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NONCOMMUTATIVE CATALAN NUMBERS

ARKADY BERENSTEIN AND VLADIMIR RETAKH

To George Andrews on the occasion of his 80th birthday

Abstract. The goal of this paper is to introduce and study noncommutative Catalan numbers Cn which
belong to the free Laurent polynomial algebra Ln in n generators. Our noncommutative numbers admit
interesting (commutative and noncommutative) specializations, one of them related to Garsia-Haiman (q, t)-
versions, another – to solving noncommutative quadratic equations. We also establish total positivity of the
corresponding (noncommutative) Hankel matrices Hn and introduce accompanying noncommutative binomial

coefficients LnkM ∈ Ln+k−1, LnkM
′

∈ Ln.
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1. Introduction

Catalan numbers cn = 1
n+1

(
2n
n

)
, n ≥ 0 are important combinatorial objects which satisfy a number of

remarkable properties such as:

• The recursion cn+1 =
n∑

k=0

ckcn−k for all n ≥ 0 (with c0 = c1 = 1).

• the determinantal identities det




cm cm+1 . . . cm+n

cm+1 cm+2 . . . cm+n+1

. . .
cm+n cm+n+1 . . . cm+2n


 = 1 for n ≥ 0, m ∈ {0, 1}.

Catalan numbers admit various q-deformations ([2, 9, 16]) and (q, t)-deformations ([10, 11, 16]).
In this paper we introduce and study noncommutative Catalan numbers Cn, n ≥ 1 which are totally

noncommutative Laurent polynomials in n variables and satisfy analogues of the recursion and the deter-
minantal identities (Proposition 2.3 and equation (2.8)). It turns out that specializing these variables to
appropriate powers of q, we recover Garsia-Haiman (q, 1)-Catalan numbers. Catalan numbers also satisfy a

combinatorial identity (formula (4.9) in [6]) involving their truncated counterparts ckn =
(
n+k
k

)
−
(
n+k
k−1

)
(so

that cn = cnn = cn−1
n ):

(1.1) cn =
∑

a,b∈Z≥0:
a+b≤n,a−b=d

can−bc
b
n−a
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2 ARKADY BERENSTEIN AND VLADIMIR RETAKH

for each n ∈ Z≥0 and each d ∈ Z with |d| ≤ n (e.g., the right hand side does not depend on d). A q-deformation
of ckn was discussed in [7] under the name of q-ballot numbers.

We introduce noncommutative analogues of truncated Catalan numbers and establish a noncommutative
version of (1.1) (Theorem 2.22). It is curious that the ckn satisfy three more combinatorial identities, two of
which involve binomial coefficients:

(1.2) ckn+1 =

k∑

j=0

cjc
k−j
n−j ,

k∑

j=0

(−1)jcjn+k−j ·

(
n− j

k − j

)
= 0, ckm+n =

n∑

ℓ=0

ck−ℓ
m+ℓ ·

(
n

ℓ

)
,

where 0 ≤ k < n in the first two identities and 0 ≤ k ≤ m+ n in the third one.
We establish a noncommutative generalization of the first identity (1.2) (Proposition 2.20(c)), define ap-

propriate noncommutative versions LnkM and LnkM
′

of binomial coefficients and establish analogues of the last

two identities (1.2) with these coefficients (Corollary 2.33 and Theorem 2.34) as well as an analogue of the
multiplication law for both kinds of noncommutative binomial coefficients (Theorem 2.32).

In fact, these constructions and results extend our previous work on Noncommutative Laurent Phenomenon
([3, 4]) and we expect more such Phenomena to emerge in Combinatorics, Representation Theory, Topology
and related fields.

The paper is organized as follows: Section 2 contains notation and main results and the proofs are given
in Section 3.

1.1. Acknowledgments. This work was partly done during our visits to Max-Planck-Institut für Mathe-
matik and Institut des Hautes Études Scientifiques. We gratefully acknowledge the support of these insti-
tutions. We thank Philippe Di Francesco and Rinat Kedem for their comments on the first version of the
paper, particularly for explaining to us a relationship between noncommutative Stieltjes continued fractions
and our noncommutative Catalan series (see Remark 2.6).

2. Notation and main results

Let F be the free group generated by xk, k ∈ Z≥0 and Fm be the (free) subgroup of F generated by
x0, . . . , xm.

Denote by P̃n the set of all monotonic lattice paths in [0, n]×[0, n] from (0, 0) to (n, n). Clearly, |P̃n| =
(
2n
n

)
.

We say that P ∈ P̃n is Catalan if for each point p = (p1, p2) ∈ P one has c(p) ≥ 0, where c(p1, p2) := p1 − p2
is the content of p. Denote by Pn ⊂ P̃n the set of all Catalan paths in [0, n]× [0, n]. Clearly, |Pn| =

1
n+1

(
2n
n

)

is the n-th Catalan number, which justifies the terminology.
We say that a point p = (p1, p2) of P ∈ P̃n is a southeast (resp. northwest) corner of P if (p1 − 1, p2) ∈ P

and (p1, p2 + 1) ∈ P (resp. (p1, p2 − 1) ∈ P and (p1 + 1, p2) ∈ P ).
To each P ∈ Pn we assign an element MP ∈ Fn by

(2.1) MP =

−→∏
x
sgn(p)
c(p) ,

where the product is over all corners p ∈ P (taken in the natural order) and sgn(p) =

{
1 if p is southeast

−1 if p is northwest
.

(0,0) (2,0)

(2,2)
(3,2)

(3,3)

Figure 1. MP = x2x
−1
0 x1 for the above path P ∈ P3
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We define the noncommutative Catalan number Cn ∈ ZFn by

(2.2) Cn =
∑

P∈Pn

MP .

Clearly, under the counit homomorphism ε : ZF → Z (xk 7→ 1) the image ε(Cn) is |Pn|, the ordinary
Catalan number.

Noncommutative Catalan numbers exhibit some symmetries, the first of which is an anti-automorphism ·
of ZF such that xk = xk for k ∈ Z≥0.

Proposition 2.1. Cn = Cn for all n ≥ 0.

Proof. Define an involution sn : Z2 → Z
2 by sn(x, y) = (n− y, n− x). Clearly, sn(Pn) = Pn. It is easy to

see that

(2.3) MP = Msn(P )

for all P ∈ Pn. Therefore, Cn =
∑

P∈Pn

MP =
∑

P∈Pn

Msn(P ) =
∑

P∈Pn

MP = Cn for all n ≥ 0.

The proposition is proved. �

Example 2.2. C0 = x0, C1 = x1, C2 = x2 + x1x
−1
0 x1,

C3 = x3 + x2x
−1
1 x2 + x2x

−1
0 x1 + x1x

−1
0 x2 + x1x

−1
0 x1x

−1
0 x1 ,

C4 = x4 + x3x
−1
2 x3 + x2x

−1
0 x2 + x3x

−1
1 x2 + x2x

−1
1 x3 + x3x

−1
0 x1 + x1x

−1
0 x3 + x2x

−1
1 x2x

−1
1 x2

+x1x
−1
0 x2x

−1
0 x1+x2x

−1
1 x2x

−1
0 x1+x1x

−1
0 x2x

−1
1 x2+x2x

−1
0 x1x

−1
0 x1+x1x

−1
0 x1x

−1
0 x2+x1x

−1
0 x1x

−1
0 x1x

−1
0 x1 .

It turns out that our noncommutative Catalan numbers satisfy the following generalization of the well-
known classical recursion, which we prove in Section 3.1.

Proposition 2.3. For n ≥ 0 one has

(2.4) Cn+1 =

n∑

k=0

Ckx
−1
0 T (Cn−k), Cn+1 =

n∑

k=0

T (Ck)x
−1
0 Cn−k

for all n ∈ Z≥0, where T : ZF → ZF is an endomorphism of ZF given by T (xk) = xk+1 for all k ∈ Z≥0.

For example, C2 = T (C1) + C1x
−1
0 T (C0) and C3 = T (C2) + C1x

−1
0 T (C1) + C2x

−1
0 T (C0).

The following is an immediate corollary of Proposition 2.3.

Corollary 2.4. The formal power series C(t) =
∞∑
n=0

Cnt
n ∈ (ZF )[[t]] satisfies:

(2.5) C(t) = x0 + tC(t)x−1
0 T (C(t)), T (C(t))x−1

0 C(t) = C(t)x−1
0 T (C(t)) ,

Remark 2.5. Applying ε to (2.5), we obtain the well-known functional equation c(t) = 1 + tc(t)2 for the

classical generating function c(t) =
∞∑

n=0
ε(Cn)t

n of Catalan numbers.

Remark 2.6. After the first version of this paper became available, Philippe Di Francesco and Rinat Kedem
pointed to us that C(t)x−1

0 is a noncommutative Stieltjes continued fraction which can be computed by
combining methods of [8, Section 3.3.1] and [12, Section 8] as follows.

C(t)x−1
0 = lim

k→∞
S(x1x

−1
0 , . . . , xkx

−1
k−1, t) ,

where S(z1, t) = (1− z1t)
−1, S(z1, . . . , zk, t) = S(z1, . . . , zk−2,S(zk, t)zk−1, t) for k ≥ 2.

Remark 2.7. In fact, there is another recursion

Cn+1 = Cnx
−1
0 x1 +

n∑

k=1

Ckx
−1
1 T 2(Cn−k) = x1x

−1
0 Cn +

n−1∑

k=0

T 2(Ck)x
−1
1 Cn−k

for n ≥ 1. For instance, C3 = C2x
−1
0 x1 + C1x

−1
1 T 2(C1) + C2x

−1
1 T 2(C0) = C2x

−1
0 x1 + x3 + C2x

−1
1 x2. The

recursion leads to the functional equation C(t) = x0 + t(C(t)x−1
0 x1 − x0x

−1
1 T 2(C(t)) +C(t)x−1

1 T 2(C(t))),
which we leave as an exercise to the reader.
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Remark 2.8. Equations (2.4) can be written in a matrix form: Hx−1
0 T (H) = T (H)x−1

0 H = H ′, where H
(resp. H ′) is the lower triangular Z≥0 × Z≥0 Toeplitz matrix whose (i, j)-th entry is Ci−j (resp. Ci−j+1) if

i ≥ j. Thus, H−1 is a lower triangular Toeplitz matrix whose (i, j)-th entry is −x−1
0 T (Ci−j−1)x

−1
0 for i > j.

It turns out that there is a remarkable specialization Cn ∈ ZF1 of Cn. Indeed, let σ : ZF → ZF1 be a ring
homomorphism given by σ(xk) = xk

0x
k
1 , k ∈ Z≥0. Abbreviate Cn := σ(Cn) for n ≥ 0.

The following result asserts, in particular, that Cn are noncommutative polynomials (rather than Laurent
polynomials) and they satisfy yet another noncommutative generalization of the well-known classical recursion
for Catalan numbers.

Proposition 2.9. The elements Cn ∈ Z〈x0, x1〉 are determined by the following recursion: C0 = 1 and

(2.6) Cn+1 =

n∑

k=0

Ckx0Cn−kx1 =

n∑

k=0

x0Ckx1Cn−k ,

for n ≥ 0. In particular, all Cn belong to the free semi-ring Z≥0〈x0, x1〉 ⊂ Z≥0F1.

Our proof of the proposition is based on the identity σ(T iCn) = xi
0σ(Cn)x

i
1 for i, n ≥ 0 (see Lemma 3.3).

Remark 2.10. Applying σ to the recursions from Remark 2.7 and using the same argument from the proof
of Proposition 2.9, we obtain another recursion for Cn:

Cn+1 = Cnx0x1 +

n∑

k=1

Ckx
−1
1 x0Cn−kx

2
1 = x0x1Cn +

n−1∑

k=0

x2
0Ckx1x

−1
0 Cn−k .

Remark 2.11. One can show that the “two-variable”noncommutative Catalan numbers are invariant under
the anti-involution of ZF1 interchanging x0 and x1.

In fact, we can explicitly compute each Cn. Indeed, assign a monomial MP ∈ F1 to each P ∈ Pn by:

MP = xj0
0 xj1

1 xj2
0 · · ·xj2k

1 ,

where (j0, j1, . . . , j2k) ∈ Z
2k+1
>0 is the sequence of jumps of the path P , i.e., the r-th northwest corner is

(j0+j2+ · · ·+j2r, j1+j3+ · · ·+j2r+1) and r-th southeast corner of P is (j0+j2+ · · ·+j2r, j1+j3+ · · ·+j2r−1)
One can easily see that σ(MP ) = MP , so we obtain the following immediate corollary.

Corollary 2.12. Cn =
∑

P∈Pn

MP for all n ≥ 1.

Example 2.13. C2 = x2
0x

2
1 + x0x1x0x1, C3 = x3

0x
3
1 + x2

0x1x0x
2
1 + x2

0x
2
1x0x1 + x0x1x

2
0x

2
1 + x0x1x0x1x0x1,

C4 = x4
0x

4
1 + x3

0x1x0x
3
1 + x2

0x
2
1x

2
0x

2
1 + x3

0x
2
1x0x

2
1 + x2

0x1x
2
0x

3
1 + x3

0x
3
1x0x1 + x0x1x

3
0x

3
1 + x2

0x1x0x1x0x
2
1

+x0x1x
2
0x

2
1x0x1 + x2

0x1x0x
2
1x0x1 + x0x1x

2
0x1x0x

2
1 + x2

0x
2
1x0x1x0x1 + x0x1x0x1x

2
0x

2
1 + x0x1x0x1x0x1x0x1 .

The following immediate result is a “two-variable” version of Corollary 2.4.

Corollary 2.14. The formal power series C(t) =
∞∑
n=0

Cnt
n ∈ Z〈x0, x1〉[[t]] satisfies:

(2.7) C(t) = 1 + tC(t)x0C(t)x1 .

Remark 2.15. For t = 1, the equation (2.7) coincides with the quadratic equation on formal series K(x0, x1)
studied in [18] where a solution of this equation was presented as a “noncommutative Rogers-Ramanujan
continued fraction”.

Remark 2.16. In our previous work [5] on the inversion of
∑
n≥0

xn
0x

n
1 in the ring of formal series Z〈〈x0, x1〉〉

in noncommutative variables x0, x1 we encountered a quadratic equation D = 1−Dx0x1 +Dx0Dx1 for some
D ∈ Z〈〈x0, x1〉〉 and noticed that it is very similar to (2.7). This was the starting point of the project.

Remark 2.17. In fact, there is another group homomorphism π : F → F1 given by π(xk) = x0 · (x
−1
0 x1)

k,
k ∈ Z≥0, which results in an “almost commutative” specialization of noncommutative Catalan numbers:

π(Cn) = π(xn) ·
1

n+1

(
2n
n

)
.
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For each 0 ≤ k ≤ n denote by Pk
n, the set of all P ∈ Pn such that the rightmost southeast corner p of

P satisfies p = (n, y), where y ≤ k. In particular, Pn−1
n = Pn

n = Pn. For each 0 ≤ k ≤ n define truncated
noncommutative Catalan number Ck

n ∈ ZFn by

Ck
n :=

∑

P∈Pk
n

MP .

The following recursion on Ck
n is immediate.

Lemma 2.18. Ck
n = Ck−1

n + Ck
n−1x

−1
n−k−1xn−k for all 1 ≤ k ≤ n (with the convention Cℓ

n = 0 if ℓ > n).

Example 2.19. C0
n = xn, C

n−1
n = Cn

n = Cn for all n ≥ 1. Also, C1
n = xn +

n−1∑
i=1

xix
−1
i−1xn−1,

C2
n =

∑

1≤i≤j≤n,j>1

xix
−1
i−1xj−1x

−1
j−2xn−2 .

Sometimes it is convenient to express Ck
n via yi := xix

−1
i−1, i ∈ Z≥1. Indeed, denote C̃k

n := Ck
nx

−1
n−k for

k, n ∈ Z≥0, k ≤ n.
The following result generalizes a number of basic properties of truncated Catalan numbers.

Proposition 2.20. For all 0 ≤ k ≤ n one has:
(a) C̃k

n =
∑

j1≤...≤jk≤n:j1≥1,...,jk≥k

yj1yj2−1 . . . yjk−k+1.

(b) C̃k
n = C̃k

n−1 + C̃k−1
n yn+1−k (with the convention C̃ℓ

n = 0 if ℓ > n).

(c) C̃k
n+1 =

k∑
i=0

C̃i
iT (C̃

k−i
n−i).

A proof follows from Lemmas 3.1, 3.2.

Example 2.21. C̃0
n = 1, C̃1

n = y1 + · · ·+ yn, and C̃n
n = C̃n−1

n y1 for all n ≥ 1.

C̃2
n =

∑

1≤i≤j≤n,j>1

yiyj−1, C̃3
n =

∑

1≤i≤j≤k≤n, j>1, k>2

yiyj−1yk−2 .

However, the following recursion is rather non-trivial (and we could not find its classical analogue in the
literature).

Theorem 2.22. Cn =
∑

a,b∈Z≥0:
a+b≤n,a−b=d

Ca
n−bx

−1
n−a−bC

b
n−a for each n ∈ Z≥0 and each d ∈ Z with |d| ≤ n (e.g.,

the right hand side does not depend on d).

A proof is given by Lemmas 3.4–3.6 in Section 3.1.

Remark 2.23. In particular, Theorem 2.22 provides another confirmation · -invariance of noncommutative
Catalan numbers (established in Proposition 2.1).

It turns out that the above “two-variable specialization” σ is also of interest for truncated noncommutative
Catalan numbers. Indeed, in the notation as above, denote Ck

n := σ(Ck
n) and Ck

n
:= Ck

nx
k−n
1 .

The following is immediate.

Corollary 2.24. In the notation of Proposition 2.9, one has
(a) Ck

n =
∑

P∈Pk
n

MP for all k, n ∈ Z≥0, k ≤ n.

(b) Ck

n
= Ck−1

n
x1 + Ck

n−1
x0 for all 1 ≤ k ≤ n (with the convention Cℓ

n
= 0 if ℓ > n). In particular, each

Ck

n
is a noncommutative polynomial in x0, x1 of degree n+ k.

Example 2.25. C0

n
= xn

0 , C
1

n
= xn

0x1 +
n−1∑
i=1

xi
0x1x

n−i
0 , C2

n
= C1

n
x1 +

∑
1≤i≤j≤n−1,j>1

xi
0x1x

j−i
0 x1x

n−j
0 .
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It turns out that our (truncated) noncommutative Catalan numbers C̃k
n admit another specialization into

certain polynomials in Z≥0[q] defined by Garsia and Haiman in [10]. Namely, let χq : ZF → Z[q, q−1] be a

ring homomorphism defined by χq(xk) = q
k(k−1)

2 for k ≥ 0, i.e., χq(yk) = qk−1 for k ∈ Z≥1.
Define polynomials ckn(q, t) ∈ Z≥0[q, t], 0 ≤ k ≤ n recursively by c0n(q, t) = 1 and

ckn(q, t) =

k∑

r=1

[
r + n− k

r

]

q

tk−rq
r(r−1)

2 ck−r
k−1(q, t) ,

where

[
n
k

]

q

denotes the q-binomial coefficient
[n]q !

[k]q ![n−k]q !
, [n]q! = [1]q · · · [n]q, [k]q =

1−qn

1−q
= 1 + q + · · · qk−1.

These polynomials are closely related to polynomials Hn,k(q, t) introduced by Garsia and Haglund ([11,

Equation I.24]), namely, ckn(q, t) = t−kq−
(n+1−k)(n−k)

2 Hn+1,n+1−k(q, t), in particular, cnn(q, t) = cn(q, t) is the
celebrated (q, t)-Catalan number introduced in [10].

The following result shows that our (truncated) noncommutative Catalan numbers are noncommutative
deformations of (q, 1)-Catalan numbers.

Theorem 2.26. χq(C̃
k
n) = ckn(q, 1) for all k ≤ n, in particular, χq(Cn) = cn(q, 1) for n ≥ 0.

We prove Theorem 2.26 in Section 3.1.

Example 2.27. χq(C̃
1
n) = [n+ 1]q and χq(C̃

k
n) = χq(C̃

k−1
n )qn−k + χq(C̃

k
n−1) for 1 ≤ k ≤ n.

Remark 2.28. It is curious that for another class of q-Catalan numbers, q
n(n−1)

2 cn(q, q
−1) = 1

[n+1]q

[
2n
n

]

q

,

there is no analogue of Theorem 2.26. Also, it would be interesting to find an appropriate noncommutative
deformations of (q, t)-Catalan numbers.

The following result is a generalization of the well-known property of Hankel determinants of q-Catalan
numbers.

Theorem 2.29. For n ≥ 1, m ∈ {0, 1} the determinant of the (n + 1) × (n + 1) matrix (ci+j+m(q, 1)),

i, j = 0, . . . , n, is q
n(n+1)(4n−1+6m)

6 .

We prove Theorem 2.29 in Section 3.4.

Define the noncommutative binomial coefficients LnkM ∈ ZFn+k−1, LnkM
′

∈ ZFn by

LnkM =
∑

yJ , LnkM
′

=
∑

y′J

where each summation is over all subsets J = {j1 < j2 < · · · < jk} of [1, n] and we abbreviated yJ =
yjk+k−1 · · · yj2+1yj1 , y

′
J = yj1+k−1yj2+k−3 · · · yjk+1−k for j ∈ Z≥1.

Remark 2.30. The q-binomial coefficients can be expressed as

[
n
k

]

q

=
∑

qj1+···+jk−
k(k+1)

2 , where the sum-

mation is over all subsets J = {j1 < j2 < · · · < jk} of [1, n]. Therefore, under the above specialization

χq : ZF → Z[q, q−1] we have χq

(
LnkM
)

= qk(k−1)

[
n
k

]

q

, χq

(

LnkM
′
)

= q
k(k−1)

2

[
n
k

]

q

for all k, n ∈ Z≥0.

Example 2.31. Ln0M = Ln0M
′

= 1, Ln1M = Ln1M
′

=
n∑

i=1

yi, Ln2M =
∑

1≤i<j≤n

yj+1yi, LnnM = y2n−1 · · · y3y1 = y[1,n],

L n
n− 1M =

n∑
i=1

y[1,n]\{i}, L n
n− 2M =

∑
1≤i<j≤n

y[1,n]\{i,j}, Ln2M
′

=
∑

1≤i<j≤n

yi+1yj−1, LnnM
′

= ynyn−1 · · · y1 = y′[1,n],

L n
n− 1M

′

=
n∑

i=1

y′[1,n]\{i}, L n
n− 2M

′

=
∑

1≤i<j≤n

y′[1,n]\{i,j}.
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Clearly, ε

(
LnkM
)

= ε

(

LnkM
′
)

=
(
n
k

)
and LnkM = LnkM

′

= 0 if k /∈ [0, n].

Similarly to the classical case, we have an analogue of the Pascal triangle and the multiplication law for
noncommutative binomial coefficients.

Theorem 2.32. Lm+ n
k M = ∑

a,b∈Z≥0:
a+b=k

T n+b

(
Lma M

)
LnbM, Lm+ n

k M
′

=
∑

a,b∈Z≥0:
a+b=k

T b

(

Lma M
′
)
Tm−a

(

LnbM
′
)

for m,n, k

∈ Z≥0. In particular, Ln+ 1
k M = LnkM + yn+kL n

k − 1M, Ln+ 1
k M

′

= T

(

LnkM
′
)

+ yk

(

L n
k − 1M

′
)

for all n, k ∈ Z≥0.

Actually, Theorem 2.32 which is proved in Section 3.2 together with the recursion from Proposition 2.20(b)
imply the following analogue of the multiplication law for the truncated noncommutative Catalan numbers,
which justified the introduction of noncommutative binomial coefficients of the “second kind.”

Corollary 2.33. C̃k
m+n =

n∑
ℓ=0

C̃k−ℓ
m+ℓ · T

m−k+ℓ

(

LnℓM
′
)

for all m,n, k ∈ Z≥0.

The following relation between truncated noncommutative Catalan numbers and the binomial coefficients
of the “first kind” is rather surprising.

Theorem 2.34.
k∑

j=0

(−1)jC̃j
n+k−j · Ln− j

k − jM = 0 for any 0 < k ≤ n.

We prove Theorem 2.34 in Section 3.2 (Lemmas 3.7, 3.8).

Remark 2.35. In fact, there is an accompanying identity
k∑

j=0

(−1)jLn+ k − j
j M · C̃k−j

n−j = 0 for any 0 < k ≤ n,

which follows from Theorem 2.43 below. We leave this as an exercise to the readers.

This turns out to be equivalent to the following “determinantal” identities between noncommutative trun-
cated Catalan numbers and binomial coefficients (whose classical analogues also seem to be new).

Theorem 2.36. For all k, n ∈ Z≥0, k ≤ n one has C̃k
n =

∑
J(−1)k+1−|J|Mn,J , LnkM =∑J(−1)k+1−|J|M̃n,J ,

where each summation is over all subsets J = {0 = j0 < · · · < jℓ = k} of [0, k] and

Mn,J = Ln+ jℓ−1 + jℓ − k
jℓ − jℓ−1

M · · · Ln+ j1 + j2 − k
j2 − j1 MLn+ j0 + j1 − k

j1 − j0 M ,

M̃n,J = C̃j1−j0
n+j0+j1−k · C̃

j2−j1
n+j1+j2−k · · · C̃

jℓ−jℓ−1

n+jℓ−1+jℓ−k .

We prove Theorem 2.36 in Section 3.4.
Actually, Theorems 2.26, 2.34, and 2.36 hint to some remarkable properties of Hankel matrices with

noncommutative Catalan numbers as entries.
For m ∈ Z≥0 define the Z≥0 ×Z≥0 matrix Hm over ZF whose (i, j)-th entry is Cm+i+j , i, j ∈ Z≥0 and for

each n ≥ 0 denote by Hm,n the principal [0, n]× [0, n] submatrix of Hm.

Example 2.37. H0,1 =

(
C0 C1

C1 C2

)
, H1,1 =

(
C1 C2

C2 C3

)
, H0,2 =



C0 C1 C2

C1 C2 C3

C2 C3 C4


 , H1,2 =



C1 C2 C3

C2 C3 C4

C3 C4 C5


.

We refer to all Hm and Hn
m as noncommutative Hankel-Catalan matrices by analogy with its classical

counterpart ε(Hm,n) ∈ Matn+1,n+1(Z).
We will finish the section by showing that each Hm,n, m ∈ {0, 1}, n ≥ 0 admits a Gauss factorization over

ZF involving truncated noncommutative Catalan numbers and it inverse (which is also a matrix over ZF ) is
given by an interesting combinatorial formula involving our noncommutative binomial coefficients.

For m ∈ {0, 1} let Lm be the lower unitriangular Z≥0 × Z≥0 matrix whose (j, i)-th entry, 0 ≤ i ≤ j, is

C̃j−i
i+j+m and let Um be the upper triangular Z≥0 × Z≥0 matrix whose (i, j)-th entry, 0 ≤ i ≤ j, is Cj−i

i+j+m).
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Theorem 2.38. Hm = Lm · Um for each m ∈ {0, 1}.

We prove Theorem 2.38 in Section 3.3.

Remark 2.39. A classical version of this result, ε(Hm) = ε(Lm) · ε(Um), was established in [1].

Theorem 2.38 and [13, Theorem 4.9.7] imply the following immediate corollary.

Corollary 2.40. Cj−i
m+i+j equals the quasidetermiant

∣∣∣∣∣∣∣∣∣∣

Cm Cm+1 . . . Cm+i

Cm+1 Cm+2 . . . Cm+i+1

. . .
Cm+i−1 Cm+i . . . Cm+2i−1

Cm+j Cm+j+1 . . . Cm+i+j

∣∣∣∣∣∣∣∣∣∣

for 0 ≤ i ≤ j,

m ∈ {0, 1} (see [14, 15] for notation). In particular,

(2.8)

∣∣∣∣∣∣∣∣

Cm Cm+1 . . . Cm+n

Cm+1 Cm+2 . . . Cm+n+1

. . .

Cm+n Cm+n+1 . . . Cm+2n

∣∣∣∣∣∣∣∣
= xm+2n

for all n ∈ Z≥0, m ∈ {0, 1}.

Remark 2.41. In fact, (2.8) is noncommutative generalization of the well-known fact that det(ε(H0,n)) =
det(ε(H1,n)) = 1 for n ≥ 0. Moreover similarly to the classical case, noncommutative Catalan numbers are
uniquely determined by equations (2.8) for n ∈ Z≥0, m ∈ {0, 1}.

Remark 2.42. Noncommutative Hankel quasideterminants were introduced in [12] in the context of inversion
of noncommutative power series. In fact, [12, Corollary 8.3] asserts that such an inverse can be expressed
via continued fractions involving such quasideterminants of the coefficients of the series in question. This
correlates with Remark 2.6 above.

For m ∈ {0, 1} let L−
m be the lower unitriangular Z≥0 × Z≥0 matrix whose (j, i)-th entry, 0 ≤ i ≤ j, is

(−1)i+jLi+ j +m
j − i M and let U−

m be the upper triangular Z≥0 × Z≥0 matrix whose (i, j)-th entry, 0 ≤ i ≤ j, is

(−1)i+jLi+ j +m
j − i Mx−1

2j+m.

For any Z≥0 × Z≥0 matrix M denote by M |n the principal (n + 1) × (n + 1)-submatrix of M (e.g.,
Hm,n = Hm|n).

Theorem 2.43. (Um)−1 = U−
m and (Lm)−1 = L−

m, hence (Hm,n)
−1 = U−

m|n · L−
m|n for m ∈ {0, 1}, n ≥ 1.

Remark 2.44. Similar to Remark 2.39 the classical version of this result, ε(Hm,n)
−1 = ε(L−

m|n) · ε(U−
m)|n,

seems to be new.

Computation of H−1
m for m ≥ 2 is a more challenging task, which we will perform elsewhere.

3. Proofs of main results

3.1. Proof of Propositions 2.3, 2.9, 2.20 and Theorems 2.22, 2.26. We start with a proof of Propo-
sition 2.20. Then specializations will lead to Propositions 2.3 and 2.9.

Proof of Proposition 2.20. Prove (a) first. Denote by Jk
n the set of all sequences j = (j1, . . . , jk) ∈ Z

k

such that j1 ≤ . . . ≤ jk ≤ n and j1 ≥ 1, . . . , jk ≥ k.
For each P ∈ Pk

n and s ∈ [1, k] denote by js(P ) the minimum of x-coordinates of all points in P whose
y-coordinate is s. For each j = (j1, . . . , jk) ∈ Z

k with js ≥ s, s ∈ [1, k] we abbreviate yj = yj1yj2−1 . . . yjk−k+1.
The following is immediate.

Lemma 3.1. For all k, n ∈ Z≥0, k ≤ n one has:
(a) The assignments P 7→ j(P ) := (j1(P ), . . . , jk(P )) defines a bijection Pk

n→̃Jk
n.

(b) For each P ∈ Pk
n we have MPx

−1
n−k = yj(P ).
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Using Lemma 3.1(b), we obtain C̃k
n =

∑
j∈Jk

n

yj and thus finish the proof of (a).

Prove (b). It is easy to see that Jk
n = Jk

n−1 ⊔ (Jk−1
n , n). Therefore,

C̃k
n =

∑

j∈Jk
n

yj =
∑

j∈Jk
n

yj +
∑

j∈(Jk−1
n ,n)

yj = C̃k
n−1 + C̃k−1

n yn+1−k .

This proves (b).
To prove (c) we need the following result.

Lemma 3.2. Jk
n+1 =

k⊔
i=0

Ji
i × T i+1(Jk−i

n−i) for all k, n ∈ Z≥0, 0 ≤ k ≤ n, where T = Tr : Zr → Z
r, r ≥ 1 is

the translation given by x 7→ x+ (1, . . . , 1)︸ ︷︷ ︸
r

.

Proof. For each j = (j1, . . . , jk) ∈ Jk
n+1 denote by ij the largest i ∈ [1, k] such that ji = i and set i(j) := 0

if such an i does not exist. This implies that, {j ∈ Jk
n+1 : ij = i} = Ji

i × T i+1(Jk−i
n−i−1) for all i ∈ [0, k] (the

first factor is empty for i = 0).
The lemma is proved. �

Taking into account that for j = (j′, T i+1(j′′)) ∈ Ji
i × T i+1(Jk−i

n−i), we have yj = yj′T (yj′′), we obtain:

C̃k
n+1 =

∑

j∈Jk
n+1

yj =
∑

i∈[0,k],j′∈Ji
i
,j′′∈J

k−i
n−i

yj′T (yj′′) =
k∑

i=0

C̃i
iT (C̃

k−i
n−i) .

This proves (c).
Proposition 2.20 is proved. �

Proof of Theorem 2.26. Applying χq to C̃k
n+1 given by Proposition 2.20(c) and using the fact that

χq(T (y)) = qdχq(y) for any homogeneous noncommutative polynomial of degree d in y1, y2, . . ., we obtain:

χq(C̃
k
n+1) =

k∑

i=0

qk−iχq(C̃
i
i )χq(C̃

k−i
n−i)

for all 0 ≤ k ≤ n. In view of [16, Equation (3.41)] and that Fn,k(q, t) = Hn,k(q, t) = tn−kq
k(k−1)

2 cn−k
n−1(q, t) for

all 0 ≤ k < n, we obtain same recursion ckn+1 =
k∑

i=0

cii(q, 1)q
k−ick−i

n−i(q, 1) for all 0 ≤ k ≤ n. Using this and

taking into account that χq(C̃
n
n+1) = χq(C̃

n+1
n+1 ), we conclude that χq(C̃

k
n) = ckn(q, 1) for all 0 ≤ k ≤ n.

The theorem is proved. �

Proof of Proposition 2.3. Indeed, taking into account that Cr = C̃r
r · x0 = C̃r−1

r y1x0 for all r ≥ 1, we see

that the first identity (2.4) is equivalent to C̃n
n+1 =

∑n

k=0 C̃
k
kT (C̃

n−k
n−k ) which coincides with the assertion of

Proposition 2.20(c) with k = n.
The second identity (2.4) follows from the first one and Proposition 2.1 by applying the anti-involution ·.
Proposition 2.3 is proved. �

Proof of Proposition 2.9. We say that x ∈ F is alternating if it is of the form xi1x
−1
i2

xi3 . . . x
−1
is−1

xis for

some i1, . . . , is ∈ Z≥0 and denote by F alt the set of all alternating elements in F . We also denote by ZF alt

the Z-linear span of F alt in ZF . We need the following fact.

Lemma 3.3. σ(T (x)) = x0σ(x)x1 for all x ∈ ZF alt.

Proof. We first prove the assertion for all x ∈ F alt. Indeed,let x = xi1x
−1
i2

xi3 . . . x
−1
is−1

xis for some

i1, i2, . . . , is ≥ 0. We have σ(T (x)) = σ(xi1+1x
−1
i2+1xi3+1 . . . x

−1
is−1+1xis+1)

= (xi1+1
0 xi1+1

1 )(xi2+1
0 xi2+1

1 )−1(xi3+1
0 xi3+1

1 ) . . . (x
is−1+1
0 x

is−1+1
1 )−1(xis+1

0 xis+1
1 )

= x0 · (x
i1
0 xi1

1 )(xi2
0 xi2

1 )−1(xi3
0 xi3

1 ) . . . (x
is−1

0 x
is−1

1 )−1(xis
0 xis

1 ) · x1 = x0σ(x)x1 .
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By linearity of σ we obtain the assertion for all x ∈ ZF alt.
The lemma is proved. �

Since each Ck belongs to ZF alt, Lemma 3.3 implies that σ(T (Ck)) = x0σ(Ck)x1 = x0Ckx1 for all k ≥ 0.
Using this and applying σ to the first identity (2.4), we obtain (2.6).

Proposition 2.9 is proved. �

Proof of Theorem 2.22. In the notation of the proof of Proposition 2.20, for all 0 ≤ k ≤ n denote by Jk
n

the set of all j = (j1, . . . , jn) ∈ Jn
n such that j1 ≥ n− k.

Lemma 3.4. C
k

n · x−1
0 =

∑

j∈Jk
n

yj for all 0 ≤ k ≤ n.

Proof. Indeed, in view of (2.3), we obtain using Lemma 3.1(b):

Ck
nx

−1
0 =

∑

P∈Pk
n

MP · x−1
0 =

∑

P∈Pk
n

Msn(P ) · x
−1
0 =

∑

P∈Pk
n

yj(sn(P )) =
∑

j∈J
k

n

yj

because Jk
n = j(sn(Pk

n)).
The lemma is proved. �

Furthermore, after multiplying by x−1
0 on the right, the assertion of Theorem 2.22 is equivalent to:

(3.1) C̃n
n =

∑

a,b∈Z≥0:
a+b≤n,a−b=d

C̃a
n−b · (C

b
n−ax

−1
0 )

for each n ∈ Z≥0 and each d ∈ Z with |d| ≤ n.

Lemma 3.5. Let d ∈ [1 − n, n − 1]. For each j = (j1, . . . , jn) ∈ Jn
n there exists a unique a = a(j, d) ∈

[max(0, d), n] such that ja ≤ n+ d− a ≤ ja+1 (with the convention j0 = 0, jn+1 = ∞).

Proof. Consider graph of the linear function y = n+ d−x on the coordinate plain. Set a = k if there exists
1 ≤ k ≤ n such the point with coordinates (k, jk) is closest to the graph from the left. Otherwise set a = 0.
�

For a ∈ [max(0, d), n] denote by Jn
n(a, d) the set of all j ∈ Jn

n such that a(j, d) = a.
We need the following fact (in the notation of Lemmas 3.2 and 3.4).

Lemma 3.6. Jn
n(a, d) = Ja

n+d−a × T a(Ja−d
n−a).

Proof. Clearly, for any sequence j ∈ Jn
n(a, d) its subsequence j′ = (j1, . . . , ja) belongs to Ja

n+d−a and the

subsequence j′′ = (ja+1, . . . , jn) belongs to T a(Ja−d
n−a).

Conversely, it is also clear that for any sequences j′ ∈ Ja
n+d−a and j′′ ∈ T a(Ja−d

n−a) their concatenation
j = (j′, j′′) belongs to Jn

n(a, d).
The lemma is proved. �

For any two sequences of integers j′ = (j′1, . . . , j
′
k) and j′′ = (j′′1 , . . . , j

′′
ℓ ) define the shifted concatenation

by j′ • j′′ := (j′, T k(j′′)). We use now an obvious fact that if j′ = (j′1, . . . , j
′
k), j

′′ = (j′′1 , . . . , j
′′
ℓ ) then

yj′•j′′ = yj′yj′′ .

Then, applying this formula to j = (j′, T a(j′′)) ∈ Ja
n+d−a × T a(Ja−d

n−a), we obtain:

C̃n
n+1 =

∑

j∈Jn
n

yj =
∑

a∈[max(0,d),n],

j′∈Ja
n+d−a,j

′′∈J
a−d
n−a

yj′yj′′ =
∑

a∈[max(0,d),n]

C̃a
n+d−a · (C

a−d
n−ax

−1
0 ) .

This proves (3.1).
Theorem 2.22 is proved. �
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3.2. Proof of Theorems 2.32 and 2.34. For any set X and k ≥ 0 denote by

{
X
k

}
the set of all subsets

J ⊂ X of cardinality |J | = k. Clearly,

{
[1,m+ n]

k

}
=

⊔
a,b∈Z≥0:
a+b=k

{
[1,m]
a

}
×Tm

({
[1, n]
b

})
for all m,n, k ∈ Z≥0

in the notation of Lemma 3.2, where we view each J ∈

{
[1, n]
k

}
naturally as an element of Zb.

Taking into account that for J = (J ′, Tm(J ′′)) ∈

{
[1,m]
a

}
× Tm

({
[1, n]
b

})
, a + b = k, we have yJ =

Tm+a(yJ′′)yJ′ and y′J = T b(y′J′)Tm−a(y′J′′), we obtain for m,n, k ∈ Z≥0:

Lm+ n
k M =

∑

J∈







[1,m+ n]
k







yJ =
∑

a,b∈Z≥0:a+b=k,

J′∈







[1,m]
k







,J′′∈







[1, n]
k







Tm−a(yJ′′)yJ′ =
∑

a,b∈Z≥0:
a+b=k

Tm+a

(
LnbM
)

Lma M ,

Lm+ n
k M

′

=
∑

J∈







[1,m+ n]
k







y′J =
∑

a,b∈Z≥0:a+b=k,

J′∈







[1,m]
k







,J′′∈







[1, n]
k







T b(y′J′)Tm−a(y′J′′) =
∑

a,b∈Z≥0:
a+b=k

T b

(

Lma M
′
)
Tm−a

(

LnbM
′
)

.

Theorem 2.32 is proved. �

Proof of Theorem 2.34. For each 0 ≤ j ≤ k ≤ n denote by Ij,k;n the set of all i = (i1, . . . , ik) ∈ Z
k
≥1

such that ij ≤ n + k + 1 − 2j, ij+1 ≤ n + k − 1 − 2j, is ≤ is+1 + 1 for all s ∈ [1, j], and is > is+1 + 1
for all s ∈ [j + 1, k]. (with the convention that if j ∈ {0, k}, then meaningless inequalities are omitted and
I−1,k;n = Ik+1,k;n = ∅).

The following statement is straightforward.

Lemma 3.7. C̃j
n+k−j · Ln− j

k − jM =
∑

i∈Ij,k;n

Yi for all 0 ≤ j ≤ k, where we abbreviate Yi := yi1 · · · yik .

For j ∈ [0, k + 1] denote I−j,k;n = Ij−1,k;n ∩ Ij,k;n. By definition, I−0,k = I−k+1,k = ∅ and the following is
immediate.

Lemma 3.8. I−j,k;n is the set of all i = (i1, . . . , im) ∈ Ij,k;n such that ij ≤ ij+1 + 1 for all j ∈ [0, k]. In

particular, Ij,k;n = I−j,k;n ⊔ I−j+1,k;n for j ∈ [0, k].

Using Lemmas 3.7 and 3.8, we obtain for all 0 < k ≤ n:

k∑

j=0

(−1)jC̃j
n+k−j · Ln− j

k − jM =
∑

j∈[0,k],i∈Ij,k;n

(−1)jYi =
∑

j∈[0,k],i∈I
−
j,k;n

(−1)jYi +
∑

j∈[0,k],i∈I
−
j+1,k;n

(−1)jYi = 0 .

Theorem 2.34 is proved. �

3.3. Proof of Theorems 2.38 and 2.43. We prove Theorem 2.38 first. Indeed, the assertion is equivalent to

(Hm)ij =
min(i,j)∑
k=0

(Lm)ik(Um)kj , i.e., to Cm+i+j =
min(i,j)∑
k=0

Ci−k
i+k+m ·x−1

2k+mCj−k
k+j+m for all i, j ∈ Z≥0, m ∈ {0, 1}.

This identity coincides with that from Theorem 2.22 taken with n = m+ i+ j, a = i− k, b = j− k, d = i− j.
Theorem 2.38 is proved. �

Proof of Theorem 2.43. It suffices to do so only for L−
m (the argument for U−

m is identical). Indeed,

the assertion is equivalent to
j′∑

k′=i′
(Lm)j′k′ (L−

m)k′i′ = δi′j′ , i.e., to
j′∑

k′=i′
C̃j′−k′

j′+k′+m · (−1)i
′+k′Li

′ + k′ +m
k′ − i′ M = 0
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for all 0 ≤ i′ < j′. It is easy to show that this identity coincides with that from Theorem 2.34 taken with
n = i′ + j′ +m, j = j′ − k′ k = j′ − i′.

Theorem 2.43 is proved. �

3.4. Proof of Theorems 2.29, 2.36. We start with a proof of Theorem 2.36. The following is well-known.

Lemma 3.9. Any lower unitriangular Z≥0 × Z≥0 matrix A = (aij) over an associative unital ring A is
invertible and (A−1)ji =

∑
j=i1>i2>···>ik=i,k≥1

(−1)k−1ai1,i2 · · ·aik−1,ik for all 1 ≤ i ≤ j ≤ n.

Applying Lemma 3.9 with A = L−
m, i.e., aji = C̃i−j

i+j+m and using Theorem 2.43 in the form (A−1)ji =

(−1)i+jLi+ j +m
j − i M, we obtain the first identity. Swapping A and A−1, we obtain the second one.

Theorem 2.36 is proved. �

Proof of Theorem 2.29. Recall from [14] that for any matrix over a commutative ring, its determinant
equals the product of its principal quasiminors. Let Hn

m = χq(H
n
m) = (ci+j+m(q, 1)), i, j = 0, . . . , n, where

χq : ZF → Z[q, q−1] is defined in Section 2. Since all principal submatrices of Hn
m are Hk

m, k = 0, 1, . . . , n,

these and Corollary 2.40 guarantee that det(Hn
m) =

n∏
k=0

χq(xm+2k) = q

m
∑

k=0

(m+2k)(m+2k−1)
2

= q
n(n+1)(4n−1+6m)

6 .

Theorem 2.29 is proved. �
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