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ABSTRACT 

The conjugation of synthetic polymers with various biomolecules provides an easy access to biohybrid materials 

which combine advantages from both the synthetic world and Nature. Due to the rapid development of synthetic tools 

and deepening understanding of biomolecule structure and function, these polymer bioconjugates are not only 

important for biomedical applications, but also can serve as innovative constructs in materials science. This review 

summarizes a selection of structurally defined polymer bioconjugates and their application as building blocks for 

preparing hierarchical biohybrid materials. From this perspective, we discuss and illustrate recent breakthroughs, 

which portray how the field may potentially develop. We first introduce the general synthetic approaches that have 

been employed for the construction of precision polymer bioconjugates. Various chemistries for site-specific 

conjugation, different approaches to control the size, distribution, topology, and function of polymers, as well as the 

versatile manipulation of bioconjugate architecture are presented. Subsequently, recent advances of polymer 

bioconjugates based on different biological entities including proteins/peptides, nucleic acids, carbohydrates, lipids 

and even live cells are discussed individually. In particular, we focus on various forms of well-defined constructs at 

different length scales ranging from precision polymers and nanostructures templated by biomolecules to highly 
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ordered assemblies of polymer bioconjugates in solution, in bulk and on surfaces. Some representative applications 

of these biohybrids resulting from their high degree of structural precision are also highlighted. 

 

Keywords:  

Polymer bioconjugates, peptide‒polymer conjugates, protein‒polymer conjugates, DNA‒polymer conjugates, 

controlled radical polymerization, site-specific modification, polymer biohybrids 
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Abbreviations 

2D two-dimensional 

3D three-dimensional  

6SL 6’-sialyllactose 

Ad5 adenovirus 5 

AEMA 2-aminoethyl methacrylate 

AFM atomic force microscopy 

AIBN azobisisobutyronitrile 

ARGET activators regenerated by electron transfer 

ATRP atom transfer radical polymerization 

bFGF basic fibroblast growth factor 

BSA bovine serum albumin 

BTA 1,3,5-benzenetricarboxamide 

β-CD β-cyclodextrin 

µCP microcontact printing 

cryo-TEM cryogenic transmission electron microscopy 

CTA chain-transfer agent 

CuAAC copper-catalyzed azide‒alkyne cycloaddition 

DABCYL  4-(dimethylaminoazo)benzene-4-carboxylic acid 

DMA dialkyl maleic anhydride 

DNA deoxyribonucleic acid 

DNL dip-pen nanodisplacement lithography 

DTT dithiothreitol 

eATRP electrochemically mediated ATRP 

EBL electron-beam lithography 

ELP elastin-like polypeptide 

EQE external quantum efficiency 

FDA Food and Drug Administration 

FITC fluorescein isothiocyanate 

FND fluorescent nanodiamond 

FRET Förster resonance energy transfer 

Gd-DTPA Gd-diethylene triamine pentaacetic acid 

GFP green fluorescent protein 

GOx glucose oxidase 

HPG hyperbranched polyglycerol 

HPMA 2-hydroxypropyl methacrylate 

HSA human serum albumin 

HSP heat shock protein 

ICAR initiators for continuous activator regeneration 

IFN interferon-α 

LCST lower critical solution temperature 

βLG A  β-lactoglobulin A 

mPEG methoxy PEG 

MRI magnetic resonance imaging 

NHS N-hydroxysuccinimide 

NIPAM N-isopropyl acrylamide 

NMP nitroxide-mediated polymerization 

NQMP 3-(hydroxymethyl)naphthalene-2-ol 

NTA nitrilotriacetic acid 
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OPG osteoprotegerin 

PAA poly(acrylic acid) 

PAMAM polyamidoamine 

PB phosphate buffer 

PBA poly(n-butyl acrylate) 

PCB poly(carboxybetaine) 

PCR polymerase chain reaction 

PDL α-poly(D-lysine) 

PE545 phycoerythrin 545 

PEG poly(ethylene glycol) 

PEGASYS PEGylated interferon-α 

PEGA-1k methoxy-PEG acrylamide-1k 

PG1 poly[3,5-bis(3-aminopropoxy)benzyl methacrylate] 

PGMA poly(glycidyl methacrylate) 

photo-ATRP photoinitiated ATRP 

PHPMA poly(2-hydroxypropyl methacrylate) 

PISA polymerization-induced self-assembly 

PNA peptide nucleic acid 

PNB polynorbornene 

PNIPAM  poly(N-isopropylacrylamide) 

POEGMA poly[oligo(ethylene glycol) methyl ether methacrylate] 

PPEGA poly(PEG acrylate) 

PS polystyrene 

PSS polystyrene sulfonate 

p(SS-co-PEGMA) poly[sodium 4-styrenesulfonate-co-poly(ethylene glycol) methyl ether methacrylate] 

QD quantum dot 

RAFT radical addition‒fragmentation chain transfer 

RBC red blood cell 

RNA ribonucleic acid 

ROMP ring-opening metathesis polymerization 

ROP ring-opening polymerization 

ROS reactive oxygen species 

SEM scanning electron microscopy 

siRNA small interfering ribonucleic acid 

SMA sodium methacrylate 

SNA spherical nucleic acid 

SPL scanning probe lithography 

ssDNA single-stranded deoxyribonucleic acid 

St styrene 

tBA tert-butyl acrylate 

TCEP tris(2-carboxyethyl) phosphine 

TEM transmission electron microscopy 

VBA vinylbenzyl adenine 

VBT vinylbenzyl thymine 
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Since the seminal work of Hermann Staudinger published in 1920 [1], polymer science has arguably created 

significant impact on society in various areas with around 400 million tons of plastics produced annually worldwide 

since 2015 [2]. The emphasis within the field has also significantly evolved over the past 100 years: starting from the 

creation of these now ubiquitous plastic materials, their tunable properties in improving the standards of living to the 

present global concern of plastic contamination in the environment. Objectively, these paradigm shifts have brought 

scientists back to the drawing board to achieve greater understanding towards these materials and rethink strategies 

aided by modern synthesis technologies unavailable in the past. As the knowledge within polymer science deepens, 

the molecular consequences how each individual monomer is arranged along the chain, which also has an impact on 

their spatial organization, become much more apparent and crucial for the design of macromolecules that exhibit 

complex programmable behavior. Here, the first connection between synthetic polymer chemistry and Nature’s 

macromolecules was made in order to bridge their differences and to find potential synergistic properties. 

Molecular precision is the central hallmark among biomacromolecules, i.e. proteins and nucleic acids, where 

their sequence is coded elegantly serving both as their unique identity and function. This unique feature, alone, 

accounts for the vast disparity between synthetic polymers and biomolecules in most of their macromolecular 

properties. Each biomacromolecule has a defined surface contour within a rigid architecture, where each amino acid 

residue (for proteins) or nucleotide [for deoxyribonucleic acids (DNAs)] has a precise three-dimensional (3D) 

coordinate within the folded structure, which is a prerequisite to their biological function. In contrast, the position of 

monomers within a synthetic polymer is largely governed by a statistical distribution, which can be tailored, only to 

a limited extent, by controlled polymerization techniques [3-5]. Therefore, the inter- and intramolecular interactions 

within each polymer chain vary from one to the other, producing irregular nanostructures. As a result, on a molecular 

level, there is a limit in resolution to accurately determine structure‒activity relationships for an observed outcome. 

Although biomolecules are often perfect in their molecular construction, they do not possess the breadth in 

chemical design that polymer science allows. The flexibility in monomer synthesis and the repertoire of 

polymerization technologies available to synthesize novel materials is unquestionable and has demonstrated its solid 

potential throughout the decades. From this perspective, the community intuitively realized that the properties of 

polymer chemistry naturally complement the capabilities of biomolecules and vice versa, leading to the first inception 

of polymer bioconjugates in the 1970s [6, 7]. In 1977, Davis et al. reported the first example of poly(ethylene glycol) 

(PEG) conjugation to a protein [8]. Since the late 1980s, Hoffman and Stayton et al. have intensively studied the 

conjugation of temperature-responsive polymers to random and specific sites of protein surfaces [9-13]. After that, 
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functional polymer bioconjugates have developed rapidly for broad disciplines, ranging from therapeutics, 

nanotechnology, biophysics and materials science (Fig. 1). In this regard, several comprehensive reviews have been 

consolidated summarizing the progress in each theme [14-16].  
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Fig. 1. Timeline of major milestones in the development of polymer bioconjugates.  

[418, 422], Copyright 2016 and 2007. $Reproduced with permission from John Wiley and Sons;  

[253, 402], Copyright 2012. Reproduced with permission from Springer Nature;  

[414], Copyright 2016. Reproduced with permission from the American Association for the Advancement of Science;  

[223], Copyright 2020. Reproduced with permission from the American Chemical Society. 

 
While the benefits of these conjugates towards application driven areas are unambiguous, there has been a 

focus in recent years to investigate how biomolecules and synthetic polymers can influence each other on a 

fundamental level. Some of the raised questions include the possibility of using sequence information of biomolecules 

to guide the precise arrangement of monomers along a synthetic polymer chain, which could not be achieved by state-

of-the-art polymer chemistry [17]. Correspondingly, by appending a synthetic polymer onto a biomolecule using 

modern bioconjugation methods, the stability, bioactivity profile, and self-assembly behavior can be modified and 

controlled to a large extent by the polymer chain [18]. Within each major class of biomolecules (nucleic acids, 

proteins/peptides, carbohydrates and lipids), the synthesis strategies to achieve bioconjugates and the impact of the 

attached synthetic polymer differs greatly as they have different molecular constituents as well as intrinsic 3D 

structure. 

At the molecular level, nucleotides, amino acids, and monosaccharides have their characteristic features that 

translate separately into the diverse architectures found in Nature. For nucleotides and amino acids, the transformation 

of these molecules into a defined 3D nano-object is dictated by a set of specific interactions that is predefined among 

the library of building blocks. Here, the machinations of biology are typically involved in the synthesis, orientation 

and folding process in a way that the system is funneled and guided through the energy landscape, eventually reaching 

a precisely defined nano-object. Therefore, it is intriguing for the community whether biomimetic strategies or even 

biomolecules themselves can be programmed to create the next generation polymeric materials with higher structural 

definition. Hence, this review provides only a brief background of the synthesis as well as each category of 

biomolecules while mainly focusing on research highlights that would possibly inspire the development of polymer-

bioconjugates in the future. 

 

 

 2. Synthetic approaches for well-defined polymer bioconjugates 

The conjugation of synthetic polymers to various biomolecules such as proteins, peptides, and nucleic acids can be 

realized using one of three synthetic strategies: grafting to, grafting from and grafting through [19, 20]. Briefly, 

Jo
ur

na
l P

re
-p

ro
of



8 
 

grafting to is the coupling of a pre-synthesized polymer with a biomolecule, while grafting from refers to in situ 

growth of a polymer from a biomolecule or alternatively the synthesis of a biomacromolecule using a preformed 

polymer as the initiator. These two strategies are more frequently used than grafting through, which is a strategy to 

polymerize biomolecule-containing monomers yielding bioconjugates with multiple biofunctional groups along the 

polymer backbone. 

 Conventional conjugation of polymers to biomolecules using these strategies may encounter some 

limitations. For example, the preparation of protein‒polymer conjugates through coupling to abundantly presented 

amines on protein surfaces generates a heterogeneous product mixture with random numbers of polymer chains 

introduced at arbitrary positions causing significantly reduced biological activity [19]. The isolation and purification 

of the resultant mixture, including positional isomers, would be daunting and extremely difficult to achieve [21]. In 

addition, polymers synthesized by traditional polymerization techniques may lack of control over their structure and 

distribution. Therefore, it is highly desirable to synthesize well-defined polymer bioconjugates, which possess at least 

the following two characteristics: First, a determined number of polymers are conjugated to specific sites of 

biomolecules, and second, the polymer chain should have a narrow distribution as well as defined length and 

architecture.  

This chapter aims to summarize the various attempts to meet these two requirements. First, current chemical 

and biological techniques, such as chemoselective ligations and genetic engineering facilitate the preparation of site-

specific and stoichiometric polymer bioconjugates [22, 23]. The second requirement has been largely addressed by 

the rapid development of polymerization techniques including atom transfer radical polymerization (ATRP) [24, 25], 

radical addition‒fragmentation chain transfer (RAFT) polymerization [26], nitroxide-mediated polymerization (NMP) 

[27, 28], iniferter radical polymerization [29], ring-opening polymerization (ROP) [30], ring-opening metathesis 

polymerization (ROMP) [31], and living anionic/cationic polymerization [32, 33]. The two most popularly used 

techniques, ATRP and RAFT polymerization, are discussed in detail in the second section of this chapter. The 

architecture of polymer bioconjugates is very important for their features and consequent applications. Therefore, an 

overview of the structural regulation of polymer bioconjugates at the monomer, polymer and conjugate levels is 

provided in the third section. 

 

2.1. Site-specific polymer conjugation of biomolecules 
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Due to the large number of lysine residues on the surface of biomolecules, the first-generation methods of polymer 

conjugation based on the coupling to amines are nonspecific. This type of modification has allowed to reduce the 

immunogenicity of protein therapeutics as well as increase the stability and circulation time [19]. However, the 

benefits of preparing site-specific and stoichiometric polymer bioconjugates are obvious, i.e. to purify the product, 

to provide precise and reproducible control over many properties, particularly their bioactivity [34]. Moreover, well-

defined polymer bioconjugates can further be used as precision templates and building blocks for preparing advanced 

materials with controlled structures. 

In order to prepare site-specific polymer bioconjugates, polymers can be directly conjugated to desired 

locations of biomolecules using various chemoselective interactions. Nevertheless, this strategy often results in low 

efficiency and conversion due to slow reaction kinetics and the steric effect to connect these high-molecular-weight 

and sterically demanding macromolecules. Therefore, introduction of functional small molecules in a site-specific 

manner has been an alternative approach. These small molecules include chemical handles that enable high-efficiency 

coupling using bioorthogonal chemistries and initiating groups which allow in situ polymer growth with controlled 

polymerization techniques. The site-specific conjugation of polymers and functional small molecules to biomolecules 

can be achieved through rapidly expanded chemical and bioengineering techniques [35, 36].  

An effective approach to prepare site-specific polymer bioconjugates is to target specific functional groups 

at the surface of biomolecule which are less common [19]. For instance, cysteine residues often form disulfide bonds 

inside the protein structure, and only a limited number of cysteines are accessible providing free thiols on the surface 

of polypeptides. Therefore, many chemistries, such as disulfide exchange with a pyridyl disulfide and addition 

reactions with alkenes, alkynes, maleimides or vinyl sulfones to form thioethers, have been employed to target free 

thiol groups [37]. Among these reactions, the thiol-maleimide interaction under acidic or neutral conditions is one of 

the most widely used chemistries for preparing site-specific polymer bioconjugates. In addition, disulfide bridges 

exposed on the surface have also been used as specific sites for the incorporation of polymers [38-42]. Brocchini and 

Shaunak et al. reported site-specific PEGylation of native disulfide bonds using a bis-thiol alkylating reagent to form 

a three-carbon bridge [43, 44]. Inspired by this work, our group has reported a versatile toolbox of bis-alkylation 

reagents that re-bridge disulfide bonds of peptides and proteins [45-47]. Tyrosine, which is present in many peptides 

and proteins represents another possible conjugation site. It reacts with diazonium salts [48] and allows 

functionalization through a three-component Mannich-type reaction [49]. Due to the lower pKa than that of amines 

from lysine, the N-terminal amine is more reactive and can therefore also be used for site-specific attachment of 
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polymers and functional small molecules [50-52]. Chilkoti et al. reported the conjugation of an ATRP initiator to 

myoglobin via N-terminal selective transamination, which was further applied for in situ ATRP growth of polymers 

[53]. More examples of the above-mentioned and other natural amino acids for site-specific polymer conjugation are 

summarized in Fig. 2A and can also be found in other excellent reviews [19, 23, 54]. 

 

 
Fig. 2. Representative reactions for site-specific conjugation of biomolecules. (A) Chemoselective ligation with canonical amino 

acids. (B) Biorthogonal chemistries available for polymer bioconjugation. The blue circle represents biomolecules and the 

green pear-shaped symbol indicates polymers or functional small molecules. The red and purple ovals refer to either 

biomolecules or functional small molecules/polymers, and they are interchangeable.$ 
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In addition to intrinsic reactive groups of native biomolecules, both canonical and non-canonical amino acids 

can be incorporated at the desired location through bioengineering techniques that provide a platform for site-specific 

conjugation using chemoselective ligations and a wide range of bioorthogonal chemistries (Fig. 2B). As an example 

of natural amino acids, cysteine has been genetically introduced into interferon α-2 for site-specific PEGylation, 

generating well-defined mono-PEGylated proteins with enhanced circulation half-lives and antitumor properties [55, 

56]. An oligo-histidine tag, which binds to a Ni2+ complex of nitrilotriacetic acid can be genetically tagged on the C- 

and N-termini of proteins [57]. Lee et al. demonstrated the site-specific PEGylation of a protein based on a 

hexahistidine tag, and the polymer bioconjugate provided excellent stability without compromising bioactivity [58]. 

Non-canonical amino acids with orthogonal chemical reactivity to the 20 canonical amino acids represent a huge 

toolbox for the preparation of well-defined polymer bioconjugates [59]. For instance, p-azidophenylalanine was site-

specifically incorporated into proteins enabling a copper-medicated Huisgen [3+2] cycloaddition with alkyne end-

capped PEG [60]. Matyjaszewski and coworkers incorporated two azide-containing non-canonical amino acids to 

amino acid residues 134 and 150 on the surface of green fluorescent protein (GFP) by site-directed mutagenesis [61]. 

These modified proteins were then linked into linear oligomeric strands by PEG with two alkyne ends. A ketone-

containing amino acid, p-acetylphenylalanine, was also developed for site-specific conjugation of PEG and an 

aminooxy-derivatized cationic block copolymer to human growth hormone [62] and antibodies [63], respectively. 

Some reviews have summarized the advances of non-natural amino acids that enable various orthogonal chemistries 

for site-specific polymer bioconjugation [59, 64-66]. 

Small-molecule initiating groups, which allow in situ growth of polymers have also been introduced site-

specifically to biomolecules by various techniques. For example, Chilkoti et al. reported two genetic engineering 

approaches, intein-medicated initiator installation [67] and sortase-catalyzed initiator attachment [68], to introduce 

an ATRP initiator solely at the C-terminus of proteins and peptides. The sortase-catalyzed initiator attachment was 

further employed by Gao and coworkers to prepare site-specific protein conjugates with improved stability for cancer 

therapy [69, 70]. Mehl et al. designed the non-canonical amino acid 4-(2’-bromoisobutyramido)phenylalanine, which 

was used as an initiator for ATRP [71]. It can be genetically engineered at desired sites and therefore represents a 

general approach to quantitatively encode ATRP initiators to the protein backbone. 

Most reported polymer bioconjugates are based on irreversible covalent interactions. However, the 

conjugation of synthetic polymers and biomolecules with cleavable linkers may provide additional advantages such 
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as more spatiotemporal control over the conjugates and on-demand release of biomolecules [72-75]. By combining 

enzymatic and chemical bioorthogonal coupling strategies, Meinel et al. demonstrated the site-specific PEGylation 

of insulin-like growth factor I with a protease-sensitive peptide linker [76]. The growth factor could be released after 

exposure of the PEGylated conjugate to activated matrix metalloproteinases in inflamed tissues, resulting in the 

recovery of its bioactivities. In addition, reversible non-covalent interactions such as biotin-streptavidin recognition 

[77] and host‒guest interactions [78, 79], have also been used for site-specific polymer conjugation. Anderson and 

coworkers reported the supramolecular PEGylation of insulin through strong non-covalent binding of cucurbit[7]uril 

to its N-terminal phenylalanine residue [80]. In comparison to covalent conjugation, this supramolecular approach 

holds a unique advantage that the authentic therapeutic entity remains unmodified. 

Above, we have introduced various strategies for the site-specific polymer conjugation of proteins and 

peptides. Although many chemical and bioengineering techniques have been established for the site-specific labeling 

of DNA and ribonucleic acid (RNA) with functional small molecules [81-85], current approaches for polymer 

conjugation to nucleic acids mainly proceed at the terminus of the oligonucleotide sequence, which results in nucleic 

acid-containing block copolymers [86, 87]. Generally, these methods can be categorized into solution conjugation 

chemistry and solid-phase synthesis. As amino- and thiol-terminated oligonucleotides are commercially available, 

functional small molecules and hydrophilic polymers can be easily introduced via the formation of an amide or 

disulfide bond in solution [88-90]. For example, Weil et al. prepared two RAFT agent-terminated single-stranded 

DNA (ssDNA) sequences via N-hydroxysuccinimide (NHS) or pentafluorophenyl ester coupling, which were used 

for photoinduced RAFT polymerization to synthesize well-defined DNA‒polymer conjugates [91]. In addition, 

Michael addition [92] and the copper-catalyzed azide‒alkyne cycloaddition (CuAAC) [93] are also popular reactions 

for the highly efficient conjugation of polymers to nucleic acids. Due to their different solubilities, the coupling 

efficiencies of hydrophobic polymers with nucleic acids in solution are often much lower. Therefore, solid-phase 

synthesis approaches were developed. In this regard, the use of 2-cyanoethyl-N,N-diisopropylphosphoramidite 

groups is a commonly applied method to introduce functional groups to the 5’-end of oligonucleotides via solid-

phase synthesis [94]. Particularly, fully automated solid-phase synthesis of DNA conjugates based on hydrophobic 

polymers such as poly(propyleneoxide) in DNA synthesizers is now available [86]. Recently, Matyjaszewski, Das 

and coworkers reported the automated synthesis of DNA‒polymer conjugates by photomediated ATRP using a DNA 

synthesizer [95]. In addition, molecular biology techniques such as polymerase chain reactions (PCR) have also been 
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successfully used for polymer conjugation to nucleic acids [96]. Previously, two excellent reviews have been 

published that deliver a comprehensive overview on DNA-containing amphiphilic block copolymers[86, 87].  

Other small biomolecules such as lipids, monosaccharides, and oligosaccharides could be also connected to 

polymers in a site-specific fashion. The obtained biohybrids can serve as precision building blocks for the 

construction of hierarchical structures. For instance, Akiyoshi et al. synthesized amphiphilic carbohydrate-conjugated 

poly(2-oxzoline)s using a small molecule maltotriose-containing initiator enabling the preparation of polymer 

vesicles with molecular permeability [97]. Additional examples will be discussed within each class of polymer 

bioconjugates in chapter 5.  

 

2.2. Controlled radical polymerizations for polymer bioconjugation 
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Fig. 3. ATRP and RAFT polymerization for polymer bioconjugation; (A) Selected examples of ATRP initiators reported for polymer 

bioconjugation; (B) Synthesis of streptavidin-PNIPAM conjugates by in situ ATRP; (C) Solid-phase synthesis of protein‒

polymer conjugates via ATRP from protein macroinitiators reversibly immobilized on dialkyl maleic anhydride (DMA)-

modified agarose beads; (D) Selected examples of RAFT CTAs reported for polymer bioconjugation; (E) Degradable 

lysozyme‒polymer conjugate synthesized by RAFT polymerization using the grafting to approach; (F) Site-specific and in 

situ RAFT polymerization of N-isopropylacrylamide (NIPAM) for the synthesis of BSA‒PNIPAM conjugate. 

(B) [77], Copyright 2005. Reproduced with permission from the American Chemical Society.   

(C)  [114], Copyright 2018. Reproduced with permission from Springer Nature.  

(E) [130], Copyright 2015. Reproduced with permission from Elsevier Ltd.  

(F)[135], Copyright 2008. Reproduced with permission from the American Chemical Society. 

 

2.2.1. Atom transfer radical polymerization 
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ATRP is a powerful controlled radical polymerization technique, which enables precise synthesis of functional 

polymers with determined molecular weight and narrow molecular weight distribution [98]. Due to its applicability 

to various monomers, solvents, catalysts, and reaction conditions, ATRP has been employed for the preparation of a 

broad range of advanced polymeric materials with controlled architecture and functionality [5, 99]. Because it can be 

carried out at room temperature in aqueous solution, ATRP is particularly useful for the conjugation of polymer 

chains to biological entities such as proteins, peptides, nucleic acids, viruses, and even live cells. Fig. 3A shows 

representative ATRP initiators reported in the literature for the synthesis of polymer bioconjugates by ATRP using 

either grafting to or grafting from approach. 

Maynard et al. reported the preparation of thiol-reactive polymers by ATRP using an initiator functionalized 

with a pyridyl disulfide group, which were then selectively grafted to the single surface-exposed cysteine group of 

bovine serum albumin (BSA) [100]. However, the grafting to approach often encounters low coupling efficiency 

especially for high molecular weight polymers due to their steric demand and the challenging removal of unreacted 

polymers and biomacromolecules. To avoid these limitations, the grafting from strategy has become a more popular 

procedure because ATRP initiators can be easily attached to biomolecules using both chemical means and genetic 

engineering. As illustrated in Fig. 3B, Maynard et al. reported the first example of in situ ATRP synthesis of protein‒

polymer conjugates using modified streptavidin as a macroinitiator in 2005 [77]. Streptavidin is an intensively studied 

protein that binds four biotin ligands. Poly(N-isopropylacrylamide) (PNIPAM) chains were quantitatively conjugated 

to the protein at the biotin binding sites only, and the bioactivity of streptavidin remained unaffected. This 

straightforward approach was also extended by the same group to other proteins including BSA and the enzyme 

lysozyme [101]. Similarly, chymotrypsin modified with 2-bromoisobutyramide was also used to initiate ATRP of 

nonionic, cationic, and anionic monomers for the synthesis of near-uniform protein‒polymer conjugates while 

retaining 50‒86% of the original enzyme activity [102]. Chilkoti et al. demonstrated the in situ ATRP growth of a 

brush-like polymer, poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), with narrow distribution 

and high yield, solely from the N-terminus of myoglobin or C-terminus of GFP [53, 67]. The resulted site-specific 

and stoichiometric bioconjugates showed significantly improved pharmacological profiles such as increased blood 

exposure compared to those unmodified proteins. 

With the rapid expansion of different monomers and biomolecules, ATRP remained as a versatile tool to 

prepare polymer bioconjugates has also greatly evolved especially under biologically relevant conditions [5]. For 

example, new ATRP techniques such as activators regenerated by electron transfer (ARGET) ATRP [103-105], 
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initiators for continuous activator regeneration (ICAR) ATRP [106, 107], electrochemically mediated ATRP (eATRP) 

[108-110], and photoinitiated ATRP (photo-ATRP) [111-113] have been developed by continuous regeneration of 

active catalysts with various external stimuli, which allow the preparation of polymer conjugates with low catalyst 

loading under biologically benign polymerization conditions. Russell et al. demonstrated the solid-phase synthesis 

of protein‒polymer conjugates by ATRP from protein macroinitiators reversibly immobilized on modified agarose 

beads (Fig. 3C) [114]. This effective and simple method is readily automated and therefore could dramatically reduce 

the time for the synthesis and purification of protein‒polymer conjugates. Matyjaszewski, Das and coworkers also 

reported a straightforward method for the solid-phase incorporation of an ATRP initiator onto a DNA strand, allowing 

the direct preparation of DNA‒polymer conjugates on the solid support [115]. Although ATRP has been successfully 

employed to grow polymers from biomolecules under aqueous conditions, its oxygen sensitivity is still a vexing 

challenge. Inspired by aerobic respiration of cells, Matyjaszewski et al. recently demonstrated a fully oxygen tolerant 

well-controlled ATRP, which used glucose oxidase (GOx) to continuously catalyze the conversion of oxygen to 

carbon dioxide in the presence of glucose and sodium pyruvate [116]. This “green” ATRP procedure could be 

conducted under air exposure and it was successfully used for the synthesis of well-defined protein‒polymer 

conjugates. Based on the exciting new development, they further reported an “oxygen-fueled” ATRP using a 

biocatalytic system composed of GOx and horseradish peroxidase with ppm level of Cu catalyst [117]. This 

enzymatic cascade polymerization, which requires continuous oxygen supply to generate radicals, was used to 

prepare BSA‒POEGMA and DNA‒POEGMA bioconjugates. 

 

2.2.2. Reversible addition‒fragmentation chain transfer polymerization 

RAFT polymerization is another controlled radical polymerization, which has been popularly used for the preparation 

of well-defined polymer bioconjugates [118, 119]. It tolerates various chemical groups and is applicable for a broad 

range of solvents and monomers [120]. Similar to ATRP, RAFT polymerization has been employed to synthesize 

functional polymers of determined molecular weight, low polydispersity, as well as precisely designed architecture 

and functionality [121]. One distinct advantage of the RAFT approach is that metal catalysts are not needed. Instead, 

chain-transfer agents (CTAs) such as dithioesters, dithiocarbamates, trithiocarbonates, and xanthates are required 

because polymers are generated via equilibrium between a growing radical and the RAFT CTA [122]. Therefore, the 

structure of the CTA is of great significance for the controlled growth of polymers. Fig. 3D displays selected RAFT 

CTAs for the synthesis of polymer bioconjugates. 
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Similar to ATRP-based systems, polymer bioconjugates can also be prepared by RAFT polymerization using 

both grafting from and grafting to approaches [123-128]. For instance, α-chymotrypsin, an enzyme that digests other 

proteins, was conjugated to well-defined polymers made by RAFT polymerization [129]. These conjugates were able 

to significantly improve the stability of the protease without affecting its bioactivity. Maynard et al. conducted RAFT 

copolymerization of cyclic ketene acetal monomer with poly(ethylene glycol methyl ether methacrylate) yielding 

functional polymers, which were subsequently conjugated to lysozyme through a reducible disulfide linkage [130]. 

As illustrated in Fig. 3E, the polymer is backbone degradable and also could be easily cleaved off from the lysozyme‒

polymer conjugate in a reducing environment. For the grafting from approach, Börner et al. demonstrated the RAFT 

polymerization for the synthesis of bioactive oligopeptide‒polymer conjugates using a trithiocarbonate-based 

peptide‒CTA [131]. DNA‒polymer conjugates on a planar solid support were prepared by covalently attaching CTAs 

to ends of surface-immobilized oligonucleotides and then initiating RAFT polymerization [132]. The first example 

of RAFT-mediated in situ formation of protein‒polymer conjugates was reported by Bulmus, Davis, and coworkers 

[133]. They synthesized site-specific BSA‒poly(PEG acrylate) (PPEGA) conjugates via gamma-radiation-initiated 

RAFT polymerization using a mixture of water and N,N-dimethylformamide as the solvent. However, the gamma 

radiation source may cause structural damage on some biological molecules. To avoid this detrimental effect and 

also the usage of organic solvents, a room temperature azo-initiator and a new water-soluble RAFT CTA were used 

for the in situ generation of well-defined BSA‒PNIPAM and BSA‒poly(hydroxyethyl acrylate) conjugates in 

completely aqueous solutions [134]. Importantly, the structural integrity and esterase-like activity of BSA were 

retained under the polymerization conditions, showing the general applicability of this RAFT approach for the 

preparation of bioactive protein‒polymer conjugates. In these two systems, both RAFT CTAs [general formula Z–

C(=S)S–R] were attached to BSA through the “Z-group”. As shown in Fig. 3F, the Sumerlin group synthesized a 

new type of macroCTA by conjugating BSA to the “R-group” of the CTA with thiol‒maleimide coupling, which was 

subsequently applied for room temperature RAFT polymerization of NIPAM in aqueous media [135]. This design 

provides better polymerization control due to reduced steric hindrance and the labile thiocarbonylthio moiety at the 

free chain end could be potentially used for further functionalization. In addition, they also prepared well-defined 

block copolymer conjugates of BSA‒PNIPAM-b-poly(N,N-dimethylacrylamide) by two consecutive grafting from 

RAFT polymerizations using this macroCTA [136]. Apart from these two conventional strategies, Thang et al. have 

recently reported the grafting through RAFT polymerization of a methacrylamide monomer containing a pending 

RGD peptide to afford well-defined peptide‒polymer conjugates that were used for enhanced cell adhesion [137]. 
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2.3. Structural design of polymer bioconjugates  

2.3.1. Variation of the polymer chain 

The conjugation of PEG to peptides and proteins, known as PEGylation, has been widely used in therapeutic fields 

to improve the stability and biopharmaceutical performance [138]. PEG is regarded as safe and there are many 

PEGylated protein drugs which have been approved by US Food and Drug Administration (FDA) in the market [139]. 

However, PEG can also impose a negative impact on the biomolecule such as reduced bioactivity, non-degradability, 

and immunological responses [140]. Therefore, a variety of alternative functional polymers have been developed for 

the conjugation of different biomolecules. For example, poly(quaternary ammonium) was grafted from the 

chymotrypsin surface to afford a dense cationic shell for the modulation of substrate specificity and inhibitor binding 

[141]. A series of polymers of varying functionality and length was conjugated to lysozyme to investigate the impact 

of the respective polymer on enzyme stability and activity [142]. Russell, Whitehead and coworkers prepared BSA‒

polymer conjugates with a phenylpiperazine-containing polymer, which selectively facilitated transepithelial protein 

transport [143]. Gao et al. have grafted poly(N,N’-dimethylamino-2-ethyl methacrylate) site-specifically from the N-

terminus of GOx to modulate H2O2 generation for cancer starvation and H2O2 therapy [144]. Reactive water-soluble, 

azlactone-containing copolymers synthesized by RAFT polymerization were conjugated to holo-transferrin and 

ovotransferrin forming protein bioconjugates that were internalized by cells via receptor-mediated endocytosis [145]. 

Biomimetic polymers inspired by biological components found in Nature have also been designed for 

bioconjugation. Biocompatible, zwitterionic polymers with cell membrane-mimicking characteristics were employed 

to construct biomaterials minimizing the interactions with proteins and cells [146-151]. Jiang et al. reported the 

conjugation of zwitterionic poly(carboxybetaine) (PCB) (Fig. 4A) using α-chymotrypsin as a model protein and PCB 

was found to protect proteins from chemical and thermal denaturation [152]. Remarkably, the PCB conjugates 

demonstrated superior stability in comparison to the corresponding PEG conjugates of similar molecular weights 

(Fig. 4B) and similar hydrodynamic size (Fig. 4C). More importantly, enhanced binding affinity with a peptide-based 

substrate was observed for PCB conjugates which could be attributed to differences on how PEG and PCB affected 

substrate binding affinities: PEG reduces enzyme‒substrate hydrophobic‒hydrophobic interactions due to its 

amphiphilic features while super-hydrophilic PCB promotes these interactions and the binding affinity through strong 

ionic structuring of water molecules (Fig. 4D). Recently, PCB was also conjugated to insulin via amine‒NHS ester 

conjugation and the conjugate showed increased ability to lower in vivo glucose compared with native insulin [153]. 
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Gao et al. presented the conjugation of zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) to the C-

terminus of interferon-α, and the resulting polymer bioconjugates showed significantly improved in vitro 

antiproliferative bioactivity and in vivo antitumor efficacy compared to those of PEGylated interferon-α [154]. 

Inspired by the natural disaccharide trehalose, which protects proteins and cells in many plants and animals, well-

defined glycolpolymers with pendant trehalose side chains were prepared for stabilization of protein bioconjugates 

to environmental stressors [155]. Similarly, a heparin-mimicking polymer consisting of styrene sulfonate units and 

PEG methyl methacrylate units was covalently conjugated to basic fibroblast growth factor (bFGF) [156]. As shown 

in Fig. 4E, the obtained bioconjugate exhibited significantly improved stability against heat, mild and harsh acidic 

conditions, storage and proteolytic degradation compared to native and PEGylated bFGFs. 
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Fig. 4. Biomimetic polymers for protein conjugation. (A) The structure of PCB and its relationship with ammonium acetate. The R 

group represents a methacrylate backbone. (B and C) Relative activity of PEG and PCB conjugates of similar molecular 

weight (Mn) and similar hydrodynamic size (Rh). (D) Mechanism of how PEG and PCB polymers affect binding affinity. (E) 

Structure of a heparin-mimicking polymer, poly[sodium 4-styrenesulfonate-co-poly(ethylene glycol) methyl ether 

methacrylate] [p(SS-co-PEGMA)] and its conjugation to protein bFGF. The bottom shows the stability of the resulting 

polymer bioconjugate bFGF-p(SS-co-PEGMA) and its impact on cell growth compared to control samples after different 

treatments. It is obvious that the bioactivity of the conjugate was comparable to the positive control which had a 700-fold 

molar excess of heparin, and significantly higher than other control samples, under all environmental stresses. 

[152, 156], Copyright 2012 and 2013, respectively. Reproduced with permission from Springer Nature. 

The conjugation of smart polymers, which can respond to various stimuli such as pH, temperature, and light 

to biomolecules, may allow on-demand regulation of solubility, stability and bioactivity of the resulting conjugate 

[157]. For instance, light was successfully used to tune enzyme catalytic activity when an azobenzene-containing 

copolymer was conjugated to a distinct location near the catalytically active site [158]. Thermo-responsive PNIPAM 

is one of the most famous smart polymers, which has been attached to various biomolecules such as proteins, peptides, 

nucleic acids, and polysaccharides through different conjugation strategies [159]. Haddleton et al. reported the 

conjugation of PNIPAM to BSA, lysozyme, bovine hemoglobin, salmon calcitonin, and insulin by aqueous single 

electron-transfer living radical polymerization [160]. PNIPAM‒DNA conjugates were also synthesized and used for 

preparation of pH and temperature dual-responsive hydrogels, which could find potential applications for sensing 

and smart drug release [161]. For more examples on the conjugation of stimuli-responsive polymers to biomolecules, 

the reader can refer to other reviews [157, 159].  

Because nondegradable polymers may accumulate in biological systems or persist in the environment, the 

design and synthesis of degradable polymers has received great significance especially for therapeutic applications. 

For instance, acid-degradable PEG chains were synthesized by introducing a cleavable acetaldehyde acetal into the 

backbone, which were employed for BSA conjugation [162]. Well-defined and water-soluble polyphosphoesters 

prepared by living anionic polymerization with chain-end functionalization have also been used for protein 

conjugation [163]. The resulting bioconjugates exhibited comparable bioactivities compared to PEGylated proteins, 

and the polymer shell degradation at physiological conditions was proved by online triple detection size exclusion 

chromatography and gel electrophoresis. Recently, the Maynard group has developed a powerful strategy to prepare 

a series of degradable polycaprolactones with different side groups including trehalose, lactose, glucose, 

carboxybetaine, and oligo(ethylene glycol), by combining ROP and thiol‒ene post-modification [164]. These 

degradable polymers were conjugated to protein granulocyte colony-stimulating factor offering enhanced stability 

against storage and heat stressors. 
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2.3.2. Alteration of the polymer topology 

In addition to functionality and degradability, the polymer topology is also an important factor, which could have a 

profound influence on the biomolecule and the unique properties of the resulting polymer bioconjugates [139]. This 

part highlights representative examples on the bioconjugation of synthetic polymers with various controlled 

topologies such as block copolymers, hyperbranched polymers and dendrimers. Although biomolecule-conjugated 

polymer networks, particularly hydrogels, have broad applications in the biomedical fields [165, 166], these works 

have not been included because their resulting structures are not clearly defined. 

Beside linear homopolymers, functional random and block copolymers have been extensively used for 

bioconjugation [167, 168]. For example, Stayton et al. modulated the activity and aggregation properties of the 

conjugate of streptavidin with a dual stimuli-responsive block copolymer PNIPAM-b-poly(acrylic acid) (PNIPAM-

b-PAA) [169]. Through two consecutive grafting from reactions via RAFT polymerization, Sumerlin et al. prepared 

block copolymer conjugates of BSA [136] and lysozyme [170]. Moreover, block copolymer conjugates of lysozyme 

were also prepared by combining the grafting to and grafting from strategies [171]. 

Synthetic polymers of brush-like, hyperbranched, and dendritic topologies have been widely reported for 

biomedical applications demonstrating some unique features in comparison to their linear counterparts [172-178]. 

The conjugation of branched polymers to biomolecules has therefore emerged as an exciting new area to achieve 

bioconjugates with improved stability and prolonged circulation times in vivo [140, 179-183]. In order to investigate 

the impact of the polymer architecture on bioconjugate activity, three polymers with similar molecular weights but 

different topologies ranging from linear, loosely branched, to densely branched were conjugated to osteoprotegerin 

(OPG), a protein that can be used for inhibition of bone resorption [184]. The obtained bioconjugates were nontoxic, 

and in vivo studies indicated an increase in the bone mineral density of rats treated by the loosely branched polymer‒

OPG bioconjugate. Klok et al. reported squaric acid mediated synthesis of functional polymers with varying 

architectures including linear, midfunctional, hyperbranched, and linear-block-hyperbranched polyglycerol 

copolymers, which yielded a broad range of BSA and lysozyme polymer bioconjugates [185]. Bioactivity of 

conjugates made from high molecular weight midfunctional polyglycerol copolymers was obviously higher than that 

of linear polymers of similar molecular weights. Brush-like polymer POEGMA has been demonstrated to 

significantly improve the circulation time and antitumor effect of myoglobin and GFP [53, 67]. Exendin-4, a peptide 

drug for type 2 diabetes mellitus, was also conjugated by POEGMA site-specifically at the C-terminus, and the 

resulting bioconjugate demonstrated reduced blood glucose for up to 120 h in fed mice with one single subcutaneous 
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injection [186]. Importantly, the reactivity to anti-PEG antibodies could be completely eliminated by optimizing the 

length of PEG side chains, showing distinct advantages of these novel bioconjugates compared to those based on 

linear PEG polymers. 

Dendrimers and dendrons are highly branched molecules, which allow the preparation of precisely defined 

polymer bioconjugates [187, 188]. For example, our group demonstrated the dynamic covalent attachment of a 

positively charged polyamidoamine (PAMAM) dendron to different enzymes including trypsin, papain, and DNase 

I via the pH-responsive interaction between salicyl hydroxamate and boronic acid (Fig. 5A) [189]. The formation of 

dendronized enzyme constructs was first confirmed by a fluorescence assay, which demonstrated the stoichiometric 

substitution of fluorogenic Alizarin Red S by the salicyl hydroxamate containing PAMAM dendron (Fig. 5B). At pH 

7.4, the functional dendron formed a protective shell on the surface of active enzymes blocking the catalytic sites. 

Due to the positive charges of the conjugated PAMAM dendrons, these enzyme‒dendron conjugates could be 

efficiently internalized by A549 cells and colocalized in the acidic intracellular compartments (Fig. 5C). The enzyme 

activity was then recovered causing cytotoxicity and these smart conjugates can therefore serve as structurally defined 

biotherapeutics. Leroux et al. reported a polycationic dendronized polymer poly[3,5-bis(3-aminopropoxy)benzyl 

methacrylate] (PG1) for the stabilization of orally administered enzymes in the gastrointestinal tract through covalent 

conjugation [190]. Specifically, they compared the retention and stabilizing effect of four polymers with different 

architectures and functional groups (Fig. 5D). Enzymes conjugated to the positively charged dendronized polymer 

PG1 showed prolonged retention due to the strong mucoadhesive interactions with mucin on the stomach wall (Fig. 

5E). In addition, this dendronized polymer could also stabilize the enzyme for over three hours in the stomach of rats 

while the other three polymers, including α-poly(D-lysine) (PDL), methoxy PEG (mPEG) and PAA, provided little 

or no retention/protection. 
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Fig. 5. Branched polymers for bioconjugation. (A) Preparation of supramolecular protein‒dendron conjugates based on the pH-

controlled interaction between boronic acid and hydroxamate. The residues highlighted in green represent catalytic sites. 

(B) The quantitative replacement of Alizarin Red S by the PAMAM dendron on protein surfaces revealed by a fluorescence 

assay. (C) Confocal microscopy images showing the dendron-mediated uptake by A549 cells and colocalization of these 

dendronized proteins within acidic cellular compartments. Scale bars: 20 µm. (D) Chemical structures of the four polymers 

used for enzyme conjugation and gastric stabilization. (E) The behavior of enzyme‒polymer conjugates in the 

gastrointestinal tract.  

[189], Copyright 2014. Reproduced with permission from John Wiley and Sons Inc.  

[190], Copyright 2013. Reproduced with permission from Springer Nature. 
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2.3.3. Manipulation of the conjugate architecture 

The structural control of polymer bioconjugates is not only focused on the polymer part. Due to the flexibility of 

using various synthetic tools, the conjugate architecture can also be programmed yielding innovative constructs with 

superior properties for specific applications [191]. To mimic protein dimerization occurring in Nature, well-defined 

linear PNIPAM produced by RAFT polymerization was functionalized with protein-reactive maleimide groups at 

both ends to synthesize homodimeric protein‒polymer conjugates using a V131C mutant T4 lysozyme as the model 

protein [192]. The maleimide‒thiol coupling was able to prepare the homodimers in 21% yield after 16 h. To increase 

the conjugation efficiency, the rapid tetrazine‒trans-cyclooctene ligation was applied to afford the respective dimers 

in 38% yield within 1 h [193]. Recently, Bode et al. reported that potassium 2-pyridyl acyltrifluoroborates can be 

used to construct homodimeric protein‒polymer conjugates under near equimolar conditions with a good yield of 82% 

[194]. Apart from these examples, heterodimeric protein‒polymer conjugates have also been prepared by linking two 

different proteins with heterotelechelic polymers [195-198]. 

The conjugation of one polymer with multiple biomolecules, particularly functional peptides, forming 

multivalent systems is proven to be a successful strategy for enhancing specific molecular recognition in biological 

systems [199]. As an example, Klok et al. synthesized a series of multivalent side chain peptide‒polymer conjugates 

to inhibit HIV-1 entry into a host cell and improved antiviral activity was achieved by midsized polymer conjugates 

[200]. To enhance targeting of integrin-expressing cells, a new type of “polymultivalent” polymer‒cyclic RGD 

peptide cluster conjugates with two levels of multivalency were introduced and up to ~2 orders of magnitude potency 

enhancement was observed in a competitive cell adhesion assay [201]. 

The architecture of bioconjugate has significant effects on its properties and applications [202-204]. Based 

on a one-pot, two-step polymerization process, Lu et al. reported the easy synthesis of heterotelechelic poly(amino 

acid)s offering rapid access to protein‒poly(amino acid) conjugates with various topologies (knot-like, dumbbell-

like, and circular) under mild conditions [205]. This approach was based on two orthogonal chemical handles, 

including a thioester for native chemical ligation and a polyglycine for sortase A-mediated ligation, which were in 

situ installed at the C- and N-termini of substrate poly(amino acid)s. Notably, the head-to-tail cyclic conjugates using 

therapeutic interferon-α as a model protein exhibited dramatically improved protease resistance and thermostability. 

In a recent study, they further investigated the antitumor pharmacological activity of the cyclic conjugate in 
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comparison to its linear counterparts [206]. In vitro and in vivo experiments revealed distinct advantages of the cyclic 

conjugate in antiproliferative activity, circulation time, tumor retention and penetration, as well as antitumor efficacy. 

 

3. Protein/peptide‒polymer conjugates 

Peptides and proteins are oligomers and polymers composed of amino acids, which often possess hierarchical 

structures and specific biological functions. Through conjugation of synthetic polymers, a novel class of soft hybrid 

materials, namely “protein/peptide‒polymer conjugates” can be obtained combing the unique advantages of both 

natural and synthetic polymers [18, 19, 191]. One of the most attractive features of natural building blocks is their 

structure precision in view of sequence, molecular weight, 3D structure and supramolecular complex formation based 

on precisely defined intra- and intermolecular interactions. In chapter 2, we have discussed the site-specific polymer 

conjugation at the surface of individual native proteins. The main focus of this chapter is to discuss important 

advances for the preparation of peptide/protein‒polymer conjugates, which have, to some extent, well-defined 

architectures. 

 In the first section, we introduce the conjugation of synthetic polymers to precision templates derived from 

native proteins, focusing on denatured proteins and protein cages. Thereafter, self-assembly of protein/peptide‒

polymer conjugates into defined architectures such as spherical nanoparticles, fibers, vesicles, and nanotubes are 

summarized. Moreover, the formation of well-defined structures on surfaces including the covalent immobilization 

of biomolecules by polymer brushes to gain spatial control over the respective biological activities are also discussed. 

This wide spectrum of well-defined structures based on protein/peptide‒polymer conjugates enables various 

applications in both biomedical and non-biological areas, ranging from cancer treatment, antibacterial, and antivirus 

to artificial membrane channels, enzymatic catalysis, and soft actuators. In the last section of this chapter, we 

highlight selected examples of the most exciting applications, in which structural precision and well-defined structure 

formation play critical roles for enabling the specific application.  

 

3.1. Proteins as precision templates for polymer conjugation 

 Proteins are the main components in most biological processes enabling, for example, structure formation, 

catalysis and transport. These unique features are based on their defined monomer sequence and precise 3D structures. 

In addition, some proteins are able to form well-defined higher order superstructures under specific conditions [207]. 

Therefore, proteins represent ideal building blocks to construct well-defined nanomaterials by providing precise 
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structure information at different levels. Here, we highlight recent advances on the construction of well-defined nano-

architectures based on protein-derived templates such as the monodisperse polypeptide backbone of denatured 

proteins as well as highly symmetrical and ordered protein cages. 

 

3.1.1. Precision nanomaterials based on denatured proteins 

Globular proteins can be denatured by external stress such as solvents, inorganic salts, exposure to acids or 

bases, and by heat, which alters their secondary and tertiary structures but retains the peptide bonds of the primary 

structure between the amino acids [208]. Since all structural levels of the protein determine its function, the protein 

is usually no longer bioactive once it has been denatured. However, unfolded proteins could be regarded as 

monodispersed biopolymers providing well-defined contour length and various functional groups at determined 

positions along the main chain. In 2003, Whitesides et al. pioneered an approach for preparing linear polymers with 

determined chain lengths and functional groups at defined locations along the chain by acylation of denatured proteins 

[209]. In the past decade, our group has explored denatured proteins as a unique polymer platform for the construction 

of defined nano-architectures and nanomaterials for various applications [210]. For protein denaturation, protein 

aggregation during the denaturation process needs to be strictly avoided as it is very challenging to disaggregate the 

protein agglomerates once they have precipitated, which reduces yields and makes purification more difficult. 

Typically, chaotropic agents such as urea to break hydrogen bonds and other supramolecular forces and mild reducing 

agents such as tris(2-carboxyethyl) phosphine (TCEP) are added. Stabilizing hydrophilic polymer chains can be 

attached to the polypeptide backbone before or after the denaturation step to prevent aggregation of the denatured 

polypeptide chains [210]. In our design, PEG chains of different molecular weights (2000‒5000 Da) have been 

covalently linked through either thiol‒maleimide chemistry or amine‒NHS ester chemistry. PEG chains provide 

sufficient stability under the denaturing conditions as well as biocompatibility and they alter the hydrophilic‒

hydrophobic balance of the denatured polypeptide chain consisting of hydrophilic and lipophilic sequence patterns 

preventing undesirable supramolecular interactions within the chains also due to the steric effect [211]. Figure 6A 

shows a typical procedure for PEG conjugation followed by unfolding of the blood plasma protein human serum 

albumin (HSA, 66 kDa) by 5 M urea‒phosphate buffer (PB) in the presence of TCEP. Thiol groups of the unpaired 

cysteines and reduced disulfide bonds are typically exposed during the denaturation step and they can be capped by 

different maleimides such as PEG‒maleimide and N-(2-aminoethyl)maleimide to avoid reformation of disulfide 

bonds. Noteworthy, the optimal denaturing conditions need to be carefully identified as each protein has a different 
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inherent stability based on its folding as well as the number and location of the disulfide bridges. In this way, hen 

egg white lysozyme with a molecular weight of 14 kDa requires more drastic denaturation conditions, i.e., 8 M 

guanidine and excess of the reducing agent dithiothreitol (DTT) for denaturation compared to HSA [212]. By reacting 

single accessible thiol groups of BSA with PEG‒bismaleimide to synthesize a protein-dimer precursor, a giant 

polypeptide‒PEG‒polypeptide triblock copolymer of defined structure, composition and a very high molecular 

weight of about 400 kDa has also been reported via the PEGylation and denaturation strategy [213]. 

The denatured protein‒PEG conjugates synthesized by the convenient approach provide several attractive 

characteristics: (1) biocompatibility; (2) biodegradability by proteases; (3) defined peptide sequence; (4) the final 

polymers offer narrow molecular weight distributions that can be characterized by mass spectrometry ensuring the 

quality control of products; (5) various functionalities in specific positions which allow the realization of complex 

tasks such as cellular uptake and intracellular delivery; and (6) tunable transition between globular, collapsed and 

extended architectures. In addition, the PEG side chains could reduce protein binding and provide “stealth properties” 

by shielding the immunogenic recognition sites (epitopes) [214]. Therefore, polypeptide‒PEG conjugates based on 

denatured proteins provide various attractive features for biomedical applications and as precision substrates for 

templated synthesis of well-defined nanomaterials (Fig. 6). 
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Fig. 6. Synthesis and applications of denatured protein‒PEG conjugates. (A) A typical procedure to synthesize protein-derived 

polymers by PEG conjugation and denaturation of HAS; (B) Surface modification with denatured protein‒PEG conjugates 

and precise assembly of nanodiamonds by DNA origami; (C) Denatured proteins as a precision backbone for the synthesis 

of anisotropic brush polymers, which allow site-specific functionalization of the main chain and assembly; (D) Templated 

synthesis of PNIPAM-grafted gold nanoflowers in one pot for temperature-controlled catalysis; E) Denatured protein‒PEG 

conjugates as multifunctional and degradable backbones to prepare functional hybrid hydrogels. Left: DNA-induced 

crosslinking of the denatured protein‒PEG backbone affording protein‒DNA hybrid hydrogels. Right: self-healing hydrogels 

with inner fibrillar structures by crosslinking of the copolymers with self-assembling peptides as pH-responsive gelators for 

cell cultivation.;  

(B) [221], Copyright 2015. Reproduced with permission from the American Chemical Society.  

(C) [223], Copyright 2020. Reproduced with permission from the American Chemical Society.  

(D) [225], Published by the Royal Society of Chemistry and the Chinese Chemical Society.   

(E),left [230], Copyright 2014. Reproduced with permission from the Royal Society of Chemistry.  

(E), right [231], Copyright 2019. Reproduced with permission from John Wiley and Sons Inc. 
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Because of their unique optical properties, quantum dots (QDs) and fluorescent nanodiamonds (FNDs) are 

two highly promising probes for tracking biological processes i.e. with super-resolution microscopy and drug delivery 

applications [215, 216]. However, applications of the “bare” nanoparticles are severely limited by their poor solubility 

in various biological environments. In addition, other challenges include the toxicity of QDs [217] and the surface 

modification of FNDs that provide undefined surface functionalities with high batch-to-batch variations [218]. 

Denatured protein‒PEG conjugates serve as attractive nanoparticle coatings due to the availabilities of many reactive 

amino-, carboxylic acid and thiol groups that could interact with various nanoparticle surfaces though electrostatic 

interactions or hydrogen bonds as well as the presence of hydrophobic amino acids that bind hydrophobic surfaces 

by van der Waals interactions. For example, denatured HSA‒PEG conjugates functionalized with multivalent thioctic 

acid groups stabilize the surface of CdSe‒CdZnS QDs [219]. The coated QDs gain improved water-solubility and 

unique pH-responsiveness, which was attributed to conformational rearrangements of the polypeptide coating at 

different pH. This could alter the capacity of the polymer to efficiently passivate and protect the nanoparticle surface. 

Based on this strategy, a polycationic polypeptide‒PEG conjugate based on denatured BSA was achieved that 

encapsulated QDs and enabled their cellular uptake and allowed DNA complexation [220]. In these systems, the QD 

core served as an in situ reporter for pH changes, DNA complexation and ultimately even DNA transfection because 

its photoluminescence dropped significantly with increasing quantities of complexed DNA. Similarly, the cationized 

and denatured protein‒PEG conjugates could also offer excellent colloidal stability to FNDs so that they remained 

stable even in the presence of high ionic strength buffers required for DNA origami folding (Fig. 6B). In this way, 

the first DNA origami-assembled FND nanostructures were formed, which is a critical step to study the coherent 

coupling of ordered spin arrays [221]. Moreover, the biopolymer-coated FNDs remained stable even after 

encapsulating high amounts of hydrophobic doxorubicin drug molecules and revealed high uptake into human lung 

adenocarcinoma A549 cells and in vivo efficacy attractive for cancer therapy [222]. 

In comparison to synthetic polymers, the most prominent advantages of denatured proteins are their 

monodisperse lengths and defined amino acid sequences. Therefore, the denatured protein‒PEG conjugates can be 

used as precision templates for the preparation of various structurally defined nanomaterials. Very recently, Weil et 

al. have reported the construction of precision brush polymers using denatured proteins as a monodisperse 

macromolecular backbone (Fig. 6C) [223]. By introducing ATRP initiators to denatured HSA‒PEG conjugates, 

anisotropic brush polymers with monodisperse contour lengths and narrow distributions were obtained by grafting 

polymer side chain from the backbone. The size and anisotropy of the brush polymers were tuned by varying 
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polymerization conditions and the initiator density on the polypeptide backbone. Particularly, a distinct functionality 

can be introduced onto an absolute position located asymmetrically along the polypeptide backbone of these brush 

polymers. By combining this site-specific functionalization strategy with biotin―streptavidin interactions, various 

functional entities such as a single fluorescent dye, a gold nanoparticle, the hormone somatostatin, and a model 

antibody were introduced via site-specific assembly to fabricate novel higher ordered constructs, which may find 

potential applications in both biomedicine and nanoscience [223]. As shown in the confocal laser scanning 

microscopy image of Fig. 6C, biotin-containing brush polymers self-assemble with biotin-functionalized 

somatostatin in the presence of streptavidin and the formed construct revealed somatostatin-mediated uptake into 

cancer cells. 

Due to the presence of abundant amino groups in the backbone, denatured protein‒PEG conjugates possess 

strong capability to bind metal ions. Therefore, the biopolymer providing high water solubility was used as an ideal 

substrate for templated synthesis of metal nanoparticles. For instance, our group has reported a denatured HSA‒PEG 

conjugate functionalized with TAT peptide, and mitochondria targeting triphenyl-phosphonium groups for the 

synthesis of ultrasmall gold nanoparticles with good biocompatibility and high stability [224]. Recently, the 

denatured HSA‒PEG conjugate has been employed as a precision template for the preparation of polymer-grafted 

gold nanoflowers by combining ARGET ATRP and metal reduction in a one-pot fashion [225]. The cationized 

biopolymer with immobilized ATRP initiators serves both as a platform to bind chloroauric anions and as a 

macroinitiator for ARGET ATRP. Ascorbic acid was then added continuously into the system to activate ATRP 

catalyst precursors and to reduce gold ions in parallel (Fig. 6D). PNIPAM-grafted gold nanoflowers of controllable 

sizes, shapes and thermo-responsiveness have been achieved and applied as smart nanoparticle catalysts for the 

hydrogenation of p-nitrophenol to p-aminophenol. This convenient approach based on protein-derived templates 

could be expanded to other functional polymers and noble metal nanoparticles, providing access to various polymer-

coated metal nanostructures for broad applications in catalysis, sensing, and biomedicine [225]. 

The architecture of denatured protein‒PEG conjugates responds to changes of the balance of hydrophilic 

and groups along the polypeptide backbone. These changes could either be lipophilic functionalities that are 

covalently attached or the presence of hydrophobic guest moieties that interact with the lipophilic amino acid side 

chains via supramolecular interactions. In this way, well-defined core‒shell nanostructures were formed suitable for 

catalysis and delivery of lipophilic molecules into cells. When the cationized and denatured BSA‒PEG conjugate 

was modified with just a few hydrophobic groups such as alkynes, stable nano-sized micelles were formed 
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spontaneously [226]. Complexation with the hydrophobic chromophore perylenetetracarboxydiimide, a denatured 

HSA‒PEG conjugate functionalized with folic acid groups, has been shown to form globular micelles, which were 

uptaken into cells via receptor-mediated endocytosis [227]. The lipophilic drug doxorubicin has also been 

encapsulated into these micelles by complexation [228] or covalent conjugation [226] and efficient delivery into 

various cancer cells has been shown. To achieve selectivity and better control over the drug release profile, a pH-

responsive hydrazone linker has been introduced to conjugate doxorubicin to the denatured protein backbone that 

potentially allows release in the acidic microenvironments of tumor tissue as well as in acidic endosomal vesicle 

[229]. The sophisticated core‒shell delivery system composed of a polypeptide core with doxorubicin drug molecules 

and a PEG shell adopts a two-step drug release based on proteolytic degradation of the backbone and acid-induced 

drug release. In vitro test of the drug-loaded micelles revealed very high cytotoxicities against Hela cells and leukemia 

cell lines. More importantly, 100% survival rates of mice that received ex vivo transplantation of engrafted leukemic 

tumor cells after 12 weeks were demonstrated [229]. 

In combination with various crosslinking chemistries, the denatured protein‒PEG conjugate served as 

biocompatible and biodegradable high molecular weight scaffold to prepare injectable hybrid hydrogels. As 

crosslinkers, multi-arm DNA [230] as well as self-assembling peptide sequences [231] have been applied. Denatured 

HSA‒PEG conjugates were functionalized with ssDNA sequences that could hybridize with complementary Y-

shaped DNA [230]. The formed hydrogel was used to immobilize active proteins including GFP and YFP, which 

were released by proteases as well as nucleases independently (Fig. 6E). Furthermore, conjugation of a recombinant 

Rho-inhibiting C3 toxin that inhibits growth and migration of bone degrading osteoclast cells to the multi-arm DNA 

linker allows the toxin-loaded hydrogel to reduce osteoclast formation and bone resorption without affecting 

differentiation and mineralization of bone forming osteoblast cells [232]. In another example, self-assembling 

peptides that spontaneously form cross β-sheet fibrillary structures were grafted to the backbone of denatured HSA‒

PEG conjugate. To control fibril formation of the peptides, they were masked as depsi-precursor peptides. The depsi 

peptide sequences do not aggregate at acidic pH until an intramolecular O,N-acyl shift occurs at higher pH values 

affording the formation of peptide nanofibers, which served as pH-responsive gelators (Fig. 6E). The obtained 

hydrogels are cytocompatible, biodegradable, reveal rapid self-healing abilities and cells migrated into this porous 

matrix, rendering them attractive for 3D tissue engineering [231]. 

 

3.1.2. Protein cages for grafting synthetic polymers 
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Protein denaturation destroys the 3D structure of native proteins so that nanostructures are mainly formed 

within the polymer chain by external guests or stimuli. In another class of nanostructures, the self-organizing features 

of proteins are retained so that distinct and large protein nanostructures are formed. Protein cages of different sizes 

are widely formed in Nature, such as mammalian ferritins with a diameter of 12 nm and virus-derived icosahedral 

protein cages with diameters from approximately 28 nm (brome mosaic virus and cowpea chlorotic mottle virus) to 

95 nm (human adenovirus) and more than 500 nm (megavirus chilensis) (Fig. 7A). These well-defined 3D hollow 

architectures with symmetric shapes and uniform sizes are formed via the self-assembly of individual protein subunits 

[233]. They have received rapidly growing interests of the materials science community due to their broad 

applications as nanoscale reactors, as scaffolds for nanomaterial synthesis, and as versatile vehicles to deliver a broad 

range of drugs, genes, and imaging agents [233, 234]. In addition, the subunits of protein cages can be chemically or 

genetically modified at specific locations, allowing the conjugation of functional moieties within the interior cavity 

and/or on the exterior surface in a site-selective manner [235]. Polymer conjugation of protein cages give them 

entirely new properties and expand the range of applications. For instance, PEGylation of protein cages is a very 

popular and effective strategy to reduce the immunogenic response facilitating their usage for biomedicine [236-238]. 

In addition, surface engineering with functional polymers offers stimuli-responsiveness [239], increased stability 

[240, 241], and solubility in organic solvents [242, 243].  

Based on the well-established chemistries to prepare peptide‒polymer conjugates, the grafting to approach 

using reactive groups at the surface of these cages is a relatively straightforward modification strategy to decorate 

protein cages with synthetic polymers. For example, Finn et al. have attached poly(2-oxazoline)s to the exterior 

surface of bacteriophage Qβ via the CuAAC click reaction [240]. They used a multiple-point conjugation strategy 

and the polymer-conjugated protein cages showed significantly enhanced thermal stability, surviving at temperatures 

higher than 100 °C. Thermo-responsive smart polymer PNIPAM has also been conjugated to the surface of vault, a 

recombinant protein cage with a size of 41 × 41 × 72.5 nm, by coupling the thiol group at N-terminus of the major 

vault protein [239]. The obtained vault nanoparticles exhibited reversible aggregation behaviors that can be controlled 

by temperature. Pokorski et al. have attached water-soluble polynorbornene (PNB) chains, which were synthesized 

by ROMP, to the outer surface of bacteriophage Qβ [244]. Significantly, PNB with brush-like architectures 

demonstrated better shielding effect from antibody recognition than PEG for the protein cages [245]. In general, the 

direct conjugation of polymer chains to the interior surface of protein cages is considered more challenging to achieve 

due to the steric effect. In this regard, dendritic PAMAM has been conjugated into the protein cage thermosome, a 
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group II chaperonin that possesses a large pore size of 7 nm [246]. The thermosome‒PAMAM conjugate was 

successfully used for small interfering ribonucleic acid (siRNA) delivery [246] and templated synthesis of gold 

nanoparticles inside of the protein cage [247]. 

 

 
Fig. 7. Protein cages for polymer conjugation. (A) Structures of representative protein cages; (B) Site-specific ATRP growth of 

functional polymers from the interior cavity of the bacteriophage P22 virus-like particle. The internal functional polymer 

was subsequently labeled with a fluorophore or a paramagnetic MRI contrast agent. 

(A) [233], Copyright 2016. Reproduced with permission from the Royal Society of Chemistry.  

(B) [253], Copyright 2012. Reproduced with permission from Springer Nature. 
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In contrast to the grafting to approach, it has become a recent trend to conjugate polymers to protein cages 

via the grafting from approach [248], which should generate polymer conjugates with better-defined structures. By 

modifying the exterior surface of horse spleen ferritin nanocage with an ATRP initiator, the polymerization of 2-

methacryloyloxyethyl phosphorylcholine and PEG methacrylate has been realized by Russell, Emrick and coworkers 

[249]. Antibody recognition experiments revealed the “stealth” properties of these hydrophilic coatings. Böker et al. 

have reported the copolymerization of NIPAM and photo-crosslinkable 2-(dimethyl maleinimido)-N-ethyl-

acrylamide from the surface of the same protein cage [250]. These bioconjugates have been shown to stabilize 

emulsions, which allows the formation of thermo-responsive capsules for controlled drug delivery after cross-linking. 

Finn et al. have polymerized an azido-functionalized oligo(ethylene glycol) methacrylate from the exterior surface 

of the bacteriophage Qβ by ATRP [251]. This monomer even facilitated post-functionalization of the protein cage 

via the CuAAC reaction, which was demonstrated by conjugation with an alkyne-substituted Alexa Fluor 488 dye, a 

gadolinium complex (Gd‒DOTA) contrast agent for magnetic resonance imaging (MRI), as well as a pH-sensitive 

and clickable doxorubicin derivative for anticancer therapy. 

In addition to the functionalization of the outer surface, Douglas and coworkers pioneered the site-specific 

growth of both branched [252] and linear [253] polymers from the interior surface of protein cages. They showed 

stepwise synthesis of a dendritic polymer from heat shock protein (HSP), whose interior cavity has a diameter of 6.5 

nm [252]. Here, cysteine reactive sites genetically introduced to the inner side of the protein cage served as the 

initiation sites. By sequential conjugation of azide and alkyne monomers using click chemistry, the polymer grew to 

generation 2.5, which formed fully cross-linked network across the protein subunits, rendering the protein cage 

thermally stable even at 120 °C. In addition, a large number of free amines has been incorporated into the branched 

polymer chains, which further offers addressable sites to load additional functional components. In their following 

contributions, the Gd-diethylene triamine pentaacetic acid (Gd-DTPA) contrast agent was attached to the reactive 

amines of the polymer network [254]. Each protein cage was shown to incorporate up to a maximum of 159 Gd, and 

the functionalized protein cages demonstrated a per particle relaxivity of 4200 mM‒1 s‒1 which was among the highest 

reported values for protein cage‒Gd MRI contrast agents. This strategy was further extended to construct a branched 

iron‒phenanthroline based coordination polymer within the protein cage of HSP [255]. However, the stepwise growth 

method involves tedious reaction steps, and it is very challenging to achieve polymers with high molecular weights 

and high densities within the protein cage. To address this issue, the same group has reported the first example of 

site-specific ATRP growth from the inside cavity of a mutant of the bacteriophage P22 capsid [253]. This P22 protein 
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cage consists of 420 subunits with an interior diameter of 54 nm. ATRP initiators were attached to the only 

addressable cysteine of each protein subunit, which was mutated to be exposed within the inner cavity, in a near-

quantitative manner (Fig. 7B). By copolymerization of 2-aminoethyl methacrylate (AEMA) and bisacrylamide using 

standard ATRP conditions, cross-linked polymer networks were formed in the interior of the protein cage. 

Importantly, the reactive primary amines of the polymer chains were still accessible, as confirmed by post-

functionalization with small molecules such as fluorescein isothiocyanate (FITC), Gd-DTPA, a photosensitizer 

(Eosin-Y), and a cobaloxime catalyst [253, 256]. Notably, the obtained polymer-conjugated protein cages revealed a 

high loading capacity of 9100 ± 800 Gd per cage, affording an ultrahigh per particle relaxivity of 200,000 mM‒1 s‒1. 

In order to obtain nanoreactors for photocatalytic applications, AEMA was also copolymerized with [ruthenium(5-

methacrylamido-phenanthroline)3]2+ from the inner surface of the P22 capsid [257]. A similar approach have also 

been demonstrated by Finn and coworkers to polymerize a positively charged monomer N,N-dimethylaminoethyl 

methacrylate from the interior surface of Qβ for the delivery of siRNA [258]. 

Collectively, protein cages constitute well-defined templates for grafting synthetic polymers with defined 

inner holes and outer surfaces and they receive emerging interest for drug delivery and bioimaging. It should be noted 

that protein cages can also be combined with synthetic polymers by many other interactions such as electrostatic 

complexation or non-covalent encapsulation of synthetic polymers into protein cages [233]. For example, the protein 

corona on adenovirus 5 (Ad5), one of the main vectors in gene therapy, has been mimicked by polyphenylene 

dendrimers with a distinct amphiphilic surface pattern [259]. These dendrimers coated the surface of Ad5 by distinct 

non-covalent interactions, which abolished binding of blood coagulation factor X, facilitated uptake into receptor 

negative cells, which was not possible for Ad5 alone. The dendrimer corona had a significant impact on Ad5 in vivo 

trafficking and the Ad5‒dendrimer complexes revealed a new bioactivity profile, which could be attractive to broaden 

the therapeutic applications of Ad5. In addition, some attention has been paid to the self-assembly of protein‒polymer 

conjugates into protein cages and protein cage-mimicking nanostructures, which are discussed in greater details in 

section 3.2.2. 

 

3.2. Assemblies of protein/peptide‒polymer conjugates 

3.2.1. Polymer conjugates based on self-assembling peptides 

Polypeptides have been frequently used as building blocks for the preparation of amphiphilic block 

copolymers. In contrast to proteins, peptides provide shorter chain lengths, lower molecular weights and less complex 
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tertiary structures. In the past two decades, self-assembly of polypeptide-based block copolymers into micelles and 

vesicles has been intensively explored, particularly for applications in catalysis and drug delivery [260-264]. In 

contrast to conventional synthetic polymers, peptide sequences can interact with each other via different 

supramolecular interactions such as hydrogen bonding, π-π stacking, and metal ion coordination to form well-defined 

secondary structures and superstructures. This attractive characteristic offers additional opportunities to control the 

self-assembly of polypeptide-based copolymers and many unique structures have been achieved [265, 266]. For 

example, Hawker, Knight and coworkers reported the self-assembly of peptide‒polymer conjugates based on metal 

ion coordination of peptides [267]. As shown in Fig. 8A, the amphiphile oSt(His)6 consists a hydrophobic polystyrene 

block and a hydrophilic block, hexahistidine, which can coordinate with divalent transition metal ions to form dimers. 

In the absence of metal ions, oSt(His)6 spontaneously self-assembled into vesicles in a noncoordinating buffer 

(HEPES, 100 mM, pH 7). When different metal ions [Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)] were added 

during the self-assembly process, the conjugate formed a wide range of new structures including micelles [Ni(II), 

Cd(II)], aggregated micelles [Zn(II), Co(II), Cu(II)], and multilamellar vesicles [Mn(II)]. 
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Fig. 8. Self-assembly of peptide‒polymer conjugates. (A) Metal ion coordination as driving force for the self-assembly of 

amphiphile oSt(His)6 into various morphologies. Scale bars in cryogenic transmission electron microscopy (cryo-TEM) 

images represent 200 nm (larger image) and 20 nm (inset image); (B) Synthesis and self-assembly of ROS-responsive 

peptide‒polymer conjugates and the shape transformation around mitochondria for enhanced antitumor efficacy. Bottom: 

transmission electron microscopy (TEM) images showing H2O2-induced shape change of the peptide‒polymer conjugate; 

(C) Molecular structure of PBA-CP-PPEGA and its hierarchical self-assembly into tubisomes. 

(A) [267], Copyright 2018. Reproduced with permission from the American Chemical Society.  

(B) [278], Copyright 2019. Reproduced with permission from the American Chemical Society.  

(C) [298], Copyright 2018. Reproduced with permission from John Wiley and Sons Inc. 

 

Long fibrous structures can be obtained through self-assembly of sequence-controlled oligopeptides that 

have a tendency to form β-sheet structures [268-270]. Not surprisingly, introducing β-sheet forming peptides into the 

structure may allow peptide-guided self-assembly of polymer conjugates into well-defined fiber-like structures. For 

instance, Börner et al. reported the formation of fibers with a maximum length of up to 1 µm by conjugating PEO 
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chains to template pre-organized oligopeptides [271]. These oligopeptides exhibited a high tendency to form β-sheet 

motifs due to the restriction of conformation freedom. Chen and coworkers investigated the self-assembly behaviors 

of a series of amphiphilic brush polymers with dendronized oligosaccharide and oligophenylalanine as side chains 

[272]. Depending on different ratios of sugar units to the oligopeptide, various self-assembled morphologies 

including compound micelles, nanowires, and nanoribbons were observed. Interestingly, the nanowire was formed 

via a hierarchical self-assembly process driven by the carbohydrate‒carbohydrate interaction of the sugar units and 

the β-sheet forming tendency of oligophenylalanine. 

In biological systems, peptides are dynamic materials and their conformations and biological activities are 

often regulated by changes in their direct surrounding. Synthetically, the introduction of switchable peptides into 

polymer bioconjugates would offer vast opportunities for the structural control over their assemblies. The Börner 

group reported a PEO‒peptide conjugate based on a peptide sequence with five repeats of alternating valine and 

phosphorylated threonine [273]. This conjugate was soluble in aqueous solution. However, fiber formation was 

triggered by the enzymatic dephosphorylation of the peptide block due to conformation changes of the peptides into 

β-sheet structures [273]. Recently, in situ construction and shape transformation of peptide-based assemblies in 

specific physiological environments have been demonstrated as promising strategies for biomedical applications 

[274-277]. Wang, Qiao and coworkers reported reactive oxygen species (ROS)-responsive polymer‒peptide 

conjugates, which undergo morphology changes inside tumor cells [278]. Possessing a mitochondria-targeting 

peptide KLAK and a β-sheet forming peptide KLVFF conjugated with PEG through a ROS-cleavable linker as side 

chains, these conjugates were able to self-assemble into spherical nanoparticles and target mitochondria after entering 

cells (Fig. 8B). Due to the high ROS concentration around mitochondria, PEG chains were detached, which induced 

in situ formation of nanofibers with exposure of KLAK peptides. This shape transformation enhanced the multivalent 

cooperative interactions between KLAK and mitochondria, leading to improved anticancer effects in vitro and in 

vivo. 

In addition to linear peptides, β-sheet forming cyclic peptides that can self-assemble into well-defined 

nanotubes have received special attention in recent years. Polymer conjugation offers many advantages to these 

nanotubes such as improved solubility, a wide spectrum of functionalities, and additional control over the tube length 

[279]. This does not only allow for a better understanding of the self-assembly mechanism, but also significantly 

broadens applications of these nanotubes. Basically, polymer strands can be attached to peptide nanotubes both before 

and after assembly via either the grafting to or grafting from approach [280-282]. In 2005, Biesalski et al. reported 
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the first example of growing polymer chains from surface-immobilized initiators of cyclic peptide nanotubes via 

ATRP [283]. In addition, they demonstrated that length and diameter of the polymer‒peptide nanotubes are highly 

affected by the molecular weight of grafted polymers [284]. Since the early studies, Perrier and collaborators have 

made significant contributions in this field by elucidating the tube structure [285, 286], tracking their assembly 

processes [287, 288], as well as exploring a wide variety of applications [289-291].  

In order to control the self-assembly behavior and tube length, Perrier et al. have introduced different stimuli-

responsive polymers to cyclic peptide nanotubes. For example, poly(2-ethyl-2-oxazolin) was successfully used to 

realize temperature-controlled reversible transformation from nanotubes to microparticles [292]. In addition, a series 

of pH-responsive polymers including PAA [293], poly(dimethylamino ethyl methacrylate) [294], poly[2-

(diisopropylamino)ethyl methacrylate] [295] have also been conjugated into cyclic peptide nanotubes, which allow 

modulation of their self-assembly upon pH changes. Recently, host‒guest interactions were also employed to switch 

the self-assembly of a cyclic peptide‒PEG conjugate [296]. In this system, two phenylalanine groups as binding sites 

of cucurbit[7]uril were attached to the cyclic peptide, and the nanotube formation could be tuned by reversibly 

incorporating two bulky cucurbit[7]uril moieties via host‒guest chemistry. 

Cyclic peptide‒polymer nanotubes have also been used as building blocks to construct well-defined higher 

order structures. For instance, Jolliffe et al. reported that hydrophobic cyclic peptide‒polymer nanotubes with a Janus 

corona were able to self-assemble in artificial phospholipid bilayers and form transmembrane channels for a dye 

[297]. In collaboration with the Perrier group, they further designed an asymmetric cyclic peptide‒polymer conjugate 

(PBA‒CP‒PPEGA) with a hydrophilic PPEGA chain on one side and on the opposite side, a hydrophobic poly(n-

butyl acrylate) (PBA) chain [298]. This amphiphilic conjugate demonstrated a hierarchical self-assembly in aqueous 

solution by first forming amphiphilic Janus nanotubes via hydrogen bonds and then generating a superstructure, 

called tubisome based on terms liposome and polymersome, driven by the hydrophobic interactions (Fig. 8C). These 

tubisomes were able to fuse into the lipid bilayer of lysosomes in cells forming artificial pores. To identify the key 

factors to obtain tubisomes, a more detailed study was conducted with varied hydrophilic‒hydrophobic ratios of the 

PBA‒CP‒PPEGA conjugate [299]. 

 

3.2.2. Self-assembly of protein‒polymer conjugates 

As a unique class of polypeptides with fully folded structures and globular shapes, proteins in most cases 

provide biological functions to protein‒polymer conjugates. When hydrophobic polymers are attached to water-
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soluble proteins, the amphiphilic conjugates self-assemble in a manner similar to that of low molecular weight 

surfactants and synthetic block copolymers in aqueous solution. Therefore, these protein-based amphiphiles can also 

serve as building blocks for the construction of a wide range of solution nanostructures. Early examples reported by 

Nolte and coworkers have demonstrated the self-assembly of protein‒polymer conjugates into fibers [300], vesicles 

[301], and toroids [302]. In recent years, self-assembled nanoparticles based on protein‒polymer conjugates have 

been intensively explored as carriers for delivery of anticancer drugs [303-306]. Due to the presence of proteins, 

these self-assembled nanostructures possess the special advantage of built-in bioactivity. For example, Thordarson 

et al. conjugated a maleimide-capped PNIPAM chain to the free cysteine residue of a GFP variant (amilFP497) [307]. 

The resulting conjugate PNIPAM-b-amilFP497 assembled into vesicles in aqueous solution upon heating to 37 °C. 

Fluorescent characteristics of amilFP497 were not affected during polymer conjugation, which allowed direct 

observation of vesicle formation using confocal microscopy. These vesicles were used as carriers to encapsulate 

doxorubicin and a fluorescent light-harvesting protein phycoerythrin 545 (PE545) [307]. Importantly, the location of 

payloads could be determined by combining fluorescence lifetime imaging microscopy and Förster resonance energy 

transfer (FRET), showing PE545 protein primarily located inside the vesicle membrane whereas doxorubicin was 

found both in the core and membrane. 

Recently, in situ growth of an insoluble polymer block from solvophilic polymers in solution to generate 

self-assembled nanostructures has become a new trend in macromolecular self-assembly [308-311]. This technique, 

termed polymerization-induced self-assembly (PISA), has also been expanded to the field of protein‒polymer 

conjugates. As a proof-of-concept experiment, Gao et al. site-specifically attached an ATRP initiator to the only free 

cysteine group (Cysteine 34) of HSA and then polymerized water-soluble 2-hydroxypropyl methacrylate (HPMA) 

from the initiator via ATRP [312]. The resulting amphiphilic conjugate HSA‒poly(2-hydroxypropyl methacrylate) 

(PHPMA) could self-assemble to well-defined nanostructures with tunable morphologies including micelles, 

wormlike micelles, and vesicles (Fig. 9A). In order to construct a tumor microenvironment-responsive fluorescence 

probe, this approach has been used to prepare pH-responsive micelles by polymerizing 2-(diisopropylamino)ethyl 

methacrylate from HSA [313]. In a similar way, Huang, Liu and coworkers reported photoinitiated RAFT PISA to 

generate protein‒polymer micelles via polymerization of HPMA from a multi-RAFT agent modified BSA [314]. 
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Fig. 9. Self-assembly of protein‒polymer conjugates into high order nanostructures. (A) Schematic illustration and TEM images 

showing the in situ site-specific polymerization-induced self-assembly of HSA‒PHPMA into tunable morphologies from 

spheres to worms and vesicles; (B) Synthesis of two oppositely charged βLG A‒PEG conjugates and the preparation of 

nanocapsules by mixing the protein‒polymer conjugates at equimolar ratio in solution; (C) Synthesis of BSA‒PNIPAM and 

its self-assembly at the water droplet/oil interface to prepare proteinosomes. Bottom: optical microscopy 

(A) [312], Copyright 2017. Reproduced with permission from the American Chemical Society.  

(B) [315], Copyright 2017, Reproduced with permission from John Wiley and Sons Inc. image (left) of proteinosomes 

dispersed in oil, as well as SEM (middle) and atomic force microscopy (AFM, right) images of dried proteinosomes.  

(C) [319], Copyright 2013. Reproduced with permission from Springer Nature. 

 

As mentioned earlier, protein cages are monodispersed and highly organized protein architectures, which 

are formed based on the specific and directional interactions between protein subunits. Well-defined protein-based 

nanostructures can therefore be generated by an alternative approach using interactions between proteins to drive the 

self-assembly of protein‒polymer conjugates. Nallani, Liedberg and coworkers designed and synthesized two 

oppositely charged β-lactoglobulin A‒PEG (βLG A‒PEG) conjugates and investigated their co-assembly behaviors 

[315]. As shown in Fig. 9B, the positively and negatively charged conjugates were obtained by amination or 

succinylation of βLG A followed by PEGylation via photoinduced click chemistry. Driven by electrostatic and 
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hydrophobic interactions between the proteins, spherical capsules with a diameter of 80‒100 nm and a narrow size 

distribution could be obtained by mixing the two charged protein‒polymer conjugates at equimolar ratio. These 

capsules were able to accommodate GFP and FITC-labelled dextran in their interior. On the other hand, the 

connection between proteins in protein‒polymer conjugates could also be created and strengthened by a third 

component. For example, Cornelissen et al. observed an irreversible dissociation of cowpea chlorotic mottle virus 

capsids when they were conjugated with PEG chains [316]. However, the resulting protein subunit‒PEG conjugates 

could then reassemble into much more stable virus-like particles in the presence of polystyrene sulfonate (PSS), due 

to the electrostatic interactions between PSS and the positively charged protein subunits. 

In addition to self-assembly in aqueous solution, amphiphilic protein‒polymer conjugates have also been 

reported to organize at water/oil interfaces for emulsion stabilization [250, 317, 318]. As shown in Fig. 9C, Mann et 

al. prepared hollow protein capsules termed proteinosomes by interfacial assembly of a protein‒polymer conjugate 

[319]. The conjugate BSA‒PNIPAM was synthesized by coupling mercaptothiazoline-capped PNIPAM chains with 

cationized BSA-NH2. By emulsifying an aqueous solution of the conjugate in 2-ethyl-1-hexanol, a closely packed 

and continuous monolayer of protein‒polymer conjugates could form at the interface generating proteinosomes with 

diameters in the range of 20‒50 µm. The proteinosomes were stable in oil and were transferable to aqueous solution 

after crosslinking, which facilitates their application for guest molecule encapsulation, selective permeability, and as 

stimuli-responsive micro-reactors. 

Owing to their potential applications in biosensors and heterogeneous catalysis, solid-state materials based 

on protein‒polymer conjugates with well-defined nanostructures have attracted much interest in recent years [320, 

321]. By solvent evaporation from concentrated solutions, protein‒polymer conjugates have been observed by Olsen 

and coworkers to form ordered nanostructures including lamellae, perforated lamellae, and hexagonally packed 

cylinders [322, 323]. Particularly, they have intensively studied effects of various factors such as the chemistry of 

the polymer block [323, 324], protein surface charges [325, 326], and molecular topology of the conjugates [327] on 

the self-assembly behavior. For instance, the electrostatic repulsion of supercharged proteins has been found to 

severely affect the nanostructure formation and the degree of ordering was reduced in the self-assembled structures 

[326]. These studies expand our understanding on the bioconjugate self-assembly and may allow the structural control 

of protein‒polymer conjugates in the solid state. 

 

3.3. Well-defined protein/peptide‒polymer conjugates on surfaces 
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Due to their robustness, versatility, and good processability, synthetic polymers have been used extensively 

to immobilize biomolecules including peptides and enzymes on various surfaces, which could find potential 

applications in biosensors, biotechnology, and biomedical devices [328, 329]. These functional surfaces with 

attractive biological activities such as antibacterial [330] and cell adhesion properties [331], can be constructed by 

either direct deposition of polymer bioconjugates or stepwise immobilization of polymers and biomolecules on 

surfaces. For example, Maynard et al. designed and synthesized a heterotelechelic biotin‒maleimide polymer by 

RAFT polymerization, which site-specifically conjugated proteins and immobilized them onto streptavidin- or 

neutravidin-functionalized surfaces [197]. Due to the presence of a cleavable disulfide bond in the polymer, the 

protein‒polymer conjugate could be detached from the surfaces under mild reducing conditions. 

Similar to those studies in solution and in bulk, surface-deposited protein/peptide‒polymer conjugates are 

able to self-assemble to well-defined nanostructures, forming novel materials combining unique features and 

bioactivities of polymers and biomolecules, respectively. Early example by Jenekhe et al. showed the self-assembly 

of triblock copolymers containing a central π-conjugated polymer and two polypeptide end blocks into spherical and 

fibrillar nanostructures [332]. He et al. reported the hierarchical self-assembly of block copolymers containing PEG 

and polypeptides with alkyl side chains on graphite [333]. Depending on the block copolymer concentration, diverse 

morphologies from island-like aggregates and monolayers to monolayers with larger nanorods or ring-shaped 

aggregates were observed. The self-assembly of globular protein‒polymer conjugates into cylindrical nanostructures 

has been demonstrated by Olsen and coworkers [334]. The conjugate containing fluorescent protein mCherry and 

poly(oligoethylene glycol acrylate), was flow coated into thin films on PEG-grafted silicon surfaces. Long-range 

order could be achieved under high humidity in surrounding air with a high coating speed. Polymer bioconjugates 

can also be co-assembled with synthetic block copolymers leading to hierarchically structured functional biomaterials 

[335]. Xu et al. reported the simultaneous co-assembly of a PEO-conjugated heme protein and an amphiphilic diblock 

copolymers, polystyrene-b-poly(ethylene oxide) (PS-b-PEO), into thin films with macroscale lateral ordering and 

regular nanoscale morphologies. Importantly, the protein structure and function were not affected during the film 

processing [335]. 

In addition to direct deposition of polymer bioconjugates on surfaces, proteins and peptides can be covalently 

immobilized onto polymer substrates via a wide range of conjugation chemistries [336, 337]. Polymer brushes, 

polymer chains covalently anchored to surfaces, are ideal substrates to precisely immobilize biomolecules because 

they can provide exceptional control over surface properties and functionalities [338]. Various functional groups of 
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polymer brushes such as epoxide, carboxylic acid, hydroxyl, aldehyde and amine groups have been employed to 

immobilize different biomolecules including peptides, proteins, and enzymes [329]. For instance, Popik, Locklin and 

coworkers reported functional polymer brushes containing photoreactive 3-(hydroxymethyl)naphthalene-2-ol 

(NQMP) moieties on silicon oxide surfaces [339]. Upon irradiation with 300 or 350 nm light, NQMP converts 

efficiently to o-naphthoquinone methide, allowing very fast Diels‒Alder addition to vinyl ethers such as vinyl ether‒

biotin conjugate. FITC-functionalized avidin could then be immobilized to the polymer brushes with a significantly 

higher protein loading amount than that of self-assembled monolayer-based systems. Recently, antifouling polymer 

brushes containing alkene functional groups have also been used to immobilize cell adhesive peptides via thiol‒ene 

radical coupling for the design of cell microarrays [340]. 

Very important is that patterned polymer brushes [341-344] can be easily prepared by emerging surface 

patterning techniques including photolithography, colloidal lithography, microcontact printing (µCP), electron-beam 

lithography (EBL), and scanning probe lithography (SPL), serving as a powerful platform to create well-defined 

surfaces and biochips with spatial control of biological functions. For example, µCP was successfully used to prepare 

patterned protein-resistant polymer brushes with nitrilotriacetic acid (NTA) groups that can selectively immobilize 

histidine-tagged proteins [345]. The protein resistance of NTA-functionalized POEGMA brushes was retained, which 

allowed the preparation of well-defined binary protein patterns. Yang et al. fabricated protein nanopatterns with 

different shapes including nanodot arrays, elliptical rings, microdiscs, triangles, and microgrids, by covalently 

conjugating proteins on hierarchical polymer brush patterns prepared by combining colloidal lithography and 

photolithography [346-348]. These protein patterns could promote cell adhesion and cell location. In contrast to µCP 

and colloidal lithography, EBL and SPL are writing techniques that can be used to fabricate arbitrary patterns at the 

nanometer scale. Maynard et al. employed EBL for the nanoscale arrangement of multicomponent two-dimensional 

(2D) single-layer or 3D multi-layer protein patterns [349]. Eight-arm PEGs modified with biotin, maleimide, 

aminooxy, or nitrilotriacetic acid were cross-linked onto Si surfaces using electron beams to form polymer patterns, 

which could be further used to site-specifically bind proteins with different functional moieties. Dip-pen 

nanodisplacement lithography (DNL) is a high resolution and program controllable SPL that is particularly suitable 

for constructing 2D and 3D patterned polymer brushes [350-352]. Zheng et al. employed DNL to create biomimicking 

nano-micro binary polymer brushes consisting poly(glycidyl methacrylate) (PGMA) and PNIPAM [353]. Gelatin 

was conjugated to PGMA brush nanolines, which offers the capability to regulate cell orientation. 
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3.4. Emerging applications based on the well-defined structure 

 

 

Fig. 10. Representative applications of protein/peptide‒polymer conjugates. (A) Preparation of IFN‒POEGMA-PHPMA micelle (IFN-

micelle) by site-specific in situ PISA for cancer therapy. Bottom right: cumulative survival of mice showing the in vivo 

antitumor activity of IFN-micelle; (B) On-site morphology transformation of self-assembled nanoparticles based on a 

chitosan‒peptide conjugate to nanofibers for treatment of bacterial infection; (C) Multivalent peptide conjugation of a 

dendritic polyglycerol for influenza A virus inhibition. The cryo-TEM image shows the interaction of the conjugate (yellow) 

with the virus corona (red dashed line); (D) Thermoresponsive cyclic peptide‒polymer conjugates for the generation of 

well-defined phospholipid trans-bilayer channels; (E) Recyclable thermoresponsive polymer‒endoglucanase conjugates for 

the enzymatic hydrolysis of cellulose; . (F) Preparation of muscle-inspired anisotropic actuators by grafting 

thermoresponsive polymers from the surface of a hydrogel tube made of aligned peptide amphiphile nanofibers. 

(A) [362], Copyright 2018. Reproduced with permission from the American Chemical Society.  
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(B) [379], Copyright 2017. Reproduced with permission from John Wiley and Sons Inc.  

(C) [382], Copyright 2017. Reproduced with permission from John Wiley and Sons Inc.  

(D) [289], Copyright 2014. Reproduced with permission from the American Chemical Society.  

(E) [392], Copyright 2013. Reproduced with permission from the American Chemical Society 

(F) [393], Copyright 2018. Reproduced with permission from Springer Nature. 

 

By combining the precision structure and evolved functionality of biomolecules as well as the synthetic flexibility 

and stimuli-responsiveness of polymers in one platform, protein/peptide‒polymer conjugates have demonstrated 

great potential for numerous applications particularly in biomedical fields. In addition, these hybrids with well-

defined structures are also very promising from a materials perspective [18]. While some examples have been 

presented during the discussion on synthetic approaches and various structures, we highlight here representative 

systems in which the conjugate structure plays a critical role for their applications. 

 

3.4.1. Biomedical applications 

Protein/peptide‒polymer conjugates have been intensively investigated and widely used for therapeutic applications. 

On one hand, polymer conjugation often imparts increased stability, tunable activity, and prolonged blood circulation 

time of the therapeutic proteins and peptides [76, 354]. For these systems, structural factors including conjugation 

site, grafting density, and length of polymers may have impact on the bioactivity and therapeutic effects of conjugates 

[355]. On the other hand, protein‒polymer conjugates and their assemblies have also been used as delivery vehicles 

or coatings for various therapeutic agents and nanoparticles [356-360]. In these cases, the well-defined and 

hierarchical structure of polymer conjugates is the basis for their respective applications. Alexander et al. synthesized 

different conjugates of transferrin by grafting polymers either from specific cysteine residues of recombinant 

transferrin variants or from random amine sites on the surface of native proteins [361]. The self-assembly behavior 

of these conjugates and their ability to deliver anticancer drugs were investigated. In comparison to the hybrids 

prepared by nonselective conjugation, the engineered transferrin‒polymer conjugates could form better-defined 

assemblies with enhanced performance in paclitaxel delivery. In addition, the self-assembled nanostructures of the 

protein‒polymer conjugates were found as a key factor to achieve high delivery efficacy. As discussed earlier, PISA 

has been successfully used to prepare various assemblies from protein‒polymer conjugates. To apply this approach 

for therapy, Gao et al. grafted an amphiphilic block copolymer site-specifically from the C-terminus of a therapeutic 

protein interferon-α (IFN) (Fig. 10A) [362]. The obtained conjugate IFN‒POEGMA-PHPMA could self-assemble 

into spherical micelles with a diameter of 112 ± 23 nm. Very importantly, these micelles (IFN-micelle) demonstrated 
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significantly enhanced in vitro bioactivity and in vivo half-life than that of FDA-approved PEGylated IFN 

(PEGASYS). Moreover, IFN-micelle also showed superior tumor accumulation compared to IFN conjugates 

modified with hydrophilic PEG or POEGMA chains [362]. Remarkably, tumor growth could be fully inhibited by 

IFN-micelle and 100% animal survival was achieved after four months in a mouse model of ovarian cancer (Fig. 

10A). This example clearly reveals the advantages of self-assembled nanostructures as future therapeutics. 

It is well understood that the sizes and shapes of self-assembled nanoparticles are important structural 

features affecting their pharmacokinetics [363]. Especially, nanostructures with elongated shapes often display longer 

circulation times in the body and are internalized by cells through different uptake pathways [363, 364]. In this regard, 

Perrier et al. synthesized PHPMA-based cyclic peptide‒polymer conjugates, which can self-assemble into well-

defined nanotubes as anticancer carriers [365]. By introducing a pyridine-containing comonomer into the polymer, 

the conjugates could be functionalized with an organoiridium anticancer complex. Compared to free drugs and non-

assembling drug-loaded polymers, drug-bearing nanotubes demonstrated higher toxicity toward human ovarian 

cancer cells. Moreover, cellular accumulation studies indicated that the increased activity could be ascribed to a more 

efficient action mode of the nanotube through a different drug partitioning profile into the cell organelles. To further 

explore cyclic peptide‒PHPMA nanotubes as an effective drug delivery system, in vivo experiments were performed 

to compare their pharmacokinetics and biodistribution with non-assembling polymers [366]. After intravenous 

administration of samples to rats, nanotubes were found to circulate for more than 10 hours and the plasma exposure 

was 3-fold higher than that of the polymer control. Importantly, the conjugates could be ultimately cleared from the 

systemic circulation, which is likely due to the slow disassembly of nanotubes into small entities, making them a 

promising vector for in vivo drug delivery. 

Apart from protein and drug delivery for tumor therapy, protein/peptide‒polymer conjugates with well-

defined structures have also been applied in the construction of other biomaterials such as fluorescence nanoprobes 

[367-369] and cell matrices [370]. Moreover, proteins and peptides provide a rich library of biofunctions, for example, 

cell targeting [371, 372] and antibacterial properties [373-376], to polymer bioconjugates broadening their 

application in countless fields. It is well-known that some intractable human diseases, including Parkinson’s disease, 

are associated with the assembly of amyloid β peptides into fibrils. Moore et al. reported multivalent polymer‒peptide 

conjugates as inhibitors to redirect the formation of amyloid β fibrils into discrete nanostructures through specific 

peptide interactions and multivalent effect [377]. Furthermore, they found that these conjugates of high molecular 

weights (166‒224 kDa) could efficiently break down existing amyloid fibrils [378]. 
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We have introduced above the on-site morphology transformation of nano-assemblies as a novel strategy for 

in vivo tumor therapy [276-278]. This strategy has also been used for bacterial infection treatment. Wang et al. 

reported shape-transformable nanostructures based on polymer‒peptide conjugates containing a chitosan backbone 

and two peptide side chains, i.e. an antibacterial peptide and a PEG-terminated enzyme-cleavable peptide [379]. This 

conjugate self-assembled into spherical nanoparticles with diameter of 34 ± 5 nm. After exposure at the bacterial 

infection site, the nanoparticles underwent morphology transition spontaneously into nanofibers in the presence of 

gelatinase (Fig. 10B). During this process, the protecting PEG corona was removed through cutting off the cleavable 

peptide linker and the antibacterial peptide was exposed to the surface, leading to the multisite cooperative 

electrostatic binding to bacterial membranes. In addition, enhanced accumulation and retention of nanomaterials were 

demonstrated by in vivo experiments, which were ascribed to the formation of fibrous structures. Collectively, the 

chitosan‒peptide conjugates exhibited highly efficient antibacterial activity [379]. In order to address infections 

caused by multidrug-resistant Gram-negative bacteria, novel well-defined antimicrobial agents with a dendrimer core 

and determined numbers of peptide side chains have been reported by Qiao, Reynolds and coworkers [380]. These 

star-shaped nanomaterials, termed “structurally nanoengineered antimicrobial peptide polymers”, were synthesized 

via ROP of lysine and valine N-carboxyanhydrides from the terminal amines of second- and third-generation 

PAMAM dendrimers. Remarkably, they exhibited sub-µM antibacterial activity against all tested Gram-negative 

bacteria and displayed selectivity towards pathogens over mammalian cells. 

Well-defined peptide‒polymer conjugates were also used as multivalent platforms for virus inhibition. Our 

group has designed and synthesized a thiol-reactive poly(bis-sulfone) copolymer, which allowed multiple 

conjugation of an endogenous peptide that targets the C-X-C chemokine receptor type 4 [381]. The resultant 

polymer‒peptide conjugate could self-assemble into narrowly dispersed nanoparticles and demonstrated enhanced 

antiviral activity on HIV infection. Herrmann and coworkers reported peptide‒polymer conjugates based on a 

dendritic polyglycerol scaffold as non-toxic and high affinity multivalent inhibitors for the influenza A virus [382]. 

As illustrated in Fig. 10C, the conjugate was synthesized by CuAAC coupling of alkyne-containing peptides to an 

azido-polyglycerol. In vitro experiments demonstrated that the viral infection was significantly reduced by increasing 

the size of polyglycerol scaffold and tuning the peptide density. Binding of the conjugate with virus was directly 

observed by cryo-TEM (Fig. 10C). More importantly, in vivo experiments demonstrated that the conjugate provides 

the ability to efficiently protect mice from virus infection. 
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3.4.2. Non-biological applications 

Because of their well-defined structures, protein/peptide‒polymer conjugates and their assemblies have attracted 

rapidly growing interest in the materials community for non-biological applications such as nanomaterial synthesis, 

molecular separation and catalysis [18]. For instance, we have presented that PEG-conjugated denatured proteins can 

be used for templated synthesis of spherical and flower-like gold nanoparticle catalysts [224, 225]. Self-assembled 

PEG‒oligopeptide conjugates have also been used as template for the controlled growth of silver nanoparticle arrays 

with high particle density [383]. In Nature, the internal interfaces of hierarchical composites are often regulated 

through peptide-based interface active molecules. Inspired by this, Börner et al. reported the application of peptide‒

PEG conjugates as specific compatibilizers for a model composite consisting of MgF2 nanoparticles and PEO matrix, 

which offers enhanced composite stiffness and toughness at the same time [384]. In addition, Sharma et al. reported 

BSA‒polymer conjugates as a water-less and universal solvent for various dry solutes of different sizes and surface 

chemistries even including micrometer-sized polystyrene beads [385]. 

When protein/peptide‒polymer conjugates are self-assembled into membranes, they can form specific pores 

with controlled sizes and shapes for the separation of molecules and particles. Using interfacial self-assembly, Böker 

et al. fabricated ultra-thin membranes of protein‒polymer conjugates with the cage protein ferritin immobilized in 

the polymer matrix as a sacrificial template [386]. After removal of ferritin by denaturation, uniform pores formed 

and their diameter was dependent on the protein size. This membrane with a thickness of 7 nm showed good stability 

when a transmembrane pressure up to 50 mbar was used. Importantly, the membrane was found to have a preferred 

permeability for gold nanoparticles below 20 nm. As discussed earlier, cyclic peptide‒polymer conjugates formed 

well-defined nanotubes via self-assembly. These nanotubes were also introduced into different membranes for the 

selective transport of small molecules. For example, Xu et al. reported the co-assembly of block copolymers and 

cyclic peptide‒polymer nanotubes forming porous thin films with high-density arrays of channels at the sub-

nanometer scale for gas separation [387]. Furthermore, they performed a more detailed study on the kinetic pathway 

of the co-assembly process pointing out the key factors to increase the membrane quality [388]. Perrier, Jolliffe and 

coworkers reported the self-assembly of cyclic peptide‒polymer conjugates in the phospholipid bilayer of large 

unilamellar vesicles to form artificial channels (Fig. 10D) [289]. Through synthesis of a series of conjugates based 

on different hydrophilic and hydrophobic polymers, the channel type and structure-channel formation relationship 

were elucidated and lipophilicity of the polymer block was found to be important for the formation of unimeric 

channels. Because the lipophilicity of PNIPAM can be tuned by temperature, thermoresponsive cyclic peptide‒
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PNIPAM conjugates were synthesized for the on-demand control over transbilayer channel formation (Fig. 10D). 

These transmembrane channels were used to transport cargoes between the cytosol and the extracellular media 

mimicking natural phospholipid membranes. In their subsequent work, a simple protocol to directly observe proton 

transport across the bilayer membrane has been developed [290]. Very recently, Perrier et al. reported the synthesis 

of cyclic peptide‒polymer conjugates connected by a cleavable linker between peptide and polymer [291]. These 

conjugates could prevent undesired and unspecific interactions of self-assembled cyclic peptide‒polymer nanotubes 

with lipid membranes, allowing the on-demand formation of membrane channels triggered by a stimulus in the 

environment. 

Because of its efficiency and selectivity, enzymatic catalysis has been used for industrial productions in 

many areas such food, medicine, biofuel synthesis and biomass transformation [389]. However, the high cost of 

enzymes is often a barrier, which restricts the development of these fields. Polymer conjugation is a promising 

strategy to reduce enzyme costs by providing enhanced activity and recyclability to enzymes [320, 390, 391]. For 

example, Mackenzie and Francis reported a library of thermoresponsive polymer‒endoglucanase bioconjugates as 

recoverable catalysts for hydrolysis of cellulose [392]. As shown in Fig. 10E, the bioconjugate is soluble in solution 

below the lower critical solution temperature (LCST) and can be used for the hydrolysis of cellulose. After the 

catalytic reaction, the bioconjugate is precipitated out when the temperature is increased above the LCST. By 

removing the oligosaccharide product and tuning back the temperature, the bioconjugate can be recovered and reused 

for several cycles of the catalytic depolymerization. Importantly, the authors have demonstrated the easy regulation 

of the material’s LCST in the range of 20‒60 °C through polymer structure design, enabling the application and 

recovery of enzymes at different temperatures. 

More complex, hierarchical structures based on self-assembled peptide amphiphile fibers have also been 

developed by Stupp and coworkers showing interesting actuating properties and potential applications [393]. They 

firstly fabricated a macroscopic hydrogel tube by circumferentially aligning the supramolecular nanofibers within a 

tubular mold using weak shear forces, and then grafted thermoresponsive polymer chains from the tube surfaces by 

ATRP (Fig. 10F). These hybrid supramolecular tubes with different levels of ordered structures exhibited anisotropic 

contraction along the length of the tube upon heating. Macroscopic alignment of the supramolecular nanofibers and 

the covalent attachment of polymer chains were identified as two key factors for the anisotropic actuation. This work 

demonstrates the great opportunities to build smart soft actuators responsive to external stimuli based on well-defined 

peptide‒polymer conjugates to realize complex applications. 
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4. Nucleic acid‒based polymer conjugates 

Nucleic acids represent the other class of precision biopolymers, which Nature has evolved specifically as the 

blueprint of life. In comparison to peptides and proteins, the interaction between the nucleotide pairs (A‒T, G‒C) are 

more streamlined in a way where the inter- and intramolecular forces are well-correlated in 3D space. Recognizing 

this as a powerful tool from the field of biotechnology to guide the structure of polymers and polymeric assemblies, 

the role of nucleic acids in modern polymer chemistry has recently seen a rising impact. 

The combination of nucleic acids and synthetic polymers has shown distinct benefits based on the unique 

structural features oligonucleotides provide. The first involves the principle of complementarity of nucleic acid 

hybridization, where any sequence is programmed to recognize its complementary strand selectively. This allows 

any polymeric or self-assembled structure appended with ssDNA/RNA to possess an intrinsic bio-orthogonal handle 

coupled with sequence recognition. Secondly, nucleic acids can be bioactive in different forms (i.e. DNAzymes, 

aptamers, siRNA, etc.), thus imparting both structural and functional features for the design for sophisticated 

biohybrid materials. 

 

4.1. Nucleic acid-templated synthesis of precision polymers 

In DNA, the ubiquitous double helical structure is a pervasive structural component independent of the sequence 

combination. On the contrary, the macromolecular structure of polymers largely depends on the molecular 

constituents. In an exemplary situation, a PNIPAM grafted to a DNA oligonucleotide would very likely demonstrate 

very similar physical (self-assembly, LCST, etc.) and chemical behavior using any non-self-complementary sequence 

of the same length. Hence, the flexibility in sequence and the assurance that the oligonucleotide would possess similar 

physicochemical properties have fueled their widespread application ranging from precision materials, nanorobots, 

ultrasensitive sensors, molecular computers, medical diagnostics, and therapeutics.  

In spite of these advantages, nucleic acids often require stringent conditions to remain stable, with RNA 

being more susceptible than DNA to hydrolysis due to intramolecular nucleophilic cleavage. For biomedical 

applications, oligonucleotides have poor pharmacokinetics and in vivo stability thus making them unattractive 

candidates as therapeutics [394]. Similarly, nucleic acids are likewise challenging to be used in materials science due 

to their limited scalability. However, likewise in protein‒polymer conjugates, several of these drawbacks can be 
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addressed by synthetic methods and even made to surpass their individual capabilities within the field of application. 

Hence, in recent years, nucleic acid bioconjugates have played an emerging role in nanotechnology due to their 

unique sequence programming capabilities. 

The methodologies to link oligonucleotides to polymeric materials have been summarized in Chapter 2 as 

well as in many excellent reviews [395, 396]. Hence, this section adopts a different perspective involving detailed 

considerations about the special role of oligonucleotides in macromolecular science by guiding precise assemblies at 

length scales ranging from molecular to nano-objects. On a molecular level, by exploiting the complementary 

interactions between base pairs, synthetic molecules can be arranged in a sequence specific fashion, coded by the 

oligonucleotide template. The first examples of this approach using DNA or peptide nucleic acids (PNAs) templates 

were shown by Liu’s and Lynn’s groups, respectively [397-399]. Short sequences of DNA/PNA were synthesized to 

investigate the capabilities of a step-growth oligomerization process that was guided by a continuous DNA template. 

By selecting the reductive amination as a distance-dependent reaction, these short sequences were shown to ligate 

spontaneously programmed by the code of the templates. Introduction of errors and mismatch sequences afford only 

minimal products, demonstrating the regio- and sequence specificity of the concept. In this first proof of concept, the 

extent of polymerization was accomplished up to a 40-base template, affording a PNA oligomer with a molecular 

weight of ~10,000.  

In addition to sequence precision, oligonucleotides also provide distinct spatial 3D arrangements of two 

target functionalities to control their interactions. These reactions can take place within the grooves of the DNA 

double helix or in a micellar system formed by a DNA-b-PPO copolymer system [400, 401]. Within the minor groove 

of the double helix, polyamide hairpins find themselves arranged by the “pairing rules”, which is presented as the 

exposed Watson‒Crick base pairs for hydrogen bonding (Fig. 11A). This allows the hairpins to be arranged non-

covalently according to the sequence of the DNA template, where subsequent click reactions with copper catalyzed 

azide‒alkyne cycloaddition allowed these hairpins to be ligated [400]. While the internal features of the double helix 

are an attractive avenue to orient the formation of chemical bonds across large oligomeric molecules, spatial 

programming can be achieved simply by DNA hybridization. The 5’-end of the template strand and 3’-end of the 

complementary strand are brought in close vicinity, allowing a fluorogenic isoindole reaction to specifically take 

place [401]. 
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Fig. 11. Nucleic acid-templated synthesis. (A) Schematic illustration of DNA-templated tandem hairpin formation. Polyamides bind 

to contiguous match sites on DNA and their complementary reactive groups (alkyne and azide) are placed in close 

proximity forming a covalent triazole linker which is displayed as a purple pentagon; (B) A bioinspired approach to free 

radical polymerization of a VBA monomer in the presence of a monodisperse block copolymer micellar template with 

complementary PVBT cores. The right images are TEM and AFM characterization of micelles after the addition and 

polymerization of VBA; (C) Enzyme-free translation of nucleic acids into sequence-defined non-nucleic acid polymers. The 

bottom left scheme represents a macrocyclic substrate for the translation system and the bottom right gel image shows a 

complete cycle of translation, PCR amplification, strand separation and re-translation. 

(A) [400], Copyright 2003. Reproduced with permission from the American Chemical Society.  

(B) [402], Copyright 2012. Reproduced with permission from Springer Nature.  

(C) [403], Copyright 2013. Reproduced with permission from Springer Nature. 
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By exploiting how DNA can position interacting molecules in space, one of the first examples using DNA 

to control synthetic polymer chemistry was reported by the group of O’Reilly [402]. In this seminal work, synthetic 

analogue of thymine (vinylbenzyl thymine, VBT) was block co-polymerized with styrene (St) to form the template 

PSt115-b-PVBT18 (Fig. 11B). This allowed the solubility of the block template in chloroform and thereby promoting 

the H-bond interaction between the thymine of the template with the target adenine. With the block template, 

vinylbenzyl adenine (VBA), which was insoluble in chloroform, became soluble through the formation of 

complementary interactions. Free radical polymerization was conducted on the pre-assembled VBA initiated by 

azobisisobutyronitrile (AIBN) to form the daughter polymer PVBA. Interestingly, monomodal high molecular 

daughter PVBA can be formed from just 18 units of PVBT in the block template. The result is a “hopping” feature 

where propagation of radicals between adjacent strands occurred within the micellar core of the block copolymer 

template. In contrast, polymerization without the template produced ill-defined, low molecular weight polymers, 

clearly demonstrating the potential of using DNA based interactions, albeit as a synthetic variant, to direct 

polymerization processes in a controllable fashion. 

While the above methodology provides an elegant approach towards polymer synthesis, it is challenging to 

incorporate sequence information within the framework. In this respect, Liu’s group encoded PEG, α-peptides, and 

β-peptides onto a “codon” defined by a sequence and arrangement of penta-nucleotide analogues [403]. Using a 5’ 

hairpin as the DNA template, complementarity allows each codon to hybridize against the template in a sequence 

specific manner (Fig. 11C). The close vicinity of the codons subsequently facilitates the covalent coupling of the 

encoded synthetic fragments together into a polymer, preserving the sequence information. The release of the 

afforded polymer was achieved by installing a stimulus responsive linker, in this case a disulfide, between the coding 

region and the fragment. Liu’s group further refined this strategy to utilize DNA ligase to catalyze the formation of 

up to 50 consecutive codes along a DNA template, accomplishing a biosynthetic pathway to form a fully customizable 

nucleic acid based polymeric scaffold [404, 405]. On a molecular level, the DNA code can act as a guide to direct 

polymerization reactions where, as a consequence, confer this information onto the newly created synthetic 

macromolecule. In another seminal methodology established by the Sleiman group, sequence identity from DNA can 

be imprinted into polymeric nanoparticles, creating a unique code that programs their assembly [406]. Using a DNA 

cube scaffold as a template with DNA‒polymer amphiphiles flanking the sides, an internal hydrophobic pocket 

customized by the nature of the polymer can be cross-linked to form an imprinted nanoparticle. Upon hydrolysis of 

the template, a characteristic polymeric structure comprising of a DNA code ranging from divalent to hexavalent can 
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be precisely constructed. With these coded nanoparticles, self-assembly into various geometries can be exactly 

defined where features such as interparticle distances, angles and particle junctions are manipulated in a facile way. 

As a result, nanostructures with identities conferred by the particles were created likewise within a sequence but on 

a different length scale. 

 

4.2. Precision polymer nanostructures programmed by DNA 

While the complementarity and recognition of DNA has enabled programmable features involving the orienting 

chemical motifs in molecular space, its capabilities extents even further into the nanoscale. DNA sequences can be 

manipulated to form any arbitrary wire-frame structures as well as continuously folded nanoarchitectures, a collective 

concept spearheaded by Rothemund and Seeman et. al. known as DNA origami [407-409]. The assortments of 

different DNA shapes and sizes have exponentially grown over the past decade and have since proven to be the 

pinnacle of synthetic nanotechnology due to its customization potential. Therefore, the sheer possibility of “on-

demand” customization and positioning of nanomaterials onto a singular precision platform have brought about new 

concepts in biophysics, nanomedicine and polymer synthesis.  

The arrangement of DNA sequences in the assembly of these complex structures is inspired and derived 

from the way Nature recombines and shuffles genetic information in cells through the formation of Holliday junctions 

[410]. These junctions are interlocking multi-arm DNA forming the immobile and thus stable connections within 

most, if not all, DNA-based architectures. As these junctions are rigid with defined distances between each arm, 

positioning of nanomaterials in 3D space can be accomplished with great precision. At this length scale, the inclusion 

of polymers into DNA to confer hydrophobicity, stimulus responsiveness and/or synthetic functions within a defined 

3D scaffold offers exciting new prospects in nanoscience. 

In this context, Sleiman’s group constructed minimalistic wire-frame DNA prisms and cubes appended with 

different hexaethylene glycol units to promote a controlled aggregation process [411, 412]. Micellar assemblies 

containing specific number of cubes and prisms can be tailored according to the polymer length and shape of the 

initial wire-frame DNA. Superscale assemblies ranging from 1‒10 µm, containing micelles from these two different 

shapes, can also be achieved. This strategy was further developed to include hydrophobic 1,12-dodecanediol in both 

block and alternating format with hexaethylene glycol to better understand the motivation of assembly both inter- 

and intramolecularly [413]. Using this methodology, a new range of DNA nanostructures can be accessed from the 

same precursors but with sequence variation of the appended polymeric segment. Separately, the approach of 
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constructing superlattices of DNA to orientate macromolecular objects was further demonstrated by combining 

different shapes into a three-layer architecture where inter-object distances can be tuned in both nanometer and 

micrometer scale [414]. 

As DNA controls structure formation through sequence regularity and specific interconnections into 

nanometer size objects, its templating effect on the molecular order of synthetic polymers reaches another paradigm. 

In a seminal study, Gothelf’s group demonstrates that a conjugated brush polymer, 2,5-dialkoxy-p-phenylene 

vinylene, can be routed individually on designated patterns of a DNA origami tile [415]. This was achieved through 

the attachment of ssDNA along the side chains of the polymer, which is complementary to the different patterns (i.e. 

S-shaped, U-shaped, O-shaped) extending out of the origami tile. The routing procedure was also demonstrated in 

3D, by wrapping the single strand polymer around a cylindrical origami. Optical properties were investigated using 

polyfluorene as an energy transfer donor to poly(p-phenylene vinylene), which were both routed in close proximity 

onto the same origami tile [416]. Efficient inter-polymer energy transfer was observed only upon successful 

attachment whereas the introduction of a 4-(dimethylaminoazo)benzene-4-carboxylic acid (DABCYL) quencher 

would block the optical communication between the two polymer strands. Using DNA toehold displacement 

technology, the alignment of polymers along the origami tile was switched reversibly to form differently oriented 

tracks [417]. The kinetics of the nanomechanical switching was characterized by time-dependent FRET studies and 

shown that the complete transformation was achieved in about 30 min. 

Beyond directing the conformation changes of synthetic polymers, DNA nanoscale structures can provide 

an opportunity to guide polymerization reactions to transfer the precise shape profile of DNA onto synthetic polymers. 

Our group arranged ATRP radical initiators in various shapes (i.e. lines, squares, crosses etc.) on DNA origami tiles, 

where polymers can subsequently be grafted from [418]. The polymerization reaction includes bis-acrylate cross-

linkers to ensure that the growing polymer chains from the origami scaffold were stabilized through the 

interconnections (Fig. 12A). Degradation of the sensitive origami template was achieved to yield the patterned 

polymeric structures. The methodology was subsequently expanded to pattern catalytic DNA structures, known as 

DNAzymes, from which the controlled polymerization of dopamine can be promoted (Fig. 12B) [419]. As 

polydopamine has a strong propensity to adhere to any neighboring material, it aggregates directly at the catalytic 

sites and thus takes the shape aspect of the designated pattern. In this way, distinct polydopamine nanostructures 

were formed at the DNA template. In addition, both polymerization methods were subsequently conducted in 

sequence on 3D tube origamis to form polymers orthogonally located at the internal and external surfaces of the tube 
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(Fig. 12C) [420]. This opens interesting prospects for cross-sectional engineering of nanoscale objects with synthetic 

polymers. 

 

 

Fig. 12. DNA origami for templated synthesis of precision polymer nanostructures. (A) The fabrication of patterned polymer 

nanostructures on DNA origami by in situ ATRP. The 3D AFM image on the bottom right shows a cross-linked polymer 

structure extracted from the DNA origami template; (B) Schematic illustration of the process for constructing defined 

polydopamine nanostructures on DNA origami; (C) A 3D DNA tube transformed from a 2D DNA tile was used as a precise 

nanotemplate for ATRP from the surface and polydopamine formation in the interior cavity. The rightmost figure shows the 

kinetics of dopamine polymerization in the DNA‒polymer hybrid tube; 

(A) [418], Copyright 2016. Reproduced with permission from John Wiley and Sons Inc.  

(B)[419], Copyright 2018. Reproduced with permission from John Wiley and Sons Inc.  

(C) [420], Copyright 2018. Reproduced with permission from the Royal Society of Chemistry. 
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4.3. Applications of well-defined nucleic acid‒polymer conjugates 

Beyond its sequence identity, DNA is a functional molecule from both chemical and biological perspective. 

Chemically, the complementarity of DNA is essentially a biorthogonal handle where molecules or materials of 

interest have been shown to ligate seamlessly [421-423]. This aspect has been exploited liberally in all variations of 

DNA nanotechnology and applications ranging from photonics, therapeutics, sensing, and nanomaterials. 

Comparatively, the biological relevance of DNA is more self-explanatory, as nucleic acids often are used to affect 

genetic information or mediate biological functions through single-stranded DNA or RNA sequences that bind to 

specific target molecules known as aptamers. The attachment of polymers to such sequences typically takes the stage 

of increasing the stability of DNA within the biological system, acting as a vehicle to cross cellular membranes and/or 

as a combinatorial platform for multimodal medical applications [424, 425]. 

Recent advances in this area generally attempt to integrate multiple functions (i.e. stimulus and temporal 

control, targeting etc.) onto a polymeric scaffold to enhance the bioactivity of DNA and its pharmacological 

properties. In this respect, the groups of Sumerlin and Tan demonstrated the grafting of DNA aptamers onto a 

hyperbranched PEG using photo-responsive chemistry [426]. Loaded with the chemotherapeutic, doxorubicin, the 

drug delivery system exhibited aptamer mediated targeting simultaneously with photo-dependent release (Fig. 13A). 

Other than aptamers, different classes of biologically attractive nucleic acid sequences such as siRNA have found 

similar avenues within polymer science. Although RNA is intrinsically more hydrolytically labile, both grafting to 

[427] and grafting from [428] strategies work well to form the desired bioconjugates. The groups of Albertazzi and 

Dankers expanded the possibilities by integrating siRNA into a multicomponent supramolecular polymer platform 

[429]. The supramolecular polymer is built upon using a 1,3,5-benzenetricarboxamide (BTA) derivative into 

nanofibrillar architectures (Fig. 13B). By functionalizing the BTA end groups with positively charged amines, siRNA 

can be complexed along the fiber axis while the hydrophobic core of the fiber provides the possibility to load small 

organic molecules of interest. The resultant polymeric construct facilitates both intracellular transport and up to 41% 

gene silencing capabilities against ELAV1, an RNA-binding protein, messenger RNA expression of HK-2 cells after 

48 h. Other examples of functionally active DNA include spherical nucleic acids (SNAs) in which the self-assembly 

into a core‒shell architecture is driven by the attachment of a diblock copolymer onto an oligonucleotide [430]. Using 

different sequences for the SNA formation, cellular internalization, trafficking and gene knockdown effects were 

elucidated, demonstrating that these assemblies remain highly bioactive through their self-assembly processes. 

 

Jo
ur

na
l P

re
-p

ro
of



59 
 

 

Fig. 13. Representative applications of nucleic acid‒polymer conjugates. (A) Self-assembly and TEM images of nanocarriers based 

on aptamer-grafted hyperbranched polymers for targeted and photo-responsive drug delivery; (B) Multicomponent BTA 

supramolecular polymers with two functional compartments, small fluorescent molecules loaded in the hydrophobic core 

and siRNA immobilized on the hydrophilic exterior, were used as a modular platform for intracellular delivery. Confocal 

microscopy images on the right indicate the intracellular trafficking of BTA polymers. Scale bars: 10 µm; (C) Supramolecular 

assembly of two different chromophores (pyrene and Nile red) along a fullerene‒DNA conjugate scaffold forming ordered 

and mixed assemblies, which were employed as a photo-active layer in solar cells. The right figure shows the broad spectral 

absorption of the photoactive layer and respective external quantum efficiency (EQE) of a typical solar cell. 

(A) [426], Copyright 2018. Reproduced with permission from John Wiley and Sons Inc.  

(B) [429],. Copyright 2016. Reproduced with permission from the American Chemical Society.  

(C) [433], Copyright 2016. Reproduced with permission from John Wiley and Sons Inc. 
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In certain cases, the interest does not solely lie on the bioactivity of nucleic acids but rather the use of DNA 

interactions to enhance polymer derived functions i.e. fluorescence, optoelectronics. By conjugating oligonucleotides 

onto a semi-conducting polymer derivatized from polythiophene, the amphiphilicity of the DNA‒polymer conjugate 

was the driving force for the observed vesicular assembly, and nanoribbons were formed by co-assembly with a 

PEGylated polythiophene [431]. This concept was also similarly demonstrated in light harvesting polymers where 

hydrophobic chromophore stacks containing oligo(p-phenylene-ethynylene) can be directed by DNA interactions to 

form fibrillar architectures [432]. Bringing such concepts into optoelectronic devices, Wagenknecht’s group found 

that mixed arrays of pyrene and Nile red can be templated along a fullerene functionalized oligonucleotide consisting 

of 20 repeats of deoxyadenosine [433]. With various pyrene and Nile red ratios, exciton dissociation by electron 

transfer to the fullerene were manipulated to different extents (Fig. 13C). In addition, the three-component system 

was incorporated as a photoactive layer in solar cells and charge-carrier generation of the material was demonstrated. 

 

 

5. Polymer conjugates based on other biotemplates 

5.1. Carbohydrate‒polymer conjugates 

Carbohydrates, also known as saccharides, are composed of monosaccharides, disaccharides, oligosaccharides, and 

polysaccharides. In contrast to the biomolecules discussed so far, saccharides often reveal complex branching 

structures, and they interact with various biological target structures. Carbohydrates play many critical roles in living 

organisms including energy storage and as structural components. Due to their unique features such as 

biocompatibility, biodegradability, and multifunctionality, carbohydrates have attracted great interest in biomedical 

and materials fields. The conjugation of functional polymers to carbohydrates is an effective strategy to improve their 

properties and broaden the applications. For example, cellulose, which is a polysaccharide and the most abundant 

biopolymer on earth, has been modified by many modern polymerization techniques [434-437]. Malmström et al. 

conducted ATRP of methyl acrylate from cellulose fibers at ambient temperature, which is the first example of 

controlled radical polymerizations for polymer growth from cellulose [438]. Using hydroxyl groups on cellulose as 

initiators, biodegradable polymers such as poly(L-lactic acid) and poly(ε-caprolactone) can also be conjugated via 

ROP [439]. Other carbohydrates including chitosan, pullulan, dextran, starch, and hyaluronan have also been 

modified by these polymerization methods, yielding functional materials for a variety of applications such as drug 

and gene delivery [440, 441]. Unlike proteins and nucleic acids with absolute structures, most polysaccharides have 
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varied molecular weights and properties. Therefore, this section does not provide a full overview of all carbohydrate‒

polymer conjugates but some examples with well-defined structures are highlighted. 

Well-defined carbohydrate‒polymer conjugates can be prepared by introducing monosaccharides or 

oligosaccharides to a precision polymer scaffold. For instance, functional copolymers with 2-naphthol groups and a 

narrow molecular weight distribution were synthesized by ATRP, and α-mannoside was conjugated to the backbone 

using cucurbit[8]uril-based host‒guest inclusion forming supramolecular glycopolymers [442]. Linhardt and Lee et 

al. prepared a series of well-defined conjugates by attaching 6’-sialyllactose (6SL) to different generation PAMAM 

dendrimers, which were used to inhibit influenza A viruses [443]. In spherical generation 4 and 5 scaffolds, the 

interligand spacing was found to be a more important factor than the number of ligands for the antiviral effect. 

Generation 4 6SL‒PAMAM conjugates with a spacing of 3 nm between 6SL ligands demonstrated the highest 

binding to a hemagglutinin trimer and displayed the best effect to block H1N1 infection. The structure-based design 

of carbohydrate‒polymer conjugates can therefore serve as an effective strategy to improve the antiviral efficacy of 

the bioconjugates. 
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Fig. 14. Preparation of precision 1D nanocrystals by using cylindrical cellulose‒polymer conjugates as nanoreactors. (A) Plain 

nanorods templated by cellulose-g-(PAA-b-PS). St, styrene; tBA, tert-butyl acrylate. (B) TEM images of a variety of plain 

nanorods. (C) Core‒shell nanorods templated by cellulose-g-(P4VP-b-PtBA-b-PS). (D) TEM and digital images of Au-Fe3O4 

core‒shell nanorods. (E) Nanotubes templated by cellulose-g-(PS-b-PAA-b-PS). (F) TEM images of Au nanotubes at different 

magnifications.  

[449], Copyright 2016, Reproduced with permission from the American Association for the Advancement of Science. 

 

Carbohydrates have also been used as precision templates to grow polymers with controlled polymerization 

techniques, generating carbohydrate‒polymer conjugates with well-defined architectures. β-Cyclodextrin (β-CD) is 

a cyclic oligosaccharide consisting of seven D-glucopyranoside units connected by α-1,4-glucosidic bonds. Each 

glucopyranoside unit has three hydroxyl groups, which can be functionalized with ATRP initiators. Lin et al. prepared 
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a β-CD macroinitiator by esterification of hydroxyl groups with 2-bromoisobutyryl bromide and pioneered the 

synthesis of 21-arm, star-like block copolymers using ATRP in combination with click chemistry [444, 445]. These 

star-like polymers can be used as unimolecular micelles for inorganic nanoparticle synthesis, as well as drug and 

gene delivery [446, 447]. In particular, they have demonstrated the preparation of nearly monodisperse colloidal 

nanocrystals with precisely controlled dimensions, compositions, and architectures by using the well-defined star-

like polymers as nanoreactors [448]. Specifically, metallic, ferroelectric, magnetic, semiconductor, and luminescent 

colloidal nanocrystals with desired sizes and architectures were synthesized following this strategy. Because cellulose 

forms a rigid backbone, the strategy has been further extended to realize one-dimensional rod-like nanocrystals using 

cellulose‒polymer conjugates as cylindrical unimolecular nanoreactors [449]. As a proof of concept for the 

preparation of plain nanorods, amphiphilic cellulose-g-(PAA-b-PS) {cellulose-graft-[poly(acrylic acid)-block-

polystyrene]} was synthesized (Fig. 14A). The PAA blocks can accommodate and coordinate a large volume of 

inorganic precursors, allowing the nucleation and growth of inorganic nanorods (Fig. 14B). Importantly, the outer 

PS blocks impart solubility to the obtained nanorods in organic solvents, which facilitates their processing and 

applications. This approach was readily adaptable to more complex nanostructures such as core‒shell nanorods (Fig. 

14C and D), and nanotubes (Fig. 14 E and F) through rational design and synthesis of functional bottlebrush-like 

bioconjugates with different triblock copolymer side chains. 

 

5.2. Lipid‒polymer conjugates 

In addition to proteins, nucleic acids and carbohydrates, lipids are the last member of the four major classes of 

biomolecules. Lipids can be hydrophobic or amphiphilic small molecules. A famous example are amphiphilic 

phospholipids, which possess unique self-assembly characteristics and are a major component of all cellular 

membranes. Early studies of lipid‒polymer conjugates mainly focus on the PEGylation of lipids to enhance the 

stability and circulation time of lipid-based drug nanocarriers [450-452]. For example, Farokhzad and coworkers 

reported a lipid‒polymer hybrid nanoparticle platform, which was composed of a biodegradable and hydrophobic 

polymeric core for drug loading, a lipid monolayer at the interface to promote drug retention, and a hydrophilic PEG 

layer that was covalently attached to the lipid layer to afford stealth properties [453]. The hybrid nanoparticle 

combines the advantages of polymeric nanoparticles and liposomes and can be prepared by self-assembly through a 

single-step nanoprecipitation method. In order to deliver siRNA, the same group later reported a hollow core‒shell 

lipid‒polymer‒lipid hybrid nanoparticle system consisting of an outer lipid‒PEG surface, a middle hydrophobic 
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polymer layer, and a positively charged lipid layer generating the inner hollow core [454]. Besides PEG, a range of 

other polymers have also been conjugated to lipids through various chemical strategies. Hennink et al. reported the 

attachment of biodegradable polypeptides to lipids for the design of long-circulating liposomes with drug-targeting 

capacity [455]. Hawker et al. prepared a variety of lipid‒polymer conjugates with controlled molecular weights and 

narrow molecular weight distributions by photoelectron transfer RAFT polymerization [456]. 

Bioengineering techniques have also been developed to prepare well-defined lipid‒polymer conjugates. 

Inspired by the post-translational modification of proteins in Nature, Chilkoti et al. reported the high efficiency 

synthesis of lipid‒peptide polymer hybrids through an eukaryotic post-translation modification [457]. Myristic acid 

as a lipid was conjugated to an elastin-like polypeptide (ELP), and the resulting conjugate self-assembled into tunable 

micelles that can be applied to deliver anticancer drugs. By further introducing a short β-sheet-forming peptide in 

between of the lipid and the ELP block, three stimuli-responsive lipid‒polypeptide conjugates were prepared, which 

exhibited temperature-triggered hierarchical self-assembly [458]. Very recently, this genetically encoded approach 

has also been employed to synthesize cholesterol-conjugated peptide polymers [459]. 

 

5.3. Engineering live cells via polymer conjugation 

An exciting new research direction in polymer bioconjugation is direct engineering of living cells with polymers.  

One could envision that cell‒polymer conjugates could provide improved in vivo compatibility as well as reduced 

immune responses and enzymatic degradation can be afforded to modified cells, suggesting entirely new perspectives 

for fundamental studies in cell biology as well as applications in transfusion, cell-based therapeutics, and tissue 

engineering [460]. For instance, Scott and coworkers pioneered the covalent conjugation of PEG to the red blood cell 

(RBC) membrane via cyanuric chloride coupling [461]. The conjugated polymer chains could block antibody 

mediated recognition of RBC surface antigens. Hyperbranched polyglycerol (HPG) has also been conjugated to RBC 

surfaces via an ester‒amide linker and the in vivo circulation in mice indicated that more than half of HPG-grafted 

cells were functional and retained a normal circulation behavior [462]. Although the cell surface modification has 

been achieved in some cases, their low conjugation efficiency due to the repulsion between hydrophilic polymers 

and cell surfaces represents a major limitation. To address this issue, Kizhakkedathu et al. developed a universal 

technique to significantly improve cell surface modification by introducing nonreactive and cell-compatible polymers 

as additives [463]. Unprecedented enhanced polymer grafting by up to 10-fold was demonstrated using four different 

cell types. Pasparakis et al. synthesized two functional copolymers, which were conjugated to live cells to control 
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cell aggregation behaviors [464]. Recently, Gibson and coworkers reported that telechelic polymers bearing different 

functional groups prepared by RAFT polymerization can be site-specifically conjugated to metabolic glycans on cell 

surfaces using strain-promoted azide‒alkyne click cycloaddition [465, 466]. 

 

 
Fig. 15. Polymer grafting from live cell surfaces using cytocompatible controlled radical polymerization techniques. (A) Schematic 

illustration for polymer grafting from yeast cells via surface-initiated ARGET ATRP. (B) SEM images of SMA-coated yeast. (C) 

Confocal laser scanning microscopy images of azide-functionalized SMA-coated yeast after coupling with alkyne-linked 

Alexa Fluor 594. (D) Agglutination assay of yeast: (left) native yeast and (right) SMA-coated yeast. (E) Schematic illustration 

of polymer growth from yeast cells via surface-initiated RAFT polymerization. (F) Confocal fluorescent microscopy shows 

fluorescent labelling of treated yeast cells. Polymers on the surface were labelled with a derivative of Alexa Fluor 647, 

indicating the successful polymer growth at the cell surface. (G) Tannic acid which binds to PEG through hydrogen bonding 

was used to manipulate aggregation of polymer-grafted yeast cells  

[467], Copyright 2016. Reproduced with permission from John Wiley and Sons;  

[469], Copyright 2017. Reproduced with permission from Springer Nature. 

In situ growth of functional polymers from live cell surfaces by controlled radical polymerizations has also 

be reported. Choi and Yang et al. selected ARGET ATRP to grow polymers from living cell surfaces because only 
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low concentrations of ATRP catalysts were required, and the reaction was conducted in the aqueous solution under 

atmospheric conditions [467]. Polydopamine-based ATRP initiators were firstly attached to yeast cells to prevent 

radical attack during ATRP process (Fig. 15A). A water-soluble and biocompatible monomer, sodium methacrylate 

(SMA), was then polymerized for a predetermined time. The successful polymer growth was confirmed by scanning 

electron microscopy (SEM, Fig. 15B) and confocal laser scanning microscopy (Fig. 15C) images. Moreover, 

poly(SMA)-coated yeast cells did not aggregate when they were mixed with Escherichia coli, which indicated that 

the binding between E. coli and yeast cells had been blocked by the polymer layer (Fig. 15 D). These results clearly 

demonstrated that highly dense polymers can be grafted onto live cell surfaces by ARGET ATRP using the grafting 

from strategy. Very recently, the grafting from ATRP strategy was also applied to attach thermoresponsive PNIPAM 

to specific proteins at the surface of living cells for isolation and analysis of membrane proteins [468]. Hawker and 

coworkers pioneered the in situ polymer growth from live yeast and mammalian cells via cytocompatible RAFT 

polymerization (Fig. 15E) [469]. Specifically, a visible light mediated RAFT process was developed, which allowed 

the polymerization of functional PEG monomers into narrowly distributed polymers (Mw/Mn < 1.3) at room 

temperature in 5 minutes. As a proof-of-concept experiment to introduce functional polymers to the surface of cells, 

copolymerization of methoxy-PEG acrylamide-1k (PEGA-1k) and ω-azido PEG acrylamide with a molar ratio of 9:1 

was conducted after introducing RAFT CTAs to the surface of yeast cells. The obtained azide-containing yeast cells 

were further functionalized with a derivative of Alexa Fluor 647. As shown in Fig. 15F, strong fluorescence of Alexa 

Fluor 647 was only observed at the surface of yeast cells, indicating the successful surface-initiated growth of reactive 

polymers. Furthermore, tannic acid, a compound known to bind PEG through hydrogen bonding interactions, was 

added to a suspension of polymer-modified yeast cells. Considerable aggregation was observed after mild shaking 

for 1 h (Fig. 15G), indicating that the approach can be used to control cell‒cell interactions. These examples 

impressively indicate the great potential of modern polymerization techniques for directly engineering live cell 

surfaces. It should be noted that the radical polymerization of biocompatible acrylic and methacrylic monomers inside 

living cells has also been reported [470]. A light-controlled polymerization method was successfully employed to 

generate polymers in complex intracellular environments. Therefore, we can expect even more complex and well-

defined polymer bioconjugates prepared by conjugating live objects inside cells with synthetic polymers in the near 

future. 

 

6. Summary and outlook 
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The development of polymer science and its connection to biology has evolved rapidly in recent years. The field has 

started as a concept to provide stability to biomolecules and improve their application as therapeutics. However, from 

the success of the first bioconjugates that moved into clinical phases, the impact of synthetic polymer bioconjugates 

became apparent not only in application driven research, but also found its place in newly developed areas of 

fundamental science such as supramolecular chemistry, precision polymer synthesis and self-organization. 

Specifically, these are instances where biomolecules have helped to achieve greater heights as well as diversity in 

macromolecular science. From polymer synthesis, the appreciation of the enzyme degassing system through glucose 

oxidase/sodium pyruvate has granted the access to grafting from controlled radical polymerizations at exceedingly 

low volumes and in ambient conditions. This important technical progress will enable technologies such as 

polymerization induced self-assemblies possible with biomolecules such as unnatural peptides or DNA, which have 

limited scalability. Therefore, it is important to recognize that technical breakthroughs at the synthesis level are 

essential to provide access to entirely new biohybrid architectures with designed functionalities. With the help of 

sophisticated enzyme design possibly through directed protein evolution, one could envision that enzymes could be 

programmed as synthetic polymerases to build polymers on demand. 

While the bioactivity of biomolecules often represents the main reason for their applications, their perfect 

structure could be considered as an equally important feature. There is an emerging interest in the application of 

biomolecules to direct or template polymer syntheses and assemblies. In this context, the application of DNA has 

been the main focus where its complementary recognition has an unrivalled specificity. Significant efforts have been 

made to use DNA base pairs and to arrange a sequence order for synthetic oligomeric or polymeric fragments. While 

these technologies have already proven success, they are still quite laborious and costly given the quantities that can 

be fabricated. However, should these templated syntheses achieve directed amplification akin to the polymerase chain 

reaction, it would immensely broaden the applications DNA-polymer conjugates. To our mind, we are just at the 

beginning to apply Natures polymers as templates for precision polymer bioconjugates and hybrid materials. 

Meanwhile, the hierarchical self-assembly of polypeptides into defined nanostructures will create fast access tailored 

functional nanomaterials by supramolecular copolymerization. In addition, there is also an enormous potential to 

elucidate the structure of polypeptides and proteins at different levels of order, i.e. in the globular ordered, 

intrinsically disordered or denatured states. These studies could give entirely new insights into the structures and 

functions of intrinsically disordered proteins that are just being explored and one could already appreciate many 

similarities to the behavior of polymers.  
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Nonetheless, the mainstream applications of biomolecule-polymer conjugates in medicine will remain and 

we foresee significant developments in the future where treatments and diagnostics may become personalized. As 

there is typically very limited chemical space available at the target biomolecule, a conjugated polymeric component 

could impart new features such as enhanced specificity or pharmacokinetics that could be tailored for the individual 

patient to maximize in vivo efficacy. Here, there have been already important discoveries that incorporated synergistic 

combinations of stimulus responsive chemistry and dynamic self-assemblies to optimize the biological profile of the 

bioconjugate. We foresee that the evolution of these conjugates moves towards higher complexity and “intelligence” 

and, at certain stages, show semblance of primitive autonomous behavior. With the advent of modern chemical tools, 

it would be highly attractive to furnish an autonomous bioconjugate, where it can seemingly decide for itself to solve 

a targeted biological problem. 

Collectively, every aspect of chemistry, from the synthetic tools that enable the bioconjugates to higher 

ordered assemblies have each found a new lease of life. Every bond formed and its significance will undoubtedly be 

increasingly featured in the coming years as the community unravels novel possibilities to create greater control of 

structures and structural complexity. While comparisons to Nature’s capabilities are often discussed in the literature, 

one must not forget that the breadth of synthetic macromolecular chemistry far exceeds those found in the biology. 

However, what makes Nature unique and seemingly intelligent is the vast network of macromolecules working and 

communicating within a highly regulated self-sustaining system. Here, although the myriad of conjugates produced 

by synthetic chemistry has been consistently innovative, relationships between these novel macromolecules are rarely 

put together and studied within an artificially controlled environment. It could be envisioned that the future of 

synthetic bioconjugates would greatly lie in establishing the molecular principle of how these macromolecules can 

be customized to the extent of how an engineer builds a robot.  
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