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ABSTRACT: We introduce a highly efficient photoligation system, affording a pro-fluorescent Diels-Alder product which on de-
mand converts into an intensively fluorescent naphthalene via E1-elimination in the presence of catalytic amounts of acid. The Diels-
Alder reaction of the photocaged diene (o-quinodimethane ether or thioether, o-QDMs) with electron deficient alkynes is induced by 
UV or visible light. In contrast to previously reported ligation techniques directly leading to fluorescent products, the fluorescence is 
turned on after the photoligation. Thus, the light absorption of the fluorophore does not undermine the photoligation via competitive 
absorption and as a result, photobleaching or side reactions of the fluorophore are not observed. Critically, the gated generation of a 
fluorescent product allows for fluorometric determination of the conversion. We employ a simple synthesis strategy for heterobifunc-
tional electron deficient alkynes allowing for facile functionalization of payload molecules.  

Photocaged dienes based on o-methylbenzaldehydes (o-MBAs) 
are frequently used in various applications, such as polymer net-
work formation1, single chain nanoparticle (SCNP) folding2, 
3D-laser writing3 and many more, as they offer the attractive 
feature of spatio-temporal control and serve as indispensable 
tool in contemporary polymer and supramolecular chemistry.4-

7 A limitation of the ligation of o-MBAs and electron deficient 
enes is the lack of a simple visual feedback that allows for mon-
itoring the reaction progress and selectivity in solution and on 
surfaces.8 Many common photoinduced reactions, for instance 
the nitrile imine tetrazole ene-reaction click reaction (NITEC),9 
or the reaction of photocaged naphtoquinone-3-methides (o-
MQMs) with vinylethers10,11 form fluorescent products (pyra-
zoles, pyrazolines and naphtalenes, respectively). Despite this 
advantage, the direct formation of reaction products that either 
absorb in the same region or are red-shifted in their absorption 
compared to their starting materials, represents a considerable 
challenge. The competitive absorption of photons by the reac-
tion products, decreases the apparent quantum yield of the re-
action12 and potentially lead to secondary reactions or photo-
bleaching.13 In particular for the synthesis of materials such as 
polymer conjugates,1 functionalized surfaces,14 microspheres,15 
sequence-defined macromolecules16 or SCNPs,17 competitive 
absorption presents a key challenge and limits the selectivity 
and control over the reaction. Herein, we present a strategy us-
ing electron deficient alkynes as dienophiles forming pro-fluo-
rescent 1,4-dihydro-1-naphtholes. The naphtholes do not absorb 
in the wavelength range where the respective o-MBAs are acti-
vated. After the completion of the photoreaction, highly fluo-
rescent naphthalenes are generated rapidly and quantitatively 

by adding catalytic amounts of acid. The result is a photoreac-
tion that is not disturbed by competitive absorption and is read-
ily traceable by fluorescence spectroscopy due to the controlled 
formation of the fluorophore. 
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Scheme 1: (Top) Previous works using o-MBAs and electron deficient al-
kenes, or o-methylbenzophenones and alkynes.18-22  (Bottom) Approach to 
fluorescent naphtalenes via non-fluorescent and blue-shifted 1,4-Dihydro-
1-naphtholes. EWG: electron withdrawing group. 
 
The reaction of photocaged o-QDMs and electron deficient al-
kynes was first described by Porter and Tchir.23 Wallace and 
coworkers investigated the reaction further and described the 
isolation of the naphthalenes after reflux in xylene with yields 
below 40%.18 Based on this pioneering work, the reaction of 2-
methyl benzophenones with alkynes was used frequently in 
synthesis, for instance to obtain 3-aroylchromones, benzo[e]py-
rene bisimides and anthracene diimides using a vast excess of 
alkynes, strong acids, aprotic solvents and elevated tempera-
tures.19-21 Therefore, all the above mentioned reactions are of 
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limited use for the synthesis of advanced macromolecular ar-
chitectures including acid or heat sensitive structures in partic-
ular for bioconjugates. Bioorthogonal reactions require an ex-
ceptional level of chemical selectivity and mild reaction condi-
tions resulting in minimal interference with existing functional 
groups in biomolecules.24 Furthermore, no heterobifunctional 
(non-symmetric) alkyne substrates have been reported for this 
reaction, rendering the synthesis of modular linker molecules 
unexplored. To overcome the limitations described above, we 
exploit the high driving force towards aromatization of 1,4-di-
hydro-1-naphtholes (DHNPs). We establish which substrates 
allow for efficient reaction under mild reaction conditions at 
concentrations suitable for polymer post-functionalization or 
bioligation (0.5 mmol L-1 to 50 mmol L-1). Furthermore, we es-
tablished synthesis strategies for heterobifunctional alkynes 
linkers. Initially, o-MBA (A125, 1.00 eq., 50 mmol L-1) and the 
electron deficient acetylenedicarboxylic acid dimethylester 
(DMAD, B2, 1.05 eq, 52.5 mmol L-1) are irradiated with a 
385 nm LED in deuterated acetonitrile after deoxygenation. 
The formation of the intermediate DHNP (C2) was observed 
via 1H-NMR (Figure 1). Upon exposure to air and therefore for-
mation of carbonic acid by absorption of CO2, the naphthalene 
D2 was formed quantitatively within four hours via E1-elimi-
nation. Additionally, the conversion was directly followed by 
the disappearance of the UV-Vis n-π* band at 320 nm of o-
MBA and the appearance of a new absorption band at 280 nm 

associated with the formation of C2. After on demand elimina-
tion, a new n-π* band at 345 nm and a fluorescence band at 420 
nm was observed, corresponding to D2. The absorption spectra 
impressively show that the intermediate C2 does not interfere 
with the photoreaction as its absorption is shifted to shorter 
wavelengths. As the stability of C2 was limited in ACN due to 
the extremely rapid elimination, 13C and 2D-NMR spectra were 
recorded in C6D6 where C2 was observed to be stable (see Sup-
porting Figs. S25-S26). The substrate scope for the reaction was 
investigated using o-MBAs A1 and A2, which exhibit distinc-
tive absorption and reactivity and can be readily functional-
ized.7 Alkynes B1-B5 and diynes B6-B7 are model substrates 
and functional analogues can be synthesized using different 
strategies. Terminal alkynes similar to methyl propiolate B1 
and phenylalkynes similar to B3 can be readily prepared using 
propiolic acid or phenylpropiolic acid as precursors, respec-
tively. The synthesis of functional analogues of dimethyl acet-
ylenedicarboxylate (DMAD, B2) is considerably more diffi-
cult.25 4-oxo-2-butynoates B4 and B5 are readily accessible via 
Cu(I) mediated sp-sp2 coupling of acid halides and propio-
lates.26, 27 Symmetric and non-symmetric diynes B6 and B7 can 
be synthesized via different sp-sp coupling reactions and rear-
rangements.28 Hay coupling appeared most attractive as pro-
ceeds in the absence of reactive organometallic compounds.29 
The synthesis and characterization of A2, B4-B7 are described 
in the Supporting Information (Section 2.2-2.3). In Scheme 2, 
the observed reaction products are depicted and summarized in 
Table 1.  

 
 

 
Figure 1 (Left) 1H-NMR spectra of the reaction between o-MBA A1 and B2 to form cycloadduct C2 under irradiation with 385 nm 
LED (LED-emission spectrum refer to supporting Fig. S69) and E1-Elimination to D2 with assigned resonances. (Right) UV-VIS 
absorption and fluorescence emission spectra of the reaction mixture (black line), after up to 20 minutes of irradiation with 385 nm 
in the quartz cuvette (black to red line) and after addition of 10 mmol% p-TsOH and up to 12 minutes (red to blue line). For detailed 
analytical information for all compounds depicted in Fig. 1 refer to supporting Figs. S25, 26, 29, 30, 57, and 67. 
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If an alkyne with reduced reactivity is present, a fraction of o-
MBA A is converted to benzocyclobutane E upon irradiation. 
This side-reaction was previously described when we studied 
the photoinduced [4+4]-cycloaddition of o-MBAs.30 
Importantly, the ratio of Diels-Alder product C/C’ and 4π elec-
trocyclization product E is concentration dependent (unimolec-
ular vs. bimolecular reaction). Furthermore, regioisomers C/C’ 
or D/D’ can be formed in the case of non-symmetric alkynes. 
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Scheme 2: Light induced reaction pathways of o-MBAs A in the presence 
of electron deficient alkynes B to form 1,4-dihydro-1-naphtholes C via 
Diels-Alder reaction or 1-hydroxybenzocyclobutanes E via [4π] electrocy-
clization. 1,4-dihydro-1-naphtholes C can be converted quantitatively to 
napthalenes D with catalytic amounts of acid. 

The experiments summarized in Table 1 were conducted in a 
batch reactor (setup described in supporting Fig. S1) to facilitate 
isolation and characterization via NMR spectroscopy and 
LCMS (supporting Figs. S27-55 and Figs. S56-S66). The two 
solvents, acetonitrile and toluene, were chosen to determine the 
influence of the dipole moment on the reaction. By comparing 
entry 1 and 2 or 3 and 4, it can be concluded that the ligation 
reactions of both o-MBAs with alkynes is more efficient in tol-
uene. The more electron rich B3 and to a lesser extent B1 ex-
hibit low reactivity and therefore result in the formation of ben-
zocyclobutanes (see entries 1, 2, 5, 8). The same result can be 
observed comparing diynes B6 and B7 (entry 15, 16). o-MBA 
A1 is more reactive than o-MBA A2 resulting in a lower extent 
of benzocyclobutane formation (comparison of entries 3 and 7). 
In general, 4-oxo-2-butynoates B4 and B5 showed the highest 
reactivity and no 4π-electrocyclization was observed as a result. 
The regioselectivity (ratio of C/C’ and D/D’) is influenced by 
the steric hindrance and the electronic properties. For the sub-
strate combination A2 and B4 as well as A2 and B5, the result-
ing products D8, D8’, D9 and D9’ were separated and their 
structure elucidated via 2D-NMR spectroscopy. In addition, the 
reaction quantum yields for the reaction of A1, A2 and B4 were 
determined employing a monochromatic light source (refer to 
supporting Figs. S87-90). Whereas A1 shows a minor depend-
ence on the solvent dipole moment (ΦR,ACN: 0.68 ± 0.02 vs. 
ΦR,toluene: 0.78 ± 0.03), the reaction quantum yield of A2 is 
highly solvent dependent (ΦR,ACN: 0.011 ± 0.001 vs. ΦR,toluene: 
0.14 ± 0.01) 
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Scheme 3: Overview of the o-MBAs A1, A2 and the alkynes B1-7 utilized 
in the batch reactions. 

Table 1: Batch photoligation experiments using o-MBAs A1, A2 (5 mmol 
L-1, 1.00 eq.) and alkynes B1-B5 (5.5 mmol L-1, 1.10 eq.) or diynes B6-B7 
(5.5 mmol L-1, 1.10 eq.), irradiation time (t), YD isolated yield. D/E: ratio of 
the desired Diels-Alder adduct vs. the 4π electrocyclization (refer to 
Scheme 2). D/D’ ratio of regioisomers. 

No o-MBA Alkyne Solvent t [min] D/E YD  D/D’ 
1 A1 B1 ACN 20 32:68 25% 100:0 
2 A1 B1 Toluene 15 76:24 71% 100:0 
3 A1 B2 ACN 20 n.d. 96% -- 
4 A1 B2 Toluene 15 n.d. 97% -- 
5 A2 B1 Toluene 30 5:95 -- 100:0 
7 A2 B2 ACN 30 13:87 -- -- 
6 A2 B2 Toluene 30 91:9 89% -- 
8 A1 B3 Toluene 30 -- 0% -- 
9 A1 B4 ACN 30 n.d. 98% 70:30 
10 A1 B4 Toluene 20 n.d. 97% 65:35 
11 A1 B5 ACN 20 n.d. 95% 92:8 
12 A1 B5 Toluene 15 n.d. 96% 87:13 
13 A2 B4 ACN 40 97:3 94%a 66:34 
14 A2 B4 Toluene 20 99:1 96%a 54:46 
15 A2 B5 ACN 40 n.d. 94%a 93:7 
16 A2 B5 Toluene 20 n.d. 86%a 76:24 
17 A1 B6 Toluene 30 n.d. 96% 99:1 
18 A1 B7 Toluene 30 55:45 49% n.d. 
a) combined yield after regioisomer separation 

 
Most fluorophores depicted in Figure 2 do not have structural 
analogues reported in literature, therefore the fluorescence 
quantum yields were determined (refer to supporting Fig. S71). 
The emission wavelength of the naphthyl thioethers are in gen-
eral higher than their naphthylether analogues (fluorescence 
spectra of D1-D11 see supporting Figs. S72-S82). In addition, 
the photostability of the formed fluorophores was studied. D1, 
D2, D7 and D10 were irradiated under conditions similar to the 
photoligation (5 mmol L-1, ACN-d3, 385 nm LED and 365 nm 
LED respectively, NMR spectra see supporting Figs. S51-S55). 
D1, D2 and D7 showed high photostability, whereas D10 was 
completely converted to various unknown products. This result 
underlines the advantage of the formation of a non-absorbing 
intermediate during the photoreaction, avoiding subsequent re-
action or photobleaching.  
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Figure 2: Isolated products from the photoligation experiments summa-
rized in Table 1, including fluorescence emission maxima and fluorescence 
quantum yields. 
As reported earlier, o-MBA thioaldehydes such as A2 are per-
forming reasonably well in protic solvents including solvent 
mixtures containing water.7 The compatibility with aqueous so-
lutions is crucial for applications involving biomolecules. Sur-
prisingly, we found that the reaction of A2 in ACN:H2O mix-
tures results in the decrease of 4π electrocyclization compared 
to pure acetonitrile (refer to Table 2). Although, longer reaction 
times due to the previously reported decrease in the quantum 
yield of the photoreaction were required.31 In addition, from the 
ACN:H2O reaction mixture we performed the elimination reac-
tion in a buffer solution at pH 4.2 and monitored the reaction 
progress via fluorescence spectroscopy (refer to supporting Fig. 
S8). The fact that the elimination takes place at ambient tem-
perature in aqueous solution without the addition of a catalyst 
is especially important considering potential biological applica-
tions. 
 
Table 2: Batch photoligation experiments in ACN:H2O (75:25 v/v) using 
o-MBA A2 (5 mmol L-1, 1.00 eq.) and alkyne B2 or B4 (5.5 mmol L-1, 1.10 
eq.) LED-irradiation wavelengths (λmax), irradiation time (t), YD isolated 
yield. D/E:  ratio of the desired Diels-Alder adduct vs. the 4π electrocycliza-
tion (see Scheme 2). D/D’ ratio of regioisomers. 
 

No o-MBA Alkyne λmax[nm] t [min] RD/E YD D/D’ 
1 A2 B2 385 150 98:2 95% -- 
2 A2 B2 415 360 86:14 75% -- 
3 A2 B4 415 360 100:0 98% 82:18 
 
In order to use the herein established reactions, it is essential to 
have access to functional alkyne-linkers. Importantly, alkyno-
ates are reactive towards many nucleophiles. Therefore, we de-
signed two linkers (L1, L2) that can be attached to substrates 
using well-established ligation methods, such as esterification. 
L1 is prepared via esterification of propiolic acid, whereas L2 
is accessible by ring opening of ε-caprolactone with methyl pro-
piolate following a literature protocol.32  
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Scheme 4: Synthesized linkers L1, L2 exhibiting terminal OH groups for 
further functionalization (characterization supporting Figs. S17-S20). 

In conclusion, we pioneer a light induced ligation system for o-
MBAs that allows for gated fluorescence response. The self-re-
porting can be triggered quantitatively under very mild condi-
tions, allowing for fluorometric evaluation of the ligation reac-
tion. With the most suitable alkynoate substrates, we designed 
a linker molecule that can be attached to payload molecules and 
demonstrated that the reaction can be carried out in aqueous 
media using visible light. We envisage that this technique will 
open new possibilities in biological applications and advanced 
material synthesis.  
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