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SUMMARY

Sholl analysis has been an important technique in
dendritic anatomy for more than 60 years. The Sholl
intersection profile is obtained by counting the num-
ber of dendritic branches at a given distance from the
soma and is a key measure of dendritic complexity; it
has applications from evaluating the changes in
structure induced by pathologies to estimating the
expected number of anatomical synaptic contacts.
We find that the Sholl intersection profiles of most
neurons can be reproduced from three basic, func-
tional measures: the domain spanned by the den-
dritic arbor, the total length of the dendrite, and the
angular distribution of how far dendritic segments
deviate from a direct path to the soma (i.e., the root
angle distribution). The first two measures are deter-
mined by axon location and hencemicrocircuit struc-
ture; the third arises from optimal wiring and repre-
sents a branching statistic estimating the need for
conduction speed in a neuron.
INTRODUCTION

Neuronal morphologies are diverse, with great variation among

individual cells, classes of cells, and similar cells in different an-

imal species. The structure of a neuron’s dendritic tree defines

how the cell can receive synaptic inputs from other neurons

and strongly influences how these inputs are integrated to allow

signal transmission and computation. Dendritic trees are surpris-

ingly hard to describe precisely, and this makes comparative

studies of the structure or function of a dendrite fraught with dif-

ficulty. Sholl analysis has established itself as a widely used

method of evaluating neuronal morphologies (Ascoli et al.,

2008; Langhammer et al., 2010; Binley et al., 2014; Ferreira

et al., 2014; Gutierrez and Davies, 2007; Johnson et al., 2016;

Keil et al., 2017; Wilson et al., 2017) since its introduction in

1953 by Donald Sholl (Sholl, 1953). The Sholl intersection profile

(SIP) sðrÞ counts the number of times a dendrite intersects an

imaginary sphere of a given radius r centered on the soma; it

therefore gives a one-dimensional representation of the

complexity of the three-dimensional dendrite. This reduction in

dimensionality allows for intuitive comparisons of complex den-

dritic structures (O’Keeffe et al., 2008; Ascoli et al., 2008; Wil-
Cel
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liams et al., 2013) and thus has major applications across neuro-

science. Links have been made between SIP and dendritic

function; the SIP can define the expected number of synaptic

contacts (Liley and Wright, 1994) or, if taking non-uniform den-

dritic diameter into account, illustrate morphological influence

on action potential backpropagation (Vetter et al., 2001). Fractal

measures of neuronal morphology (Smith et al., 1989; Caserta

et al., 1990), which quantify how well a dendrite fills its space,

have also been shown to correlate strongly with statistics

derived from the SIP (Caserta et al., 1995; Fernández and Jeli-

nek, 2001). Most recently, SIPs have been widely used to

demonstrate changes in neuronal structure caused by genetic

manipulation (O’Keeffe et al., 2008; Peng et al., 2015), pathology

(Williams et al., 2013; Chittajallu et al., 2017), or treatment (Kigerl

et al., 2009; Rekha et al., 2011).

The SIP can be reliably computed automatically from noisy

raw image stacks (Kutzing et al., 2010; Ferreira et al., 2014),

meaning that large-scale imaging studies are able to recover

many SIPs (Rekha et al., 2011; Chittajallu et al., 2017) without

the difficulties of fully reconstructing themorphologies (Donohue

and Ascoli, 2011; Radojevi�c andMeijering, 2017). With increases

in the usage of relatively high-throughput imaging techniques

(Wu et al., 2004; Gong et al., 2016), the SIP is likely to remain

an important metric when assessing neuronal morphology

across both theoretical and experimental neuroscience.

Despite its broad usage, the interpretation of the SIP remains

largely qualitative and typically lacks comprehensive insight

into the functional factors that lead to a given SIP. Work con-

tinues to improve (Ristanovi�c et al., 2006; O’Neill et al., 2015)

and interpret (Garcia-Segura and Perez-Marquez, 2014;

Rajkovi�c et al., 2016; Wilson et al., 2017) this key measure of

neuronal structure. In this study, we provide a framework to

assess the SIP of a given neuron or neuronal class by esti-

mating the profile from basic morphological properties with

direct functional interpretations.

We show that SIPs can be approximated by three basic, func-

tional measures: the domain spanned by the dendritic arbor, the

total length of the dendrite, and the angular distribution of how far

dendritic segments deviate from a direct path to the soma (which

we quantify with a metric called the root angle). The first two

measures are principally determined by axon location and abun-

dance, and hence microcircuit structure (Chklovskii, 2004); the

third arises from the balance between total dendritic length

and path length from synapses to the soma (Cuntz et al.,

2010). For many cell classes, the SIP can be closely approxi-

mated by considering just these three basic factors.
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Table 1. Table Summarizing Symbols and Terms

Symbol Interpretation

As scale (integral) of SIP ðmmÞ
a fitted shrink factor (1 � convexity)

bf balancing factor

D domain spanned by dendrites

fr;2ðqrÞ root angle distribution for planar neurons

fr;3ðqrÞ root angle distribution for three-dimensional neurons

qr root angle (rad)

k von Mises bias parameter

Ld total dendritic length ðmmÞ
r radial distance from soma ðmmÞ
rðrÞ radial density of planar dendrite ðmmÞ
sðrÞ (true) Sholl intersection profile (SIP)

sdðrÞ domain-based SIP approximation (Equation 1)

srðrÞ density-based SIP approximation (Equation 2)

srðrÞ root angle-based SIP approximation (Equation 6)

SðrÞ sphere of radius r centered on the soma

fðxÞ root angle distribution as a function of distance
RESULTS

Predicting Sholl Profiles from Dendrite Spanning Fields
Dendrites cover a specific region, and they fill space with varying

degrees of compactness (Montague and Friedlander, 1991;

Ristanovi�c et al., 2009; Snider et al., 2010). If we denote this re-

gion D, a first proportional approximation sdðrÞ to the true SIP

sðrÞ can be given by the intersection of a sphere SðrÞ of radius
r with D:

sdðrÞ=
Z

Q˛SðrÞ

r2cDðr;QÞdQ; (Equation 1)

where Q is a point on SðrÞ and cDðr;QÞ is the indicator function

for point ðr;QÞ in D. All terms are summarized in Table 1. For

planar neurons, the r2 in the integral becomes r. Figure 1A pro-

vides an illustration of this method on a cerebellar Purkinje cell,

with D indicated by gray shading and SðrÞ indicated in black

for several values of r.

Convex Spanning Fields
The most straightforward application of this approach is to neu-

rons that are relatively convex. Here the spanning fieldD can be

described by the convex hull of the dendrite (Figure 1A, gray).

Many classes of planar neuron have this characteristic, in partic-

ular cerebellar Purkinje cells (Figures 1A and 1B), several fly neu-

rons (Figure 1C), and many retinal cells (Figure 1D). The compar-

ison of the true SIP (Figure 1, black lines) with that predicted by

the convex spanning field with Equation 1 (Figures 1A–1D, gray

shading) shows a close match for these example cells. The pre-

dictive power of Equation 1 can be quantified using the normal-

ized root-mean-square deviation of the estimated SIP from the

measured value (see STAR Methods and Figure S1).
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Non-convex Spanning Fields
The domain-based prediction can be simply extended to neu-

rons with non-convex spanning fields. An example of this for

planar cells would be a fly vertical system (VS) neuron (Figures

1E and 1F), but the issue becomes more important in three di-

mensions (Figure 1G), in which the simple convex hull can pro-

vide a poor match to the volume covered by the dendritic tree.

In these cases, it is necessary to define D more carefully (see

STAR Methods and Figure S2).

The improved definition ofD relies on the concept of a shapes

(Edelsbrunner et al., 1983), which generalize the idea of a convex

hull by defining a boundary between a pure convex hull and the

tightest connected boundary around a structure; the construction

reliesonasingleparameterbetween0and1,whichwederive from

ameasure of the convexity of the neuron (see STARMethods and

Table S2). D for non-convex spanning fields is shown in Figure 1

for planar cells (Figures 1E and 1F, pink shading line against the

pure convex hull gray) and for a neuron with a three-dimensional

structure (Figure 1G). Using the improved definition increases

the accuracy of the estimate given by Equation 1 (Figure S2F).

Overall, the approximation from Equation 1 with the correct

definition of the dendritic spanning field D corresponds well to

the observed SIPs of many classes of neuron. This is due to a

relative uniformity of dendritic structure as assumed by Equation

1; the expected density of the dendritic cable does not appear to

change with distance from the soma for these classes of cell.
Limitations of theDendrite Spanning Field as a Predictor
for SIPs
The fundamental assumption of the domain-based SIP approxi-

mation is that the density of the dendrite within the spanning field

is approximately constant. This assumption allows accurate esti-

mation of SIPs in numerous cases (Figure 1), but it is not neces-

sarily true. The most straightforward deviation from this case

arises when the density of the dendrite has marked asymmetry

along radii. This can be seen in the case of the starburst amacrine

cell (Figure 2A, upper left panel); the density of the dendrite

sharply increases in the most distal portion, and this leads to a

distal shift in the true SIP compared to that predicted by the

domain alone (Figure 2A, lower left panel). In contrast, a cerebellar

Purkinje cell (Figure 2A, upper right panel), which is well described

by the spanning field, can have some local non-uniformities, but

these average out and do not substantially alter the SIP predicted

by Equation 1. In the case of the starburst amacrine cell, the de-

viation correlates with the known retinal circuit structure: the

neuron receives synapses across its dendritic tree but also forms

inhibitory synapses onto neighboring cells in approximately the

most distal third of its dendritic tree (Famiglietti, 1991). Increasing

(in the case of the amacrine cell, doubling) the predicted density

rðrÞ of the dendrite in this region allows a more accurate estima-

tion of the true SIP:

srðrÞ=
Z

Q˛SðrÞ

rrðrÞcDðr;QÞdQ (Equation 2)

Although a straightforward non-uniformity in dendritic density

may reveal specific aspects of local circuit structure and be



Figure 1. Sholl Intersection Profiles Estimated from Dendritic Spanning Domains

(A) Top: cerebellar Purkinje cell morphology (rat) (Vetter et al., 2001) with convex boundary (gray) and examples of circular arcs at different radii (black). Bottom:

observed SIP (black) and that predicted by the domain (Equation 1, gray).

(B) Top: cerebellar Purkinje cell morphology (guinea pig) (Rapp et al., 1994). Bottom: observed SIPs (black) and domain-predicted SIPs (gray).

(C) Top: tangential HS cell morphology (blowfly) (Cuntz et al., 2008). Bottom: observed SIPs (black) and domain-predicted SIPs (gray).

(D) Top: retinal local projecting ganglion cell morphology (rabbit) (Guo et al., 2013). Bottom: observed SIPs (black) and domain-predicted SIPs (gray).

(legend continued on next page)
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incorporated easily into the SIP prediction with Equation 2,

this does not appear to have a large effect on the SIP of

most cells.

A more common deviation from the domain-based prediction

arises when dendritic branches are distributed non-isotropi-

cally and are more or less likely than chance to point toward

the soma. A neuron with the majority of dendritic branches

pointing toward the soma has a centripetal bias. Centripetal

bias arises as dendrites connect synapses to the soma and

must balance minimizing the metabolic costs associated with

large lengths of dendritic cable with the delays introduced

when synaptic currents must travel longer distances to reach

the soma (Cuntz et al., 2007; Wen and Chklovskii, 2008).

Different classes of neurons typically strike different balances

between these two costs (Cuntz et al., 2010), but intuitively a

neuron that prioritizes minimal conduction delays over total

dendritic length will have a stronger centripetal bias, because

branches pointing directly toward the soma provide the most

direct path for synaptic currents. Centripetal bias results in a

distribution of dendritic cable with a proximal shift compared

to that predicted by a domain-based SIP. This can be seen in

dentate gyrus granule cells (Figure 2C), in which dendritic

branches point preferentially toward the soma and the

measured SIP is more proximal than that given by Equation 1.

The biases caused by these two sources of error can be

estimated by comparing the mean value ms =
R R
0 rsðrÞdr of

the true (normalized) SIP with that of the domain-based esti-

mate msd. Figure 2C plots the distribution of differences in

mean ms � msd between observed and estimated SIPs for cells

of different classes. The bias caused by a pure radial shift in

density for the starburst amacrine cells causes a typical shift

of around 10mm, or around 5% of the typical maximum radius

R, whereas the other planar cell classes have smaller shifts.

For three-dimensional cells, the dentate gyrus granule cells

have a larger shift of around 40mm, or well over 10% of the

typical maximum radius R, whereas the layer V Martinotti cells

do not have a large shift in mean. Moreover, this shift can be

seen in other three-dimensional cell classes and is more

typical than the unbiased domain-based estimate achievable

for Martinotti cells.

The following sections discuss measuring centripetal bias, its

relation to the scale of the SIP, and incorporating it into the final

prediction.

The Root Angle: Introducing a Direct Measure of
Centripetal Bias
Existing dendritic metrics (Lorente de Nò, 1934; Bok, 1936; As-

coli et al., 2007) do not explicitly measure centripetal bias.

Although there is some correlation between centripetal bias

and measures such as the mean branch angle and the ratio of

mean path length to total dendritic length, a direct measurement

is necessary to quantitatively describe this phenomenon. The
(E and F) Top: tangential VS cell morphologies type 2 (E) and type 4 (F) with conve

Bottom: observed SIPs (black) and domain-predicted SIPs (pink).

(G) Top: cortical layer V Martinotti interneuron with fitted boundary (pink) (mous

predicted SIPs (pink).
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root angle qr is defined as the angle between a dendritic segment

(defined centripetally from the termination point to the soma) d

and the direct path to the soma r (Figure 3A):

qr = cos�1

�
d,r��d �� �� r ��

�
(Equation 3)

This can be computed at all points over a dendrite to give a dis-

tribution frðqrÞ of root angles (Figure 3B).

The root angle distribution of a dendrite is a direct measure

of the centripetal bias and depends on both the branching

properties of the dendrite and the shape of the dendrite span-

ning domain. In the dendritic tree structures that we studied,

the root angle distribution could often be matched to a modi-

fied von Mises distribution (see STAR Methods). The von

Mises distribution is the maximum entropy distribution for an-

gles with a known directional bias, in this case toward the

soma (Forbes et al., 2011). It depends on a single parameter

k, which controls the strength of the centripetal bias; when

k = 0, there is no bias and root angles are distributed uni-

formly, and when k/N, all dendritic segments point directly

toward the soma. A larger value of k implies that a neuron pri-

oritizes conduction of synaptic currents over minimizing total

dendritic length. Figure 3C shows our von Mises root angle

model for planar and three-dimensional neurons for different

values of k. In addition, direct correspondence between the

centripetal bias k and the balancing factor bf (Cuntz et al.,

2010) can be used to generate realistic synthetic neuronal

morphologies from a generalized minimum spanning tree algo-

rithm (see STAR Methods and Figure S3). A strong centripetal

bias leads to smaller root angles, which implies that the

average path length to the soma will be relatively short, corre-

sponding to a larger balancing factor.

The von Mises model provides a good fit to most cell clas-

ses (see also Table S1), with horizontal system (HS) and VS

cells the notable exceptions among the planar cells. The

root angle distribution of the HS cells has a relatively linear

decrease, with qr for root angles less than around p =2, and

a shallower decline compared to the von Mises model in this

region, followed by a steep drop for larger root angles. This

implies that HS cells are relatively less likely to have dendritic

segments pointing away (at an angle greater than p =2) from

the soma than is typical for otherwise similar cell classes.

Despite this difference in morphology, the domain-based SIP

estimate is a good fit to the observed profiles (Figure 1C).

The VS cells have a peak at non-zero qr , which arises from

the particularly non-convex domain spanned by these cells

(Figures 1E, 1F, and S2E): the root angles converge to a point

distinct from the soma.

A useful visualization of the root angle distribution is tomap the

root angles back onto the dendritic morphology. Figure 3C
x boundary (gray) and fitted boundary (pink) (both blowfly) (Cuntz et al., 2008).

e) (Castillo-Gómez et al., 2015). Bottom: observed SIPs (black) and domain-



Figure 2. Limitations of the Dendrite Spanning Field

(A) Top left: retinal starburst amacrine cell morphology (rabbit) (Bloomfield andMiller, 1986) with the density of the dendritic cable shown by heatmap. Bottom left:

observed SIPs (black) and domain-predicted SIPs (pink), with mean values indicated by diamonds of the appropriate color. Top right: cerebellar Purkinje cell

morphology (rat) (Vetter et al., 2001) with the density of the dendritic cable shown. Bottom right: observed SIPs (black) and domain-predicted SIPs (pink), with

mean values indicated by diamonds of the appropriate color.

(B) Top: hippocampal dentate gyrus granule cell (rat) (Beining et al., 2017a). Bottom: observed SIPs (black) and domain-predicted SIPs (pink), with mean values

indicated by diamonds of the appropriate color.

(C) Distribution of differences in observed and estimated SIPmeans. Positive values indicate that the observedmean is more distal than the estimated mean, and

negative values indicate the converse. Distributions are over the numbers of cells given in Table S1, with 17 starburst amacrine cell morphologies.
shows this for various cell classes, highlighting the relatively

broad distributions of root angles for planar Purkinje andHS cells

compared to the three-dimensional granule and CA1 pyramidal

cells. Root angle distributions are consistent among different

cells of the same class. Figure 3C also plots the distributions

taken over all morphologies of each cell class in this paper as

a solid line and the 50% and 75% ranges taken by the root angle

distributions of individual cells within that class as shaded areas.

The ranges are small compared to the differences between cell

classes and allow individual cells of different types to be appro-

priately sorted using this measure.

Assuming a von Mises fit to the root angle distribution allows

accurate inference on k from relatively few samples, each

requiring only a short dendritic segment, for planar (around 10)

and three-dimensional (around 100) neurons (see Appendix 1

and Figure S4). This makes the root angle distribution valuable

even when incomplete neuronal reconstructions are available.

Scale of the SIP
So far we have shown that the domain-based SIP (Equation 1) is

approximately proportional to the measured SIP for classes of

neuron that do not exhibit a strong centripetal bias. To obtain

the scale of the measured SIP, it has been necessary to multiply

the normalized prediction by the integral of the true SIP As =RR
0 sðrÞdr. However, there is a straightforward link between the

scale and the total length of the dendritic tree: for all observed

classes of neuron, there is a strong linear relationship between

the scale and the total dendritic length Ld (Figure 4A):
AsfLd (Equation 4)

This relationship arises from each dendritic segment having

some radial component that increases the magnitude of the

SIP. This component is given by the cosine of the root angle

qr , so the proportionality can be written as follows:

As = Ld

2
4Z p

0

jcosðqrÞ j frðqrÞdqr
3
5

�1

(Equation 5)

Ld provides a robust measure of overall dendritic size (Brown

et al., 2008) and has known general relationships to the size of

the spanning domain (Teeter and Stevens, 2011) and expected

synaptic density (Cuntz et al., 2012). Although both the fractal

dimension (Caserta et al., 1995; Fernández and Jelinek, 2001)

and several Sholl-derived statistics (Rajkovi�c et al., 2016) have

been shown to possess additional explanatory power for the to-

tal dendritic length, this is the first time that the simple relation-

ship between SIP integral and Ld has been precisely quantified.

Given the analytical forms of fr;2 and fr;3, the von Mises models

of the root angle distribution in two and three dimensions (see

STARMethods and Equations 8 and 9), it is possible to calculate

the proportionality constant as a function of centripetal bias k

(Figure 4B). This prediction matches the observed values for

most cell classes, with exceptions for the HS cells (orange)
Cell Reports 27, 3081–3096, June 4, 2019 3085



Figure 3. The Root Angle

(A) Schematic of the root angle calculation (red vectors) on dentate gyrus granule cell morphology (mouse) (Beining et al., 2017a).

(B) Left: distribution of root angles for planar neuronal classes (top) and three-dimensional neuronal classes (bottom). The number of cells in each class is given in

Table S1. Right: analytical root angle distributions for planar neurons (top, Equation 8) and three-dimensional neurons (bottom, Equation 9) for different centripetal

biases k.

(C) Top: root angles projected onto neurons in two and three dimensions. Cerebellar Purkinje cell (rat) (Vetter et al., 2001), HS cell (blowfly) (Cuntz et al., 2008),

dentate gyrus granule cell (rat) (Beining et al., 2017a), and hippocampal CA1 pyramidal cell (rat) (Marcelin et al., 2012). Dendritic radii are increased by 1 mm to

highlight the root angles. Bottom: variation in root angle distributions for the cell classes shown above. Solid lines show the distribution over the entire cell class,

the darker shaded areas show the interquartile range over all individual distributions, and the lighter shaded areas show the 75% range.

3086 Cell Reports 27, 3081–3096, June 4, 2019



Figure 4. Scale of the SIP

(A) Total dendritic length Ld as a function of the scale of SIP As for different cell classes as labeled. For pyramidal cells, basal dendrites are given by circles and

apical tuft dendrites are given by diamonds of the appropriate color. The number of cells in each class is given in Table S1. Linear fits (solid black lines) to the

scatterplots have the following proportionality constants: Purkinje, 1.47; retinal ganglion, 1.67; HS tangential, 1.41; VS tangential, 1.57; layer V Martinotti, 1.43;

dentate gyrus granule, 1.10; CA1 pyramidal basal, 1.21; CA1 pyramidal apical (diamonds), 1.32; layer V pyramidal basal, 1.46; and layer V pyramidal apical

(diamonds), 1.33. Equality is shown by the dashed black line in each case.

(B) Proportionality constant as a function of centripetal bias k for planar neurons (left) and three-dimensional neurons (right). For pyramidal cells, basal dendrites

are given by circles and apical dendrites are given by diamonds. Fits (black lines) are from Equation 5.

(C) Predicted SIP scale against true SIP scale As for each cell. The black line shows equality.

Cell Reports 27, 3081–3096, June 4, 2019 3087



and VS cells (light red), which have root angle distributions rela-

tively poorly described by the von Mises model (as explained

earlier). In these cases, using the exact empirical root angle dis-

tributions in Equation 5 provides a better match; at the level of

individual cells, there is a tight correspondence between the es-

timate provided by Equation 5 and the observed ratio between

total dendritic length Ld and SIP integral As (Figure 4C).

The proportional relationship between total dendritic length Ld
and SIP integral As, with the proportionality following directly

from the root angle distribution, allows estimated proportional

SIPs to be scaled up to match the size of the dendrite and pro-

vides another functional component necessary to accurately

predict observed SIPs.

Sholl Analysis Predicted by Domain, Dendritic Length,
and Centripetal Bias
Given the root angle distribution frðqrÞ, the domainD, and the to-

tal dendritic length Ld, it is possible to obtain a better estimate of

the true SIP when a neuron has a strong centripetal bias. The

effect of a strongly biased root angle distribution means that

dendritic segments originating outside a Sholl radius r under

consideration are more likely than usual to cross it (Figure 5A),

effectively shifting the mass of the SIP to the left (centripetally).

The second approximation srðrÞ to the SIP is therefore given by

convolving the domain-based approximation sdðrÞ (Equation 1)

with the mass of the root angle distribution at a given angle

srðrÞ=
Z R

0

sdðrÞfðr � tÞdt; (Equation 6)

where fðxÞ is the density of the root angle distribution as a func-

tion of radial distance x scaled by the estimated mean branch

length (see STAR Methods). This form can give a closer approx-

imation to the true SIP sðrÞ in cases in which the root angle dis-

tribution is relatively steep (Figure 5B, red lines).

Incorporating the root angle distribution in the form of the pre-

ceding convolution gives a centripetal shift in the SIP and allows

estimation of a function sr proportional to the true intersection

profile for most neurons. Two types of pyramidal cell are intro-

duced as examples: the cortical layer V cell and the hippocampal

CA1 cell (Figure 5B). For these cells, it is common to consider the

basal dendrites and the apical tuft dendrites as separate com-

partments, with a second center of the SIP at the top of the apical

trunk (Sholl, 1953; Johnson et al., 2016; Keil et al., 2017). The im-

plementation of this compartmentalization is discussed in STAR

Methods and shown in Figure S5. The root angle-based SIP pro-

vides an accurate fit to both the basal and the apical tuft den-

drites (Figure 5B). Combining the proportional form (Equation

6) with the scale given by the total dendritic length and centripe-

tal bias (Equation 5) provides an accurate estimate of the SIP for

most cell classes.

A MATLAB Trees Toolbox function dissectSholl _tree to esti-

mate the SIP using this method is published in Methods S1.

Predicting Sholl-Based Metrics
Alongside the SIP, several Sholl-based metrics have been

developed to enable quantitative comparison of different
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SIPs. The ability of the prediction method to reproduce

such values provides an important addition to the functional

interpretation of Sholl analysis and shows how well the

dissected SIP estimates the true intersection profile for large

numbers of reconstructed cells. We focus on several metrics

that are commonly used to analyze SIPs: the center of mass,

which defines the mean radial distance of the dendritic

branches; the critical value and dendrite maximum, which

quantify the location and the maximum extent of the dendrite;

the regression coefficients, which describe the increasing

complexity of the dendrite with distance; and the branching

index, which provides an alternative measure of increasing

complexity. See STAR Methods for a detailed description of

each metric.

Figure 5C shows the relationship between observed and

estimated (from Equations 5 and 6) Sholl-based metrics for

1,187 neuronal morphologies from the eight cell classes dis-

cussed so far. There is typically good agreement between

the two values, particularly for the more direct measures of

center of mass, critical value, and dendrite maximum. There

is a wider dispersion of the regression coefficients, because

these are known to be sensitive to small differences in

morphology close to the soma (Caserta et al., 1995). A well-

known metric that cannot be fitted directly is the Schoenen

ramification index (Schoenen, 1982), which divides the

dendrite maximum by the number of distinct dendritic

branches connected to the soma. Because the estimated

SIP does not typically provide a reliable value for the latter

quantity, it might be necessary to consider a direct count of

such branches alongside the accurate estimate of the dendrite

maximum. The branching index, introduced by Garcia-Segura

and Perez-Marquez (2014), provides an alternate metric for

ramification that is predictable from the SIP and has been

shown to be a more specific metric than the Schoenen ramifi-

cation index.

Interpreting Changes in SIP
The SIP is widely used to analyze differences and changes in

dendritic morphologies (see, for example, Rekha et al., 2011;

Williams et al., 2013; Peng et al., 2015; Johnson et al., 2016;

Chittajallu et al., 2017; Keil et al., 2017). We have shown pre-

viously that the SIP can be accurately predicted from three

factors with more functional interpretations: the dendrite span-

ning field, the centripetal bias, and the total length. In Appen-

dix 2 and Figure S6, we show how changing each of these

three factors directly changes the shape of the SIP in a toy

model (Equations 15 and 16). Given an SIP, we can say that

in general a larger maximum extent implies a larger region in

which synaptic contacts can be received; peaks and troughs

in the SIP can imply regions where synapses are more or

less likely to form; a greater scale implies a longer, denser

dendritic tree potentially receiving a greater average concen-

tration of axonal inputs; and a stronger centripetal bias, indi-

cated by more proximal Sholl intersections than predicted by

the domain, implies a neuron that prioritizes fast and efficient

propagation of synaptic currents over the constraints of pure

minimal wiring. There is necessarily degeneracy in describing

a two- or three-dimensional dendrites by a one-dimensional



Figure 5. Sholl Analysis Predicted by Domain and Centripetal Bias

(A) Schematic showing the effect of centripetal bias on SIP calculation. The convex boundary of a Purkinje cell (rat) (Vetter et al., 2001) is shown (gray) with a Sholl

radius (green). Left: a uniform root angle distribution, in which the sample points (black) are equally likely to be connected in any direction and thus influence a

circular region (pink). Right: a centripetally biased root angle distribution, in which the sample points (black) preferentially connect toward the soma and thus

influence a region (pink) more proximal than distal.

(B) Top left: dentate gyrus granule cell (rat) (Beining et al., 2017a), with the tight domain shaded in pink. Bottom left: observed SIPs (black), domain-based SIPs

(Equation 1, pink), and root angle-based SIPs (Equation 6, purple). Top center: hippocampal CA1 pyramidal cell (rat) (Marcelin et al., 2012), with the tight domain

around apical tuft and basal regions shaded in pink. Bottom center: observed SIPs (black), domain-based SIPs (Equation 1, pink), and root angle-based SIPs

(Equation 6, purple) in the basal regions (above) and apical tuft regions (below). Top right: cortical layer V pyramidal cell (rat) (Hay et al., 2011), with the tight domain

around apical tuft and basal regions shaded in pink. Bottom right: observed SIPs (black), domain-based SIPs (Equation 1, pink), and root angle-based SIPs

(Equation 6, purple) in the basal regions (above) and apical tuft regions (below).

(C) Comparison of measured (horizontal axis) and estimated (vertical axis) Sholl-based metrics (see STARMethods). The number of cells in each class is given in

Table S1. The black dashed line in each case shows equality between measured and estimated metrics.
SIP (i.e., two different neurons could have an identical SIP),

but the three functional components described here allow bet-

ter consideration of how different roles could lead to a similar

SIP; a proximal peak in the SIP could result from an abun-

dance of terminating short dendritic branches or a relatively

strong centripetal bias, and considering the root angle distri-

bution would allow these two cases to be distinguished.

Here, we consider three studies into differences and changes

in real neuronal morphologies and discuss the insights that

can be drawn from the dissected SIP.
Scaling in Tangential HS Cells
Cuntz et al. (2013) show that the electrotonic response of the

tangential HS cell is surprisingly stable between the blowfly

Calliphora vicina and the fruit fly Drosophila melanogaster,

despite the cell of the latter being around four times smaller in

each dimension (Figure 6A, top). The SIPs (Figure 6A, center)

of the two sets of cells reveal a similar form due to the similar

dendrite spanning domains, with the Drosophila cells having

greater density. Despite the average spanning domain being

10.1 times larger in the Calliphora cells, the SIP scale As is only
Cell Reports 27, 3081–3096, June 4, 2019 3089



(legend on next page)

3090 Cell Reports 27, 3081–3096, June 4, 2019



1.42 times larger. The fitted centripetal bias k (Figure 6A, bottom)

changes from 0.66 in the Calliphora case to 0.47 for the

Drosophila case, but there is substantial overlap in their confi-

dence intervals and this result is not significant at the 10% level.

This observation supports themore detailed morphometric anal-

ysis in that paper.

Dendritic Retraction in Lesioned Granule Cells
Vuksic et al. (2011) studied the sustained effects on the

morphology of dentate gyrus granule cells of lesioning the axonal

input. Figure 6B (top) plots examples of pre- and post-lesioned

granule cells. The resultant change in SIP between the two cases

(Figure 6B, center) shows no difference in the proximal region

and a sharper fall more distally. This corresponds to a change

in the dendrite spanning domain in response to the lack of inner-

vation, with no difference in dendritic density and little change in

centripetal bias (Figure 6B, bottom).

Alzheimer’s in Hippocampal CA1 Pyramidal Cells
�Si�sková et al. (2014) link degradation of the dendritic structure to

functional hyperexcitability in hippocampal CA1 pyramidal neu-

rons (Figure 6C, top) in a mouse model of Alzheimer’s disease.

The SIPs of both the basal and the apical tuft show reductions

in both density and spanning area (Figure 6C, center). There is

almost no change in the root angle distribution in the apical tuft

and a slight increase in centripetal bias in the basal dendrites

(Figure 6C, bottom): the wild-type CA1 cells have a k value of

9.09 (7.90 to 10.28) and the Alzheimer’s cells have a k value of

12.75 (11.49 to 14.01), giving a one-sided p value of 0.051. The

mouse model of Alzheimer’s in hippocampal CA1 cells displays

changes in each of the three factors that predict the SIP.

Changes in Centripetal Bias for Cortical Layer V
Pyramidal Cells
The centripetal bias shown by the root angle distribution is

closely related to the generative balancing factor bf (Figure S3)

used to produce synthetic neuronal morphologies with a gener-
Figure 6. Interpreting Changes in SIP

(A) Top: HS visual cells from the fruit fly Drosophila (left, gray shading) and blo

comparison of measured SIPs (solid lines) and predicted SIPs (shaded areas) for

Bottom: Comparison of the root angle distributions for the fruit fly Drosophila ce

(B) Top: dentate gyrus granule cells before (left, purple shading) and after (right, g

(both mouse) (Vuksic et al., 2011). Center: comparison of measured SIPs (solid lin

lesion (red, 15 cells). Bottom: comparison of the root angle distributions without

(C) Top: hippocampal CA1 pyramidal cells, wild-type (left, shaded purple) and in a

et al., 2014). Center: comparison of measured SIPs (solid lines) and predicted SIP

cells) in the basal regions (left) and apical tuft regions (right). Bottom: compariso

model cells (gray) in the basal regions (left) and apical tuft regions (right).

(D) Upper left: synthetic layer V cortical pyramidal cells generated with differen

generated by Cuntz et al. (2010). Root angles are projected onto the morpholo

compartments (left) and apical compartments (right) for the three morphologies. M

root angle distribution are given by shaded areas. Upper right, bottom: root angle d

the three morphologies. Lower left: electrotonic compartmentalization of the abo

uation remains below 86%, and colors are randomly assigned to compartments.

conductivity of 53 10�5 s/cm2. Lower right: transfer resistance to the somawith th

in the figure to aid visualization.

(E) Left: synthetic layer II/III cortical pyramidal cells for different axonal densities g

lines) increases from left to right. Right: SIPs and root angle distributions for the th

by the domain and root angle distribution are given by shaded areas.
alized minimum spanning tree (Cuntz et al., 2010). It is therefore

possible to investigate the effects of an altered centripetal bias

on the morphology, SIP, and root angle distribution of a partic-

ular cell class. Cuntz et al. (2010) introduced an example model

of a cortical layer V pyramidal cell with a physiologically realistic

balancing factor of 0.7 and two lower values, 0.2 and 0. Taking

these morphologies (Figure 6D, upper left-hand side) and

analyzing the root angle distributions and SIPs illustrates how

the dissected Sholl profile captures the changes in a neuron’s

morphology. The root angle distributions (Figure 6D, upper

right-hand side, top) in both the basal and the apical regions

show a large difference in centripetal bias between the realistic

morphology and the two cases that prioritize wiring length over

conduction delays. The SIP (Figure 6D, upper right-hand side,

bottom) similarly show a marked difference between the mor-

phologies, although here the effect of changing centripetal bias

is confounded by differences in the spanning domain and total

dendritic length (as shown by Equation 5).

The effect of different centripetal biases on the functionality of

the neuron is shown by considering the electrotonic compart-

mentalization and current transfer properties of the neurons.

An electrotonic compartment of a neuron is defined in Cuntz

et al. (2010) as a region within which the attenuation of current re-

mains below a certain level, the compartmentalization is the set

of all such compartments. It has previously been noted that a

higher value of bf and therefore a higher centripetal bias typically

leads to more electrotonic compartments, because synaptic

currents have more direct paths to the soma and are relatively

isolated from inputs to neighboring branches. This effect ismain-

tained here (Figure 6D, lower left-hand side), where the pyrami-

dal cells with weaker centripetal biases have relatively few (29

and 36 compartments) electrotonic compartments compared

to the realistic model (52 compartments). Directly calculating

the voltage change at the soma due to synaptic currents at

different sites, referred to as the transfer resistance, reveals a

similar picture (Figure 6D, lower right-hand side). The left-hand

cell with minimal centripetal bias has a relatively short dendritic
wfly Calliphora (right, purple shading) (both from Cuntz et al., 2013). Center:

the fruit fly Drosophila (gray, 20 cells) and blowfly Calliphora (purple, 25 cells).

lls (gray) and blowfly Calliphora cells (purple).

ray shading) perforant path lesion, causing denervation of the distal dendrites

es) and predicted SIPs (shaded areas) without lesion (purple, 15 cells) and with

lesion (purple) and with lesion (gray).

transgenic model of Alzheimer’s (right, shaded gray) (both mouse from �Si�sková

s (shaded areas) for wild-type (purple, 23 cells) and Alzheimer’s model (gray, 22

n of the root angle distributions in the wild-type cells (purple) and Alzheimer’s

t balancing factors: bf = 0; 0:2; 0:7 from left to right. Morphologies originally

gies in the basal and apical tuft regions. Upper right, top: SIPs for the basal

easured SIPs are given by solid lines, and those predicted by the domain and

istributions in the basal compartments (left) and apical compartments (right) for

ve cells. Compartments are defined by the region within which current atten-

Passive electrotonic properties are axial resistivity of 100 Ucm and membrane

e above passive electrotonic parameters. Dendritic radii are increased by 1mm

enerated using the model defined in Cuntz (2012). The number of axons (green

ree morphologies. Measured SIPs are given by solid lines, and those predicted
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tree and thus has a high transfer resistance for synaptic sites

close to the soma, because currents cannot readily disperse

into dendritic branches (Rall, 1957). Further from the soma,

however, the transfer resistance drops dramatically and distal

synaptic inputs have a negligible impact on somatic voltage.

For a pyramidal cell with realistic centripetal bias, the range of

transfer resistances is narrower, and in particular, synaptic in-

puts at similar physical distances from the soma have a similar

influence.

Changes in Axonal Density for Cortical Layer II/III
Pyramidal Cells
Cuntz (2012) and Mazzoni et al. (2015) considered models of

various neuronal morphologies using the distribution of pro-

posed axonal inputs to inform possible synaptic locations. This

approach enables us to demonstrate how the SIP, and in partic-

ular its scale, relates to the density of axons synapsing onto a

dendrite. Figure 6E shows the effect on synthetic cortical layer

II/III pyramidal cell morphologies of increasing (from left to right)

the number of axons (shown in green) passing through its span-

ning field without altering the centripetal bias. Considering the

SIPs of the respective cells, the main difference is the scale.

The integral of the SIP increases from 2,233 to 3,921 and then

to 7,063 mm, reflecting total dendritic lengths of 3,306, 5,543,

and 10,069 mm, respectively. The root angle distributions are

not substantially altered by the changes in axonal density,

showing little change in centripetal bias. Thismeans that the ratio

of total dendritic length to SIP scale remains around 0.7 in all

cases (specifically, 0.68, 0.71, and 0.70, respectively). The rela-

tionship between density of synaptic targets and dendrite length

has previously been studied byCuntz et al. (2012) and appears to

follow a power law; here we provide a description of how the

density of axonal inputs appears in the SIP through the effect

on dendritic length.

DISCUSSION

We have shown that the SIP of a neuron can be accurately pre-

dicted from three basic measures with known functional inter-

pretations. These are the domain spanned by the dendrite, in

which it can receive synaptic connections; the total length of

the dendrite within this domain, which defines the average den-

sity; and the centripetal bias, which depends on the balance be-

tween conduction delays and total dendritic cost. The centripetal

bias is quantified by a measure called the root angle distribution,

which is a widely applicable metric of dendritic morphology. The

approximation from these three basic features is accurate for

various cell classes from various species.

We have found that for many classes of neuron, the relative

size of the domain spanned by the dendrite at a given distance

is proportional to the SIP. This result relies on the self-similarity

(Wen et al., 2009; Snider et al., 2010) and surprising relative uni-

formity of dendritic trees within their respective bounds and

means that the shape of an SIP can often be taken as a proxy

for connectivity and microcircuit structure, because it relies

strongly on the area reached by the dendrites, where intersecting

axons can make potential synapses (Stepanyants et al., 2008;

Packer et al., 2013).
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However, several cell classes deviate from the purely domain-

based prediction, and consideration of an additional property

was necessary to produce an accurate proportional estimate

of the SIP. This additional factor arises from optimal wiring con-

siderations (Cuntz et al., 2007; Wen and Chklovskii, 2008; Budd

et al., 2010); neurons typically strike a balance between the total

dendritic length and the mean path length from synaptic sites to

the soma (Cuntz et al., 2010) and a favoring of shorter conduction

times can lead to a proximal shift in dendritic mass compared to

that predicted by the domain alone. To quantify this balance, we

introduced a new morphometric measure: the root angle distri-

bution. This defines the distribution of angular deviations of den-

dritic branches from the direct path to the soma; a cell class,

which appears to prioritize minimizing total dendritic length

over path length will have a broader root angle distribution

than one with the opposite balance. Incorporating this factor

captured the shift in dendritic mass seen in the SIP of neuronal

classes that are not well explained by their domain alone.

A third factor was necessary to move from the proportional es-

timate discussed so far that accounts for the relative spread of

dendritic complexity to the full SIP that also measures the num-

ber of dendritic branches at a given distance: the total dendritic

length. The total dendritic length, combined with the domain

spanned by the dendritic tree, gives the density of the dendrite

with functional implications in axon abundance (Wen et al.,

2009; Budd et al., 2010; Cuntz, 2012) and probability of synapse

formation (Liley andWright, 1994; Chklovskii, 2004; Packer et al.,

2013). In estimating the scale, we discovered a previously un-

known and strong linear relationship between the total amplitude

of the SIP and the total dendritic length, with a coefficient depen-

dent on the root angle distribution discussed earlier.

This study has several consequences for the role of Sholl anal-

ysis in both theoretical and experimental dendritic anatomy.

First, the ability to predict the spatially extended SIP using two

quantities, the total length and the root angle distribution, which

are averaged over the entire arbor, is confirmation of the relative

homogeneity of most neurons (Wen et al., 2009; Snider et al.,

2010). Where particular neurons consistently deviate from the

predicted SIP, as in the case of the retinal starburst amacrine

cell in Figure 2, there is compelling evidence of an unusual

structure that may provide insight into specific dendritic function

(Famiglietti, 1991).

Second, many dendritic metrics are typically computed (Lor-

ente de Nò, 1934; Bok, 1936; Ascoli et al., 2007) to allow classi-

fication into cell classes (DeFelipe et al., 2013) or produce real-

istic synthetic cells for modeling studies (Koene et al., 2009;

Cuntz et al., 2010). That the SIP is so insensitive to most of these

metrics means that it may often be possible to substantially

simplify the dendritic structures under consideration. The three

factors that predict the SIP determine the location, average den-

sity, and orientation of dendritic branches; potentially greatly

reducing the number of factors necessary to model features

such as synaptic locations. One of the earliest theoretical predic-

tions of synaptic formation probability in Liley and Wright (1994)

relied on the analytical simplifications available from the SIP,

before similar methods could be applied using more data and

computational power to determine precise axon-dendrite appo-

sitions (Hill et al., 2012). The dissected SIP, by focusing on the



essential factors in dendritic placement, has the potential to offer

new insights into the connectivity of neuronal networks and how

connectivity depends on the features of the constituent cell

classes.

It is typically simpler and less labor intensive to record an SIP

from a recorded image stack, using software such as that in Kutz-

ing et al. (2010) or Ferreira et al. (2014), than to produce a full

three-dimensional reconstruction (Donohue and Ascoli, 2011;

Radojevi�c and Meijering, 2017). With increases in the usage of

relatively high-throughput imaging techniques (Wu et al., 2004;

Gong et al., 2016), Sholl analysis is a valuable technique to eval-

uate such data. By defining the functional aspects of a dendrite

that give rise to a particular SIP, this study makes it possible to

better interpret measured SIPs. The total dendritic length and

the dendrite spanning field are both relatively easy to recover

from noisy images, and the root angle distribution can typically

be inferred from a limited number of samples (see Appendix 1).

That it is also possible to accurately estimate total dendritic length

from the SIP and root angle distribution is a major finding. The

ability to record the key features from large numbers of cells

has broad experimental applications. For example, changes in

dendritic structure are widely related to neuronal pathologies,

ranging fromautismspectrumdisorder to fragile X syndrome (Kul-

karni and Firestein, 2012). Many characteristics of these diseases

are most apparent on a small scale, such as abnormalities in den-

dritic spines, while larger-scale changes are poorly understood

(Copf, 2016) but still apparent in the Sholl profile (Williams et al.,

2013; �Si�sková et al., 2014). Widespread imaging of healthy and

pathological neurons and functional understanding provided by

these measures could provide new understanding the effects of

such conditions on a neuronal scale.

The Root Angle
The root angle distribution provides a metric for dendritic arbor-

ization with applications distinct from its use in estimating the

SIP. The root angle distribution gives a direct and unambiguous

measure of centripetal bias for an observed tree, allowing the

generative balancing factor used in generalized minimum span-

ning tree construction to be inferred simply, rather than fitted to

several other metrics (Cuntz et al., 2007, 2010). The root angle

distribution therefore has the potential to reveal important differ-

ences in neuronal growth processes. The root angle distribution

depends on the spanning field, but this dependence is weak for

most actual neurons and crucially provides extra information

about neuronal structure. Themost effectivemorphological clas-

sification techniques to date rely on the dendritic density field in

context (S€umb€ul et al., 2014; Jiang et al., 2015) or related topo-

logical measures (Kanari et al., 2018). Adding the root angle may

substantially improve the performance of such techniques and

increase the accuracy of neuronal classification.

Extensions
An interesting extension to our work could come from incorpo-

rating knowledge of the dendritic diameter to allow for a repre-

sentation of the amount of dendrite at a given electrotonic dis-

tance from the soma. The diameter can be either measured

experimentally or estimated from the typical tapering behavior

of dendrites (Cuntz et al., 2007; Bird and Cuntz, 2016). Such a
technique has been used to understand the effects of backpro-

pagation in different dendritic morphologies (Vetter et al., 2001),

and wider application could greatly simplify cable-theory

modeling in realistic dendrites. The development of the T2N

tool (Beining et al., 2017b), which links straightforward morpho-

logical modeling under the MATLAB Trees Toolbox package

(Cuntz et al., 2010) with detailed electrophysiological simulations

using NEURON (Hines and Carnevale, 1997), also enables study

of the relationships among the SIP, its functional components,

and active dendritic processes. Sholl analysis has also been

applied to axonal arborizations, particularly in the spinal cord

(Kigerl et al., 2009). It would be interesting to see how far the

techniques described here could be applied in that framework,

particularly given the differences in structure between axons

and dendrites (Budd et al., 2010; Cuntz et al., 2010). Analogues

of Sholl analysis are also used outside of neuroscience, for

example, to quantify cancer tumors (Stanko et al., 2015); typi-

cally, neurons obey branching statistics that are starkly different

from those of other biological systems, such as arboreal trees or

corals (Teeter and Stevens, 2011; Cuntz et al., 2012; Kim et al.,

2012), but a similar approach to that taken in this paper may

reveal the functional aspects that predict Sholl analogs in other

fields.

Overall, our study provides a powerful link between the SIP, a

widely usedmeasure of dendritic complexity, and the three func-

tional constraints that underpin it.
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DeFelipe, J., López-Cruz, P.L., Benavides-Piccione, R., Bielza, C., Larrañaga,
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‘‘Dissecting Sholl analysis
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Software and Algorithms

MATLAB Mathworks, Inc (https://www.mathworks.com/) N/A

Trees Toolbox Package Hermann Cuntz (https://www.treestoolbox.org/
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Methods S1: MATLAB Trees Toolbox

functions and morphologies

‘‘Dissecting Sholl analysis into its functional components’’ N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Alex D. Bird (bird@fias.

uni-frankfurt.de).

METHOD DETAILS

Numerical integrals
Predicting the SIP from the dendrite spanning field required computing multi-dimensional integrals over often complicated domains

(Equations 1, 2, and 6). To accomplish this efficiently, a straightforwardMonte Carlo integration scheme is used. A large number ð106Þ
of points are uniformly randomly distributed at each radius and the proportion of points that lie within the domain D is determined.

This proportion is weighted by the arc length (r for planar neurons) or surface area (r2 for three-dimensional neurons) at that radius.

Quantifying error
To quantify the predictive power of the spanning field method for different dendritic classes, the normalized root-mean-square de-

viation is used. If the dendrite reaches amaximum euclidean distance of R from the soma and the normalized observed and predicted

SIPs are given by sðrÞ and spðrÞ respectively (where sp is either the domain-based prediction sd or the root angle-based prediction sr ),

the error E is given by

e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ R

0

ðsðrÞ � spðrÞÞ2dr
s

(Equation 7)

In practice the integral is usually discretised over 25 steps.

Bounding non-convex dendrites
When applying the prediction to non-convex dendrite spanning fields, in particular in three dimensions, it is important to define the

correct boundary to the spanning field (Figure 1). This is governed by both the dendrite and the optimal shrink factor s� (Figure S2A): a
parameter that ranges from 0 (convex hull) to 1 (the tightest boundary that produces a connected region).

The shrink factor follows from the topological concept of a-shapes (Edelsbrunner et al., 1983). An a-shape is a generalisation of the

convex hull of a point set whereby a boundary is a set of simplices (lines in R2 and triangles in R3) constructed by placing discs (or balls

in R3) of radius 1 =a over the point set so that all points are containedwithin the disc and the vertices of the bounding simplex lie on the

edge of the disc. To enable this construction, a must lie between 0 and some small positive value (the generalisation to negative a

values is not necessary here), but small changes in a do not necessarily lead to distinct a-shapes. An a-spectrum is constructed as

the set of a-intervals which define distinct boundaries and the shrink factor defines the proportion of the way through this spectrum

that an a value is chosen. In practice this procedure is implemented through the MATLAB boundary function.

For many dendrites, the convex hull does not represent the actual spanning field, while a shrink factor of 1 gives over-fitted bound-

aries for planar neurons (Figure S2B) and can lead to wholly unrealistic domains in three dimensions (Figure S2C). To assign the most

appropriate shrink factor, s�, to a dendritic field, it is necessary to develop a metric that approximates howwell a particular boundary

captures the true shape of the dendrite.
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We take the set of terminal dendritic points and see what proportion of the direct paths between them lie entirely within the tightest

boundary (a shrink factor of 1) that contains all termination points. For a convex hull, all such paths would lie within the boundary and

so this measure gives the relative difference between the two extreme shrink factors. We refer to this value, between 0 and 1 as the

convexity (where 1 gives an entirely convex neuron). The optimal shrink factor s� is defined as one minus the convexity and for most

dendrites this lies in the range of 0 to 1; although note also that small changes in shrink factor do not typically have a large effect on the

error of the SIP prediction (Figure S2D). The distribution of convexities for different classes of neuron is plotted in in Figure S2E and

tabulated in Table S1; many cell classes have fairly small and often distinct ranges of convexities.

A MATLAB Trees Toolbox function convexity tree to compute the convexity of a tree is included in Methods S1: MATLAB Trees

Toolbox functions and morphologies.

Calculating root angles for reconstructed morphologies
The root angle distribution for a given cell is computed using a custom function. The dendritic arbor is resampled into segments 1 mm

in length using the existing resample tree function. Each 1 mm segment is assumed to be straight (higher sampling frequencies can

be used for especially tortuous dendrites) and has a ‘parent’ and a ‘child’ point in R3, where the parent point is more proximal to the

soma by path length and the child ismore distal (see Cuntz et al. (2010), for a full discussion). For each segment the angle between the

vector from the child to the parent and the vector from the child directly to the soma is calculated using Equation 3.

A MATLAB Trees Toolbox function rootangle tree to compute this distribution is included in Methods S1: MATLAB Trees Toolbox

functions and morphologies.

Defining basal, apical trunk, and apical tuft dendrites on a pyramidal cell
Pyramidal neurons, specifically in this study cortical layer V and hippocampal CA1 pyramidal neurons, have dendrites that are divided

into basal and apical sections with potentially distinct functional roles (Spruston, 2008). Sholl analysis is often applied separately to

the basal and apical dendritic trees of pyramidal neurons to reflect this (Sholl, 1953; Johnson et al., 2016; Keil et al., 2017), with the

primary branch of the apical trunk used as the center of measurement for the apical section. To replicate this analysis for large

numbers of cells, we developed a simple algorithm to label the primary branch point of the apical tree.

While basal and apical sections are often labeled during reconstruction, this is not always the case and the apical tuft is almost

never distinct from the main apical trunk. To identify the apical trunk if the reconstruction is not labeled, the dendritic branch leaving

the soma with the greatest total length of dendrite connected to it is selected. To identify the primary branch point, the bifurcation

closest to the soma (by path length) such that at least 15% of total dendritic length lies distal (in terms of path length) to each branch

is selected. If no such bifurcation exists, the threshold is lowered to 0.9 times its previous value and so on until the primary branch

point is located. This procedure reliably identifies themajor branch point at the top of the apical trunk (Figure S5). The synthetic bf = 0

layer V pyramidal morphology in Figure 6D has an apical tree that is generated by a pure minimum spanning tree algorithm (Cuntz

et al., 2010); in this extreme case the process described here does not identify a major branch point and it was necessary to pick

an appropriate point manually.

Analytical form of root angle distribution
The root angle distribution in an idealized domain is modeled as a modified von Mises distribution (Forbes et al., 2011). The distri-

bution depends on a single variable k, with increased k giving a stronger centripetal bias. For planar neurons, the vonMises root angle

distribution fr;2ðqrÞ is given by

fr;2ðqrÞ= ekcosðqr Þ

p I0ðkÞ (Equation 8)

where I0ðkÞ is the 0th-order modified Bessel function and the domain is ½0;p�. k controls the spread of the distribution; k= 0 gives a

uniform distribution with no angular preference and limk/N gives a delta function at the origin where all dendritic segments point

directly to the soma. For larger values of k, the vonMises distribution can be approximated by a half normal distribution with standard

deviation s = k�ð1=2Þ.
To infer the root angle distribution in three dimensions, it is necessary to incorporate the spherical area element at a given root angle

qr , which decreases for smaller root angles. The von Mises root angle distribution fr;3ðqÞ for 0%q%p is

fr;3ðqrÞ= k sinðqrÞ ekcosðqr Þ

2 sinhðkÞ (Equation 9)

These are plotted in Figure 3B.

Linking root angle to balancing factor
It is possible to map the balancing factor bf between short cable lengths and short conduction times (Cuntz et al., 2010) to the cen-

tripetal angle distribution. The balancing factor is used to generate synthetic morphologies and is independent of the spanning

domain D and the density of neuronal target points while the root angle distribution fr does depend on both of these factors but
e2 Cell Reports 27, 3081–3096.e1–e5, June 4, 2019



is a metric that can be calculated precisely from a given dendrite. To quantify the form of the relationship between the root angle

distribution and the balancing factor, we can generate generalized minimum-spanning trees in different domains in R2 and R3 and

compute the centripetal bias parameter k from the vonMisesmodel of their root angle distributions (Equations 8 and 9). This is plotted

in Figure S3A for synthetic dendrites bounded by a circle, a square, and an equilateral triangle (of equal area) in R2 and by a sphere, a

cube, and an equilateral cone (of equal volume) in R3.

Figure S3 plots the relationship between balancing factor bf and centripetal bias k in these domains (black icon). The relationship is

roughly exponential, and can be fitted by a function of the form

kðbfÞ=p1

�
1

ð1� bfÞp2 � 1

�p3
(Equation 10)

where the same parameters p1;2;3 can be fitted to all three domains in each of R2 and R3, and the form of the equation is inspired

by an inverted generalized logistic function. If the fit is restricted to the range of balancing factors ½0; 0:8� (dashed line in Figure S3A)

that encompasses most real neurons (Cuntz et al., 2010, 2012), the parameters (with 95% confidence intervals) are: R2 p1 = 1:201

(1.19, 1.212,), p2 = 4:39 (4.299, 4.482), and p3 = 0:2857 (0.2814, 0.29), R3 p1 = 0:7331 (0.7181, 0.748), p2 = 3:714 (3.568, 3.86), and

p3 = 0:3331 (0.3245, 0.3417). The fits are shown in Figure S3A as solid lines.

Using these fits, it is possible to estimate the balancing factor bf of a reconstructed neuron with the centripetal bias k as a sufficient

metric. Figure S3B shows the distributions of fitted balancing factors for themorphologies used in this paper. The fitted values for the

different cell classes are in agreement with previous results (Cuntz et al., 2010, 2012) and this technique represents a powerful new

way to derive a key morphological parameter. A MATLAB Trees Toolbox function bf tree to estimate the balancing factor of a tree

from the root angle distribution is included in Methods S1: MATLAB Trees Toolbox functions and morphologies.

The density of the root angle distribution as a function of radius
The vonMises distribution (Equations 8 and 9) or an empirical root angle distribution fr can be used to define a shapef in R2 where the

radius at an angle q is given by frðqÞ (Figure 5A). This shape is obtained from the raw root angle distribution for planar neurons or by the

root angle distribution divided by a factor of ð2psinhðkÞI0ðkÞ=ksinðqÞÞ for three dimensional neurons to correct for the spherical area

elements. The shape f is stretched by the estimated mean branch length
ffiffiffiffiffiffiffiffiffi
3pV

p
=2

ffiffiffi
L

p
(where <I>V</I> is the volume ofD), predicted

from optimal wiring and minimum spanning trees (Cuntz et al., 2012), and convolved with the domain based SIP estimate sdðrÞ to
produce the corrected estimate srðrÞ (Equation 6). Even in the case that a root angle distribution is given exactly by the von Mises

model it is not possible to define the shape analytically in the correct coordinate system, so this is done numerically.

Sholl-based metrics
In the Results and Figure 5 we compare the predicted values of several widely used Sholl-based metrics to those computed from the

observed SIP.

Centre of mass The center of mass is the mean distance of dendritic branches from the soma (or apical trunk in the case of

pyramidal cell tuft dendrites). The center of mass of s is given by the ratio of integrals ðR R
0 rsðrÞdr= R R

0 sðrÞdrÞ and is also discussed

in ‘Limitations of the dendrite spanning field’.

Critical value and dendrite maximum The critical value is the radius at which most dendrite can be found (i.e., argmaxðsðrÞÞ) and the

dendrite maximum is the value of the SIP here (ie maxðsðrÞÞ).
Sholl regression coefficients The Sholl regression coefficients k1 and k2 quantify the changing density of dendrite moving away

from the soma. k1 is the semilog regression coefficient which is used to discriminate different neurons with short, complex dendrites

and k2 is the loglog regression coefficient which is more appropriate for long dendrites with little branching. The coefficients are fitted

to the equations

log10

�
sðrÞ
pr2

�
= � k1r + c ; log10

�
sðrÞ
pr2

�
= � k2log10ðrÞ+ c (Equation 11)

for planar neurons. For three dimensional cells, the denominators of the arguments of the logarithms are replaced by ð4=3Þpr3.
Ramification and branching indices Ramification and branching indices take another approach to the SIP and seek to quantify

how often a dendrite branches. The Schoenen ramification index (Schoenen, 1982) divides the dendrite maximum by the number

of primary branches leaving the soma. The branching index <I>BI</I> Garcia-Segura and Perez-Marquez (2014) is better able to

distinguish different SIPs and is given by

BI=
X
n

maxðrnðsðrnÞ � sðrn�1ÞÞ;0Þ (Equation 12)

where r0;1;. is a discretisation of [0,R] and only positive summands are considered (as shown by the max function). The version used

here differs slightly from that defined in Garcia-Segura and Perez-Marquez (2014) where rn is taken as an index rather than a radius;

as we consider cell classes over a range of different scales, taking rn as a radius gives greater meaning to the BI.
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Electrotonics and compartmentalisation
For Figure 6D passive electrotonic properties of axial resistivity 100 Ucm and membrane conductivity 5310�5 S=cm2 were assigned

to the pyramidal cells. The electrotonic signature, the set of transfer resistances from each node to all other nodes, was computed

using the existing Trees Toolbox function sse tree (Cuntz et al., 2010). The compartmentalisation was defined by assigning a

threshold value, in this case 0.13995, and finding the regions of the tree within which voltages do not attenuate below this proportion

of the maximum input resistance. Different thresholds would lead to different numbers of compartments in a given dendrite.

Morphologies used in figures
This paper analyses cellular morphologies reconstructed from a very wide array of animal species, brain regions, and experimental

laboratories. For completeness we record the data used here when morphologies are shown in Table S2. In Figure 6, two sets of

artificial cortical pyramidal cell morphologies, generated using a generalized minimum spanning tree algorithm are shown and

analyzed. The layer V morphologies are taken directly from examples in Cuntz et al. (2010, Figure 7 in that paper). The layer II/III

pyramidal cells were generated using the procedure described in Cuntz (2012) and Mazzoni et al. (2015). Briefly, straight axonal

segments were randomly generated in distinct layers corresponding roughly to cortical layers II/III and I (light and dark green respec-

tively in Figure 6E) and dendrites were connected to the axons in such a way as to minimize the total and path lengths of each den-

dritic tree (the balancing factor bf = 0:7). Axons were distributed isotropically within planes perpendicular to the cortical column at

uniform random depths. The apical dendrites, connecting to axons in layer I were generated before the basal dendrites.

Appendix 1
Inferring the root angle distribution

The root angle distribution is straightforward to compute with a full reconstruction of the neuron. Amajor advantage of the techniques

presented here, however, is to allow properties of the neuron to be discerned from limited or noisy data. The centripetal bias k of a

neuron can be reliably estimated from relatively few independent samples.

A bayesian approach to estimating k (given that the von Mises model is appropriate for a given class of neuron) allows the

uncertainty in centripetal bias to be quantified. The conjugate prior P½k� for the von Mises distribution is widely known (Gutthorp

and Lockhart, 1988) and can be applied directly in the case of planar neurons, giving a posterior of the form

P2½k j qi = 1:::n�f ekR0

ðI0ðkÞÞc
(Equation 13)

with hyperparameters R0 =
Pn

i =1cosðqiÞ and c = n. Figures S4A and S4B show this distribution for different numbers of samples from

a cerebellar Purkinje cell and tangential HS cell respectively.

In three dimensions, the conjugate prior can be derived in a similar way, giving a posterior of the form

P3½k j qi =1:::n�fkceR1 + kR0

sinhcðkÞ (Equation 14)

with hyperparameters R0 =
Pn

i =1cosðqiÞ, Rl =
Pn

i = 1logðsinðqiÞÞ, and c = n. Figures S4C and S4D show this distribution for different

numbers of samples from a dentate gyrus granule cell and the basal dendrites of a cortical Layer V pyramidal cell respectively.

Appendix 2
Analytical chloanges in SIP

The three components of the SIP can be considered analytically in a toy model (Figure S6). Consider a dendritic tree of length Ld =

7:5mm, no centripetal bias ðk = 0Þ, and bounded by a spherical domain of radius R = 100mm. Then the SIP given by Equations 1

and 5 reduces to

srðrÞ= 3Ld

2R3
r2 (Equation 15)

for 0< r <R and srðrÞ= 0 otherwise. This is the blue curve in the top-left corner of Figure S6. We consider the effect on this curve from

manipulating the size and shape of the spanning domain D and the centripetal bias k.

Size of spanning field

A change in the scale of the neuron can be seen by increasing the extent of the scanning field R and the total dendritic length Ld (Fig-

ure S6, vertical). We decrease the density of dendritic cable with the increasing volume of the spanning domain such that there is a

�0:55 power relationship between the two as observed for many real dendrites by Teeter and Stevens (2011). The reduction in den-

sity has the effect of reducing the dendrite maximum and increasing the expected mean branch length.

Shape of spanning field

A change in the spanning domain of a neuron can indicate a substantial reduction in connectivity and functionality (Figure S6,

horizontal). This type of change can be reproduced in this simple model by changing the spanning domain from a sphere to an

ellipsoid.
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If the boundary of the domainD is an ellipsoid given in cartesian coordinates by R2 = x2 + y2 + ez2, then increasing the parameter

E above 1 flattens the initial sphere along its z axis. In this case the SIP can be written as

srðrÞ=

8>>><
>>>:

3e0:55Ld

2R3
r2 if r%

Rffiffi
e

p

3e0:55Ld

2R3
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

e� 1

s
otherwise

(Equation 16)

where the density of dendritic cable has been increased to match the reduced volume of the spanning domain using the relationship

given in Teeter and Stevens (2011). The changed shape of the spanning domain has a large effect on the form of the SIP, while the

increased dendritic density reduces the expected mean branch length.

Centripetal bias

A difference in centripetal bias changes the root angle distribution and can indicate a changed weighting between total length

and synaptic delays or accompany a loss in dendritic density (Figure S6, different colors). In Equation 15, this can be reproduced

by increasing k. The final SIPs with centripetal bias k> 0 in Figure S6 are obtained by convolving the domain based predictions

(Equations 15 and 16) with the root angle distribution (Equation 9) scaled by the mean branch length, which depends on the density

of dendrite. This means that the effect of the convolution can be different in the different domains. Note also that the SIPs with cen-

tripetal bias are scaled up by a factor of ð2=pÞð1+ ðtanhð�k=2Þ=kÞÞ to account for the increased influence of radially aligned dendritic

segments on the ratio between total length Ld and the integral of the SIP (Equation 5).

Increasing the centripetal bias shifts the mass of the SIP toward the soma and smooths the edge effects of the boundary. It also

causes an increase in the integral As of the SIP for a given total dendritic length Ld.

QUANTIFICATION AND STATISTICAL ANALYSIS

The goodness-of-fit of the von Mises model to the root angle distributions of different cell classes in Table S1 is quantified using the

R2 coefficient of determination. The p-values quoted in ‘Alzheimer’s in hippocampal CA1 pyramidal cells’ come from the distribution

of the sample mean assuming a von Mises distribution.

DATA AND SOFTWARE AVAILABILITY

Neuronal morphologies were evaluated using the freely available Trees Toolbox package (Cuntz et al., 2010) for MATLAB. True SIPs

sðrÞ were computed using the existing sholl tree function. The full set of morphologies used in this paper is included in the Trees

Toolbox format as a MATLAB workspace as Methods S1: MATLAB Trees Toolbox functions and morphologies, related to STAR

Methods. Most morphologies were taken from the NeuroMorpho database (Ascoli et al., 2007); the dentate gyrus granule cells

and hippocampal CA1 pyramidal cells used in Figure 6 are taken from Vuksic et al. (2011) and �Si�sková et al. (2014) respectively.
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