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Abstract

The neural representation of language comprehersagnbeen examined in several meta-analyses of
fMRI studies with human adults. To complement thisrk from a developmental perspective, we
conducted a meta-analysis of fMRI studies of augitanguage comprehension in human children. Our
analysis included 27 independent experiments ifnvgla = 625 children (49% girls) with a mean age of
8.9 years. Activation likelihood estimation and ;éased effect size mapping revealed activatiokgpea
in the pars triangularis of the left inferior frahgyrus and bilateral superior and middle tempgyai. In
contrast to this distribution of activation in ahién, previous work in adults found activation peakthe
pars opercularis of the left inferior frontal gyrasd more left-lateralized temporal activation peak
Accordingly, brain responses during language cohmgrsion may shift from bilateral temporal and left
pars triangularis peaks in childhood to left tengb@nd pars opercularis peaks in adulthood. Thi$ sh

could be related to the gradually increasing swtgitof the developing brain to syntactic inforriaat.
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Introduction

Hemodynamic activity during language comprehendias been extensively examined using
fMRI in adults. Since typical sample sizes of sengtudies range from about 10 to 30 participangtam
analytic methods have been used to increase &altigbwer and detect robust effects across exgstisn
(Binder et al., 2009; Ferstl et al., 2008; Roddlet2015; Vigneau et al., 2006). Following thipegach,
three canonical regions underlying language comgrgion in adults were consistently found: the left
inferior frontal gyrus (IFG), the left middle temab gyrus (MTG), and the left superior temporalwgyr
(STG; Binder et al., 2009; Ferstl et al., 2008; &ad al., 2015; Vigneau et al., 2006). While thespa
opercularis of the left IFG and the left STG walated to syntactic processing (Rodd et al., 2015;
Vigneau et al., 2006), the pars triangularis araitalis of the left IFG and the left MTG was reldt®
semantic processing (Binder et al., 2009; Ferstll.e2008). When pooling across tasks, peak aitiva
was localized in the pars opercularis of the IE@G land MTG (Rodd et al., 2015).

A growing body of literature has reported fMRI ults obtained from language comprehension
experiments with children. At the word level, expents have targeted phonological processing whith t
two-word rhyme judgement task (Cao et al., 200&)eCet al., 2008; Desroches et al., 2010) and tke fi
sound matching task (Raschle et al.,, 2014), semamicessing with the noun categorization task
(Balsamo et al.,, 2006), and (morpho-)syntactic @ssing with the morphological awareness task
(Arredondo et al., 2015). At the sentence leved, diescription definition task has been frequendgdu
(Bartha-Doering et al., 2018; Berl et al., 2014;dviParks et al., 2010). In this task, childretelisto a
noun preceded by a short description. They aredaskgidge whether the two are matching (e.g. ‘Aglo
yellow fruit is a banana”) or not (e.g. “Somethiggu sit on is a spaghetti”). Other tasks include a
judgment on whether two semantically or syntadijcadanipulated sentences convey the same meaning
(Borofsky et al., 2010; Nufiez et al., 2011), themaetic/syntactic acceptability task (Brauer et 2011),
and the sentence-picture matching task (HorowitadkKret al., 2015). Moreover, the passive listening
task has also been employed in a number of stidissll et al., 2012; Monzalvo et al., 2012). Thisk

has also often been used for stories (Horowitz-Krmetual., 2016; Romeo et al., 2018; Sroka et alL5®,
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sometimes additionally asking children to answentent-related questions or retell the stories (\éshn
et al., 2019).

While meta-analyses of fMRI studies of languagmgehension in children are currently not
available, the present literature is synthesized iqualitative and a quantitative review (Skeide &
Friederici, 2016; Weiss-Croft & Baldeweg, 2015).e8k reviews suggest that activity in left-lateediz
regions in the IFG, MTG, and STG known from the laditerature is already broadly established by 3
years of age. Focused activity in the pars operisutd the left IFG, however, emerges only graduall
towards adulthood when children become more seaditi syntactic information (e.g. morphology, word
order). Younger children, in contrast, rely moresamantic information and thus more strongly récrui
the pars triangularis of the left IFG (Skeide &deterici, 2016; Weiss-Croft & Baldeweg, 2015).

Here we conducted the first statistical synthesfs tlie fMRI literature on language
comprehension in children. To this end, we quatdithe overlap of hemodynamic activations repared
previous studies using activation likelihood estiova (ALE; Eickhoff et al., 2012; Turkeltaub et al.
2002) and seed-based effect size mapping (SDM;jédHaizagirre et al., 2019). Following the currgntl
available original and review articles, we hypothed two major differences in the activation patter
associated with language processing in childrenpemed to adults. First, we expected activation péak
the temporal cortex to be less strongly lateralizethe left hemisphere. This hypothesis was based
number of individual studies in children which hdeeind significant clusters of activation not oriy
the left MTG and STG, but also in the right MTG &8itiG. The latter effect is typically not consistgnt
found in adults (e.g. Holland et al., 2007; Hor@aitraus et al., 2015; Sroka et al., 2015; Szaflarshl.,
2006). Second, we hypothesized that the distributifaactivity in the left IFG would differ such thpeak
activity in children would be found in the parsatrgularis, while peak activity in adults would toeifid
in the pars opercularis. This hypothesis was basgurevious work indicating that at least untilitHst
years in school, children rely more strongly on aetit information—typically associated with enhashce

recruitment of the pars triangularis of the lefiGHand only gradually become more sensitive to
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syntactic information—typically associated with kgeaf activation in the pars opercularis of the IEfG

(e.g. Nufiez et al., 2011; Skeide et al., 2014).

Materialsand Methods
Literature Search

The PubMed database (https://www.ncbi.nim.nih.gobrped/) was used to identify articles

containing the terms “fMRI AND language AND childfeor “functional MRl AND language AND

children” in their respective title or abstract. A August 2019, this search yielded 356 resulteraf
removing duplicate entries. These results wereesem@ to exclude any articles that did not meetane
more of the following predefined inclusion criteria

(1) The article was written in English.

(2) There was at least one group of healthy, monolihghiddren with a mean age between 3
and 15 years. The lower boundary of this age ravag set by the feasibility of task-based
fMRI studies in children and the upper boundary wlassen to include a gap of 3 years until
adulthood (18 years).

(3) The children completed a natural language taskndufMRI scanning, not an artificial
language task (e.g. scrambled syllables).

(4) The authors conducted a random-effects analysisgyusigeneral linear model to obtain
whole-brain within-group results.

(5) Peak coordinates were reported in Tailarach or kahiNeurological Institute (MNI) space.

Thus, articles only reporting the results of coojion analyses of multiple tasks (e.g. reading and

listening tasks) or groups (e.g. children and adaitchildren with and without reading difficultyere
excluded to maintain the main focus of our analgsisthe activation associated with specific typés o
language tasks in typically developing childrenpiing these criteria, we identified 41 eligibldiales,

37 of which used language comprehension tasks,eabdour deployed language production tasks (e.g.

overt or covert verb generation tasks). As previonsted by Weiss-Croft & Baldeweg (2015), the dmal
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number of language production experiments mightekplained by the problem of speech-related
movement artifacts, which is aggravated in studiigs children.

In a recent simulation study, Eickhoff et al. (2Dl#emonstrated that at least 17 to 20
independent experiments should be included in dry-Based meta-analysis of neuroimaging data. This
ensures acceptable robustness and power by mingniaie chance that the results are driven by single
experimental results and by maximizing the chancedetect small- and medium-size effects.
Accordingly, we were not able to run separate a®dyfor both comprehension and production tasks.
Instead, we decided to narrow down our analysitbdee articles investigating language comprehension
Of these, 27 articles included at least one camlith which stimuli (words, sentences, or stories)e
presented auditorily, whereas ten articles exclgiused visual stimuli. We excluded these tenirepd
experiments because, as before, their number wasfimient to conduct a robust and sufficiently
powered ALE-based meta-analyses (Eickhoff et @162, thus focusing our analysis on auditory
language comprehension experiments. Finally, twihn@fremaining articles were excluded because fMRI
was recorded while children were asleep in the remarfRedcay et al., 2008). One further article
(Monzalvo et al., 2012) was excluded because the santrast and group of children had already been
included as part of another, more comprehensivdigation (Monzalvo and Dehaene-Lambertz, 2013).
This entire selection process, which is summaréed flowchart in Figure 1, yielded a final sangfi@4
articles that could be included in the present ragglysis.

Post hoc, we included various related search téfimain”, “function*”, “magnet*”, “BOLD”,
“child”, “development”, and all names of the tasksed in the already included studies). Furthermoee,
screened the reference lists and tables of theatigrticles and reviews. These screening proe=ddid

not reveal any additional suitable studies thateweat yet captured by the initial PubMed search.
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Figure 1. PRISMA flowchart of the selection process forlired articles. An initial screening of the 356ides

listed on PubMed (as of August 2019) revealed 4itles that reported whole-brain coordinates imdéad space
obtained from fMRI experiments targeting languagecpssing in healthy children. Of these, 24 arsialsing
auditory language comprehension tasks were includetie statistical analysis. ICA = independent poment

analysis.

Activation Likelihood Estimation

To identify converging activation across the expemts reported in these articles, we conducted

an activation likelihood estimation (ALE; Eickhddf al., 2012; Turkeltaub et al., 2002) as implereént
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in the GingerALE software, version 3.0.2 (http:4iomap.org/ale/). ALE performs a coordinate-based

meta-analysis of the peak coordinates reportedMiRIfexperiments to determine where in the brain
results converge at an above-chance level. “Exparitrefers to one type of task (i.e. auditory laage
comprehension) in one specific sample (i.e. onaugrof children). Hence, multiple fMRI contrasts
reported within a single article constitute mukiphdependent experiments if they are obtained from
different samples, but should be pooled into alsiegperiment when they are obtained from the same
sample to control for within-group effects (Eickhet al., 2017; Turkeltaub et al., 2012). In ourtane
analysis, the 24 articles reported 32 contrastadditory language comprehension. Ten of theseg&stst
were investigated in identical or overlapping saapind their foci were thus pooled into one expenim
(see Table 1). This procedure resulted in 27 erparts reporting 453 foci in total (mean = 16.8, iaed

= 11 per experiment). Eight of these experimenpemed foci in Talairach space and were conveided t
MNI space using thizbm2cal function as implemented in GingerALE (Lancastealet2007).

As a first step, the ALE algorithm created a binauwap for each experiment in which all activated
voxels were assigned a value of 1 and all otheeloare assigned a value of 0. Next, to accounthfor
uncertainty associated with using condensed pdaknmation instead of parametric whole-brain maps, a
three-dimensional Gaussian distribution was fittedund each of these peaks, smoothing out their
activation across the neighboring voxels. ALE deiees the amount of uncertainty based on the sample
size of the respective experiment, with foci framnger samples being smoothed with a narrower kernel
(Eickhoff et al., 2009). This resulted in sepanatean activation maps for all experiments, whichewer
then combined into a single ALE map using a randdieets approach. To do so, each voxel was
assigned a value corresponding to the union ofdgtévation probabilities from the individual mean
activation maps. This so-called ALE value indicatésr each gray matter voxel, the degree of
convergence in activation between all included erpents. Finally, the map of ALE values was
statistically thresholded to check in which voxetsvergence could be expected to be above chance
level. As recommended on the basis of a recentlation by Eickhoff et al. (2016), we combined an

uncorrected cluster-forming voxel-wise height thiad of p < .001 and a cluster-wise family-wise error
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(FWE) correction with a threshold pf< .05 based on 1,000 random permutations. All ogerviving

this threshold were interpreted as showing abowanoh convergence between experiments reflecting the
“true” activation associated with auditory languagenprehension in children. Local peaks within ¢hes
significant clusters were assigned their respectimatomical gray matter labels using the Anatomy
toolbox, version 2.2c (Eickhoff et al., 2007, 2006, 2005) in SPM12

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12Mhis toolbox provides anatomical labels for peak

coordinates in MNI space based on probabilistic sreap, for peaks within the IFG, their probability
%) of belonging to Brodmann Area 44 (pars operdsilar 45 (pars triangularis; Amunts et al., 2004).
Finally, the Talairach Daemon atlas as implemeie@ingerALE (Lancaster et al., 2000, 1997) was

used to determine the Brodmann Area of peaks authil IFG.

Comparison with Previous Adult Meta-Analysis

The pattern of activation associated with langueg@prehension in children was compared to
previous meta-analytic work on language compreloansi adults. To achieve this, we reproduced the
meta-analysis by Rodd et al. (2015), which inclu&ddstudies on semantic and syntactic language
processing with a total of 957 adult subjects a6 8ci. Details of the literature search, inclusio
criteria, and meta-analytic methods can be founthénoriginal publication (Rodd et al., 2015). Foe
purpose of the present study, we deviated fronotlggnal analysis in two aspects. First, we exctlday
experiments using visual stimuli (i.e. reading ekpents), in line with our meta-analysis in childre
which included only experiments using auditory stimThis resulted in a subset of 23 studies inltadu
with a total of 431 subjects and 105 foci. Secandhe original publication, data were thresholded
corrected based on the false discovery rate. Irrasin here we used an uncorrected cluster-forming
voxel-wise height threshold @f < .001 and a cluster-wise FWE-corrected thresbblol < .05, which is
identical to the threshold that we used for analyzihe data of the children. The cluster-wise FWE-
corrected threshold was preferred in accordande avitecent simulation study by Eickhoff et al. (801

These authors demonstrated that this thresholdiqeevhe highest statistical power and therefoee th
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highest sensitivity to detect “true” effects thatre known a priori by simulating the data. At tleng
time, this threshold turned out not to inflate thenber of spuriously significant clusters. Thresima
using the false discovery rate as in Rodd et @1%2, on the other hand, was shown to lead to both
substantially reduced statistical power and areia®e in the number of spurious clusters.

After obtaining the thresholded ALE map of the aéxperiments, we compared it statistically to
the ALE map of experiments in children. To this ewd subtracted ALE maps to identify clusters where
activation was found more consistently in one grocompared to the other group (children > adults,
adults > children). Additionally, we created a aonjtion map showing similarities in activation beem
the two groups. In each case, the resulting ALE mvap thresholded using an uncorrected cluster-
forming voxel-wise height threshold pf< .001 and a cluster-wise FWE-corrected thresbblol < .05.
Clusters that were significant at this level weratamically labeled using the Anatomy toolbox in

SPM12 and assigned to a Brodmann Area based drathgach Daemon atlas.

Seed-Based Effect Size Mapping

An alternative approach to statistically synthesiesults from multiple fMRI experiments is
seed-based effect size mapping (SDM; Albajes-Eimagit al., 2019). Similar to ALE, SDM uses a
coordinate-based random-effects approach that cmalthe information of peak coordinates in standard
space across multiple experiments. While ALE treditpeak coordinates the same, SDM accounts for
the effect size associated with each peak and sétmts the original parametric maps of the indiaid
experiments before combining them into a meta-dicalpap. Hence, while ALE maps quantify the
degree of overlap in peak activation across exparisy SDM estimates the effect size of activation o
deactivation for each voxel. Although the SDM methi still less commonly used compared to ALE
(Acar et al., 2018), we thought it might complemeunt main results in three aspects. First, the tfzat
SDM uses a different algorithm than ALE rendengassible to scrutinize the robustness and replicabi
of the results obtained from ALE. Second, SDM d#fgiates between voxels with significant activatio

and deactivation while ALE only captures activati®adua & Mataix-Cols, 2012). Finally, SDM makes

10
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it possible to include covariates and compute megaession analyses as a means to estimate the
influence of potentially confounding variables.

We performed the additional SDM meta-analysis usiggsame peak coordinates as before but
adding, whenever possible, their associdatear z-values (the latter being converted to-zalue). This

analysis was conducted using the SDM-PSI softwaresion 6.11 (https://www.sdmproject.com/). First,

effect size maps were built for the 27 individugperiments. This was accomplished by (a) converting
the t-value of each peak coordinate into an estimateffetct size (Hedge's) using standard formulas
(Hedges, 1981) and (b) convolving these peaks avitllly anisotropic unnormalized Gaussian kermel (
=1, FWHM = 20 mm) within the boundaries of thealéf gray matter template as provided by SDM
(voxel size = 2x2x2 mm). Effect sizes for peakshwinhknownt- or z-values were estimated from a
threshold-based imputation based on the mean efieet of peaks for whichi-values are known.
Imputation was conducted separately for groups >gfeements with different statistical thresholds
(Radua et al., 2012). Second, the individual effégzé maps were combined using a random-effects
general linear model. Third, the statistical sigwifice of activations in the resulting meta-analgfifect
size map was examined by comparing it to 1,000aanplermutations of activation peaks within the gray
matter template. Finally, the meta-analytic mapeevtbresholded using an uncorrected voxel-wisehteig
threshold ofp < 0.001 and a cluster-wise extent thresholdkof 50 voxels, which approximately
corresponds to the FWE-corrected thresholding mphaee implemented in ALE (Eickhoff et al., 2012;
Radua et al.,, 2012). Peak coordinates of the regulineta-analytic clusters of activation were
anatomically labeled using the Anatomy toolbox PIMEL2 and assigned to a Brodmann Area based on
the Talairach Daemon atlas.

SDM was also used to assess the effect of founpaliy confounding variables on the results of
the meta-analysis, namely, age (mean age of chiidreach experiment), baseline (1 = rest/fixat,
active), type of language task (1 = story listeniadg- decision tasks at the sentence level, 3 isidec
tasks at the word level), and software package tmeiinage processing and statistical analysishan t

original publication (1 = SPM, 2 = FSL/LIPSIA/AFNIFor each the four variables, a separate linear
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model was calculated in SDM to identify clusteratthignificantly covaried with the respective vatéa

All pre-processing and thresholding parameters Wept the same as in the main analysis.

Jackknife Sensitivity Analysis

To explore how potentially spurious results in therature (e.g. driven by publication bias)
would affect the results of our ALE analysis, wedocted a Jackknife sensitivity analysis. To thid,e
we ran 27 different meta-analyses in ALE, each wittifferent experiment of the original sample lpein
left out. We visually inspected how well each afgh simulations reproduced the original resultsrims
of number, location, and size of significant ALExets. Substantial variability would indicate thhet
results are driven by the specific study that hadnbleft out, thus compromising the robustness to

spurious (e.g. false positive pthacked) findings.

Fail-Safe N Analysis

To further evaluate the robustness of the presssilts against unpublished studies with null
results in the “file drawer” (e.g. driven by biasvards publishing positive results), we carried @gail-
safe N analysis. The rationale behind this apprasc¢b investigate the effect of iteratively addimgjl-
result experiments to our original sample (Acaalet2018). Null-result experiments were create®jn

version 3.6.1 (https://www.r-project.org), matchitige real experiments in terms of sample size and

number of foci reported, but with foci being dibtrted randomly across the gray matter. Next, netame
analyses were computed in ALE by iteratively addimg null experiment after another to the original
data. For each significant cluster in the originaklysis, the fail-safe N was defined as the highes
number of null experiments that could be added! tmé cluster failed to reach statistical significa.
Thus, fail-safe N indicates how many fMRI studigwnon-significant results could be hidden in fite
drawer without compromising the significance of extain cluster. To increase reliability, the whole

procedure was repeated with ten different, randogaperated sets of null-result experiments, each

12



244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

representing one potential file drawer. The medhséde N of these ten simulations was calculated
separately for each cluster.

Following Acar et al. (2018), we also pre-specifiedler and upper boundaries for the fail-safe N
of each cluster based on the following considensticA recent modelling approach to data from the

BrainMap database (http://brainmap.org/) indicaled there might be up to 30 unpublished null gsdi

per 100 published neuroimaging studies in the laggudomain (Samartsidis et al., 2019). Using this
conservative estimate of the file drawer effect,prne-specified that the fail-safe N for each clusteould
exceed a lower boundary of eight added null expemis (equaling 30% of the real data). The upper
boundary was pre-specified as the number of nytegrents that could be added so that the real
experiments still made up for 10% or more of thei frontributing to a particular cluster. This eresur
that the significance of a cluster is driven by thajority of experiments instead of few highly irghtial
ones. Only if the actual fail-safe N obtained frtime simulation is between these two boundaries, the
cluster can be assumed to be robust against lqmateatial file drawer effect and hyper-influentédfects

of a few experiments.

Results
Descriptive Statistics

Twenty-seven experiments reported in 24 articleblipied between 2003 and 2019 were
included in the present meta-analysis. Participamiee 625 typically developing, monolingual childre
with a mean age of 8.9 years (range: 3 to 15 ye@ender was approximately equally distributed (49%
females) and children were almost exclusively Fgimded (96%). Of the 27 experiments, eight inviblve
judgments at the word level, 12 involved judgmeattthe sentence level, and seven involved listeting
spoken stories. A descriptive overview of theseeexpents is provided in Table 1 and the distritngio

of mean ages and sample sizes of the experimentepicted in Figure 2.
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Table 1
Descriptive Information of the 27 Experiments Included in the Meta-Analysis
No. Article Samplg Age (mean, FemalesHanded- Task Foci
(n) range) (n) nes$§ (n)
Ahmad et al. (2003) 15 6.8, 5-7 9 R Story > reedrstory 3
Arredondo et al. (2015) 16 9.3,6-12 8 R Worcktigion judgment > rest fo
Morphological judgment > rest
3 Balsamo et al. (2006) 23 8.5,5-10 13 1L Nouegmatization > reversed nouns 9
4 Bartha-Doering et al. 30 103, nf 12 R Description-definition matching > reversed 7
(2018) speech
5 Bartha-Doering et al. 18 109, nk 7 R Description-definition matching > reversed 11
(2019) speech
Berl et al. (2010) 44 10, 7-12 20 R Story > reedrstory 6
Berl et al. (2014) 57 8.9,4-12 29 R Descriptilafinition matching > reversed 15
speech
8  Borofsky et al. (2010) 14 12.4,%Mr 8 R Two-sentence matching > rest 963
Two-sentence matching > rest
9 Brauer et al. (2011) 10 7,5-8 5 R Sentence aaioipy judgment > rest 39
10 Brennan et al. (2013) 16 10.3,8-12 °nir R Rhyme judgment > fixation cross 22
11 15 10.3,8-12 r R Rhyme judgment > fixation cross 30
12 Caoetal. (2011) 25 10.4,8-12 12 R Rhyme jiegm tone judgment 30
Spelling judgment > tone judgment
13 Cone et al. (2008) 40 11.9,9-15 22 R Rhymemetd > tone judgment
14 Desroches et al. (2010) 12 115,8-14 4 R Rhydgment > fixation cross 9
15 Horowitz-Kraus et al. 23 8.5, nft 15 R Sentence-picture matching > word-picture 28
(2015) matching
16 Horowitz-Kraus etal. 9 102, nf 7 2L Story listening > broadband noise sweep 9
(2016) listening
17 Hubbard et al. (2012) 10 121 /r 0 R Story listening + picture viewing > picture 8
viewing
18 Knoll et al. (2012) 22 5.8,4-6 9 6A Sentenstehing subject initial) > rest 92
Sentence listening object initial) > rest
19 Monzalvo & Dehaene- 23 9.6,8-10 11 2L Sentence listening > Foreigthesae listening 9
20 Lambertz (2013) 13 6.8, 5-7 6 2L Sentence listening > Foreignesee listening 11
21 13 6.2, 5-6 7 3L Sentence listening > Foreignesee listening 8
22 Moore-Parks et al. 23 8.8,7-10 12 R Description-definition matchingeversed 15
(2010) speech
23 Nufiez et al. (2011) 19 11.1,7-15 10 1L Two-aeed matching > rest 27
24 Raschleetal. (2014) 20 59,5-6 Pn/r 1A Voice matching > rest 44
First-sound matching > rest
25 Romeo et al. (2018) 36 5.8,4-6 22 ®n/r  Story listening > reversed speech 6
26  Sroka et al. (2015) 30 4.2,3-5 17 ®n/r  Story listening > broadband noise sweep 9
listening
27 Vannest et al. (2019) 40 7.9,5-12 20 R Statetiing > broadband noise sweep 15

listening

3only typically developing children Pnot reported °R = right-handed, L = left-handed, A = ambidextrous, “contrasts of the same
article were treated as a single experiment due to identical or overlapping samples of children
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Figure 2. Distributions of the mean ages (A) and samplessiB) of the 27 experiments included in the meta-
analysis.

Activation Likelihood Estimation

Five activation clusters associated with audit@yguage comprehension in children showed
significant convergence across the experimegnmts (05, cluster-wise FWE-corrected). The largestkpe
was found in the pars triangularis of the left IlBodmann Area [BA] 45). The corresponding cluster
extended across the pars opercularis of the |6t (BBA 44) to left middle and superior frontal cods
(BA 46, BA 6), and left precentral cortices (BA @loreover, the cluster extended across the pars
orbitalis of the left IFG (BA 47) to the left inguBA 13). A smaller cluster was detected in thespa
triangularis and the pars orbitalis of the righGland the right insula. Two other clusters covetesd
STG (BA 22, BA 41) and the MTG (BA 21, BA 38) biaally. Finally, one more cluster was identified

in left premotor and anterior cingulate regions GBB8A8, BA32, BA24; Figure 3, Table 2).
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283  Figure 3. ALE map of significant clusters associated withduage comprehension in children, superimposemant
284  standard cortical surface. Activations reported2ih experiments that showed above-chance ovepag (05,
285  cluster-wise family-wise error [FWE] corrected) at@own. The color bar represents the ALE valuenyf given
286  voxel, that is, its degree of non-random convergdna@ctivation between experiments.

287 Table2
288  Local Peaks and Descriptive Information of the Five Clusters with Above-Chance Overlap
Cluster Size (mni) ALE (peak)z(peak)x y z  Anatomical locatich(probability BA® Contributing experiments

1 8,328 0.037 6.30 -528 8  Left Inferior Frontal Gyrus, pars 45 2|3|4/5|6]7]8]9|12|13]15|16
triangularis (BA45-56%) |18]|20|21|23|24|27
0.028 5.16 -4228 -4  Left Inferior Frontal Gyrus, pars a7
orbitalis
0.028 5.16 -4824 16 Left Inferior Frontal Gyrus, pars 46
triangularis (BA45-29%)
0.025 4.82 -4414 22 Left Inferior Frontal Gyrus, pars 9
opercularis (BA44-18%, BA45-1%)
0.022 4.34 -426 30 Left Precentral Gyrus (BA44-16%) 6
0.019 3.95 -2826 0 Left Insula Lobe 2
0.017 3.55 -424 42 Left Precentral Gyrus 6
0.015 3.24 -442 50 Left Precentral Gyrus 6
2 4,872 0.031 5.54 -5238 2 Left Middle Temporal Gyrus 22 1J2|4|6]8|11|124R[7|18
0.030 5.44 -56-22 2 Left Superior Temporal Gyrus 41I19I20|21|22I24|25|27
3 4,856 0.028 5.19 64 -12 Right Superior Temporal Gyrus 22 2|7|8|11|1241B¢117]18
] ) £19|20|21|22|24|25|27
0.022 4.40 56 -168 Right Superior Temporal Gyrus 2
0.022 4.35 54 -6 -12Right Superior Temporal Gyrus 22
0.020 4.04 54 -261 Right Superior Temporal Gyrus 41
0.020 4.01 46 -28 Right Heschl's Gyrus 13
4 3,992 0.050 7.76 -4 14 52 Left Posterior Medialrfal Gyrus 6  2|3|5|7|8|10|11|13|14|15]
0.017 3.60 2 30 42 Left Superior Medial Frontal @&r 8 18[22|23[24
5 1,808 0.026 4.95 32 30 -2 RightInsula Lobe (BA45) 45 4]|7[8|9|10|12]|18|22|24
0.020 4.11 38 24 4 No anatomical label found 13

289 3according to the SPM Anatomy tool box Pprobability of belonging to Brodmann area (BA) 44 or 45 “Brodmann area according to
290  Talairach Daemon %see Table 1 *ho Brodmann area found by Talairach Daemon

291 Comparison with Adult Meta-Analysis

292 A comparison of this pattern of activations asgedavith language comprehension in children
293 to the pattern observed in adults revealed a nurndbesimilarities, including clusters of common
294  activation in the left IFG (BA 13, BA 45), the IéftTG and STG (BA 22), the right STG (BA 13, BA 22,

295 BA 41), and the left medial frontal gyrus (BA 6, BAFigures 4 and 5, Table 3).

16



296
297
298
299

300
301
302
303

ALE value

0.01 0.015 0.02

Figure 4. ALE map of significant clusters associated wiimduage comprehension in adults. These data were
reproduced using the sample of studies reporteal fmevious meta-analysis by Rodd et al. (2015). SVidgpict
clusters with above-chance overlgp< .05, cluster-wise FWE-corrected) and their aisged ALE value (color
bar), that is, the degree of non-random convergenaetivation between experiments at any giverelox

ALE value

0.0075

Figure 5. ALE map of significant clusters associated wihduage comprehension in both children and adslts a
result of a conjunction analysis. Maps depict @tstwith above-chance overlap € .05, cluster-wise FWE-
corrected) in the ALE maps of both children (Fig8)eand adults (Figure 4). The color bar represdmsvoxel-
wise minimum convergence between these two images.
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304 Table3
305  Group Smilarities Between Children and Adults

Conjunction

Cluster Size (mni) ALE (peak) x vy z Anatomical locatidrfprobability}’ BA°

1 2,176 0.021 -48 26 14 Left Inferior Frontal Gyrpars triangularis (BA45-35%) 45
0.019 -54 22 10 Left Inferior Frontal Gyrus, parargularis (BA45-38%, BA44-9%WY5
0.018 -46 14 16 Left Inferior Frontal Gyrus, papeularis (BA44-34%, BA45-2%) 13

2 832 0.018 46 -24 6 Right Superior Temporal Gyrus 13
0.016 54 -26 2 Right Superior Temporal Gyrus 41
0.015 56 -18 0 Right Superior Temporal Gyrus 22
0.015 54 -22 2 Right Superior Temporal Gyrus 41

3 632 0.016 -2 14 54 Left Posterior-Medial Froi@gtus 6

4 272 0.015 -58 -40 6  Left Middle Temporal Gyrus 22
0.012 -54 -46 4 Left Middle Temporal Gyrus 22

5 248 0.013 -56 -28 2 Left Middle Temporal Gyrus 22

6 120 0.011 -60 -14 0 Left Middle Temporal Gyrus 22
0.009 -54 -16 2  Left Superior Temporal Gyrus 22

7 24 0.010 -48 -22 0 Left Middle Temporal Gyrus -d

8 8 0.009 -40 18 22  Left Inferior Frontal Gyrusygtiangularis (BA44-6%, BA45-5%) 9

306  “2according to the SPM Anatomy toolbox "probability of belonging to Brodmann area (BA) 44 or 45 “Brodmann area according to
307 Talairach Daemon %no Brodmann area found by Talairach Daemon

308 Children revealed significantly more consistentvation in the right STG and MTG (BA 21, BA
309 22), the left medial and superior frontal gyri (E5ABA 8, BA 9), the pars triangularis of the IFGAB
310 45), the left STG and MTG (BA 21, BA 41), and tledt land right insulae (BA 13). Adults showed more

311 consistent activation than children in the parsrogaris of the left IFG (BA 44; Figure 6, Table 4)

zvalue

1.00 Children > adults 372

1.00 Adults > children 2.51
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312 Figure 6. Contrast map of regions where activation assediatith auditory language comprehension was more
313 consistent in children than in adults (purple) arenconsistent in adults than in children (cyanylividual ALE
314  maps (Figures 3 and 4) were subtracted from onthanand thresholded pt< .05 (cluster-wise FWE-corrected).

315 Table4
316  Group Differences Between Children and Adults
Children > adults

ClusterSize (mn) p (peak)z (peak)x y z  Anatomical locatioh(probability} BA°

1 2,800 0.0006 3.24 68 -14 -4 Right Superior TembGyrus 22
0.0007 3.19 67.616 1.2 Right Superior Temporal Gyrus 22
0.0026 2.79 60 -14 -1®ight Middle Temporal Gyrus 21
0.0100 2.33 54 -10 -1Right Middle Temporal Gyrus 22

2 2,664 0.0001 3.72 2 32 40 Left Superior MedialGy 8
0.0012 3.04 -8 10 50 LeftPosterior-Medial From@grus 6
0.0013 3.01 -6 14 50 Left Posterior-Medial Frogtus 6
0.0035 270 O 20 44 Left Posterior-Medial Frontsh@ 6
0.0100 233 O 32 50 Left Superior Medial Gyrus 8
0.0142 2.19 0 4 58 Left Posterior-Medial Frontar@y 6

1,928 0.0001 3.72 -52 28 0 LeftInferior Fror@airus, pars triangularis (BA45-35%) 45

4 1,632 0.0014 299 -48 -34 8 Left Superior TempGraus 41
0.0093 235 -52 -26 8 Left Superior Temporal Gyrus 41
0.0129 2.23 -58 -22 -4 Left Middle Temporal Gyrus 21
0.0143 2.19 -56 -40 -4 Left Middle Temporal Gyrus 21
0.0167 2.13 -60 -22 6 Left Superior Temporal Gyrus 41

5 816 0.0057 253 36 16 0 RightinsulaLobe -d
0.0079 2.41 36 26 -8 RightInferior Frontal Gyrpars orbitalis 13

6 680 0.0045 2.61 -48 18 22 Left Inferior Frontah®s, pars triangularis (BA44-15%, BA45-798)

7 488 0.0047 2.60 -32 24 -4 LeftInsula Lobe -d
0.0048 259 -26 26 -4 LeftInsulaLobe -d

Adults> children

ClusterSize (mnf) p (peak)z(peak)x y z  Anatomical locatich(probability)’ BA°

1 1,000 0.0061 2.51 -48 8 8 Left Inferior Frontalr@s, pars opercularis (BA44-15%) 44
0.0117 2.27 -56 10 12 Left Inferior Frontal Gyrpars opercularis (BA44-54%) 44

317 3according to the SPM Anatomy tool box Pprobability of belonging to Brodmann area (BA) 44 or 45 “Brodmann area according to
318 Talairach Daemon %no Brodmann area found by Talairach Daemon

319  Seed-Based Effect Size Mapping
320 Repeating the meta-analysis using seed-based effeet mapping, we reproduced the five

321 clusters obtained with ALE and their respectiveksda the pars triangularis of the left IFG (BA 48)e
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right insula (BA 13), bilateral MTG (BA 21), andfigoremotor cortex (BA 6). One additional clustet n
identified by ALE emerged in the left fusiform ggtururthermore, the left frontal and bilateral tengh

clusters as obtained from SDM were markedly laingsize (Figure 7, Table 5).

SDM z value

5.0 6.0 7.0

Figure 7. Significant clusters associated with language gretmension in children obtained from seed-basesteff
size mapping (cluster-wise FWE-corrected with sstduextent threshold correspondingopte .05). The color bar
depictsz-values indicating the effect size of the activatio each voxel.

Table 5

Peaks and Descriptive Information of Significant Clusters Obtained from Seed-based Effect Sze Mapping

Cluster Size (mni) p (peak)z(peak)x y z  Anatomical locatioh(probabilityf BA®
1 11,392 0 8.889 -5@2 2 Left Inferior Frontal Gyrus, pars triangulaf®A45-26%, BA44-9%) 45
2 13,088 0 7.707 -6634 -4 Left Middle Temporal Gyrus 21
3 14,616 0 8.361 60 -288 RightMiddle Temporal Gyrus 21
4 5,224 0 7.196 -8 26 54 Left Superior Medial Gyrus 6

5 920 0 8.399 38 22 0 RightlnsulaLobe 13
6 440 0 6.441 -32-40 -24 Left Fusiform Gyrus -d

3according to the SPM Anatomy tool box Pprobability of belonging to Brodmann area (BA) 44 or 45 “Brodmann area according to
Talairach Daemon %ho Brodmann area found by Talairach Daemon
Effects of Potentially Confounding Variables

None of the potentially confounding variables weareined (mean age of children, type of
language task, type of baseline condition, andwso# package used for statistical analysis) were
significantly related to any of the converging ®ation clusters for language comprehension in obild
Changing the cluster-forming thresholdpof .001 to the extremely liberal thresholdpof .05, we found

an effect of age in the left supplementary mot@aaBA6), no effects of baseline or software paekag
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and an effect of task in the left supplementaryanatea (BAS8), left inferior temporal gyrus (BA 3and
right superior temporal gyrus (BA 21). The effe€tage indicated that the older the children withim
experiment, the stronger the activation in BA6. Hffect of task indicated that the more complex the
auditory speech stimuli used in the experimentrigtovs. sentences vs. words), the stronger the
activation in BA 8, BA 37, and BA 21. However, thesffects failed to reach significance at the

established conservative threshold.

Jackknife Senditivity Analysis
In the Jackknife sensitivity analysis, the five réfigant clusters revealed by ALE were

reproduced in all 27 simulations, regardless whitthe original experiments was left out (Table 6).

Table 6

Range of Results of 27 Jackknife Sensitivity Analyses

ClusterSize (mm)  ALE (peak) z(peak)  x y z Anatomical locatin BA®

1 6,528-8,600 0.033-0.037 5.70-6.37 -50/-52 28/30 6/8 Left Inferior FrontajrGs, pars triangularis 45
2 4,288-5,152 0.029-0.031 5.32-5.81 -52/-56 -22/-38 2 Left Middle TemporalrGy 22

3 3,496-5,256 0.022-0.028 4.44-5.27 56/64 -10/-16 -8/0 Right Superior Temp@Gnaus 22

4 3,304-4,096 0.042-0.050 6.89-7.85 -2/-4 12/14 52 Left Posterior Medial Rebi&yrus 6

5 1,352-1,936 0.020-0.026 4.09-5.03 32-38 24-30 -4/-2 RightInsula Lobe 45

3according to the SPM Anatomy toolbox "Brodmann area according to Talairach Daemon

Fail-Safe N Analysis

The fail-safe number of null experiments that cduddadded without altering the significance of
the five clusters ranged from N = 24 for clustefright insula) to N = 115 for cluster 4 (left sujoer
frontal gyrus; Figure 8). In each case, this numtb@eeded the required lower boundary of fail-dafe
8, that is, the maximum number of null studies wingated to be in the file drawer. Only for cluster
(left superior frontal gyrus), the value of failfsdN = 115 slightly exceeded the desired upper daon
(in this case, fail-safe N = 113), potentially icaliing that this cluster was driven by a very smathber

of experiments (Acar et al., 2018).
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Figure 8. Fail-safe N analysis for the five significant dkers associated with language comprehension idreim
For every significant cluster obtained from the AaBalysis, fail-safe N indicates how many null ekpents with
non-significant findings could be hidden in an inmagy file drawer without compromising the statisli
significance of the cluster. Light gray shading icgades the desirable fail-safe N values based opriari
considerations (see main text for details). Eramsbndicate 95% confidence intervals of the mean.

Discussion

To our knowledge, here we report the first stat@tsynthesis of the fMRI literature on auditory
language comprehension in healthy children. Metdyaing data reported in 24 original research kasic
with a total sample size of more than 600 childnem, detected significant overlap in hemodynamic
activation in left IFG and MTG/STG, as well as,adesser degree, their right-hemispheric homolagues
Compared to a previous meta-analysis in adultéjreni revealed significantly more consistent adtora
in bilateral (especially right) STG and the panartgularis and pars orbitalis of the left IFG, and
significantly less consistent activation in the apercularis of the left IFG. In contrast to poasd
reviews, in which results are reported on the lesfeentire gyri or sulci, the present meta-analysis
provides precise coordinates of consistent activapieaks in standard space. This information pesvid
the basis for future region-of-interest studiedamguage processing.

According to the work of Eickhoff et al. (2016)getstatistical power of the current meta-analysis
to detect not only large, but also small- and meddize effects can be assumed to be acceptable.
Nevertheless, meta-analytic power is intrinsicéittyited by the number of currently available da2a (
independent experiments). It should also be ndtatrhost of the included individual experimentsedb!

on sample sizes of 10 to 40 children (Figure 2BjisTpresumably limited their power to detect small-
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and medium-size effects. These effects, in turmewmt reported as peak coordinates in the resgecti
articles and could therefore not be included ingiresent analysis (Weiss-Croft & Baldeweg, 2015).

The robustness of the present results to diffeneeta-analytic approaches was confirmed by
comparing activation likelihood estimation with ddsased effect size mapping. This comparison
revealed that both frameworks generated largelylapping activation clusters. We also analyzed the
robustness of the present findings to publicati@s lin the literature. To this end, we simulateldda
positives in the published literature (Jackknifenstvity analysis) and a file drawer of unpublighe
studies with non-significant results (fail-safe Madysis). These analyses indicated that all of the
identified clusters were robust against deletimgylsi experiments and against adding randomly géstera
null experiments.

The reported differences between children and adoltild be in part explained by differences in
age, task, and baseline, or also to a lesser dégrédee different number of studies included. While
found no evidence for significant effects of ageskt and baseline, we cannot exclude that thetsesuid
influenced by the different number of studies whkmherent to the current literature. The laclanfage
effect might be explained by the age sampling Wity intrinsic to the current literature. Specidly,
about 60% of all studies included children with @eam age between 8 and 12 years while the age cdnge
3—7 years is slightly underrepresented and theragge of 13-15 years is strongly underrepresented
(Figure 2A). This might have limited the statistigpower of the meta-analysis to detect age-related
differences.

Pooling across multiple studies, we provide eviderbat the lateralization of language
processing to the left hemisphere does not apmhdt-like yet at a mean age of about 9 years. This
finding is not in line with previous reviews stajithat language lateralization is largely estalelishy 3
to 5 years of age (Skeide & Friederici, 2016; W€issft & Baldeweg, 2015). It cannot be excluded,
however, that the lack of lateralization we obsdrv@s overestimated due to the large age randeeof t
present meta-analytic sample (3—-15 years). Anothgilanation for this discrepancy could be that

systematic reviews combine whole-brain and regibimerest results. The current meta-analysis,
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however, is entirely based on whole-brain resualtertsure that different brain regions are equiily
to reveal a significant effect (Radua et al., 2012)

Our observation that children, compared to adubsruit bilateral superior temporal cortices
more consistently is in line with a large body ibdédature suggesting that the functional respon$dése
language system are not mature before young adwtfidufiez et al., 2011; Skeide et al., 2014; Wdng e
al., 2019). Specifically, children still have tolyreon low-level semantic and syntactic processing
implemented in the temporal cortex, while high-lesemantic and syntactic processing only gradually
emerges towards adulthood with an increasing ireroknt of the left IFG (Nufiez et al., 2011; Skeitle e
al., 2014; Wang et al,, 2019). The notion of immatlanguage processing in children is further
corroborated by the described activation differsnicethe left IFG. Following our previous work, we
interpret the observation that children do notngeruit the pars opercularis to an adult-like exi&na
lack of specialization of controlled syntactic peesing (Nufiez et al., 2011; Skeide et al., 2014ny\
al., 2019). Alternatively, the increasing involvemef the left pars opercularis could also be eslao
controlled phonological processing that refinethim course of literacy learning in school (Breneaal.,
2013). Phonological processing, however, is typicadlated to the dorsal pars opercularis, whilehi@
present study, the main difference between childrehadults was found in the ventral pars operigjlar
subregion that is typically related to syntactiogessing (Brennan et al., 2013; Zaccarella & Friege
2015). Disentangling phonological, semantic, andtastic processes during language comprehension
will only be possible on a larger data basis and tiemains as a challenge for future work.

Besides the left IFG, several other regions reagabnsistent activation during auditory language
comprehension. Within the left temporal lobe, tledt IMTG is linked to the activation of lexical
representations (Lau et al., 2008) and the left &Tlhked to the decoding of spectro-temporal desd
of phonemes (Hickok & Poeppel, 2007). The right STGcontrast, is associated with decoding supra-
segmental acoustic features, i.e. the prosodyeggeech input (Friederici, 2011). Within the prerzd
gyrus, the premotor area is thought to supportdagg comprehension by activating subvocal articudat

codes for phonemes (Pulvermdiller et al., 2006)addition to activation differences in the language
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system, we found that children activated left miedrad superior frontal gyri and the right insularmo
consistently than adults. These areas are linkeddoutive functions (e.g. cognitive control, penfance
monitoring, salience detection) and may point o dieneral effect that language comprehension tasks
more demanding for children than for adults (devViga et al., 2016; Uddin, 2015; van Noordt &

Segalowitz, 2012).

Conclusion

The present meta-analysis suggests two developmewtavation shifts during language
comprehension that require longitudinal corroboratinamely, a triangularis-to-opercularis shifttte
left inferior frontal cortex and a bilateral-to4eghift in the temporal cortex. These trajectories be
interpreted as neurodevelopmental correlates of ghedually increasing sensitivity to syntactic

information.
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