayed as multicolored nodes. Nodes are connected by an edge if the spectral similarity is 0.7 or 
higher. 
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Supplementary Figure 5. Number of compounds detected for each Euphorbia subgenus. Orange 
bars indicate the number of compounds detected here, black ticks indicate the number of 
compounds reported in the original study. 
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Supplementary Figure 6. Number of compounds annotated as diterpenoids in different species of 
Euphorbia. Left: absolute number of compounds. Right: relative number of compounds, that is, 
number of diterpenoids divided by total number of compounds in each species. Black ticks in the left 
figure mark the reported number of diterpenoids in the original study by Ernst et al. 
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Supplementary Figure 7. Number of compounds annotated as triterpenoids in different species of 
Euphorbia. Left: absolute number of compounds. Right: relative number of compounds, that is, 
number of triterpenoids divided by total number of compounds in each species. Black ticks in the left 
figure mark the reported number of triterpenoids in the original study by Ernst et al. 
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Supplementary Figure 8. Number of diterpenoids in different species of Euphorbia. Black bars show 
the amount of diterpenoids that have a benzoic acid ester (a), fatty acid ester (b) or two carboxylic 
acids (c). 
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Supplementary Table 2. Features for the molecular formula input layer.  

Index Description Encoding 

1-12 Number of C, H, N, O, P, S, B, Cl, F, I, B, Se Integer 
13 Exact mass Real number 
14 Ring-Double-Bond equivalent (RDBE) Real number 
15 RDBE is zero Binary (-1, 1) 
16 𝑹𝑫𝑩𝑬

(𝒎𝒂𝒔𝒔/𝟏𝟎𝟎)𝟐/𝟑  Real number 

17 Hetero-to-carbon ratio Real number 
18 Hetero-to-oxygen ratio Real number 
19 Hetero-without-oxygen-to-carbon ratio Real number 
20 Hydrogen-to-carbon ratio Real number 
21 Oxygen-to-carbon ratio Real number 
22 Nitrogen-to-carbon ratio Real number 
23 Molecular formula consists only of the elements C,H,N,O,P,S Binary (-1, 1) 
24 Molecular formula consists only of the elements C,H,N,O Binary (-1, 1) 
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This is file “evaluation_SVM_training_data.xlsx” 

Supplementary Material 1. Performance of CANOPUS and direct prediction for individual 
compound classes; evaluation on the SVM training dataset. Performance results for all 1,270 
compound classes from ClassyFire with at least 500 compounds with MS/MS data. We report 
accuracy, precision, recall, MCC and F1 score for each individual compound class. We also report 
evaluation results when removing glycoflavonoids and bile acids from the training data. 

 

This is file “method_comparison_independent_data.xlsx” 

Supplementary Material 2. Performance of all evaluated methods for individual compound 
classes; evaluation on the independent dataset. Performance results for all 1,270 compound classes 
from Supplementary Material 1. We report accuracy, precision, recall, MCC and F1 score for each 
individual compound class and each method. 

 

This is file “plants_comparison.html” 

Supplementary Material 3. Interactive comparison of Euphorbia plants. The user can select any 
two plant species to be compared; two sunburst plots then show the number of compounds 
annotated by CANOPUS for each compound class. Mouse-over allows to display details of a 
compound class, including the number and percentage of compounds that belong to this class, and 
the ClassyFire ontology and description of the class. 
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