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ABSTRACT

We study localized patterns in an exact mean-field description of a spatially extended network of quadratic integrate-and-fire neurons. We
investigate conditions for the existence and stability of localized solutions, so-called bumps, and give an analytic estimate for the parameter
range, where these solutions exist in parameter space, when one or more microscopic network parameters are varied. We develop Galerkin
methods for the model equations, which enable numerical bifurcation analysis of stationary and time-periodic spatially extended solutions.
We study the emergence of patterns composed of multiple bumps, which are arranged in a snake-and-ladder bifurcation structure if a homo-
geneous or heterogeneous synaptic kernel is suitably chosen. Furthermore, we examine time-periodic, spatially localized solutions (oscillons)
in the presence of external forcing, and in autonomous, recurrently coupled excitatory and inhibitory networks. In both cases, we observe
period-doubling cascades leading to chaotic oscillations.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5135579

Spatially extended networks of spiking model neurons are capable
of producing spatiotemporal patterns that are observed exper-
imentally in neuronal tissues. An important tool in investigat-
ing such patterns is low-dimensional neural field models, which
describe the macroscopic dynamics of such networks. Many neu-
ral field models are derived heuristically and do not fully describe
the dynamics of the underlying network of spiking neurons. We
utilize a recently derived mean-field description for networks of
quadratic integrate-and-fire (QIF) neurons, which yield an accu-
rate description of the mean firing rate and the mean membrane
potential of the network. Contrary to other neural field mod-
els, this model only contains nonlinearities of the mean-field
variables up to quadratic order, which are amenable to the devel-
opment of Galerkin methods for the numerical approximation
of the problem. This allows us to study the bifurcation structure
of stationary localized solutions and of time-varying localized
solutions up to the emergence of chaos.

I. INTRODUCTION

Localized states in neuronal networks, so-called bumps, are
related to working memory1,2 and feature selectivity,3 whereby

neurons encoding similar stimuli or features show an increased
firing rate for the duration of the related cognitive task. Neural
fields are well-known coarse-grained models of spatiotemporal neu-
ronal activity,4–6 capable of reproducing dynamic phenomena found
experimentally, such as traveling waves, temporal oscillations, and
spatially localized states.7,8 A challenge faced in the derivation of
neural field models is to establish an accurate mean-field description
of the spiking dynamics of the underlying microscopic neural net-
work. Classical neural field models recover the microscopic dynam-
ics only in the limit of slow synapses,9 and the derivation of neural
mass or neural field models from networks of spiking neurons is still
an active area of research.10–18 In addition, in neural fields, the net-
work firing rate is not an emergent quantity but rather the result of
a modeling choice.

Some limitations can be overcome if the microscopic model
is a heterogeneous network of synaptically coupled θ or QIF
neurons, subject to random, Cauchy-distributed background cur-
rents. Recently, it has been shown that heterogeneous networks of
θ- and QIF neurons admit an exact mean-field description,19,20

which has later been expanded to spatially extended networks.21–24

In the thermodynamic limit, the network admits an exact mean-field
description in terms of the network mean firing rate and voltage20 or
in terms of a complex-valued order parameter.21,25
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We study a network of n quadratic integrate-and-fire neurons,

V̇i = V2
i + ηi + Jsi, i = 1, . . . , n, (1)

where Vi is the membrane potential of the ith neuron, ηi an intrinsic
current, si the synaptic input, and J > 0 a global coupling parameter.
The ith neuron emits a spike when Vi reaches the firing thresh-
old Vθ , and Vi is reset immediately to Vr. Following Ref. 20, we
distribute {ηi : i = 1, . . . , n} according to a Lorentzian distribution
using the formula ηi = η + 1 tan

[

π/2(2j − n − 1)/(n + 1)
]

, where
η is the center and 1 is the half-width of the Lorentzian distribu-
tion, respectively. An important difference in the model considered
in the present paper is that neurons are distributed in space, in a
domain � = (−L/2, L/2], with L � 1, at evenly spaced positions
{xi = iδx − L/2 : i ∈ 1, . . . , n}, with δx = L/n. We associate with
each lattice point xi a random component of the vector {ηj}, without
repetitions. The synaptic current received by a neuron is determined
by the synaptic footprint as follows:

si(t) = 1

n

n
∑

j=1

w(xi, xj)
∑

k : tkj <t

∫ t

−∞
a(t − t′)δ(t′ − tk

j ) dt′, (2)

where w(x, y) models the synaptic coupling strength between neu-
rons from position y to position x in the network and tk

j is the
emission time of the kth spike of the jth neuron. The kernel a(t)
represents synaptic activation in response to incoming spikes, e.g.,
exponential synapses a(t) = e−t/τs/τs with synaptic time scale τs.26,27

In the mean-field description, we will let τs → 0, i.e., a(t) = δ(t).
We note in passing that, as demonstrated for leaky integrate-and-
fire neurons,28 the mean-field derivation and the limit τs → 0 do not
commute.

A neural field model that describes without approximation of
the average firing rate r(x, t) and the average membrane potential
v(x, t) of the spatially extended networks presented above has been

developed recently,23

∂tr = 1

π
+ 2rv,

∂tv = v2 + η + Jw ⊗ r − π 2r2,

x ∈ �. (3)

This neural field model inherits the coupling parameter J and
the parameters η and 1 from the microscopic, spiking network.
The mean-field description is exact in the limit n → ∞ and
Vθ = −Vr → ∞. The spatial coupling, or synaptic footprint, is
given by the integral operator,

[w ⊗ r](x) =
∫

�

w(x, y)r(y)dy, x ∈ �. (4)

For the concrete calculations presented below, we will assume
� = R or � = (−L/2, L/2] ∼= S with L � 1 (a ring with large
width). We use � = R for the theoretical framework in Sec. II and
the Hermite–Galerkin method and use � = (−L/2, L/2] ∼= S for
the Fourier–Galerkin method and the numerical integration of both
the macroscopic and microscopic model equations, as periodicity is
enforced in this setting. We will study the model with a variety of
kernels but, unless stated otherwise, we assume, with a small abuse
of notation, w(x, y) = w(|x − y|) and

w(x) = e−|x| − 1

4
e−|x|/2, (5)

when � = R, or take the 2L-periodic extension of w when
� = (−L/2, L/2] ∼= S. Hence, our default synaptic kernel will
depend on the distance between two points in � and will have long-
range inhibition and short-range excitation. With these choices,
w ⊗ r is a convolution and

∫

�
w(y)dy = 1.

This neural field model is related to mean-field descriptions
of networks of theta neurons19,21,24,25 and was obtained using the
Ott–Antonsen ansatz.29 It retains the transient dynamics of the
microscopic network, including spike synchrony, and has, there-
fore, a richer dynamic repertoire than purely rate-based models.30

FIG. 1. The formation of a stationary
localized solution (bump) in (a) the QIF
neural field model and (b) the correspond-
ing network of spiking neurons. The bump
solution is induced in the model with
synaptic kernel (5), by applying a local-
ized transient current I(x, t) ≡ 5 if (x, t) ∈
[−2.5, 2.5] × [0, 5] and I(x, t) ≡ 0, other-
wise. In (b) we show a rastergram of 300 of
105 neurons used in the simulation of the
underlying spiking network. Parameters:

1 = 2, J = 15
√
2, and η = −10.
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The derivation of such neural field models is analogous to mean-
field approaches for spatially extended networks of phase-coupled
oscillators.31 An example of localized solutions in this model is
shown in Fig. 1(a), alongside a numerical simulation of the micro-
scopic system of spiking neurons in Fig. 1(b).

The main aim of the present paper is to study spatiotemporal
localized patterns supported by this model, such as the one pre-
sented in Fig. 1. Our investigation will be primarily numerical, and,
therefore, we will also introduce several numerical schemes for the
approximation of the QIF neural field model. The paper is struc-
tured as follows: in Sec. II, we discuss analytical methods to study
stationary solutions and their bifurcations; in Sec. III, we intro-
duce the numerical methods used to perform numerical bifurcation
analysis of stationary and time-periodic localized structures, which
are presented in Secs. IV and V, respectively; and we make a few
concluding remarks in Sec. VI.

II. STATIONARY SOLUTIONS

Stationary states of Eq. (3) are determined by the conditions
∂tr = ∂tv = 0. Bounded solutions with r(x) > 0 satisfy

0 = 12

4π 2r2
+ η + Jw ⊗ r − π 2r2, v = − 1

2πr
. (6)

The model supports both uniform and non-uniform steady states,
which we discuss below in further detail.

A. Spatially uniform states

Solutions to (6) depend in general on x. Spatially uniform
solutions, for which Jw ⊗ r = Jr, satisfy the quartic equation,

r4 − J

π 2
r3 − η

π 2
r2 − 12

4π 4
= 0, (7)

which has the following four solutions:

r1,2 = J

4π 2
+ 1

2

√
S ±

√

−2p − S − 2q/
√

S,

r3,4 = J

4π 2
− 1

2

√
S ±

√

−2p − S + 2q/
√

S,

(8)

where p, q, and S are given by

p = − η

π 2
− 3

8

J2

π 4
, q = − J3

8π 6
− 1

2

Jη

π 4
, (9)

S = −2

3
p + 1

3
(Q + R0/Q), (10)

with

Q =
(

1

2

(

R1 +
√

R2
1 − 4R3

0

))1/3

,

R0 = η2

π 4
− 3

12

π 4
,

R1 = −2
η3

π 6
− 27

4

J212

π 8
− 18

η12

π 6
,

(11)

respectively. Physically relevant solutions are positive and real, and
an inspection of the equations above reveals that r4 must be dis-
carded, and the system admits either one or three homogeneous

steady states. At sufficiently small (large) η, only one stable fixed
point exists, represented by r3 (r1); also, there exists an inter-
val in parameter space where the stable solutions r1, r3 coexist
with r2, which is unstable. The conclusions presented above jus-
tify the bifurcation diagram found in Refs. 20 and 23 and reported
in Fig. 2(a).

Loci of saddle-node bifurcations in the (η, J)-plane can be
found by setting dη/dr = 0 in the first equation in (6) which
combined with (7) yield a parameterization in r,

ηsn = −π 2r2 − 312

4π 2r2
,

Jsn = 2π 2r + 12

2π 2r3
,

(12)

or, more explicitly,

Jsn =
√

2π 2

√

−ηsn ±
√

η2
sn − 312

+
√

2π 212

(

−ηsn ±
√

η2
sn − 312

)3/2 , (13)

where ± denote two bifurcation branches of saddle-node bifurcation
which collide at a cusp

(ηc, Jc) =
(

−
√

31,
4π

3

√

2
√

31

)

. (14)

B. Turing bifurcations

A first step toward the construction of heterogeneous steady
states is the determination of Turing bifurcations, which mark
points in parameter space where a spatially uniform solution
becomes unstable to spatially periodic patterns. We remark that it is
known that spatially extended networks of QIF or θ neurons display
this instability,23,24 and here, we present an analytic determination of
the loci of such bifurcations in parameter space. Turing bifurcations
of a homogeneous steady state (r, v) can be identified by linear sta-
bility analysis of the model equations in Fourier space, which results
in the following eigenvalue problem:

λ(k)

(

r̃
ṽ

)

=
(

2v 2r
Jŵ(k) − 2π 2r 2v

)(

r̃
ṽ

)

:= Â(k)

(

r̃
ṽ

)

,

where ŵ(k) is the Fourier transform of the connectivity kernel. A
sufficient condition for a Turing bifurcation is the existence of a
critical wavenumber kc > 0 for which det A(kc) = 0, which yields

rT = 1

π

√

√

√

√− ηTŵ(kc)

2(2 − ŵ(kc)
± 1

2

√

η2
Tŵ(kc)

2

(2 − ŵ(kc))
2 − (2 + ŵ(kc))12

2 − ŵ(kc)

(15)
and

JT = 1

ŵ(kc)

(

12

2π 2r3
T

+ 2π 2rT

)

. (16)

Combining (15) and (16) results in an equation for the loci of
the Turing bifurcation in the (η, J)-plane. As kc → 0, the resulting
equation recovers (13), since ŵ(kc) → 1. This analytic result agrees
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well with the numerical calculations of these loci, which will be
presented further below.

C. Spatial-dynamical system

After studying uniform and spatially periodic steady states, we
move to the construction of localized steady states supported by the
models. One strategy to study localized stationary states in nonlinear
models posed on R is to construct solutions to boundary-value prob-
lems derived from the model’s steady state equations.32–36 With this
approach, localized steady states correspond to homoclinic orbits of
a dynamical system in which x plays the role of time (hence the term
spatial dynamics).

In this section, we make some preliminary considerations on
the spatial dynamics of steady state solutions to (3), although we do
not explicitly study the associated spatial-dynamical system, as we
will construct our solutions numerically in the following sections.
Using the positions,

u(r) = − 12

4π 2r2
− η + π 2r2 = −v(r)2 − η + π 2r2, (17)

f(u(r)) = Jr, (18)

the steady state equation (6) is recast as

0 = −u + w ⊗ f(u). (19)

We note that Eq. (19) is formally equivalent to the Amari steady state
equation;6 in Amari’s theory, u represents the voltage, whereas in
this case u combines the steady state’s voltage and rate and scales as
u ∼ −v2 − η for small r and u ∼ π 2r2 − η for large r, respectively.

Importantly, the identification with the Amari equation
allows us to use spatial dynamics to characterize localized steady
state solutions.37–40 The Fourier transform of w is of the form
ŵ(k) = 51(k

2)/52(k
2), with 5i being a polynomial of order i, if w

is the bi-exponential kernel (5). Hence, the integral kernel can be
regarded as Green’s function of a differential operator. In particular,

the bi-exponential kernel (5) leads to the differential equation,

u′′′′ − 5

4
u′′ + 1

4
u − 1

4
f(u) + 7

4
[f(u)]′′ = 0, (20)

where a prime denotes differentiation with respect to x. The
equation above can be cast as a 4D, first-order spatial-dynamical sys-
tem in the vector (u, u′, u′′, u′′′), which we omit here for brevity. To
construct localized solutions to (3) we proceed in the same spirit
as32–37,39,40 to each homogeneous steady state of (3) corresponds to
one value rj in (8), and hence one value uj in (17), and one con-
stant solution (uj, 0, 0, 0) to (20); in addition, there exists a region
in parameter space, where r1 and r3 coexist and are stable [see also
Fig. 2(a)]. A localized steady state of (3) is identified with a bounded,
sufficiently regular function u : R → R which satisfies (20) with
boundary conditions

lim
x→−∞

(

u(x), u′(x), u′′(x), u′′′(x)
)

= (u1, 0, 0, 0),

lim
x→+∞

(

u(x), u′(x), u′′(x), u′′′(x)
)

= (u3, 0, 0, 0).

Furthermore, we note that the quantity,

H(u, u′, u′′, u′′′, x) = u′′′u′ − 1

2
(u′′)

2 − 5

8
(u′)

2 + 1

8
u2

− 1

4

∫ u

f(z)dz

+ 7

4

∫ x

[f(u)]′′(z)u′(z)dz,

is conserved in the sense that, if (20) holds, then

d

dx
H(u(x), u′(x), u′′(x), u′′′(x), x) = 0.

Therefore, we expect to construct a localized stationary state in a
region of parameter space where H(u1, 0, 0, 0, 0) = H(u3, 0, 0, 0, 0).
With a slight abuse of notation, we write this condition in terms of

FIG. 2. (a) Solution branches of uniform solutions around the bistable regime with saddle-node bifurcations (S). (b) The associated conserved quantity H, as defined in (21),
showing a Maxwell point (M) at ηM ≈ −9.69. (c) A plot of the bistable region of homogeneous states (shaded) on the (J, η)-plane delimited by saddle-node bifurcations (S),

emanating from a cusp (C). We also show the locus of Maxwell points (M) on the plane. Parameters: J = 15
√
2 and 1 = 2.
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the variable r, as H(r1) = H(r3), where H is given by

H(r) = −2ηr − 3

2
Jr2 + 4

3
r3. (21)

In analogy with the literature mentioned above, we called Maxwell
points the values on the (η, J)-plane where the condition H(r1)

= H(r3) is met. We display the Maxwell point for our standard
parameter set in Fig. 2(b), and we plot the locus of Maxwell points
and the bistability region in Fig. 2(c).

III. NUMERICAL SCHEMES

As anticipated in Secs. I and II, stationary states beyond onset
are computed numerically; hence, we present, in this section, several
numerical schemes used in the upcoming computations. In prepara-
tion for presenting the schemes, we rewrite the model as an ordinary
differential equation on a function space. To simplify the notation,
we apply, in this section, the scaling r 7→ r/π , J 7→ π J to (3) and
obtain

ṙ = 1 + 2rv,

v̇ = η + v2 − r2 + Wr,
(22)

where W is the integral operator defined as (Wr)(x) = J(w ⊗
r)(x) = J

∫

�
w(x, y)r(y)dy. In the system above, we assume r, v :

R → L2
ρ(�, C) (also denoted by L2

ρ(�)), that is, at each time t, r(t)
and v(t) belong to a weighted Lebesgue space of complex-valued
functions defined on �, with inner product,

〈f, g〉ρ =
∫

�

f(x)g∗(x)ρ(x)dx,

and norm ‖f‖ρ = 〈f, f〉1/2. Note that the subscript ρ will be omitted
when ρ(x) ≡ 1. We assume that, once complemented with initial
conditions, system (22) defines a well-posed Cauchy problem on
L2

ρ(�) × L2
ρ(�).

A. Galerkin schemes

Galerkin schemes are derived by introducing a complete
orthogonal basis {ϕi : i ∈ N} for the weighted space L2

ρ(�) and seek-
ing an approximation in the n-dimensional subspace spanned by
{ϕi : i ∈ 3n}, where 3n is an index set with n elements, as follows:

rn(x, t) =
∑

i∈3n

Ri(t)ϕi(x), vn(x, t) =
∑

i∈3n

Vi(t)ϕi(x).

A Galerkin scheme for (22) is then given by

〈ϕi, −ṙn + 1 + 2rnvn〉ρ = 0,
〈ϕi, −v̇n + η + v2

n − r2
n + Wrn〉ρ = 0,

i ∈ 3n,

that is,

Ṙi = αi1 + 2
∑

j,k∈3n

γijkRjVk,

V̇i = αiη +
∑

j∈3n

βijRj + 2
∑

j,k∈3n

γijk(VjVk − RjRk),

for i ∈ 3n, with coefficients given by

αi = 〈ϕi, 1〉ρ , βij = 〈ϕi, Wϕj〉ρ , γijk = 〈ϕi, ϕjϕk〉ρ .

1. Fourier–Galerkin scheme

When � = (−L/2, L/2] ∼= S, the functions r(t) and v(t)
are L-periodic. Therefore, we choose the Fourier basis ϕj(x)
= exp(ij2πx/L), j ∈ Z, which is a complete orthogonal basis for
L2(�). The index set for this case is 3n = {−n/2, . . . , n/2 − 1} with
n even. Exploiting the trigonometric properties of the Fourier basis,
we obtain

αi =
{

L if i = 0,

0 otherwise,
γijk =

{

L if i+j+k=0,

0 otherwise.

In passing, we note that βij can also be expressed compactly, in terms
of the Fourier coefficients of the kernel w, if the operator W is con-
volutional. In addition, requiring r and v to be real-valued implies
(Ri, Vi) = (R∗

−i, V
∗
−i). We call this method the Fourier–Galerkin

scheme.

2. Hermite–Galerkin scheme

When � = R, a natural basis for the Galerkin scheme is given
by the Hermite polynomials,

ϕj(x) = Hj(x) = (−1)j exp(x2)
dj

dxj
exp(−x2),

which are a complete orthogonal set for L2
ρ(�, R) with weight

ρ(x) = exp(−x2). For this scheme, 3n = {0, . . . , n − 1}. To avoid
problems with the numerical evaluations of ϕj for large |x|, we
derive an alternative scheme, which uses inner products with weight
ρ(x) ≡ 1, as the Fourier–Galerkin scheme. We seek a solution to
(22) in the form

r = R0 + r̃, v = V0 + ṽ,

with R0 and V0 constant in x and r̃, ṽ ∈ L2(�, R). This leads to the
system

Ṙ0 = 1 + 2R0V0,

V̇0 = η + V2
0 − R2

0 + JR0,

˙̃r = 2R0ṽ + 2V0 r̃ + 2r̃ṽ,

˙̃v = 2V0ṽ − 2R0 r̃ + ṽ2 − r̃2 + Wr̃,

in which the homogeneous background dynamics for (R0, V0) is
decoupled from (r̃, ṽ) and follows the spatially clamped QIF mean
field.20 Since the Hermite functions,

ϕj(x) = exp(−x2/2)Hj−1(x), j ∈ N>0,

are an orthogonal set for L2(�, R), an approximation to r̃, ṽ is sought
in the space spanned by ϕj, with j ∈ 3n = {1, . . . , n}, giving the
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scheme

Ṙ0 = 1 + 2R0V0,

V̇0 = η + V2
0 − R2

0 + JR0,

Ṙi = 2
∑

j∈3n

(R0Vj + V0Rj) + 2
∑

j,k∈3n

γijkRjVk,

V̇i =
∑

j∈3n

[2V0Vj + (βij − 2R0)Rj]

+
∑

j,k∈3n

γijk(VjVk − RjRk)

for i ∈ 3n. We call this method the Hermite–Galerkin scheme.

B. Fourier collocation scheme

A Fourier collocation scheme can be derived in the case
� = (−L/2, L/2] ∼= S. This method, which has been used in the past
for Amari neural field models40,41 and the QIF neural field model,23

represents (rn, vn) by its values at the grid points xj = −L + 2Lj/n,
j ∈ 3n = {1, . . . , n},

Ṙi = 1 + 2RiVi,

V̇i = η + V2
i + R2

i + (Wrn)i,

and evaluates (Wrn)i either with a quadrature rule or, more effi-
ciently, with a pseudospectral evaluation if W is convolutional.

C. Numerical considerations

To the best of our knowledge, the methods presented above are
novel, and we leave the analysis of the numerical properties of these
schemes to a separate publication. The calculations presented here
have been tested against event-driven simulations of a large net-
work of spiking neurons. We employ our schemes as follows: the
Fourier collocation scheme with n = 5000 is generally used for time
simulations to obtain accurate initial guesses for the continuation.
However, we observed that time-periodic orbits are reproduced with
a similar accuracy by the Hermite–Galerkin scheme with just n = 50
modes; hence, we select this scheme to continue periodic orbits.

Finally, we use the Fourier–Galerkin scheme with n = 200 for bifur-
cation analysis of steady states on large domains, when solutions are
non-localized.

We compare the results of the QIF neural field model with the
dynamics of the underlying network of spiking neurons. We inte-
grate Eq. (1) using the Euler method, with time step 1t = 10−4.
The domain is chosen to be � = (−L/2, L/2] with periodic bound-
ary conditions. We choose L = 50 and 5 × 105 model neurons,
which ensures a good correspondence to the neural field model
(δx = 10−4); with L = 50, the relative error of the normalization
of the synaptic kernel,

∫

�
w(y)dy = 1, is less than 10−5. We note

here that the microscopic description only matches the mean-field
description if δx is much smaller than the characteristic length
scale of the synaptic kernel w. The synaptic input to each neu-
ron is computed with Eq. (2). We follow Ref. 20 in computing the
synaptic integration across a time window with aτ (t) = 2(τ − t)/τ ,
τ = 10−3 and in setting Vθ = −Vr = 100 with a refractory period
of 2/Vi once the ith neuron has exceeded Vθ . The latter approxi-
mates the limit Vθ = −Vr → ∞. The refractory period is rounded
to the nearest multiple of 1t, and after the refractory period, Vi is
set to −Vi. Rasterplots are generated using a subset of 103 randomly
chosen model neurons.

IV. STATIONARY LOCALIZED SOLUTIONS

We use the numerical schemes presented in Sec. III to study
the bifurcation structure of stationary localized solution to the
QIF mean field model. We initially study the model with our
default excitatory-inhibitory kernel (5) and then show that a snaking
bifurcation scenario is supported when the kernel is switched to
a homogeneous oscillatory kernel, or to a kernel with harmonic
heterogeneities, similarly to what is found for Amari neural field
models.

A. Local excitation, lateral inhibition kernel

We set w as in (5), generate a stationary localized solution
by numerically integrating the model equations in time, and then
implement the Fourier–Galerkin scheme to continue the localized
solutions in η, using AUTO.

FIG. 3. (a) Bifurcation diagram in η

of localized solutions (blue), periodic
solutions (green), and uniform solutions
(black). (b) Exemplary profiles of unsta-
ble narrow (1), stable narrow (2), unstable
wide (3), and stable periodic (4) localized
solutions, close to the Maxwell point [ver-
tical line in (a)]. Parameters: 1 = 2 and

J = 15
√

1.

Chaos 30, 033133 (2020); doi: 10.1063/1.5135579 30, 033133-6

© Author(s) 2020

 18 O
ctober 2023 08:31:30

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

In Fig. 3, we show the bifurcation diagram of localized solu-
tions. Across a range of parameters, these occur as a pair of one
wide, stable solution and one narrow, unstable solution. The solu-
tion branch connects to the branch of uniform solutions at points
where Turing bifurcations occur, which also give rise to a branch
of periodic solutions. Using the Fourier basis, it can be shown that
the stable solution branch approaches the Maxwell point asymptot-
ically, and solutions grow wider, which resemble two (stationary)
interacting wave fronts. Because of the periodic boundary condi-
tions, the solution branch grows larger again and forms another
stable/unstable solution pair of locally low activity (not shown). The
latter could be regarded as stationary versions of traveling anti-pulses
reported in Refs. 42 and 43.

Because stable solutions are of particular interest, we present
a two-parameter bifurcation diagram [Fig. 4(a)] of the saddle-node
bifurcations that delimit the branch of stable solutions. As expected,
the locus of saddle-node bifurcations of localized states encloses the
Maxwell point. In addition, the loci of saddle-node bifurcations of
localized and uniform steady states meet at two separate cusps, as
shown in Fig. 4(b).

The bifurcation behavior of localized solutions described above
is robust to changes in coupling parameters but, as we shall see
below, it is strongly affected by changes in the kernel.

B. Snaking with homogeneous kernel

Homoclinic snaking is a phenomenon that describes the forma-
tion of multiple, coexisting localized solutions in spatially extended
models. Steady states are arranged in branches of intertwined
snaking bifurcation diagrams, connected via ladders.33,35,44–46 Adopt-
ing the spatial-dynamics approach outlined above, localized solu-
tions are interpreted as homoclinic orbits to a fixed point. Snaking
solution branches correspond to symmetries of the problems, which
are broken along the ladder branches.34,36 This scenario is not lim-
ited to partial differential equations, but have also been studied in
the nonlocal Swift–Hohenberg equation,47 as well as in neural field
models.37,38,40,41,48–50

In the simplest setting, localized snaking solutions are found
in regions of parameter space where there is bistability between a
stationary homogeneous state and a periodic state. In nonlocal neu-
ral fields, homoclinic snaking has been observed with the following
homogeneous damped-oscillatory kernel:39

w(x) = 1 + b2

4b
e−b|x| (b sin |x| + cos x

)

, (23)

which we now adopt also for the QIF neural field model. This kernel
leads to a subcritical Turing bifurcation of the lower stable branch
of uniform solutions, from which an unstable branch of spatially
periodic solutions emerges. This branch undergoes a saddle-node
bifurcation, where spatially periodic solutions become stable. Even-
tually, the branch connects to the upper stable branch of uniform
solutions (see Fig. 5).

As anticipated, spatially localized snaking solutions are found
in this region of parameter space, and they are arranged in a typ-
ical snakes-and-ladders bifurcation structure, which is displayed
in Fig. 6.

FIG. 4. (a) The parameter space in which stable localized solutions exist is
delimited by loci of saddle-node bifurcations. They can be approximated by the
saddle-node bifurcations of spatially uniform solutions and the Maxwell point.
(b) Inset of (a), showing additionally the loci of Turing bifurcations and saddle-n-
ode bifurcations of periodic solutions. The saddle-node bifurcations of the bump
solutions form a cusp, where the Turing bifurcation changes from supercritical to
subcritical. Parameter: 1 = 2.

C. Snaking with heterogeneous kernel

It is known that snaking bifurcation scenarios can be triggered
by heterogeneities in the underlying evolution equations. Examples
discussed in the literature include the Swift–Hohenberg,51 Amari,40

and Ginzburg–Landau52 equations. In neural field models, hetero-
geneities are naturally introduced via harmonic perturbations of a
homogeneous (distance-dependent) kernel, which break the trans-
lational invariance of the problem.53–56 In Ref. 40, we have shown
that the following kernel leads to snaking in the Amari model,

w(x, y) = 1

2
e−|x−y|(1 + a cos(ky)), (24)
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FIG. 5. (a) The damped-oscillatory ker-
nel (23). (b) Fourier transform of the
kernel, which shows a maximum at a
non-zero wavenumber kc. (c) As η is var-
ied, the branch of homogeneous steady
states (black) undergoes a Turing bifur-
cation, from which a branch of periodic
solutions with wavenumber kc emerges
(green). Parameters: J = 39,1 = 1, and
b = 0.4.

and we, therefore, investigate the effect of this kernel on the QIF
neural field model.

In the absence of spatial forcing (a = 0), a system with expo-
nential connectivity does not yield stable localized solutions (see
Fig. 7). In the presence of modulation, we find snaking branches
that oscillate around the branch obtained for a = 0 (see Fig. 8).
Furthermore, for small values of a, the snaking width increases
proportionally to the value of a (not shown). These findings indi-
cate that the snaking phenomenon in the QIF neural field model is
entirely determined by the kernel choice, as in the Amari case.

V. OSCILLONS

Various nonlinear models, including chemical, fluid-dynamical,
and particle systems, support time-periodic, spatially localized states
termed oscillons (see Ref. 57 and references therein). A compre-
hensive theory for the existence and bifurcation structure of such
solutions is the subject of experimental, numerical, and analytical
investigations. We study oscillons in the QIF neural field model in
the two main settings where they are observed in other media: (i) a
non-autonomous setting, whereby oscillons emerge as the medium

is subject to a homogeneous, exogenous, time-periodic forcing and
(ii) an autonomous setting, whereby oscillons emerge spontaneously
as one of the model parameters is varied.

A. Oscillons induced by harmonic forcing

We setup the QIF neural field model subject to a time-
dependent, homogeneous, sinusoidal forcing with frequency ω,

∂tr = 1

π
+ 2rv,

∂tv = v2 + Jw ⊗ r − π 2r2 + η + A sin(ωt),

and cast it in the following, equivalent autonomous model formula-
tion to perform numerical bifurcation analysis:

∂tr = 1

π
+ 2rv,

∂tv = v2 + Jw ⊗ r − π 2r2 + η + Aξ ,

ξ̇ = ξ + ωζ − (ξ 2 + ζ 2)ξ ,

ζ̇ = ζ − ωξ − (ξ 2 + ζ 2)ζ .

(25)

FIG. 6. (a) Snakes-and-ladders bifurca-
tion scenario. (b) Representative solutions
for branches of symmetric (1,3) and asym-
metric solutions (2). Parameters: J = 39,
1 = 1, and b = 0.4.
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FIG. 7. (a) Bifurcation diagram of spa-
tially uniform solutions and of localized
solutions generated with the exponential
kernel (24) with a = 0. The lack of lat-
eral inhibition results in the entire branch
of solutions being unstable. (b) Represen-

tative solutions. Parameters: J = 15
√

1

and 1 = 2.

Note that the numerical framework proposed here is applicable also
if the forcing is heterogeneous.

In this setting, we expect oscillons to emerge without bifurca-
tion from a localized steady state of the QIF neural field model with
A = 0, upon imposing a small-amplitude forcing, A � 1. We, there-
fore, select the default kernel (5), set η = −10, for which the model
with A = 0 supports one stable (wide) and one unstable (narrow)
bump (see Fig. 3), and continue time-periodic solutions to (25) in
A > 0 for ω = 4, close to the network’s resonant frequency.30

One stable and one unstable branch of oscillons emerge from
A = 0, as shown in Fig. 9, and connect at a saddle-node bifurcation.
The stable branch undergoes a sequence of period-doubling bifur-
cations leading to chaos, and examples of a period-doubled solution
and a chaotic solution are shown in Fig. 9, demonstrating the cor-
respondence between the QIF neural field model and the spiking
network model.

In a recent study, we have investigated the effect of peri-
odic forcing on a population of excitatory spiking neurons,30

whose solutions correspond to the spatially uniform states of the
present model. In that context, it was shown that a sufficiently
large forcing amplitude is able to suppress homogeneous oscil-
lations. Here, we report that the same statement holds true for
forced oscillons: no localized time-periodic solution is found to the
right of the saddle-node bifurcation in Fig. 9, where the attractor

is a spatially homogeneous, time-periodic state, which can be
found by continuing in A the low-activity uniform steady state
(not shown).

B. Spontaneous oscillons in coupled networks of

excitatory and inhibitory neurons

In the second scenario, oscillons occur in autonomous sys-
tems. Direct numerical simulations of reaction diffusion systems
display oscillons in the proximity of codimension-two Turing–Hopf
bifurcations of the homogeneous steady state.58,59 Oscillons in these
systems have typically been observed as large-amplitude structures;
hence,they are conjectured to form via a subcritical Hopf bifurcation
of a heterogeneous, spatially localized steady state. This conjecture,
however, has not yet been confirmed by numerical bifurcation anal-
ysis which, in contrast to direct numerical simulations, allows to
track both stable and unstable states.

Here,we employ the Hermite–Galerkin scheme to study the
formation of oscillons in the QIF neural field model. As men-
tioned above, a necessary ingredient for oscillons is the presence
of oscillatory bifurcations. These bifurcations are precluded in one-
population networks of QIF neurons but, as we shall see, are possible
in two-population models; therefore,we turn our attention to the

FIG. 8. Snaking induced by spatial
periodic modulation of the exponential
connectivity kernel (24). (a) Bifurcation
diagram obtained for a = 0.1 (orange
and purple branches, ladders not shown)
compared with the one obtained for
a = 0 (blue). (b) Representative solu-

tions. Parameters: J = 15
√

1 and
1 = 2.
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FIG. 9. Maximum values of R1(t) plotted against the amplitude of sinusoidal forcing. At A ≈ 3.8, a period-doubling bifurcation occurs, which is the starting point of a

period-doubling cascade leading to chaos at A . 4.6. A period-doubled solution (A = 4) and a chaotic solution (A = 4.6) are shown. Parameters: 1 = 2, J = 15
√

1,
η = −10, and ω = 4.

FIG. 10. (a) Bifurcation diagram of bump solutions in the E-I network (blue) and spatially uniform solutions (black) for τi = 1. (b) Bifurcation diagram of emerging limit
cycles [showing maxima of R1(t)] using τi as the bifurcation parameter. H, Hopf bifurcation; S, saddle-node bifurcation; T, torus bifurcation; and P, period-doubling bifurcation.

Parameters: ηe = ηi = −10, Je = Ji = 15
√

1, and 1 = 2.
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FIG. 11. Chaotic solution in a spiking network. (a) Rastergram of excitatory pop-
ulation. (b) Rastergram of inhibitory population. (c) Excitatory and inhibitory spike
rates averaged on interval −1 < x < 1 and sliding window in t (width 10−3).
(d) Phase portrait of spike rates in (c). Parameters: ηe = ηi = −10, Je = Ji

= 15
√

1, 1 = 2, and τi = 1.295. These parameters correspond to point (4)
in Fig. 10.

following network of coupled excitatory and inhibitory populations:

ṙe = 1

π
+ 2reve,

v̇e = v2
e + ηe + Jewe ⊗ re − Jiτiwi ⊗ ri − π 2r2

e ,

τ 2
i ṙi = 1

π
+ 2τirivi,

τiv̇i = v2
i + ηi + Jewe ⊗ re − Jiτiwi ⊗ ri − π 2τ 2

i r2
i .

The subscripts e and indicate whether a variable or parameter refers
to the excitatory or inhibitory population, respectively: the two
populations have, for simplicity, the same heterogeneity parameter
1, but they have possibly different membrane time constants and
average background currents. In single-population mean fields,
excitation and inhibition are artificially lumped into a single
excitatory-inhibitory kernel [see for instance (5), (23), and (24)],
whereas in the new, more realistic model, the kernels are separate,

we(x) = e−|x|, wi(x) = 1

4
e−|x|/2. (26)

The connectivity parameters are chosen to be Je = Ji = J to recover
a similar setting used in the lumped model. In Fig. 10(a), we show
the bifurcation diagram of localized solutions using ηe as the bifur-
cation parameter. The bifurcation structure is similar to the lumped
model, with the exception that the range of parameters for which
stable solutions exist is narrower. This computation confirms that
stationary bumps are supported by the two-population network. In
order to hunt for oscillons, we continue the solution for ηe = −10 in
the parameter τi: the bump becomes unstable at a subcritical Hopf

bifurcation at τi ≈ 1.14, restabilizes at a saddle-node bifurcation,
and undergoes a sequence of saddle-node bifurcations leading to
a torus bifurcation (i.e., generalized Hopf bifurcation). The branch
eventually restabilizes at a further saddle-node, leading to a period-
doubling cascade which initiates around τi ≈ 1.26 and to chaos at
τi > 1.29 [Fig. 10(b)].

In Fig. 10, we also show numerical examples of a stable period-
doubled solution at τi = 1.28 and a chaotic solution at τi = 1.295.
We do not observe oscillons beyond τi = 1.3. Chaotic solutions can
also be reproduced in the spiking network model (see Fig. 11).

VI. DISCUSSION

We introduced a framework to study localized solutions in a
neural field model that was recently derived as an exact represen-
tation of the mean field dynamics of networks of spiking neurons.
Although this model does not permit closed-form solutions such
as the Amari model with Heaviside firing rates, we show that it is
possible to give an analytical estimate for the range of model param-
eters for which stable localized solutions exist. The structure of the
QIF neural field model permits the straightforward use of Galerkin
methods, which unlike the Amari model has a linear nonlocal term.

We have demonstrated that stationary equations can be trans-
formed into a formulation that is equivalent to the stationary Amari
model, provided an effective firing rate function is defined. The sig-
nificance of such a firing rate is chiefly mathematical: the neural field
possesses a rate variable, which is combined with the voltage vari-
able in the effective firing rate; however, this transformation allows
to map out patterned steady states of the QIF neural field model
using the same toolkit available for the Amari formulation. In both
models, localized solutions emerge subcritically from a branch of
homogeneous steady states, which then restabilize at a saddle-node
bifurcation. In the Amari model, this behavior is parametrized by a
firing threshold, whereas here we use the average excitability of the
network to map out solutions. However, there is a correspondence
between the excitability of the model used here and the firing thresh-
old in the Amari model, in the sense that an increase in the firing
threshold in the latter corresponds to a decrease in the excitability in
the former. In addition, techniques developed for piecewise-linear
firing rate functions in the Amari model60 could be adapted to work
for steady states in the QIF neural field model, using the corre-
spondence described above. Furthermore, all branches of stationary
solutions computed in this paper, including the snaking branches,
also occur in standard rate-based models. The crucial difference lies
in the transient dynamics of the two models, which makes the model
considered here dynamically richer and more realistic.

The development of a Galerkin method opened up the possi-
bility to study oscillons using numerical bifurcation analysis. We
focused here on sinusoidal forcing of bump solutions, which is a
proxy of oscillations ubiquitous in neuronal systems. In previous
work,30 the neural mass version of this model was studied in terms
of its response to oscillatory forcing in various frequency bands, and
the present paper makes this exploration feasible also in the spatially
extended model. We leave this exploration to a future publication.

In coupled networks of excitatory and inhibitory populations,
a small change in the inhibitory membrane time scale can have a
significant effect on the existence and dynamics of bump solutions
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and can elicit oscillons. This was demonstrated for instantaneous
synapses, and it remains to be seen how the dynamics change when
synaptic delays are introduced to the model. Interestingly, oscilla-
tory solutions which undergo torus bifurcations have been observed
in spatially extended networks of excitatory and inhibitory neu-
rons with conductance-based dynamics.61 Another natural exten-
sion would be to examine coupled multi-layer neural field models,62

which are known to give rise to localized bump solutions when
neither layer does in isolation.63

The Galerkin numerical methods derived in this paper can be
applied directly to more general spatially extended models of QIF
networks, such as the ones mentioned above. For instance, adding a
synaptic variable can be accounted for with an additional Galerkin
expansion and n scalar variables per additional evolution equation.

Single population, QIF neural mass models with chemical as
well as electrical synapses have recently been developed,64 and it
was found that oscillations originate at Hopf bifurcations. Spatially
extended versions of this model would then have the possibility of
forming oscillons with a single population, although it is not clear
whether Hopf bifurcations of bumps will occur near Hopf bifurca-
tions of homogeneous states, which are the ones mapped in Ref. 64.

Understanding how slow–fast temporal scales are generated
by the discrete network is an open question, which has recently
been addressed in networks of sparsely coupled networks of QIF
neurons.65 Employing our numerical methodology to these macro-
scopic mean fields is also possible, and one could study how such
slow–fast phenomena occur in more realistic, spatially extended
networks.
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