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NONCOMMUTATIVE CATALAN NUMBERS

ARKADY BERENSTEIN AND VLADIMIR RETAKH

To George Andrews on the occasion of his 80th birthday

ABSTRACT. The goal of this paper is to introduce and study noncommutative Catalan numbers Cn which
belong to the free Laurent polynomial algebra L, in n generators. Our noncommutative numbers admit
interesting (commutative and noncommutative) specializations, one of them related to Garsia-Haiman (g, t)-
versions, another — to solving noncommutative quadratic equations. We also establish total positivity of the
corresponding (noncommutative) Hankel matrices Hyp and introduce accompanying noncommutative binomial

!
coefficients (]ZD €ELptk—1, QZD € L.
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1. INTRODUCTION

_ 1 2n

Catalan number§ Cpn = n—+1(n
remarkable properties such as:

), n > 0 are important combinatorial objects which satisfy a number of

e The recursion ¢,41 = Y, cxep—p for all n > 0 (with ¢g = ¢; = 1).

k=0
Cm, Cm+1 e Cm+n
: . . c ¢ .oc
e the determinantal identities det | ™! mt2 mAn L — 1 for n >0, m € {0,1}.
Cm4n  Cm4n+1 .- Cm+-2n

Catalan numbers admit various g-deformations ([2, [9, [16]) and (g, t)-deformations ([I0} 1T} 16]).

In this paper we introduce and study moncommutative Catalan numbers C,, n > 1 which are totally
noncommutative Laurent polynomials in n variables and satisfy analogues of the recursion and the deter-
minantal identities (Proposition and equation (2.8])). It turns out that specializing these variables to
appropriate powers of ¢, we recover Garsia-Haiman (g, 1)-Catalan numbers. Catalan numbers also satisfy a
combinatorial identity (formula (4.9) in [6]) involving their truncated counterparts cf = ("Zk) - (Zflf) (so
that ¢, = ¢ = 7 1):

(1.1) = Y dd,

a,b€EZ>¢:
a+b<n,a—b=d

This work was partially supported by the NSF grant DMS-1403527 (A. B.).
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for eachn € Z>o and each d € Z with |d| < n (e.g., the right hand side does not depend on d). A g-deformation
of ¢& was discussed in [7] under the name of g-ballot numbers.

We introduce noncommutative analogues of truncated Catalan numbers and establish a noncommutative
version of (II)) (Theorem 2:22). It is curious that the ¥ satisfy three more combinatorial identities, two of
which involve binomial coefﬁcientS'

k )

(12) n+1 - ZCJ Cp— J’ Z _1)Jc£7,+k7j ’ (Z_j) = 0 Cm-i—n ZCerE ( ) )
7=0
where 0 < k < n in the ﬁrst two identities and 0 < k < m + n in the third one.
We establish a noncommutative generalization of the first identity (2] (Proposition 2:220(c)), define ap-
/

k k
two identities ([L2)) with these coefficients (Corollary 233 and Theorem [234]) as well as an analogue of the
multiplication law for both kinds of noncommutative binomial coefficients (Theorem 2:32)).

In fact, these constructions and results extend our previous work on Noncommutative Laurent Phenomenon
([BL 4]) and we expect more such Phenomena to emerge in Combinatorics, Representation Theory, Topology
and related fields.

The paper is organized as follows: Section [2] contains notation and main results and the proofs are given
in Section Bl

propriate noncommutative versions (Inl) and qnl) of binomial coefficients and establish analogues of the last

1.1. Acknowledgments. This work was partly done during our visits to Max-Planck-Institut fiir Mathe-
matik and Institut des Hautes Etudes Scientifiques. We gratefully acknowledge the support of these insti-
tutions. We thank Philippe Di Francesco and Rinat Kedem for their comments on the first version of the
paper, particularly for explaining to us a relationship between noncommutative Stieltjes continued fractions
and our noncommutative Catalan series (see Remark [2:6)).

2. NOTATION AND MAIN RESULTS

Let F be the free group generated by zi, k € Z>¢ and F,, be the (free) subgroup of F generated by
LQy-+-s Ly _ ~

Denote by P, the set of all monotonic lattice paths in [0, n] x [0, n] from (0, 0) to (n,n). Clearly, |P, ( o )
We say that P € P, is Catalan if for each point p = (p1,p2) € P one has ¢(p) > 0, where ¢(p1,p2) :
is the content of p. Denote by P,, C Py, the set of all Catalan paths in [0,n] x [0,n]. Clearly, |Py,| ( )
is the n-th Catalan number, which justifies the terminology.

We say that a point p = (p1,p2) of P € Py, is a southeast (resp. northwest) corner of P if (p1 — 1,p2) € P
and (p1,p2 +1) € P (resp. (p1,p2 — 1) € P and (p1 + 1,p2) € P).

To each P € P,, we assign an element Mp € F;, by

_

- Mp =[5
1 if pi theast
where the product is over all corners p € P (taken in the natural order) and sgn(p) = { 1P IS soubaeas

—1 if p is northwest

(3,3)

(2,2)

(3,2)

(0,0) (2,0)

FIGURE 1. Mp = 3:23361:1:1 for the above path P € Ps
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We define the noncommutative Catalan number C,, € ZF,, by
(2.2) Cn= Y Mp.
PcP,

Clearly, under the counit homomorphism ¢ : ZF — Z (xy — 1) the image £(C,,) is |Py|, the ordinary
Catalan number.

Noncommutative Catalan numbers exhibit some symmetries, the first of which is an anti-automorphism *
of ZF such that T, = x;, for k € Z>.

Proposition 2.1. C,, = C,, for allm > 0.

Proof. Define an involution s,, : Z2 — Z2 by s,(v,y) = (n —y,n — 2). Clearly, s,(P,) = Py,. It is easy to
see that

for all P € P,,. Therefore, C,, = >, Mp= 3. M, py= >, Mp=C, foralln>0.
PeP, PeP, PePy
The proposition is proved. |

Example 2.2. Cy = xg, C1 = x1, Cy = 22 + :vlsvalwh
C3 =23+ xgxflxg + l‘gIal.’IJl + xlxalxg + xlxalxlxalxl ,
Cy=o4+ I3$51$3 + IQ(EalJJg + x3xf1:vg + xgxflxg + :ngalxl + xlxalm + xgxflxgxflxg
—|—a:1:170_1:1723351:171 +I2$1_1$2I0_1I1 —|—3:13351:172:171_13:2 —|—3:21751:1713351x1 +I1$61$1I0_1I2 +x1xalx1xalx1x51x1 .

It turns out that our noncommutative Catalan numbers satisfy the following generalization of the well-
known classical recursion, which we prove in Section [3.]

Proposition 2.3. For n > 0 one has
(2.4) Cot1 =Y Crrg ' T(Cok), Crs1 =Y T(C)ag ' Cny
k=0 k=0

for all n € Z>o, where T : ZF — ZF is an endomorphism of ZF given by T(xx) = xx+1 for all k € Z>o.
For example, Co = T'(Cy) + C1x5 ' T(Cy) and C3 = T(Cs) + Cray *T(Cy) + Coxg ' T(Co).

The following is an immediate corollary of Proposition 2.3

Corollary 2.4. The formal power series C(t) = Y. Cpt™ € (ZF)[[t]] satisfies:
n=0

(2.5) C(t) = zo + tC(t)zg 'T(C(1)), T(C(t))ag " C(t) = C(t)ag ' T(C(t)
Remark 2.5. Applying € to ([2.5]), we obtain the well-known functional equation c(t) = 1 + tc(t)? for the

classical generating function ¢(t) = Y (Cy)t™ of Catalan numbers.
n=0

Remark 2.6. After the first version of this paper became available, Philippe Di Francesco and Rinat Kedem
pointed to us that C(t)z, Uis a noncommutative Stieltjes continued fraction which can be computed by
combining methods of [8, Section 3.3.1] and [12, Section 8] as follows.

C(t)zy' = lim S(zizg’,...,zpx ) 1),
k—o0
where S(z1,t) = (1 — 21t)7%, S(21,...,2k,t) = S(21, ..., 2k_2,S(2k, t)2k_1,t) for k > 2.

Remark 2.7. In fact, there is another recursion

n n—1
Cry1 = Cozg w1+ Cray 'T?(Cry) = 2125 Co + > T?(Cr)ary ' Croi
k=1 k=0

for n > 1. For instance, C3 = ngalxl + Clxl_lT2(Cl) + ngl_lTQ(Co) = ngo_lxl + z3 + Cg(El_l(EQ. The
recursion leads to the functional equation C(t) = g + t(C(t)zy 'x1 — zoxy 'T?(C(t)) + C(t)xy 'T?(C(1))),
which we leave as an exercise to the reader.
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Remark 2.8. Equations (Z4) can be written in a matrix form: Hxy'T(H) = T(H)xg'H = H', where H
(resp. H') is the lower triangular Z>o X Z>o Toeplitz matrix whose (i, j)-th entry is C;_; (resp. Ci— 1) if
i > j. Thus, H~' is a lower triangular Toeplitz matrix whose (i, 7)-th entry is —xy ' T(Cy_;_1)xg " for i > j.
It turns out that there is a remarkable specialization C,, € ZF; of C,,. Indeed, let o : ZF — ZF} be a ring
homomorphism given by o(xy) = z§x¥, k € Z>o. Abbreviate C,, := o(C,,) for n > 0.
The following result asserts, in particular, that C,, are noncommutative polynomials (rather than Laurent

polynomials) and they satisfy yet another noncommutative generalization of the well-known classical recursion
for Catalan numbers.

Proposition 2.9. The elements C,, € Z{xg, 1) are determined by the following recursion: Cy =1 and

(2.6) Cry1 = ngxognkal = Z rolpa1C i
k=0 k=0

forn > 0. In particular, all C,, belong to the free semi-ring Z>o(xo, 1) C Z>oF7.
Our proof of the proposition is based on the identity o(T°Cy,) = z{o(Cy)x} for i,n > 0 (see Lemma [3.3).

Remark 2.10. Applying o to the recursions from Remark 2.7 and using the same argument from the proof
of Proposition [Z9] we obtain another recursion for C.,:

n n—1
—1 2 2 —1
Cry1 = Cpwors + ) Cray 'woC, g} = 20210 + Y a3Cranay ' Cpy
k=1 k=0

Remark 2.11. One can show that the “two-variable”noncommutative Catalan numbers are invariant under
the anti-involution of ZF; interchanging xy and ;.

In fact, we can explicitly compute each C,,. Indeed, assign a monomial M p € F} to each P € P, by:

MP _ $%0${1 x%z . .leék ,
where (jo,j1,---,J2k) € Z2>k0+1 is the sequence of jumps of the path P, i.e., the r-th northwest corner is

(Jo+j2++++jor, j1+js+ -+ j2r41) and r-th southeast corner of P is (jo+j2+ -+ +jor, j1 +J3 -+ -+ jor—1)
One can easily see that o(Mp) = M p, so we obtain the following immediate corollary.

Corollary 2.12. C,, = Y. Mp for alln > 1.
PePy
Example 2.13. C, = 222? + xoz17071, O3 = 2323 + 231120023 + 23230071 + 012327 + ToT1T0T1 7071,
4,4 2,.2,.2 2 2 2 2 2 2 2
Q4 = Tor; + 3:83:117033? + xgrirgr] + 3:81:13:03:1 + xoxlxox? + a:ga::l)’xozzrl + xoxlxg:r:l)’ + XX 1ToT1TX]
+ 2,2 2 2 2 2 2,.2 2,.2
TOL1THXITOX1 + TuX1TOXTLoX1 + ToX1LHL1LoT] + THXTLoT1XoT1 + TpT1XLoT1XHT] + LoT1XoT1XT1 XL -

The following immediate result is a “two-variable” version of Corollary 2.4
Corollary 2.14. The formal power series C(t) = Y, C,t" € Z{xo, x1)[[t] satisfies:
n=0

(27) Q(t) =1+ tg(t)l'og(t)xl .

Remark 2.15. For ¢ = 1, the equation (2.1]) coincides with the quadratic equation on formal series K (zg, x1)
studied in [I8] where a solution of this equation was presented as a “noncommutative Rogers-Ramanujan
continued fraction”.

Remark 2.16. In our previous work [5] on the inversion of Y zja? in the ring of formal series Z({xo, 1))
n>0

in noncommutative variables xg, 1 we encountered a quadratic equation D = 1 — Dxzgx; + DxgDz for some

D € Z{{xg,z1)) and noticed that it is very similar to (2.7]). This was the starting point of the project.

Remark 2.17. In fact, there is another group homomorphism 7 : F' — F; given by 7(xx) = 20 - (2 '21)F,
k € Z>o, which results in an “almost commutative” specialization of noncommutative Catalan numbers:

7(Cr) = m(@n) - 77 ().
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For each 0 < k < n denote by Pﬁ, the set of all P € P, such that the rightmost southeast corner p of
P satisfies p = (n,y), where y < k. In particular, P?~! = P? = P,. For each 0 < k < n define truncated
noncommutative Catalan number C* € ZF,, by

Cs:z ZMP.

PepPk
The following recursion on C¥ is immediate.

Lemma 2.18. Ck = Ck=1 + Cﬁ_lx;ik_lxn,k for all 1 < k < n (with the convention CY =0 if £ > n).

n—1
Example 2.19. CY =z, C"~! =C" = C, for all n > 1. Also, C} =z, + 3 @i, 2,1,
i=1

2 _ [ |
C; = g TiT; 4 Tj1T; oTn—2 -

1<i<j<n,j>1

Sometimes it is convenient to express C,’i via y; = xixi:ll, t € Z>1. Indeed, denote C',’f = C,’f;v;ik for
k,n € Z>o, k <n.
The following result generalizes a number of basic properties of truncated Catalan numbers.

Proposition 2.20. For all 0 < k < n one has:

ko e .
(Cl,) Cn = Z Y1 Yjo—1 - - Yjr—k+1-
J1<Sgp<niji 21, 0k 2k

(b) Ck =C* | + CF Yy, 1 1 (with the convention C4 =0 if £ > n).
~ ko
(¢) Cki = Y CIT(CRZ)).
i=0
A proof follows from Lemmas [3.1]
Example 2.21. C0 =1, C} =y; + - +yn, and C" = C2 'y, for all n > 1.

C'Z = Z YilYj-1, C'S = Z YiYj—1Yk—2 -

1<i<j<n,j>1 1<i<j<k<n, j>1, k>2

However, the following recursion is rather non-trivial (and we could not find its classical analogue in the
literature).

Theorem 2.22. (), = > Co it ,Cb_ for eachn € Zso and each d € Z with |d| < n (e.g.,
a,beEZ>¢:
a+b§n,a270b:d

the right hand side does not depend on d).
A proof is given by Lemmas B4H3.8 in Section B.11

Remark 2.23. In particular, Theorem [2.22] provides another confirmation ~-invariance of noncommutative
Catalan numbers (established in Proposition [ZT]).

It turns out that the above “two-variable specialization” o is also of interest for truncated noncommutative
Catalan numbers. Indeed, in the notation as above, denote C* := o(C*) and gi = Chgh—n
The following is immediate.

Corollary 2.24. In the notation of Proposition[2.9, one has
(a) Ck = S My for all k,n € Z>g, k < n.
pPepPk
(b) gﬁ = g:_lxl +Qﬁ,1$o for all 1 < k <n (with the convention gi =04f ¢ >n). In particular, each
gi is a noncommutative polynomial in xo,x1 of degree n + k.

n—1
0 _ ,.n 1 _ ,.n i n—i 2 _ vl i Jj—i n—j
Example 2.25. C =af, C =gz + ) mymzg C =C 21+ > THT1T,  T1Ty .
i=1 1<i<j<n—1,5>1
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It turns out that our (truncated) noncommutative Catalan numbers C’,’j admit another specialization into
certain polynomials in Zx>¢[q] defined by Garsia and Haiman in [10]. Namely, let x, : ZF — Z[q,q"'] be a

ring homomorphism defined by x4(zx) = ¢ 5 for k> 0, i.e., xq(yr) = ¢" ! for k € Z>1.
Define polynomials ck(q,t) € Z>o[g,t], 0 <k <n recurswely by %(g,t) =1 and

k
r+n—k G D R A
Cﬁ(q,t)—Z{ . } t*TgT T T (g, t)
q

r=1

where [Z} denotes the ¢-binomial coefficient %, ]! = [1]q- - [n]y, [Klq = 1;1; =14+qg+ --¢~ 1.
q
These polynomials are closely related to polynomials H, (q,t) introduced by Garsia and Haglund ([IT
Equation 1.24]), namely, cF (q,t) = t_kq_w
celebrated (g, ¢)-Catalan number introduced in [10].
The following result shows that our (truncated) noncommutative Catalan numbers are noncommutative
deformations of (g, 1)-Catalan numbers.

Hyt1n+1-k(g, t), in particular, ¢fi(q,t) = c,(g,t) is the

Theorem 2.26. x,(C¥) = ck(q,1) for all k < n, in particular, x,(Cy) = ¢n(g,1) for n> 0.
We prove Theorem 2.26] in Section 311
Example 2.27. x,(C}) = [n+ 1], and x,(C¥) = x(C*1)g"* + x,(C*_,) for 1 <k < n.

Remark 2.28. It is curious that for another class of ¢-Catalan numbers, qw enlg, g7t = ﬁ {2:] ,
q

there is no analogue of Theorem 2.261 Also, it would be interesting to find an appropriate noncommutative
deformations of (g, t)-Catalan numbers.

The following result is a generalization of the well-known property of Hankel determinants of ¢-Catalan
numbers.

Theorem 2.29. Forn > 1, m € {0,1} the determinant of the (n + 1) x (n + 1) matric (cit;+m(q,1)),
n(n+1)(4n—1+4+6m)
6 .

1,7 =0,...,n, is q
We prove Theorem 229 in Section 3.4

i
Define the noncommutative binomial coefficients (IZI) € ZFpik-1, QZI) € ZF, by

!
n n
=S (i) == w
where each summation is over all subsets J = {ji1 < j2 < --- < ji} of [1,n] and we abbreviated y; =
Yjuth—1 " Yint1Yins Yg = Yjith—1Yjath—3 "+ Yjpt1—k for j € Zy.

k(k+1)

Remark 2.30. The ¢-binomial coefficients can be expressed as {n} =S ghtties , where the sum-

mation is over all subsets J = {j1 < jo < -+- < jk} of [1,n Therefore under the above specialization

[L,n
Xq: ZF — Z[q,q" '] we have x, (QZID = gk(k— 1) < ) k(szl) Bﬂ for all k,n € Z>o.
q

i - -

dnflb

n
n—1

n|

Yj+1Yi,

= Yon-1-""Y3Y1 = Y[i.n>

3

<

3

n

!
”D = YnYn—1"""Y1 = Y[1 np>

2|) = E Yl,n)\{4,5}» q D = E Yi+1Yj—1,

1<i<j<n 1<i<j<n

Y\ i qn _
/

HM: EM:

!
n _ /
- gl) = 2 Ynanigr

1<i<j<n

9[1 n)\{i}’
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n

v () <) -0 -

Similarly to the classical case, we have an analogue of the Pascal triangle and the multiplication law for
noncommutative binomial coefficients.

I)I_Oifkgé[(),n].

/ / /
Theorem 2.32. (lml—:nl) = > Tt < ZL > Z , m;nl) = > T (qzll) ) Tme <(IZ|) ) Jorm,n,k
a,b€Z>¢: a,b€EZ>q:
at+b=Fk a+b=Fk
. n+1) (n n n+1) . n)’ n |
€ Z>o. In particular, (] k D—(]kl)‘f'yn-Hc k_lb, (] k —T( i ) + Yk (Qk—lb for alln,k € Z>y.

Actually, Theorem [2:32 which is proved in Section B2 together with the recursion from Proposition [Z20(b)
imply the following analogue of the multiplication law for the truncated noncommutative Catalan numbers,
which justified the introduction of noncommutative binomial coefficients of the “second kind.”

n

Corollary 2.33. C‘,’fwrn =3 C«ﬁ;lg Pkt ( p
i=0

/
> for all m,n, k € Z>.

The following relation between truncated noncommutative Catalan numbers and the binomial coefficients
of the “first kind” is rather surprising.

k .y
Theorem 2.34. ZO(—l)JC'fH_k_j
=

We prove Theorem 237 in Section (Lemmas B.7], B2g]).

B ]
(Ik_j[)—()forany0<k§n.

k ‘ o

Remark 2.35. In fact, there is an accompanying identity > (—1)7 -CS:; =0 for any 0 < k <m,
§=0

which follows from Theorem 2.43] below. We leave this as an exercise to the readers.

n—i—k—jl)
J

This turns out to be equivalent to the following “determinantal” identities between noncommutative trun-
cated Catalan numbers and binomial coefficients (whose classical analogues also seem to be new).

Theorem 2.36. For all k,n € Z>o, k < n one has Ck =3 ,(-=1)*1-1Ip, 5, QZD =S, (=)=, 5,

where each summation is over all subsets J ={0=jo <--- < je =k} of [0,k] and

M, = n+je-1+je—k| ntgi+ie—k||n+jo+i1 -k
" Je = Je-1 J2 =1 J1—Jo ’
Y _ g ~j2—J ~Nje—Je—
M"ﬂ'] - Cnl-i-jo?i-ﬁ—k ’ Cn2+j11+j2—/€ e Cn-‘rjtzfll-i-je—k :

We prove Theorem in Section [B.41

Actually, Theorems 226 2.34] and hint to some remarkable properties of Hankel matrices with
noncommutative Catalan numbers as entries.

For m € Z>( define the Z>q x Z>o matrix H,,, over ZF whose (¢, j)-th entry is Cr,yit;, ¢, € Z>o and for
each n > 0 denote by H,, , the principal [0, n] x [0, n] submatrix of H,,.

o o C Co C1 Cq Ci Cy Cs
Example 2.37. HO,l = (CO Ol> 5 H171 = (Ol CQ), H072 = Cl CQ 03 N Hl)g = CQ 03 04
b S Cy C3 Cy Cy Ci Cs

We refer to all H,, and H;, as noncommutative Hankel-Catalan matrices by analogy with its classical
counterpart €(Hp, n) € Matni1,n+1(Z).

We will finish the section by showing that each H,, n, m € {0,1}, n > 0 admits a Gauss factorization over
ZF involving truncated noncommutative Catalan numbers and it inverse (which is also a matrix over ZF) is
given by an interesting combinatorial formula involving our noncommutative binomial coeflicients.

For m € {0,1} let L,, be the lower unitriangular Z>o X Z>o matrix whose (j,7)-th entry, 0 < i < j, is

égJ:jier and let U, be the upper triangular Z>¢ x Z>(¢ matrix whose (7, j)-th entry, 0 <14 < j, is Cg_ifj-i+m).
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Theorem 2.38. H,,, = L,, - Uy, for each m € {0,1}.
We prove Theorem in Section 3.3
Remark 2.39. A classical version of this result, e(Hy,) = €(Ly,) - €(Un,), was established in [I].

Theorem [2.38 and [13, Theorem 4.9.7] imply the following immediate corollary.

Om Om+1 e Cm+i
o Oerl C(7n+2 cee Cm+i+1
Corollary 2.40. C; ;. . equals the quasidetermiant for 0 < i < j,
Crmti-1 Cmti - Chrgoin
Cm+j Cm+j+1 Ce Cm+i+j
m € {0,1} (see [14, 18] for notation). In particular,
C C ... C
(28) e 2 o el = Tm+2n
Cm—i—n Cm+n+1 e Cm+2n

for all n € Z>p, m € {0,1}.

Remark 2.41. In fact, (28] is noncommutative generalization of the well-known fact that det(e(Hy,,)) =
det(e(Hi,n)) = 1 for n > 0. Moreover similarly to the classical case, noncommutative Catalan numbers are
uniquely determined by equations ([2.8)) for n € Z>¢, m € {0,1}.

Remark 2.42. Noncommutative Hankel quasideterminants were introduced in [12] in the context of inversion
of noncommutative power series. In fact, [12, Corollary 8.3] asserts that such an inverse can be expressed
via continued fractions involving such quasideterminants of the coefficients of the series in question. This
correlates with Remark above.

For m € {0,1} let L., be the lower unitriangular Z>o x Z>o matrix whose (j,¢)-th entry, 0 < i < j, is

(—1)t+ ' —’—jj_—i;m and let U,, be the upper triangular Z>o x Z>o matrix whose (i, j)-th entry, 0 < i < j, is

1+j+m
i
For any Zs¢ x Z>¢ matrix M denote by M|, the principal (n + 1) X (n + 1)-submatrix of M (e.g.,

Theorem 2.43. (U,,)" ' =U,, and (L,,)"' = L,,, hence (Hpmn) = U, |n- Ly|n for me {0,1}, n > 1.

m

-1

(‘Uiﬂ Lojtm:

Remark 2.44. Similar to Remark 239 the classical version of this result, e(Hy,n) "' = e(L;,|n) - €(U,)|n,
seems to be new.

Computation of H,,! for m > 2 is a more challenging task, which we will perform elsewhere.

3. PROOFS OF MAIN RESULTS

3.1. Proof of Propositions [2.3], 2.9], [2.20 and Theorems [2.22] [2.26l We start with a proof of Propo-
sition 2200 Then specializations will lead to Propositions and 2.9

Proof of Proposition Prove (a) first. Denote by J% the set of all sequences j = (ji,...,jx) € Z*
such that j; < ... <jy <nandj; >1,...,j5x > k.
For each P € Pk and s € [1, k] denote by js(P) the minimum of z-coordinates of all points in P whose
y-coordinate is s. For each j = (j1,...,7k) € Z* with js > s, s € [1, k] we abbreviate y; = Y, Yjs—1 - - - Yjp—k+1-
The following is immediate.

Lemma 3.1. For all k,n € Z>o, k <n one has:
(a) The assignments P+ j(P) := (j1(P),...,jx(P)) defines a bijection P*=Jk.
(b) For each P € P¥ we have Mp.f;ik = Yi(p)-
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Using Lemma B(b), we obtain C¥ = 37 y; and thus finish the proof of (a).
jedJk

Prove (b). It is easy to see that J& = Jk | 11 (Jk=1 n). Therefore,
Z Yj = Z Yj + Z Y= Cn_1 +Cn ynra -
jedJk jedJk je@h=1t n)

This proves (b).
To prove (¢) we need the following result.

Lemma 3.2. Jn+1—|_|JZ><Tl+1( ) for allkyn € Zso, 0 <k <mn, where T =T, : Z" = Z", r > 1 is

the translation given by x—=a+(1,...,1).
\__\,__/

T

Proof. For each j = (j1,...,jx) € J5, | denote by i; the largest i € [1, k] such that j; = i and set i(j) := 0
if such an i does not exist. This implies that, {j € J*_ ; : i = i} = Ji x TH(JIFL ) for all i € [0,&] (the
first factor is empty for ¢ = 0).

The lemma is proved. |

Taking into account that for j = (j/, 7"t (j")) € J: x T*1(IF~1), we have y; = y; T (yj~), we obtain:

k
n+1 Z Yj = Z vy T (ys) Z Ck Z

JEIL i€[0,k].i’ €T1,j" €Ik E =0
This proves (c).
Proposition 2.20] is proved. O

Proof of Theorem [2.261 Applying x, to C',’j 41 given by Proposition 2Z.220(c) and using the fact that
Xq(T(y)) = q%x4(y) for any homogeneous noncommutative polynomial of degree d in y1,ys, .. ., we obtain:

Xa(Crii1) qu Xa(CHxa(Cr)

=0
for all 0 < k < n. In view of [10, Equation (3.41)] and that F,, x(¢q,t) = Hy k(q,t) = t"‘kq - "k (q,t) for
k
all 0 < k < n, we obtain same recursion cf,, = Y ¢i(q,1)¢" cF 7" (¢, 1) for all 0 < k < n. Using this and
i=0
taking into account that x,(C7, 1) = X4 (C’;‘Ll), we conclude that x,(C¥) = c£(g, 1) for all 0 < k < n.
The theorem is proved. 0

Proof of Proposition Indeed, taking into account that C,. = C’,’f - = C’:’lylxo for all r > 1, we see
that the first identity @) is equivalent to C?,; = S°7_, CFT(C"~F) which coincides with the assertion of
Proposition 220(c) with k& = n.

The second identity (24]) follows from the first one and Proposition 211 by applying the anti-involution =.

Proposition 2.3l is proved. a
Proof of Proposition We say that = € F is alternating if it is of the form xilxi;lxm o x:flxl for
some iy, ...,is € Z>o and denote by F@ the set of all alternating elements in F. We also denote by ZFa!

the Z-linear span of F'** in ZF. We need the following fact.
Lemma 3.3. o(T(z)) = zoo(x)x1 for all x € ZFt.

Proof. We first prove the assertion for all x € F%. Indeed,let z = xilx;xis ...x;ilxis for some

i1,%2,...,4s > 0. We have o(T(z)) = U($11+1$12+1$13+1 T 1+1$ZS+1)

o (Iz}+1Ii1+1)(I12+1I12+1)7 (ng-l-lxig-i-l) o ($10371+1I11571+1)71(xés-i-lxis-l-l)

=0 (a2 ) (@f o) M) .. (xg ey ) T @ al) o1 = woo(@)an
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By linearity of o we obtain the assertion for all z € ZF,
The lemma is proved. g

Since each C}, belongs to ZF%* Lemma B3] implies that o(T(Cy)) = 20 (Cy)x1 = 20Cx1 for all k > 0.
Using this and applying o to the first identity ([24]), we obtain (Z.6]).
Proposition 2.9 is proved. O

Proof of Theorem [2.22] In the notation of the proof of Proposition 220 for all 0 < k& < n denote by ﬁ
the set of all j = (j1,...,jn) € J? such that j; > n — k.

Lemma 3.4. 6: cxgt =3 y; forall0 <k <n.
jeIk
Proof. Indeed, in view of (233), we obtain using Lemma BI(b):

Chag' = Mp-ag' = > Mypy 25" = Y Yitenp) = 2 Ui
€T,

PePy PePk PePk

because JE = j(s,,(PF)).

The lemma is proved. g

Furthermore, after multiplying by x 1 on the right, the assertion of Theorem 222 is equivalent to:

A A -1
(3.1) Ch= > b (Ch_amg )
a,b€Z>¢:
a+b<n,a—b=d

for each n € Z>¢ and each d € Z with |d| < n.

Lemma 3.5. Let d € [1 — n,n —1]. For each j = (j1,...,Jn) € I there exists a unique a = a(j,d) €
[max(0,d),n] such that jo, <n+d—a < jot1 (with the convention jo =0, jpt1 = 00).

Proof. Consider graph of the linear function y = n+ d — = on the coordinate plain. Set a = k if there exists
1 < k < n such the point with coordinates (k, ji) is closest to the graph from the left. Otherwise set a = 0.
O

For a € [max(0,d), n] denote by J7(a,d) the set of all j € I such that a(j,d) = a.
We need the following fact (in the notation of Lemmas B2 and B4).

Lemma 3.6. J2(a,d) = J%,, , x T*(J*_%).

a

Proof. Clearly, for any sequence j € J}(a,d) its subsequence j’ = (ji,...,js) belongs to J%_, , , and the

subsequence j” = (jat1, ... ,jn) belongs to T*(J2~%).
Conversely, it is also clear that for any sequences j’ € J2 , . and j” € T%(J2~%) their concatenation
j=(,j") belongs to J"(a,d).
The lemma is proved. 0
For any two sequences of integers j’ = (j1,...,J;) and j” = (j7,...,7/) define the shifted concatenation

by j’ " := (j',T*(j"")). We use now an obvious fact that if j = (j1,...,4%), i = (..., j/) then
yj’oj” = yj’yj” .

Then, applying this formula to j = (j', T%(j")) € J5_ 4_, X T%(3=%), we obtain:

mo E . — E ot — E ~a a—d, —1
CnJrl - Yj = Yy Y = n+d—a (Cnfa‘rO ) .
jeJn a€[max(0,d),n], a€[max(0,d),n]
LS BRSNS

This proves (31)).
Theorem [2.22] is proved. O
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3.2. Proof of Theorems and [2.34L For any set X and k > 0 denote by f the set of all subsets

J C X of cardinality |J| = k. Clearly, {[l,m + n]} = | {[1,m]} xTm ({[1,71]}) for allm,n,k € Z>¢
a,bEZ>o:

k a b
a+b=k
in the notation of Lemma [3.2] where we view each J € [1}€n] naturally as an element of Z°.

Taking into account that for J = (J',T™(J")) € {[1,am]} x T™ ({[1,1)71]})7 a+b =k, we have y; =

DE)

T4 (y )y and 'y = T(y', ) T™%(y';,), we obtain for m,n, k € Zxo:

(]ml_:”l) — > ys = > Ty = Y T (

Je{ [17 m + n]} a,b€Z>o:a+b=k, a,b€Z>¢:

J/e{ [1,km]}7J,,e {[1}?]} beZs

M- T - > T ) = Y T (qu) 7o (ng)

1,m—|—n a,b€Z>o:a+b=k, a,b€EZ>q:
eftm e i fl o
I k
Theorem [2.32] is proved. g

Proof of Theorem [2.34 For each 0 < j < k < n denote by I; ., the set of all i = (iy,...,i;) € Z%,
such that i; < n+k+1—24, ij31 <n+k—1-24, is <igeq +1forall s € [1,4], and is > igpq + 1
for all s € [j + 1,k]. (with the convention that if j € {0, k}, then meaningless inequalities are omitted and
I—l,k;n = Ik—i—l,k;n = (Z))

The following statement is straightforward.

~J
Lemma 3.7. Cn_HC_j .

Z_jl) = > Y forall 0 <j <k, where we abbreviate Y; := yi, + - iy, -
- i€l kin

For j € [0,k + 1] denote I; ;.. = L1 k;n N Ijgen. By definition, I, = I,',, , = 0 and the following is
immediate.

Lemma 3.8. I, is the set of all i = (i1, yim) € Ljgn such that i; < ij41 + 1 for all j € [0,k]. In

particular, Lj g =1 UL, for j € [0, k]
Using Lemmas 3.7 and B-8], we obtain for all 0 < k < n:

k .
Z<—1>j0£+kj-q7,jjjb= > (pYi= Y Y+ Y (-)Yi=o0.

J=0 FE0,K]IEL; ki JE[0.k]iET;, FEOR]IET 4

Theorem 2.34] is proved. |

3.3. Proof of Theorems[2.38 and 2.43l We prove Theorem 238 first. Indeed, the assertion is equivalent to
min(i,j) min(i, )

(Hm)ij = Z (Lm)ik(Um)kju i.e., to Cm—i—i—i—j = Z C:J:]]:er 'LL';lirmCiJ_r?er for all i, ] € ZZQ, m € {0, 1}

k=0 k=0
This identity coincides with that from Theorem 222 taken with n = m+i+j,a=i—k,b=j—k, d=1i—j.
Theorem [2.3§] is proved. g

Proof of Theorem [2.43] It suffices to do so only for L. (the argument for U, is identical). Indeed,
J’ i

-/
. . . — . '/7 4 ;! ’
the assertion is equivalent to Y (Lm)jw (Lyy)wrer = 0irjr, 1€, to Y Cj,+,]§/+m S(=1)"Fk
k! =i/ k! =i/
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for all 0 < ¢/ < j'. Tt is easy to show that this identity coincides with that from Theorem [Z34] taken with
n=i+j+m, =4 —k k=3 —i.
Theorem 2.43] is proved. a

3.4. Proof of Theorems [2.29] [2.36] We start with a proof of Theorem 2.361 The following is well-known.

Lemma 3.9. Any lower unitriangular Z>o X Z>o matric A = (ai;) over an associative unital ring A is
invertible and (A™1);; = > (=1)F a4y rai,_ 4 foralll1<i<j<n.
J=i1>i>>ip=i,k>1
Applying Lemma with A = L7, ie., aj; = C’f;j+m and using Theorem 2.43] in the form (A™1);; =
(_1)i+j i—l—.j —I—'m
j—1
Theorem [2.36] is proved. |

D, we obtain the first identity. Swapping A and A~!, we obtain the second one.

Proof of Theorem [2.291 Recall from [I4] that for any matrix over a commutative ring, its determinant
equals the product of its principal quasiminors. Let H}, = xq(HY) = (¢it+j+m(q,1)), 1,5 = 0,...,n, where
Xq @ ZF — Z]q,q~ "] is defined in Section 2l Since all principal submatrices of H, are ﬂfn, k=0,1,...,n,

m

n (mt2k)(mt2k—1) e
these and Corollary 2401 guarantee that det(H;,) = [[ Xq(@m+2k) = g==° : = q%
k=0
Theorem [2.29] is proved. |
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