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Hold Your Methods! How
Multineuronal Firing Ensembles Can

Be Studied Using Classical
Spike-Train Analysis Techniques.

Front. Syst. Neurosci. 13:21.
doi: 10.3389/fnsys.2019.00021

Hold Your Methods! How
Multineuronal Firing Ensembles Can
Be Studied Using Classical
Spike-Train Analysis Techniques
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Responses of neuronal populations play an important role in the encoding of stimulus
related information. However, the inherent multidimensionality required to describe
population activity has imposed significant challenges and has limited the applicability
of classical spike train analysis techniques. Here, we show that these limitations can
be overcome. We first quantify the collective activity of neurons as multidimensional
vectors (patterns). Then we characterize the behavior of these patterns by applying
classical spike train analysis techniques: peri-stimulus time histograms, tuning curves
and auto- and cross-correlation histograms. We find that patterns can exhibit a broad
spectrum of properties, some resembling and others substantially differing from those
of their component neurons. We show that in some cases pattern behavior cannot be
intuitively inferred from the activity of component neurons. Importantly, silent neurons
play a critical role in shaping pattern expression. By correlating pattern timing with
local-field potentials, we show that the method can reveal fine temporal coordination
of cortical circuits at the mesoscale. Because of its simplicity and reliance on well
understood classical analysis methods the proposed approach is valuable for the study
of neuronal population dynamics.

Keywords: multineuronal activity, classical spike-train analysis, tuning curve, peri-stimulus time histogram,
autocorrelation, cross-correlation, visual cortex, ensembles

INTRODUCTION

The microcircuitry of the neocortex is characterized by a large number of neurons each connected
to thousands of afferents (Thomson and Bannister, 2003; Douglas and Martin, 2004). In this
network, activity is highly distributed: the collective firing events of neurons determine the
responses of their post-synaptic targets (Singer, 1999; Bruno and Sakmann, 2006). To characterize
the activity of neurons collectively, concepts such as ensemble and population coding have been
introduced (Schneidman et al., 2003; Johnson, 2004; Averbeck et al., 2006; Osborne et al., 2008).
These concepts have received increasing attention because the extensive recurrence, complicated
input-output and feedback loops in cortical microcircuits suggest complex non-linear dynamics
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as their modus operandi (Freeman, 2003; Korn and Faure, 2003;
Buzsáki, 2006). Such complexity implies that many macroscopic
phenomena cannot be predicted from the behavior of individual
neurons but may only be observed by studying collective
behavior, as demonstrated by several recent studies (Tremblay
et al., 2015; Jadhav et al., 2016; Rajan et al., 2016).

Experimental techniques have provided the means for
studying collective behavior through the advent of multi-
electrode recordings (Gray and Singer, 1989; Erickson, 2001;
Wise et al., 2004; Biederlack et al., 2006; Buzsáki, 2006) and
more recently by potent imaging techniques (Harvey et al., 2012;
Forli et al., 2018). These were complemented by development
of multi-variate analysis methods, enabling numerous novel
findings, such as: stimulus encoding in the olfactory system
through cell ensemble dynamics (Friedrich and Laurent, 2001;
Galán et al., 2004; Brown et al., 2005; Bathellier et al., 2008),
chaotic- and attractor-like behavior of neuronal populations
(Freeman, 1994), or flips among quasi-stationary states in the
activity recorded from frontal areas of behaving monkeys (Abeles
et al., 1995). However, many multi-variate analysis methods are
not easy to implement and some of them are not necessarily
well understood analytically. In addition their results may not
be trivial to interpret. Classical spike train analyses on the
other hand, although well understood and well known, are
univariate or at best bivariate techniques, i.e., were developed for
analyzing single spike trains or pairs of spike trains, respectively.
Here, we propose that classical spike train analyses can also be
used to characterize collective neuronal behavior. Such classical
methods are easy to apply and have the advantage of being well
understood and easily interpretable. In addition, they provide
direct means for comparing the collective behavior of neurons to
their individual behavior.

METHODS

Experimental Procedures
and Recordings
Recordings were performed in area 17 of 2 adult cats. Anesthesia
was induced with ketamine (Ketanest, Parke-Davis, 10 mg
kg−1, intramuscular) and xylazine (Rompun, Bayer, 2 mg kg−1,
intramuscular) and maintained with a mixture of 70% N2O
and 30% O2 and halothane (0.4–0.6%). Animals were paralyzed
with pancuronium bromide (Pancuronium, Organon, 0.15 mg
kg−1 h−1) to prevent eye movements. Glucose and electrolytes
were supplemented intravenously and through a gastric catheter.
The end-tidal CO2 and rectal temperature were kept in the range
of 3–4% and 37–38◦C, respectively.

Stimuli were presented binocularly on a 21 inch computer
screen (HITACHI CM813ET) with 100 Hz refresh rate. To obtain
binocular fusion, receptive fields were mapped for each eye and
the two optical axes were aligned on the computer screen using
an adjustable prism placed in front of one eye. The software used
for visual stimulation was ActiveSTIM. Data were recorded with
multiple silicon-based multi-electrode probes (16 channels per
electrode) supplied by the Center for Neural Communication
Technology at the University of Michigan (Michigan probes).

A single probe consisted of four shanks (3 mm long, inter-shank
distance 200 µm) each having four electrode contacts (1250 µm2

area, 0.3–0.5 M� impedance at 1000 Hz, inter-contact distance
200 µm). Signals were amplified 10,000× and filtered between
500 Hz and 3.5 kHz for extracting multi-unit (MU) activity. The
waveforms of detected spikes were recorded for a duration of
1.2 ms, which allowed the later application of offline spike-sorting
techniques to extract single units (SU).

Datasets
One dataset (col05-e08) was recorded in response to sinusoidal
gratings moving in 12 directions in steps of 30◦, presented in
a randomized order in trials of 4800 ms (1000 ms spontaneous
activity, 3500 ms stimulus, 300 ms OFF-response). Gratings had
a spatial frequency of 2.4◦ visual angle per grating cycle, moved
at a speed of 2◦ per second and spanned 12◦ in the visual field.
Analyses were conducted on 26 simultaneously recorded SUs
with overlapping receptive fields. Two other datasets (col11-b44
and col11-b68) were recorded in response to sinusoidal gratings
of three different sizes. Gratings were presented either one-by-
one or superimposed (a smaller grating displayed on top of and
in the center of a larger one) (Biederlack et al., 2006). When
overlapping, gratings had the same or orthogonal orientations
and in some cases they were segregated by a gray ring. Gratings
extended over visual angles of 7, 14, and 21◦, had a spatial
frequency of 1◦ per grating cycle and were presented at a speed of
1.5◦ per second. The resulting 14 stimuli were presented 20 times
each in a randomized order in trials of 6000 ms long (stimuli
shown between 1000 and 5000 ms). Analyses were performed on
12 SUs that were identified in both datasets.

Data Analysis
Simultaneously recorded spike trains can be represented as
vectors in a high-dimensional space, where each dimension
corresponds to a neuron. A vector element describes the spiking
activity of a neuron in a given time window, while an entire vector
describes the spiking of all recorded neurons during that time
window. Quantifying a neuron’s activity within a time window
can be achieved trough binning its spikes (Grün et al., 2002;
Schneidman et al., 2006; Osborne et al., 2008). Another option,
pioneered by Gerstein and Aertsen (1985), is to convolve spikes
with exponentially decaying kernels (Nikolić et al., 2007; Häusler
and Maass, 2007; Jurjut et al., 2009, 2011) and sampling the
resulting signal. We chose the latter approach since exponentially
decaying kernels have a biological correspondent, namely the
post-synaptic currents (Jurjut et al., 2009, 2011).

Convolving Spike-Trains
Spike trains were convolved using an exponentially decaying
kernel (Figure 1, Convolution). The activity of a neuron i, was
transformed into a continuous signal si(t) using the formula:

si(t) =

{
si(t − 1)+ 1 , if neuron i has a spike at time t
si(t − 1) · e−

1
τ , otherwise

(1)

where, si(t) is the signal of neuron i after convolution and τ

is the convolution kernel’s decay (integration) time constant.
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FIGURE 1 | Transforming spikes into state vectors and their subsequent clustering. Simultaneously recorded spike trains (Spikes) convolved with exponentially
decaying kernels (Convolution) were sampled to extract activity vectors (State Vectors). Using a K-Means algorithm, state vectors were clustered (K-Means Clusters)
and replaced in the data with their corresponding clusters (patterns) (Patterns in a Trial).

To be consistent with the known range of values for neuronal
membrane time constants, in our analyses we used τ = 20 ms
(Spruston and Johnston, 1992; Kasper et al., 1994; Magee, 1998),
except when stated otherwise. After convolution, the multiple
signals resulting from the simultaneously recorded spike trains
were sampled with a frequency of 1 kHz and for each time bin a
vector was constructed:

SV(t) = [s1(t), s2(t), · · · , sn(t)] (2)

where, n is the number of analyzed neurons. SV(t) can be
interpreted as a “snapshot” of the state of all convolved spike
trains at time t (Figure 1, State Vectors). Hence, SV was termed
state vector.

Clustering
Techniques that involve binarization and bining of spikes are
convenient because they allow the identification of a limited
number of firing patterns (2n; Schneidman et al., 2006; Osborne
et al., 2008). In our case, however, because we have used
exponentially decaying kernels instead of binarization, each entry
of a state vector takes values in a continuous interval. Therefore,
one cannot define individual patterns as is the case for the binary
representation, since there is an infinite number of possible state
vectors. To identify classes of state vectors that occur robustly
throughout a recording session, we used a simple K-Means
clustering algorithm (Lloyd, 1982) with K = 1000 and Euclidean
metric. Initially, state vectors (samples) were randomly assigned
to clusters, which were computed afterward based on their
corresponding samples:

Ci[j] =
∑Li

l SVl[j]
Li

; i = 1,K j = 1, n (3)

where K is the number of clusters, n is the neuron count, Li is
the number of samples assigned to cluster Ci, and SVl denotes
a sample assigned to cluster Ci. Each iteration consisted of
reassigning samples to their nearest cluster (the one with smallest
Euclidian distance to the sample) and recomputing all clusters.
At each step s the approximation error Es was computed as:

Es =
K∑
i

Li,s∑
l

√√√√ n∑
j

(Ci,s[j] − SVl[j])2 (4)

where Ci,s denotes cluster i at step s, Li,s is the number of
samples assigned to Ci,s and SVl denotes a sample assigned to
cluster Ci,s. Iterations were repeated until the difference between
Es−1 and Es was smaller than ε·Es−1 (ε = 0.01 in our analysis).
The resulting K clusters approximated the spiking patterns of
all recorded neurons (Figure 1, K-Means Clusters). Therefore,
clusters will further be referred to as patterns. We chose this
algorithm for simplicity purposes. Other clustering algorithms
may yield better performance in approximating this type of data.
However, the simple K-Means algorithm used here provided a
sufficiently accurate representation of the data and enabled us to
identify robustly occuring patterns.

After clustering, state vectors were replaced with their
corresponding patterns (clusters). Hence, a recorded
trial was described as a sequence of individual patterns
appearing in successive bins of 1 ms (Figure 1, Patterns in
a Trial). All subsequent analyses were performed using this
representation of the data.

Active and Silent Neurons
In a pattern, an entry corresponding to a neuron can have a large
value, indicating that the neuron spiked recently, or a small value,
indicating a lack of spikes in the recent past. Using a threshold of
0.36 (∼1/e), we defined each neuron as being active (≥0.36) or
silent (<0.36) in a pattern. This threshold was chosen as follows:
For a single isolated spike at time t, the convolved spike-train’s
value (Figure 1) decays from a value of 1.0 to ∼0.36 after τ ms
(see Eq. 1). Other thresholds may be chosen, but our experience
has shown that thresholds <0.36 do not produce any notable
differences in the results.

Smoothed Peri-Stimulus Time Histograms
The PSTH for a neuron/pattern was smoothed using a
rectangular sliding window of size 2h+1, and, given a stimulus
j, was defined as follows:

PSTHj(t) =

∑
l
rl(t−h,t+h)

2h+1
Tj

; l = 1,Tj (5)

where, t represents the time in the trial, h is half the size of the
rectangular smoothing window, rl(t-h, t+h) is the spike/pattern
count in window [t-h, t+h] of trial l, and Tj is the number of trials
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recorded with stimulus j. In our analyses we used h = 100 ms for
both neurons and patterns.

Direction and Orientation Tuning
Tuning curves were computed as histograms of spike/pattern
occurrences per stimulus. To quantify direction and orientation
tuning to gratings, we applied the measures of Direction Index
(DI) and Orientation Index (OI) (Kida et al., 2005):

DI =

√ [∑(
rj · sin θj

)]2
+

[∑(
rj · cos θj

)]2
/ ∑

rj

(6)

OI =

√ [∑(
rj · sin 2θj

)]2
+

[∑(
rj · cos 2θj

)]2
/ ∑

rj

(7)
where, rj is the spike/pattern count in response to stimulus j and
θj is the angle for the direction of movement of the respective
stimulus. DI and OI take values between 0 and 1; 0 when the
spikes/patterns occur equally in all stimuli, and 1 when they
appear only for one stimulus (DI) or only for two diametrically
opposed stimuli (OI).

Auto and Cross-Correlograms
Auto and cross-correlograms were computed as histograms of
spike/pattern coincidences at various time shifts. Suppose f (t)
and g(t) are two equally long binary signals that can take values
of 0 (no spike/pattern occurs at time t) or 1 (a spike/pattern
occurs at time t). Their cross-correlation histogram (CCH) at a
time lag δ is:

CCHf ,g(δ) =

T∑
t

f (t) · g(t + δ) (8)

where T is the length of signals and δ takes values from [-
h,h], where h is the size of the correlation window. The auto-
correlation histogram (ACH) of a signal f (t) is simply the CCH
of the signal with itself:

ACHf (δ) =

T∑
t

f (t) · f (t + δ) (9)

In our analyses we used h = 100 ms when computing ACHs
and CCHs for both neurons and patterns, thus focusing on small
lags, i.e., fast processes (Nikolić et al., 2012).

RESULTS

The occurrence of a pattern is a binary event, similar to a spike,
therefore measures applied to spike trains, such as tuning curves,
peri-stimulus time histograms, auto- and cross-correlograms,
are directly applicable to patterns. We used these measures to
investigate pattern behavior and compared it to the behavior
of single neurons active within these patterns (see sections
“Methods” and “Data Analysis”). Examples were selected from
three datasets: one consisting of responses of 26 single units

evoked with drifting sinusoidal gratings and two consisting of
responses of 12 single units evoked with center-surround gratings
(see sections “Methods” and “Datasets”). In all subsequent
figures, patterns are represented as vertical bars that use the
grayscale to code the activation of each neuron (white = silent,
black = active).

We first investigated the stimulus-locking of pattern
occurrences and compared it to the stimulus-locking of their
active neurons. Thus, for both patterns and neurons we
computed peri-stimulus time histograms (PSTH), smoothed
with a 200 ms time window, in response to sinusoidal grating
stimuli. Intuitively, one expects a high rate of pattern occurrence
whenever the constituting active neurons have high spike
rates. Figure 2A shows such examples: one where the PSTH of
the pattern follows the PSTHs of the neurons (top row) and
one where the shape of the pattern PSTH faithfully reflects
the coactivation of the two constituting active neurons. The
three peaks in the PSTHs correspond to the periodic activity
modulation induced by the drift of the sinusoidal grating.
Patterns can also exhibit a behavior that cannot be intuitively
predicted from the activity of the constituting active neurons. In
Figure 2B one can observe similar modulations in the pattern
PSTH as in Figure 2A, but the amplitude of these modulations
changes throughout the trial. Modulations that are initially
small (Figure 2B, top row) or absent (Figure 2B, bottom row)
become amplified toward the end of the trial. Notice also that
the amplitude of the PSTH peaks varies less for neurons than
for patterns. Another interesting example is shown in Figure 2C
where a pattern with two active neurons exhibits a peak in the
PSTH at around 1450 ms that cannot be predicted from the
PSTHs of active neurons.

Next, we examined whether patterns can be tuned to the
direction and orientation of stimuli, as has been shown for
individual neurons in the primary visual cortex (Hubel and
Wiesel, 1962). For both neurons and patterns we computed
tuning curves (TCs) and indexes of orientation (OI) and
direction (DI) tuning, which characterize the degree of tuning
of a neuron/pattern to orientation or direction, respectively
(Kida et al., 2005) (see sections “Methods” and “Direction and
Orientation Tuning”). Figure 3A, depicts TCs corresponding
to three example patterns (Figure 3A, red), each having two
active neurons. In this example, active neurons (Figure 3A,
blue) had similar but broad tuning preferences. Patterns had the
same orientation/direction preference as the neurons, but the
tuning of the former was usually much sharper. Figure 3B shows
two examples of patterns, each with two active neurons having
slightly different orientation preferences. The corresponding
patterns exhibit again a sharper tuning, but with preference for
an intermediate orientation (120◦ top row, 330◦ bottom row).
The increase in sharpness of tuning is not limited to patterns
generated by well tuned active neurons. Figure 3C shows an
example in which two neurons with poor tuning produce a more
sharply tuned pattern. Sharpness of tuning can also be higher
than that of individual neurons for patterns consisting of more
than two active neurons. Figure 3D shows such an example where
three neurons with broad but similar tuning preferences produce
a very sharply tuned pattern. Finally, tuning properties of patterns
cannot always be predicted from the tuning of the active neurons.
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FIGURE 2 | Peri-stimulus time histograms (PSTHs) for patterns and their
active neurons. (A) Pattern PSTHs follow the PSTHs of their active neurons.
(B) Patterns with increasingly higher PSTH peaks toward the end of the trial.
(C) A pattern PSTH that has no apparent relation to the PSTHs of its active
neurons. Each figure panel is labeled on top (gray text) with the code of the
dataset and the corresponding stimulation condition.

Figure 3E shows such an example of a pattern that has only
one active neuron while the rest are silent. The TC of the active
neuron reveals a preference for 30◦ and 240◦ while the TC of the
pattern shows only a preference for 240◦, which is in addition
more sharply tuned than the neuron’s spiking preference for 240◦.
Thus, silent neurons can contribute also to the sharpening of the
tuning of patterns (see section “Discussion”).

We next show examples of the oscillatory behavior of
patterns and their comparison to the oscillatory behavior of
their active neurons. To this end, we used auto-correlation
histograms (ACH) and quantified oscillatory behavior by
computing oscillation scores (OS) in the high-beta/low-gamma
bands (20–50 Hz; Mureşan et al., 2008). We used two datasets
containing responses to center-surround gratings (see sections
“Methods” and “Datasets”). In one dataset, neurons exhibited
robust gamma-band oscillations (average OS 9.84), while in
the other dataset oscillations were poor or absent (average

OS 3.63). Examples in Figures 4A,B were chosen from the
dataset with oscillatory responses (col11-b68), while the ones
in Figures 4C,D were selected from the dataset with non-
oscillatory responses (col11-b44). Figure 4A shows two examples
of patterns with oscillatory modulation in the same frequency
band as the oscillatory responses of the active neurons. In
Figure 4B the patterns do not exhibit oscillatory activity
although their active neurons have strong oscillatory responses.
Such behavior may arise if the oscillations in the component
neurons are not phase-locked and therefore their co-firing
occurs in a non-periodic manner. In Figure 4C the ACHs
of patterns and their active neurons reveal no oscillations.
In contrast, Figure 4D shows patterns whose expression is
markedly oscillatory even though the responses of the active
neurons show no oscillatory modulation. Oscillatory activity
of silent neurons could possibly explain this phenomenon
(see section “Discussion”).

As a control, we tested whether the oscillatory behavior
of patterns was an artifact of the convolution of spikes
with exponentially decaying kernels (time constant of 20 ms).
Oscillations were present in the pattern ACHs also at smaller
integration time constants (1, 5, and 10 ms; results not shown),
indicating that the observed oscillatory structure is not an artifact
of convolution. Overall, examples in Figure 4 suggest that
inferring the oscillatory behavior of patterns from the activity of
their active neurons is not straightforward.

Using cross-correlation histograms (CCH), we illustrate
on the dataset with simple gratings (col05-e08) how one
can investigate whether there are preferences in the relative
occurrences of different patterns. Note that, by definition, two
different patterns cannot occur at the same time (i.e., zero-lag
coincidence is not possible). Figure 5A shows three examples
in which distinct patterns follow each other over a broad
range of time-lags. Examples in Figure 5B show patterns that
occur in a sequence at a preferred time interval (∼24 ms,
left panel; ∼68 ms, center panel; ∼−40 ms, right panel). In
Figure 5C pattern CCHs exhibit multiple peaks, indicating
multiple preferred lags between the patterns. In Figure 5D
patterns with the same active neurons that are more activated
in one pattern than in the other, follow each other at short time
lags (∼12 ms). The “faded” pattern (the one with less activated
neurons) follows the other as a consequence of convolution
with exponentially decaying kernels (see sections “Methods”
and “Data analysis”). The two patterns represent the same set
of spikes, but at slightly different times. This effect must be
taken into consideration when interpreting the results. Finally,
in Figure 5E we show two examples of CCHs between patterns
(left panels), each having one active neuron, and the CCHs
between their corresponding active neurons (right panels). While
pattern CCHs exhibit peaks at regular time intervals, CCHs of
the neurons’ spiking activity do not exhibit any related time
structure (blue). This could result from the fact that patterns
are more constrained than their active neurons, i.e., a pattern
with one active neuron can only appear when all the other
neurons are silent.

Finally, we uses local-field potential (LFP) signals to probe
deeper into circuit mechanisms that underlie coordinated firing
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FIGURE 3 | Tuning properties of patterns. Pattern tuning curves (TCs) are shown on the left side of each panel in red, while TCs of their active neurons are shown in
the same row in blue. (A) Patterns with similar direction preference as their active neurons. (B) Patterns with a direction preference intermediate to those of their
active neurons. (C) A sharply tuned pattern composed of two active neurons that have poor tuning. (D) A tuned pattern with three active neurons. (E) A pattern
having a TC different from that of its only active neuron. Direction Tuning Index (DI) and Orientation Tuning Index (OI) are displayed in the upper-right corner of
each TC.

or silence of neurons. We selected units from dataset col05-e08
that matched the following criteria: (i) they could be reliably
identified as single units; (ii) they had overlapping tuning curves
for at least one grating direction (i.e., similar tuning); (iii) each
unit was isolated from a different recording electrode. Seven
units exhibited this property, firing preferentially in response
to gratings drifting at 330◦. The rationale for this selection was
to observe the timing coordination between units that fire in
response to the same stimulus and to determine their relation
to the corresponding meso-scale dynamics, i.e., LFPs. The latter
may provide information about the subthreshold state of silent
units under conditions of high spike-field coherence arising from
correlated population dynamics (Denker et al., 2011). To avoid
temporal smearing and to match LFP timescales, we computed
patterns on the activity of the seven units using a fast time
constant, τ = 5 ms. All other parameters were unchanged (see
section “Methods”).

Patterns generated by the seven neurons exhibitted a variety of
behaviors relative to the LFPs recorded on the source electrodes.
As expected, patterns were also selective to 330◦ drifting gratings
(Figure 6). We correlated the expression of patterns with the
LFP corresponding to each component neuron’s source electrode
by computing the pattern-triggered LFP average (similar to the
spike-triggered average; see Gray and Singer, 1989; Nikolić et al.,
2012). We next show three typical examples. Figure 6A depicts
a pattern (P50) whose alignment to LFPs associated to active
and inactive neurons (units) was not systematic: P50 was aligned

to the LFP trough (N1 and N2), LFP peak (N4–N7), or not
clearly aligned (N3).

Figure 6B illustrates a pattern (P36) whose alignment to
the LFP was much sharper and coherent. P36’s expression was
sharply locked to the trough of the active units’ corresponding
LFP, reflecting the spike volley that generated the pattern. This
sharp negative LFP deflection suggests a correlated excitatory
state at the level of the local circuits in which active neurons
were embedded (Denker et al., 2011). On the other hand, P36
was aligned to the peaks of LFPs corresponding to silent neurons.
The LFP peak likely reflects a period with lingering inhibition
generated during the previous trough-aligned volley (Teleǹczuk
et al., 2017). Indeed, LFPs on silent electrodes displayed marked
oscillatory entrainment in the gamma band, therefore peaks of
the LFP corresponded to the inhibited (down-state) phase in
the oscillation. P36 thus reflects a complex coordination of two
subnetworks: N1 and N2 fired in coordination while, at the
same moments in time, N3–N7 were coherently silenced by an
offset gamma rhythm.

Finally, in Figure 6C we identified a pattern (P108) with
three active neurons, sharp selectivity, and strong correlation
to the LFPs (note the amplitude scale). We zoomed in on the
central part of the pattern-triggered average to identify the fine
temporal details (note the temporal scale). Consistently with the
other two examples, LFPs corresponding to N1 and N2 had a
different behavior than those corresponding to the other neurons:
in this case their LFPs were not correlated to P108’s expression.
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FIGURE 4 | Auto-correlation histograms (ACHs) of patterns and their active neurons. ACHs of patterns are shown in red on the left side of each panel, while ACHs of
their active neurons are shown in blue on the right. (A) ACHs of patters showing oscillatory activity in the same frequency range as the pattern’s active neurons.
(B) Patterns that show no oscillatory activity, although the ACHs of their active neurons exhibit oscillations. (C) Non-oscillating patterns that have non-oscillating
active neurons. (D) ACHs of patterns showing oscillatory behavior even though their active neurons are not oscillating. The Oscillation Score (OS) of each ACH is
displayed in the upper-right corner.

FIGURE 5 | Cross-correlation histograms (CCHs) of patterns. (A) Patterns that follow each other over a broad time interval. (B) CCHs of pattern that occur
predominantly at a specific time interval. (C) CCHs of patterns that follow each other at regular time intervals. (D) Patterns with the same active neurons, but at
different activation levels, occurring one after the other at short time lags. (E) Two examples of CCHs between patterns each having one active neuron (left, red) and
CCHs between these active neurons (right, blue).
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FIGURE 6 | Temporal coordination of active and silent units contributing to
patterns. Left: pattern tuning curves, showing preferential selectivity to 330◦

drifting gratings. Right: patterns and the corresponding pattern-triggered LFP
average (PTA) computed for each electrode of source units. Blue traces
correspond to PTAs computed on LFPs from electrodes with active units.
(A) Fuzzy coordination between pattern expression and LFPs. No consistent
rule can be derived for PTAs using LFPs from active and inactive electrodes.
(B) Coherent firing and silence of two subpopulations (N1 and N2 vs. N3–N7)
is reflected in precise alignment of the pattern to excitatory troughs and
inhibitory peaks of corresponding LFPs. Note the prominent oscillatory
modulation of LFPs from silent electrodes. (C) Fine, sub-millisecond temporal
coordination of firing producing a pattern with three active neurons. LFPs
corresponding to active neurons tend to trough before pattern expression,
while those corresponding to silent neurons trough after it. The temporal delay
was estimated by computing the offset at half minimum of the trough.

On the other hand, LFPs corresponding to the remaining five
neurons exhibitted an interesting property: those associated
to active neurons tended to trough before P108’s expression
(negative lag), while those associated to silent neurons troughed
after P108’s manifestation. These results indicate very fine
coordinated fluctuations in the sub-millisecond range, whereby
active neurons were engaged right before pattern expression,
thus contributing to it, while the silent neurons were slightly
delayed, providing a narrow window of opportunity for the
manifestation of the pattern.

DISCUSSION

Many studies have investigated neuronal population dynamics
(Friedrich and Laurent, 2001; Galán et al., 2004; Brown et al.,
2005; Bathellier et al., 2008) and it has been shown that
multi-neuron activity carries more stimulus related information
than individual cells (Johnson, 2004; Biederlack et al., 2006;
Schneidman et al., 2006; Osborne et al., 2008). Here we describe
the collective behavior of simultaneously recorded neurons as
multidimensional vectors, called patterns, and subject the latter
to classical spike train analyses. We have shown that pattern
behavior can exhibit a wide range of properties, either similar
to those of individual constituting neurons, or considerably
different. Moreover, pattern behavior cannot always be inferred
from that of its active neurons. Importantly, however, silent
neurons define a pattern too, and hence, the expression of the
pattern depends on both the activation and lack of activation
of its respective neurons. Indeed, it was shown that silent
neurons also contribute to coding (Osborne et al., 2008) and
that non-classically responding units participate in ensembles
carrying stimulus-related information (Insanally et al., 2019). For
example, a pattern composed of active neurons that do not show
oscillatory responses may exhibit oscillatory behavior simply
because one neuron, contributing as “silent” to the pattern, fires
with an oscillatory rhythm. This neuron is silenced at regular
intervals, constraining the occurrences of the pattern to those
intervals and thus it imposes an oscillatory modulation on the
occurrence of the pattern. The same principle applies to PSTHs.
Activity of neurons that are contributing as silent to a pattern
creates intervals in which the pattern cannot be expressed. The
outcome is that the pattern’s PSTH can be considerably different
from the PSTHs of the contributing active neurons. Therefore,
both active and silent neurons have to be taken into account
when investigating the expression of a neuronal pattern. The
definition of multidimensional activity patterns includes different
effects: Active neurons are a sign of excitation while the silence of
neurons in a pattern could result from lack of excitation or even
from inhibition. All these effects will contribute to the expression
of the respective pattern, and hence, the rich interaction of
these multiple mechanisms can be harvested in full with the
present approach.

We have shown that the role of silent neurons in constraining
the expression of patterns is just as important as the role
of actively firing units. Silent neurons can be coordinated
precisely by subthreshold dynamics dictated by the activity
of the embedding mesoscale, local circuit, whose state can
be inferred from the corresponding LFP. We found several
typical relations between pattern expression and the LFPs
corresponding to its active and silent units. Sometimes a
systematic relationship is lacking, but in many other cases
patterns arise from coordinated activation and silencing of
neurons, involving oscillatory modulation and precise temporal
offsets with sub-millisecond precision (Havenith et al., 2011).
Results indicate that correlating pattern expression with LFPs
allows one to also disect multiple cortical subnetworks, whose
dynamics are precisely orchestrated within and across, giving rise
to a rich repertoire of patterns.
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In visual cortex oscillations can orchestrate circuit dynamics
in both the beta and gamma bands (Bastos et al., 2015).
Here, we have observed oscillations around 27 Hz, i.e.,
in the beta-high band (20–30 Hz), at the border with
gamma (30–80 Hz). As discussed elsewhere, the beta-high
and gamma bands are sometimes indistinguishable (Mureşan
et al., 2008) and according to some studies they are termed
together, simply as gamma (Whittington et al., 1997). Lower
gamma frequencies observed in the present preparation,
spilling into the beta-high band, fluctuate during anesthesia,
visiting both gamma and beta bands, while also depending
on the properties of the visual stimuli (Feng et al., 2010).
Irrespective of their frequency, oscillations >20 Hz, whose
period approaches the membrane time constants, most likely
contribute to the dynamical organization of firing and quiescence
that defines specific neural ensembles and their properties.
From a technical point of view, we have introduced an
approach that uses classical, established methods, which are well
understood analytically. These methods provide experimentalists
with a familiar working environment and can be equally
well applied to both patterns and the spiking of individual
neurons, making it easy to evaluate the degree of similarity
between the behavior of individual neurons and that of
their corresponding activity patterns. This can also help
us understand how patterns emerge from the activity of
individual neurons.

Our goal was to present a methodology without formulating
any conclusions on putative neuronal codes or their readout.
We have provided a few examples illustrating the extent to
which pattern expression can differ from the spiking responses of
the constituting neurons. When investigating putative strategies
of distributed coding, classical analysis techniques as described
in this study, might become a valuable tool. They produce
comprehensive quantitative descriptions of population activity
that are amenable to rigorous statistical testing.
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