English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities

MPS-Authors
/persons/resource/persons210454

Hoffmann,  Katy
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210268

Bienhold,  Christina
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210306

Buttigieg,  Pier Luigi
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210522

Knittel,  Katrin
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210569

Laso-Perez,  Rafael
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210703

Rapp,  Josephine Z.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  Antje
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons256954

Offre,  Pierre
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Hoffmann_20.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hoffmann, K., Bienhold, C., Buttigieg, P. L., Knittel, K., Laso-Perez, R., Rapp, J. Z., et al. (2020). Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. The ISME Journal, 14(4), 1042-1056. doi:10.1038/s41396-020-0588-4.


Cite as: https://hdl.handle.net/21.11116/0000-0006-411A-4
Abstract
Surveys of 16S rRNA gene sequences derived from marine sediments have indicated that a widely distributed group of Gammaproteobacteria, named "JTB255-Marine Benthic Group" (now the candidate order Woeseiales), accounts for 1-22% of the retrieved sequences. Despite their ubiquity in seafloor communities, little is known about their distribution and specific ecological niches in the deep sea, which constitutes the largest biome globally. Here, we characterized the phylogeny, environmental distribution patterns, abundance, and metabolic potential of Woeseiales bacteria with a focus on representatives from the deep sea. From a phylogenetic analysis of publicly available 16S rRNA gene sequences (>= 1400 bp, n = 994), we identified lineages of Woeseiales with greater prevalence in the deep sea than in coastal environments, a pattern corroborated by the distribution of 16S oligotypes recovered from 28 globally distributed sediment samples. Cell counts revealed that Woeseiales bacteria accounted for 5 +/- 2% of all microbial cells in deep-sea surface sediments at 23 globally distributed sites. Comparative analyses of a genome, metagenome bins, and single-cell genomes suggested that members of the corresponding clades are likely to grow on proteinaceous matter, potentially derived from detrital cell membranes, cell walls, and other organic remnants in marine sediments.