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SUMMARY

In addition to coding a subject’s location in space, the
hippocampus has been suggested to code social in-
formation, including the spatial position of conspe-
cifics. ‘‘Social place cells’’ have been reported for
tasks in which an observer mimics the behavior of a
demonstrator. We examine whether rat hippocampal
neurons may encode the behavior of a minirobot, but
without requiring the animal to mimic it. Rather than
finding social place cells, we observe that robot
behavioral patterns modulate place fields coding an-
imal position. Thismodulationmay be confounded by
correlations between robot movement and changes
in the animal’s position. Although rat position indeed
significantly predicts robot behavior, we find that hip-
pocampal ensembles code additional information
about robot movement patterns. Fast-spiking inter-
neurons are particularly informative about robot posi-
tion and global behavior. In conclusion, when the an-
imal’s own behavior is conditional on external agents,
the hippocampus multiplexes information about self
and others.

INTRODUCTION

The hippocampus plays a key role in the formation of episodic

memory, defined by one’s personal experiences set in space

and time (Eichenbaum et al., 2012; O’Keefe and Conway,

1978; O’Keefe and Dostrovsky, 1971; Scoville and Milner,

1957; Tulving, 1983). Classically, hippocampal neurons are

thought to code an organism’s own position in space, as they

exhibit an increase in firing rate when an animal visits a particular

location in its environment (the ‘‘place field’’; McNaughton et al.,

2006; O’Keefe and Conway, 1978; O’Keefe and Dostrovsky,

1971; Scoville andMilner, 1957). However, previous studies sug-

gest that the hippocampus may also play a role in social memory
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(Hitti and Siegelbaum, 2014; Kogan et al., 2000; Okuyama et al.,

2016; Sliwa et al., 2016; Stevenson and Caldwell, 2014; Viskon-

tas et al., 2009; von Heimendahl et al., 2012; but see Bannerman

et al., 2001; Squires et al., 2006). For instance, recent studies in

mice suggested important roles of CA2 and ventral CA1 neurons

in social memory, more specifically, the ability to memorize the

familiarity of a previously encountered conspecific (Hitti and Sie-

gelbaum, 2014; Okuyama et al., 2016; Stevenson and Caldwell,

2014). Further evidence suggests that dorsal CA1 neurons may

code information about the spatial position and movement of

other agents (Danjo et al., 2018; Ho et al., 2008; Omer et al.,

2018; Zynyuk et al., 2012).

Analogous to ‘‘mirror neurons,’’ originally discovered in mon-

key ventral premotor cortex (area F5; di Pellegrino et al., 1992;

Gazzola et al., 2007; Rizzolatti and Fabbri-Destro, 2008; Rizzo-

latti and Sinigaglia, 2016), Danjo et al. (2018) suggested that

also CA1 neurons of rat hippocampus can display mirror-like

firing. In a task in which a rat observed the trajectory of another

rat (demonstrator) to decide whether it should subsequently run

the same or an alternative trajectory, the authors found a subset

of neurons showing an identical place field for the subject and

demonstrator. Such a ‘‘common place field’’ can be considered

a spatial equivalent of a ‘‘mirror neuron’’ in monkey F5. One dif-

ficulty in interpreting these results is that both the recorded and

demonstrator rat could move simultaneously, making it difficult

to disentangle whether neural responses should be ascribed to

the demonstrator or the self, which may react to the other agent

in various ways. In another recent study, Omer et al. (2018) also

applied a spatial observation task, in which an observer bat was

required to fly the same route to a target location as was demon-

strated by another bat shortly beforehand. They also identified a

subset of ‘‘social place cells’’ showing high similarity between

place fields for the self and the other bat.

In the present study, we investigated the influence of another

agent on hippocampal firing patterns, using not an ‘‘observe-

and-mimic’’ paradigm as in Danjo et al. (2018) or Omer et al.

(2018) but a design in which the subject first explores a maze

in isolation and subsequently performs two ‘‘observe-and-

decide’’ discrimination tasks based on the movements of a
ts 29, 3859–3871, December 17, 2019 ª 2019 The Author(s). 3859
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remotely operated minirobot (an ‘‘e-puck;’’ Mondada et al.,

2009). We used a minirobot instead of a conspecific because

the robot’s movements could be precisely controlled, thus be-

ing insensitive to the observer’s behavior. Confined to an obser-

vation cage and thus separated from the robot, the rat was

trained to choose between two directly apposed reward wells

on the basis of the robot’s movement pattern. This method

allowed us, first, to study whether mirror-like ‘‘common place

fields’’ are found in other multi-agent situations than in an

observe-and-mimic paradigm.

Second, we assessed hippocampal firing sensitivity to dy-

namic variables related to the robot’s behavioral trajectories on

the maze. Specifically, we asked: (1) Are mirror-like ‘‘common

place fields’’ generally found when another, behaviorally signifi-

cant agent is present in the subject’s vicinity, or are they rather

exceptional? (2) Should robot-induced changes in CA1 firing

rate be ascribed to the behavior of the external agent or to

changes in the rat’s own position? (3) What information do firing

patterns of single cells and of neuronal populations convey about

a movement pattern of the other agent when correcting for

changes in rat position?

Our paradigm did not reveal ‘‘common place fields,’’ and

moreover, changes in rat position were significantly predictive

of robot parameters, which indicates a serious confound that

should be taken into account in future studies on social neural

coding that may entail changes in the subject’s behavior in

response to another agent. However, when correcting for this

confound, we found that CA1 firing patterns coded additional

information about global robot behavior, robot position, and

the animal’s engagement in a task requiring robot tracking.

Fast-spiking (FS) interneurons coded a remarkably large amount

of information about the other agent.

RESULTS

Behavioral Task: Rat Observing Robot Movements
To study how an external agent affects CA1 firing patterns, we

aimed to reduce potential confounds due to variability in the

agent’s behavior by using a minirobot (‘‘e-puck;’’ Mondada

et al., 2009) whose behavior was stereotyped and remotely

controlled. Briefly, each recording session was divided into three

epochs. During the first and last epochs (Rat-on-Maze 1 and 2;

Figure 1A) the rat freely explored a maze consisting of several

connected alleys.During the secondepoch (ObservationPeriod),

the rat moved into a separate cage compartment and was

exposed to the robot moving across the maze. During the Task

Phase, the rat could obtain reward by tracking robot movements

and making a nose poke into one of two closely apposed reward

wells, where the rewarded side corresponded to the side of the

(outbound) travel direction of the robot. The Task Phase pre-

sented two task types (Front Task [FT] and Mid Task [MT]) which

differed in spatial movement patterns of the robot (in FT, moving

toward the rat and to the side in the alley closest to the rat; in MT,

moving away from the rat and to the side; see Figure 1B) but were

identical in the behavioral response rules the rat had to follow to

earn reward (i.e., the well delivering reward on a correct choice

was always determined by the side of outbound robot move-

ment). The Observation Period also contained a Free Roaming
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Control (FR-control) phase, duringwhich the robotmovedaround

on the maze without programmed consequences for the rat, and

a No-Robot Control (NR-control) phase, during which the robot

was removed from the maze while the rat remained in the obser-

vation cage. In both the Front Task andMid Task, behavioral per-

formance was above chance level (Figure S1).

Examining the Occurrence of ‘‘Common Place Fields’’ in
Hippocampus
First, we examined whether a given hippocampal place cell,

defined as coding a specific location visited by the animal, also

codes the location of the robot when it enters the cell’s place field

while beingobservedby the rat in the cage (Figure 2A). Analysis of

608CA1 neurons from three rats indicated that 68.8%of the cells

(418 of 608) exhibited place fields as gauged from the rat’s own

spatial behavior during the Rat-on-Maze 1 and Rat-on-Maze 2

epochs. These classic place fields were compared with spatial

maps of CA1 cell firing rate computed as a function of robot

position. When considering data from the full Task Phase (FT

and MT combined; see Figure 1A) we found 128 (21.1%) cells

showing firing patterns with some selectivity for the robot’s posi-

tion on the maze (‘‘firing fields;’’ see STAR Methods). Of these

neurons, 82 cells (64.1%) also showed place fields during the

Rat-on-Maze epochs. Of these 82 units, a subset of 43 cells

(52.4%) showed peak firing rates across globally overlapping

maze segments for self and other positions (Figure 2C).

Although this spatial overlap between self- and other-related

firing patterns may suggest the occurrence of ‘‘common place

cells,’’ as previously reported by Danjo et al. (2018), the patterns

we observed are different. First, robot firing fields encompassed

amuch larger fraction of space than found for the rat’s own place

fields during the Rat-on-Maze periods (Figure 2D;median and in-

terquartile range for robot firing fields during Task Phase, 34.2%

[18.4%–55.6%]; rat fields during Rat-on-Maze 1, 9.7% [5.4%–

14.8%]; Rat-on-Maze 2, 8.7% [5.5%–15.8%]; throughout the

text we report our findings as median and interquartile ranges

unless stated otherwise; Friedman c2 = 67.5, p = 2.2 3 10�15

with Tukey-Kramer’s post hoc test: p = 1.2 3 10�9 and p =

9.6 3 10�10; Task Phase compared with Rat-on-Maze 1 and

Rat-on-Maze 2, respectively).

Second, after removing non-specific firing fields (i.e., those

covering >50% of visited space), only 8 of 43 units remained as

potential ‘‘common place cells’’ (see Figure 2C for a neuron

showing an atypical high overlap between rat and robot place

fields [24.5%]). Overlap between rat and robot fields appeared

to be coincidental, because the robot-based firing-rate maps

showed a diffuse, spatially distributed pattern of activity (Figures

2C and 2E). A permutation test (see STAR Methods) confirmed

that the overlap of 24.5% in the example in Figure 2C did not differ

from chance, and the same held for all other neurons considered

for the test. The maximum firing rates of classic place fields were

higher than the equivalent fields for the robot (Figure 2E; Rat-on-

Maze 1, 9.1 Hz [4.7–15.3 Hz]; Rat-on-Maze 2, 10.4 Hz [5.6–

15.2 Hz]; for robot, Task Phase, 2.6 Hz [1.4–4.2 Hz]; Friedman

c2 = 77.4, p = 1.6 3 10�17 with Tukey-Kramer’s post hoc test:

p = 1 3 10�9 and p = 9.6 3 10�10 compared with Rat-on-Maze

1 and Rat-on-Maze 2, respectively). Because of these firing-rate

differences, none of the neurons showed overlapping firing fields
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Figure 1. Behavioral Task
(A) For each behavioral phase, the trajectories of the rat and robot (if applicable) are shown in gray (example session). A recording session was divided into several

epochs. During the first and last epochs, the rat walked on the maze collecting food pellets (Rat-on-Maze 1 and 2). During the Observation Period, the rat was

positioned in a Plexiglas cage attached to themaze and performed two discrimination tasks based onmovements of the robot (Front Task [FT] andMid Task [MT];

see Figure S1 for task performance). The order of FT and MT was randomized across recording sessions. This Task Phase was followed by two control periods.

During the Free Roaming control, the robot drove around on the maze, while during the No-Robot control, the robot was removed and the rat was exposed to an

empty maze. Neither of these control phases resulted in reward delivery.

(B and C) Outline of a single trial in either the Front (B, ocher) or the Mid (C, cyan) task. After an intertrial interval, the robot moved into one of the side arms. Upon

crossing an infrared light beam (dashed red lines), the lights above the reward wells turned on, and the rat made a choice by poking in one of the reward wells. At

the end of the outbound trajectory, the robot was stationary for three seconds before moving back to the central position (inbound trajectory; dashed arrows).

(D) Photographs of the behavioral setup: overall configurationwithmaze and cage (top) and view of the cagewith rewardwells, as seen from the animal’s potion in

the cage facing the maze (bottom).
when applying the metric used by Danjo et al. (2018) (their Fig-

ure 3) for finding common place fields for self and other. Even

when we applied less stringent firing-rate requirements, no

mirror-like firing fields were found. In conclusion, the experi-

mental design deployed here does not yield evidence for ‘‘com-

mon place fields’’ as described by Danjo et al. (2018).

Effects of Robot Presence on Hippocampal Coding
Despite this initial null result, we did observe that the firing rate of

a subset of CA1 neurons varied in relation to the robot’s wander-
ing across the maze. To examine this in more detail, we first

focused on the impact of the mere presence of the robot on hip-

pocampal firing patterns by comparing the FR-control and NR-

control stages. The corresponding firing-ratemaps only included

cage positions the rat visited in each of two contrasting condi-

tions (see STARMethods). Figures 3A and 3B show two example

cells significantly discriminating between the presence and

absence of the robot. Of 608 cells, 218 units (35.9%) showed

place fields in at least one of the two conditions. Of these 218

units, 47 (21.6%) differentiated between the robot’s presence
Cell Reports 29, 3859–3871, December 17, 2019 3861
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Figure 2. CA1 Firing Fields as a Function of

Rat versus Robot Position

(A) Firing pattern of a CA1 unit (red: spikes) plotted

as function of rat position for Rat-on-Maze 1 (top

left), Rat-on-Maze 2 (top right), and Task Phase

(bottom left; gray: rat positions). Bottom right:

robot firing field was computed as a function of

robot position by linking spike time stamps of the

same cell to the corresponding positions of the

robot.

(B) Same as (A), but now firing patterns are plotted

as firing-rate maps (same color scale for all plots).

(C) CA1 unit that, relative to the total population of

recorded CA1 cells, showed a high overlap

(24.5%) between its classic place field (during Rat-

on-Maze 1 and 2) and robot firing field during Task

Phase. For Rat-on-Maze 1 and 2, ‘‘field’’ refers to a

conventional place field. For ‘‘Task Phase Robot,’’

the firing field was computed as a function of robot

position. The two lowermost plots are calibrated to

a color scale comprising the maximum firing rate

for Task Phase Robot (lower right color scale),

showing that there is no marked overlap with the

classic place field even when rate remapping is

considered.

(D) Boxplots of field size as a percentage of space

visited for the 39 units that showed firing fields in

three conditions (Rat-on-Maze 1, Rat-on-Maze 2,

and Task Phase Robot). Throughout the figures,

whiskers indicate the lowest and highest data

points within 2 interquartile ranges from the low

and high quartiles, respectively.

(E) Maximum firing rate reached within the cell’s

firing field was markedly lower when computed as

a function of robot position relative to classic place

fields.

***Significance at a = 0.001, determined using

Friedman’s test with Tukey-Kramer’s as post hoc

test.
and absence. This fraction was significantly above chance level

(test of proportion, Z = 6.1; p = 1.3 3 10�9).

To assess if the presence of the robot could be decoded from

CA1 population firing patterns, we trained a random forest

decoder (RFD) to distinguish whether the robot was present

on the maze (FR-control) or absent (NR-control). The RFD was

trained on three types of input: neural data (in the form of binned

spike counts), rat position, and the combination of neural data

and rat position (see STAR Methods). Decoding on the basis

of rat position was included as a control because the presence

of the robot may cause the rat’s position in the observation cage

to change and thereby influence CA1 firing patterns. Although

neural data distinguished robot presence versus absence above

chance (0.5), the decoding accuracy when using rat position (or

the combination of position and neural data) increased relative

to neural data alone (Figure 3E; accuracy for neural data, 0.69

[0.63–0.74]; rat position, 0.87 [0.85–0.90]; both, 0.88 [0.86–

0.89]; Wilcoxon’s signed-rank test, Bonferroni-adjusted; p =

3.7 3 10�5, p = 3.7 3 10�5, and p = 1.0 for neural data versus

rat position, neural data versus both, and rat position versus

both, respectively; for control analyses using different de-

coders, see Figures S2A and S2B). These results underscore
3862 Cell Reports 29, 3859–3871, December 17, 2019
the importance of controlling for variable animal position as a

confound in trying to identify influences of the position of

another agent on CA1 firing patterns. During the NR-control,

nothing eventful was occurring on the maze to capture the

rat’s attention, and thus the rat often entered a more quiescent

state in this phase. In contrast, during FR-control, the robot’s

presence may constitute a significant motivational and atten-

tional factor influencing the rat because it is globally associated

with reward (even though no reward could be acutely obtained

in this phase). We further verified whether the ability to distin-

guish behavioral epochs using the animal’s position was due

to minor repositioning around the reward spouts or to large lo-

comotor movements in the cage. All decoding analyses were

repeated selecting only time points at which the animal was

positioned close to the reward wells; we found that the results

were largely unaffected, indicating that large locomotor move-

ments in the cage are not crucial to the decoding performance

we observe (Figure S2C).

Effects of Engagement in a Task
Next, we asked whether hippocampal coding is sensitive to

the subject’s engagement in actively tracking the robot’s
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(A) Firing-rate maps of a CA1 unit that discriminated

between presence (Free Roaming) versus absence

of the robot (No-Robot control), plotted as a func-

tion of rat position. Neither phase entailed task re-

quirements. The plots are restricted to the cage

compartment of the maze because the rat remained

confined to this cage during both phases.

(B) Same as (A), for a CA1 cell showing a more

gradual firing-rate modulation by robot presence.

(C and D) Example neurons discriminating between

the presence and absence of a task requirement for

the rat (Task Phase versus Free Roaming phase). In

(C), a place field appears during the Free Roaming

control, whereas in (D), firing rate is modulated by

task engagement.

(E and F) Decoding robot presence (E) and task

engagement (F) using a random forest decoder

(RFD). For decoding using logistic regression and a

feedforward neural network, see Figures S2A and

S2B. The RFD was trained to classify time windows

as belonging to one out of two phases of the

recording session (for robot presence, Free Roam-

ing versus No Robot; for task engagement, Task

Phase versus Free Roaming), on the basis of spiking

activity, rat position, and the combination of the two.

In this way we determined whether population firing

patterns contain information about robot presence

and task engagement beyond the information that

can be extracted from the movement of the animal.

Dots indicate the decoding accuracy of individual

recording sessions, averaged over five repetitions

of 10-fold cross-validation.

Asterisks indicate significance at *a = 0.05, **a =

0.01, and ***a = 0.001.
movements, thus contrasting the FR-control stage with the Task

Phase. A significant proportion of units with place fields (31.9%

[74 of 232 units]; Z = 8.79, p = 0.000, test of proportion) discrim-

inated between task engagement and mere exposure to the

robot, either via global remapping (Figure 3C) or rate remapping

(Leutgeb et al., 2005; Figure 3D).

Population analysis (Figure 3F) showed that although neural

data were sufficiently specific to distinguish between Task

Phase and FR-control, decoding on the basis of rat position re-

sulted in more accurate decoding of these two conditions.

Combining neural data and rat position data modestly

improved decoding (accuracy for neural data, 0.73 [0.64–

0.78]; rat position, 0.80 [0.77–0.82]; both, 0.82 [0.79–0.85]; Wil-

coxon’s signed-rank test, Bonferroni-adjusted; p = 4.2 3 10�4,

p = 3.7 3 10�5, and p = 4.7 3 10�4 for neural versus position,

neural versus both, and position versus both, respectively;

but see Figure S2B). Although it may seem surprising that

neural data achieved accuracy of only 0.73 given the pres-

ence of 74 significantly discriminating units, these units were

distributed across all recording sessions, and because decod-

ing was performed separately for each session (and used

all neurons), only a few of the discriminating units were

available in each training of the decoder. It should be noted

that task engagement but not FR-control was paired with

reward consumption, significantly affecting the rat’s motiva-

tional state.
Effects of Specific Robot Movement Patterns
We next focused on the contrast between the FT andMT stages,

during which the animal was constantly engaged in discrimina-

tive behavior, applying the same set of task rules. Here, the dif-

ference between conditions was due to the dichotomy in spatial

behavior of the robot. We found a significant fraction of cells (57

of 223 units with place fields [25.6%]; Z = 7, p = 1.9 3 10�12)

which discriminated between the robot’s Front Task versus

Mid Task behavior (Figures 4A and 4B). Apparent firing-rate

sensitivity to the robot’s behavior may arise from accidental

spike bursts, and thus we examined whether response patterns

were reproducible across trials. To assess this, we analyzed

firing rate as a function of linearized robot position and across tri-

als (Figure 4C), and we observed consistent firing-rate differ-

ences between FT and MT. In the example cells (Figures 4A–

4C), no marked differences between outbound versus inbound

trajectories of the robot were found (but see Figure S3).

These findings were corroborated by population analysis using

the RFD (Figure 4D). When classifying the two most behaviorally

similar task periods (FT versus MT) of our paradigm, RFD perfor-

mance based on rat position was better than for neural data.

However, training the RFD with rat position and neural data com-

bined significantly increased the accuracy above the level

reached by position or neural data alone (accuracy for neural

data, 0.66 [0.62–0.72]; rat position, 0.71 [0.69–0.74]; both, 0.75

[0.73–0.79]; Wilcoxon’s signed-rank test, Bonferroni-adjusted;
Cell Reports 29, 3859–3871, December 17, 2019 3863
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outbound movements of the robot.

(B) Classic place field maps of same units, zoomed in on cage compartment. Place cell activity is rate-modulated as a function of task type.

(C) Histograms of binned firing rates as a function of linearized robot position. Same neurons as in (A) and (B) (FT andMT in ocher and teal, respectively). Red dashed

line represents maze location that, when trespassed by the robot, marks future availability of reward if the rat makes a correct choice. Rasters: firing rate (gray) per

spatial bin and per trial, ordered from bottom to top. Bins visited by the robot for less than 0.2 s (shown in color corresponding to task type) were excluded. Variation

between trials is partially explained by ratmoving in and out of the cell’s place field. Top: firing-rate averages (solid, outbound; dashed, inbound trajectories) andSEs

(shading). Horizontal lines below averages, bins significantly discriminating between two conditions (a = 0.05, false discovery rate [FDR] corrected). Ocher,

significant outbound-inbound difference for Front Task (Wilcoxon’s signed rank test). Black and gray, difference between FT and MT during outbound (black) or

inbound trajectories (gray; Mann-Whitney U test). Vertical side bars, significant firing-rate difference across whole trajectories (a = 0.05).

(legend continued on next page)
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p = 9.6 3 10�3, p = 3.7 3 10�5, and p = 6.0 3 10�5 for neural

versus position, neural versus both, and position versus both,

respectively). This suggests that the different robot trajectories

in FT and MT induce modulations in both place field activity

and rat position, which can be jointly exploited by the RFD to

improve its prediction accuracy in classifying task type. In other

words, CA1 firing patterns code information on specific robot

behavior that cannot be extracted from rat position alone and

cannot be attributed to incidental firing, as the improvement is

consistent across sessions and decoding is performed with

cross-validation.

We next tested to what extent robot position could be pre-

dicted from the neural data, rat position, or the combination of

the two. Although neural data alonewere generally unable to pre-

dict robot location (Figure 4E), the combination of neural data

and rat position resulted in a modest but consistent improve-

ment of the decoding of robot position relative to rat position

alone. This indicates that robot location induces additional mod-

ulations in hippocampal coding, not accounted for by changes

in rat position (goodness of fit R2 for neural data = �0.08,

range �0.10 to �0.05; rat position, 0.13 [0.09–0.18]; both, 0.21

[0.16–0.26]; Wilcoxon’s signed-rank test, Bonferroni-adjusted;

p = 2.3 3 10�9, p = 2.3 3 10�9, and p = 2.7 3 10�9 for neural

versus position, neural versus both, and position versus both,

respectively). By way of comparison, we verified that our data

also allowed us to predict rat location, both on the maze and in

the cage compartment (Figure 4F). A comparison of decoding

quality showed that the position of the rat on the maze can be

predicted with higher precision (explained variance R2 = 0.34

[0.24–0.39]) than robot position (R2 = 0.21 [0.16–0.26] using

both position and neural data). Note that we used a measure

of the explained variance in agent positioning, rather than the

Euclidean error in centimeters, because thismeasure better cap-

tures the statistics of fine positional variability of the rat versus

the robot (for decoding error expressed as Euclidean distance

between true and predicted location, see Figure S4).

Mutual Information Analysis of Coding of Robot
Movement Patterns
Next we examined whether CA1 information about robot

behavior is coded by subsets of neurons or spread out across

the entire population, focusing on FT and MT and correcting

for animal position. First, we determined how well the firing of

CA1 neurons distinguished between FT and MT by constructing

receiver operating characteristic (ROC) curves (which measure

the performance of a binary classifier as its classification

threshold is varied) and their corresponding area under the curve

(AUC) values at individual spatial bins, thus excluding the possi-

bility that the difference in firing between FT and MT is explained

solely by rat position (Figure 5A; see Figure S5 for parameter

sensitivity of the ROC analysis). Of the 575 cells that satisfied

the requirements to be included in the analysis, 312 (54.3%)
(D) Decoding of task type using RFD, following plotting conventions of Figure 3.

Figures S2A and S2B.

(E) Decoding of robot position averaged across FT and MT. R2 represents the ex

(F) Decoding of rat position using neural data during the Rat-on-Maze 1 and 2 pe

average Euclidean error, see Figure S4.
were found to significantly discriminate between the two task

types (Figure 5B).

We computed the mutual information (MI) between each neu-

ron’s firing activity and task type, and the conditional mutual in-

formation (cMI) between each neuron’s firing activity and task

type conditional on animal position (Figure 5C; see Figure S6

for parameter sensitivity of this analysis). The latter measure

quantifies the average information contained in the firing rate

about task type on top of the information that can be extracted

from rat position. If the firing activity were only a (noisy) represen-

tation of the animal’s position, then all the information that it

conveys about task typewould already be present in rat position,

resulting in a cMI of zero. In contrast, a cMI significantly different

from zero indicates that the firing rate contains additional infor-

mation about task type.

Of 605 neurons with non-zero firing rates during the Task

Phase, 76 neurons (12.6%; purple and green dots in Figure 5C)

carried significant cMI about task type. AUC and cMI values

similarly captured information about task type corrected for

animal position (Figure 5D), and we found a strong correlation

between the two measures, significantly stronger than the cor-

relation between AUC and MI (r = 0.64 for AUC-cMI, r = 0.50

for AUC-MI, p = 1.65 3 10�6, Pearson and Filon’s z test). Next,

we followed up on the population coding of robot position by

computing MI and cMI contained in each neuron’s firing activ-

ity about robot position during the full Task Phase (Figure 5E,

where cMI is again conditional on rat position). We found that

157 neurons (26%) carried significant information about robot

position on top of the information contained in rat position.

Coding of Robot Behavior by Different Cell Types
To investigate whether different CA1 cell types convey distinct

information about robot behavior, we identified 20 fast-spiking

cells (FS; putative interneurons) on the basis of their spike wave-

form (Figures 6A and 6B; Barthó et al., 2004; Henze et al., 2000;

Vinck et al., 2016) together with 474 broad-spiking (BS; putative

excitatory) and 114 unclassified (UC) units. FS neurons coded

more information about task type than BS and UC units, as

determined both by AUC value and cMI (Figures 6D and 6E).

We found that 95% of interneurons had significant AUC values,

compared with 55.1% and 42.7% of BS and UC cells, respec-

tively. Similarly, 55% of interneurons were found to carry signif-

icant cMI about task type, whereas this was the case for only

11.9% and 7.9% of BS and UC neurons, respectively (Figure 6G;

see also Figure S6). The results were similar when considering in-

formation about robot position, where interneurons carried more

information than BS and UC units and had a larger proportion of

neurons with significant cMI (Figures 6F and 6H; see also

Figure S6).

The marked difference between FS and BS neurons may be a

result of the FS neurons’ having higher overall firing rates, which

can influence the information estimates. Thus, we repeated the
For decoding using logistic regression and a feedforward neural network, see

plained variance in robot position.

riods and Task Phase. For decoding of rat and robot position expressed as the
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Figure 5. CA1 Neurons Distinguish between Task Types and Robot Position, Even When Correcting for Animal Position

(A) Distribution of binned spike counts for FT versus MT and ROC curves with 95% confidence intervals for the two example cells of Figure 4, computed for the

individual spatial bin with maximum AUC for each unit. These cells differentiated between task types even when the animal was at the same location.

(B) Distribution of AUC values for all units with non-significant AUC (top) and significant AUC (bottom). For parameter sensitivity of the ROC analysis, see Fig-

ure S5.

(C) Comparison of mutual information (MI) and conditional mutual information (cMI) between neural activity and the binary variable indicating FT versus MT, for

each unit (debiased values). Blue dots, units with significant MI (but non-significant cMI); purple dots, units with significant cMI (but non-significant MI); green

dots, significant for both MI and cMI; gray dots, significant for neither MI nor cMI. The donut plot indicates the percentage of neurons that belong to each group

(with respect to the total number of neurons considered for this analysis, N = 605). Debiased values can be slightly negative and thus not appear in this logarithmic

plot. For the dependence of MI and cMI on the temporal binning, see Figure S6.

(D) Comparison of cMI about task phase and AUC values for neurons with significant AUC shows a strong correlation (Pearson’s correlation, r = 0.64,

p = 4.7 3 10�37), as both methods reflect information about task type corrected for rat position.

(E) The comparison of MI and cMI between neural activity and robot position identifies a population of neurons (purple and green) whose firing rate is correlated to

robot position, even when correcting for rat position.
analysis after lowering the firing rate of FS cells to the average BS

rate via random down-sampling (Figure S7): although cMI about

robot position is no longer higher in interneurons relative to BS or

UC cells, the information about task type, in terms of both AUC

and cMI, remained higher for FS cells. This indicates that a

bias due to higher firing rates does not fully account for the effect

that we observe. Given the difference in information content be-

tween BS and FS neurons, we next asked whether the decoding

of robot presence, task engagement, and task differentiation

(Figures 3E, 3F, and 4D) was driven mostly by the latter group.

We repeated the decoding analyses after excluding all putative

interneurons and UC units (Figure S2D) and found that, although

decoding accuracy was slightly lower (e.g., accuracy in decod-

ing FT versus MT using neural data alone, 0.66 [0.62–0.72] with

all cells versus 0.63 [0.60–0.71] for BS cells only, Wilcoxon’s
3866 Cell Reports 29, 3859–3871, December 17, 2019
signed-rank test, p = 2.5 3 10�5), the results were largely unaf-

fected, confirming that robot-induced modulations are distrib-

uted across the population, and are not a prerogative of

interneurons.

DISCUSSION

Our main results can be summarized as follows. First, we showed

that mirror-like common place fields are not found in rat hippo-

campuswhen the animal tracks another agent tomake behavioral

decisions but does not imitate this agent’s behavior. Thus,

previous reports (Danjo et al., 2018;Omer et al., 2018) on this phe-

nomenon could not be generalized to the current behavioral para-

digm. Second, we found instead that CA1 hippocampal neurons

were influenced by the robot through remapping of place fields
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Figure 6. Coding of Task Phase and Robot Position by Different Classes of CA1 Neurons

(A) Normalized spike waveform amplitudes, grouped into fast-spiking (FS; red), unclassified (UC; black), and broad-spiking (BS; blue) neurons on the basis of two

characteristics: repolarization level and waveform duration (see STAR Methods).

(B) Distribution of repolarization level against waveform duration.

(C) FS units showed higher firing rates than BS and UC neurons (Mann-Whitney U test, p = 1.2 3 10�11 and p = 5.4 3 10�10 compared with BS and UC

respectively, p = 8.2 3 10�3 for BS versus UC). Here, as well as in (D)–(F), bars indicate 95% confidence interval (CI).

(D) Average AUC values show that FS units discriminate more strongly between FT and MT than BS and UC neurons (Mann-Whitney U test, p = 5.53 10�34 and

p = 3.0 3 10�25 compared with BS and UC respectively, Bonferroni corrected). For parameter sensitivity of the ROC analysis, see Figure S5. For a procedure

examining the effect of the higher basal firing rates of FS neurons, see Figure S7.

(legend continued on next page)
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coding for the rat’s own position. Both the robot’s presence and

the animal’s engagement in the taskwere associatedwith consis-

tent changes in CA1 place-cell firing, but information on these

conditions could be deduced with greater accuracy from

changes in rat position alone (Figure 3). For these two conditions,

changes in rat behavior and CA1 firing may well cohere with

changes in the animal’s motivational and attentional state (Ei-

chenbaum et al., 1987; Fenton et al., 2010; Hölscher et al.,

2003; Lansink et al., 2012, 2016). Althoughmanipulations of robot

presence and task engagement are informative, the firing-rate

modulations observed under these conditions should thus not

be taken as firm evidence for an active role of hippocampal neu-

rons in coding other-agent behavior.

In contrast, the identification of neuronal subsets discrimi-

nating FT and MT is particularly significant because these pat-

terns were displayed while the animal operated under the

same task rules and reward contingencies. Firing-rate modula-

tions were not dependent on incidental bursting activity and

were largely consistent across trials (Figure 4C). Although the

rat’s own position provided significant information on the robot’s

FT or MT behavior, the decoding of task type was significantly

improved when neural and rat position were combined (Fig-

ure 4D). Using ROC analysis and information theoretic mea-

sures, we found that considerable fractions of cells conveyed

significant information about task type and robot position, even

after information already contained in rat position was removed

(Figure 5).

Interestingly, FS neurons showed higher AUC and cMI values

than other cell types, even when correcting for their high basal

firing rates (Figure S7), suggesting a strong involvement of inter-

neurons in socially induced firing-rate modulations (Figure 6).

Nonetheless, it should be stressed that information about the

robot was distributed across the wider population of cell types

(Figure 6; Figure S2D). It remains unknown how social informa-

tion may reach the hippocampus, specifically its FS cells

(comprising a large majority of parvalbumin-positive [PV] inter-

neurons; Pawelzik et al., 2002; Sik et al., 1995) in area CA1,

but it is of note that chronic social isolation reduces the number

and parvalbumin expression level of PV interneurons in the dor-

sal hippocampus, including area CA1 (Filipovi�c et al., 2018; Ueno

et al., 2017). Moreover, the functioning of hippocampal

GABAergic cells is altered in disease conditions impairing social

abilities, such as schizophrenia and major depression (Benes

et al., 2008; Thompson Ray et al., 2011; cf. Piskorowski et al.,

2016). The neuropeptide oxytocin, which has been implicated

in regulating social discrimination andmemory through its hippo-

campal targets (Raam et al., 2017), strongly depolarizes fast-

spiking interneurons in both areas CA1 and CA2 (Owen et al.,

2013; Tirko et al., 2018). Ventral hippocampal pyramidal cells

and PV interneurons have been implicated specifically in retrieval
(E) AverageMI (solid colors) and cMI (light colors) show that FS cells carry more inf

rank test and theMann-Whitney U test for comparisons within and across cell type

correction). For the dependence of MI and cMI on the temporal binning, see Figu

(F) Average MI (solid colors) and cMI (light colors) about robot position is also hig

(G) Comparison of MI and cMI per cell type, with marginal probability densities.

color), irrespective of MI.

(H) Comparison of MI and cMI about robot position, showing that FS cells code
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of social memory (Deng et al., 2019; Okuyama et al., 2016).

Whether the discriminatory firing behavior of FS cells in response

to the other agent in our study may reflect social encoding,

retrieval, or non-mnemonic signaling remains to be investigated

in future studies.

A main point of discussion concerns the difference between

the present results and those of Danjo et al. (2018), which share

the use of rats as subjects. Danjo et al. (2018) found mirror-like

place representations in 5% of their recorded neurons, whereas

we found no convincing case. In contrast to our design, the

observer and demonstrator rats in Danjo et al. (2018) shared

the same task environment and ran the same maze trajectories.

Possibly, ‘‘common place cells’’ emerge selectively when rats

plan and execute locomotion actions in the same space as

where the demonstrator is located. During the planning of

a future trajectory, hippocampal assemblies may generate pro-

spective sequences of spike trains (Johnson and Redish, 2007;

Pfeiffer and Foster, 2013). A ‘‘common place field’’ could

thereby be generated if the conventional place field of a given

cell is also activated when the self observes and internally sim-

ulates a path that includes the place field under scrutiny. This

potential confound deserves further testing in the paradigm

used by Danjo et al. (2018), for instance by having the rat plan

trajectories in the temporary absence of a demonstrator.

Although our results show that an observer rat can actively track

a demonstrator agent despite a physical barrier separating

them, it remains possible that ‘‘common place fields’’ were

not found in our study because a robot was used instead of a

conspecific. Omer et al. (2018) tested for conspecific versus

other-object effects in bats and found largely segregated sub-

sets of CA1 neurons responding to these two classes. If such

differential coding also applies to rats, one would not expect

mirror-like coding to be completely absent in our dataset.

Furthermore, Omer et al. (2018) argued that even if an animal

observing a demonstrator agent would generate prospective ac-

tivity concerning its own position within planned future paths,

this activity would still represent the spatial position of the

demonstrator. Although we follow this argument, we note that

this would equally apply to the coding of non-living objects or

of spatial target locations to which the subject plans to travel,

and thus it remains important to investigate how conspecifics

are coded differently than other objects or target locations and

if and how their social relevance specifically matters to neural

coding. In conclusion, it remains to be examined whether

mirror-like place cell phenomena should be reinterpreted as a

consequence of cued path planning (while remapping of place

fields reflects the more general effect of other-agent influences)

or carry a specifically social signature.

Another potential confound concerning mirror-like hippocam-

pal firing is that neural activity correlating to another agent is not
ormation about task type than BS and UC neurons.We usedWilcoxon’s signed

s, respectively (horizontal lines indicate significance at a = 0.01 after Bonferroni

re S6.

her for FS neurons.

Donut plot, fraction of neurons carrying significant cMI about task type (solid

information about robot position in the upper ranges of MI and cMI values.



representing a direct neural coding of the other’s position but re-

flects an indirect effect due to the observer’s behavioral reac-

tions to the agent. Indeed, significant accuracy in decoding

behaviorally contrasting conditions was achieved purely on the

basis of changes in the observer’s own positions (Figures 3

and 4). Even though the task rules were the same for FT versus

MT performance, subtle changes in rat behavior correlated to

task type (Figure 4D). These changes in self-behavior constitute

a serious confound that has, to our knowledge, not or insuffi-

ciently been taken into account in previous studies. Nonetheless

the neural data contributed significantly to FT-MT decoding and

carried information about task type and robot position even

when taking rat position into account (Figure 5). That an added

value of neural data was not found when decoding robot pres-

ence versus absence (Figure 3E) may be explained by a greater

variability of rat behavior during, and dissimilarity between, these

two conditions. Although Danjo et al. (2018) did not examine this

potential confound, Omer et al. (2018) did correct for large head

movements of the observer bat.

These and other arguments are equally relevant when

comparing less recent studies with the present results. In line

with our findings, Mou and Ji (2016) did not report ‘‘common

place fields’’ but also found no spatial tuning to a demonstrator.

This difference may relate to the fact that the authors did not use

a task to incentivize the observer animal to pay attention to the

other agent, which may be an important factor for identifying

spatial information pertaining to this agent as reported here.

The lack of an incentivizing task in a study by von Heimendahl

et al. (2012) might likewise be a factor explaining why they found

only minor modulations of CA1 firing rate by conspecifics. Two

other studies (Ho et al., 2008; Zynyuk et al., 2012) did reveal

changes in CA1 place field activity by conspecifics or another

moving object, but in both cases changes in hippocampal activ-

ity may have been due to changes in the subject’s own posi-

tioning as it was allowed to be in proximity to the external agents.

The present findings shed new light on hippocampal coding of

external agents in an animal’s environment. Hippocampal

mirror-like spatial coding may occur in particular social coding

situations but is not generally found in situations in which another

significant agent is active. We predict that apparent mirror-like

firing will be restricted to observe-and-mimic situations because

of path planning computations, rather than specifically reflecting

social coding. The firing-rate modulations we observed rather

resemble hippocampal remapping phenomena as found in other

environmental manipulations (Lansink et al., 2012; Leutgeb et al.,

2005; McNaughton et al., 2006) but are nonetheless informative

on task engagement, task type, and the other agent’s position

(Figures 3, 4, and 5). Howmay such information be linked to pro-

cessing in the mirror system? In monkeys, this system not only

includes the ventral premotor cortex (area F5 in macaques) but

also parietal motor areas PFG and AIP (Gazzola et al., 2007; Riz-

zolatti and Sinigaglia, 2016). The hippocampal system is indi-

rectly connected to this system via, for instance, the superior

temporal sulcus (STS) and inferior temporal lobe (Rizzolatti and

Sinigaglia, 2016). When considering that animal behavior, in

either a social or an interspecies context, often entails both

self-motion and tracking of other agents, the question arises as

to which neural mechanisms may underlie near simultaneous
representations of self and others. The present findings suggest

that primary coding of self-position by the CA1 network is multi-

plexed with rate-modulated coding of another agent’s position.

A question for future research is whether this combined coding

generalizes to other brain areas implied in non-self-coding and

may form the basis of joint distributed coding across premo-

tor-parietal-temporal lobe networks.
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Male Lister Hooded rats, ordered at 7 weeks of age Harlan N/A

Software and Algorithms

MATLAB Custom scripts Authors N/A

MATLAB Fieldtrip open source www.fieldtriptoolbox.org https://doi.org/10.1155/2011/156869

Tcl custom scripts https://www.tcl.tk/ N/A

Python custom script Authors N/A

Java Information Dynamics Toolkit (JIDT) https://github.com/jlizier/jidt https://doi.org/10.3389/frobt.2014.00011

Other

Custom experimental setup Technology Center, University of

Amsterdam

N/A

Custom 14 tetrode hyperdrives Technology Center, University of

Amsterdam

N/A

Nichrome tetrode wire 0.0005 inch diameter

Stablohm 800 A (100-189)

California fine wire CFW2013150

remotely controlled minirobot (e-puck1) G-tec, Austria N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Cyriel Pennartz (c.m.a.pennartz@uva.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three male Lister Hooded rats (Harlan, Netherlands) were recorded in this experiment. All experiments were conducted according to

the National Guidelines on Animal Experiments and with approval of the Animal Experimental Committee of the University of Amster-

dam. During training the rats were housed with four in a cage. After implantation with a microdrive the animals were housed solitarily

in high-walled, transparent cages (40 3 40 3 40 cm). Rats were maintained on a reversed 12:12 hour day/night cycle, lights on at

8 pm. To increase motivation the rats were maintained at 85% of their ad libitum weight, receiving 15-18 g food (standard lab

chow) per day, delivered between 4 and 6 pm. Access to water was ad libitum.

METHOD DETAILS

Behavioral setup and minirobot
The animals were trained in a dimly lit environment on a custom-made, remotely controlled behavioral setup, consisting of a semi-

circular maze compartment and a rectangular cage compartment (Figure 1). The maze (length: 62 cm; width: 103 cm) consisted of 5

radial arms connected at the ends. Each arm was equipped with infrared photobeam detectors to monitor the presence of either the

rat or the robot. The cage (433 283 50 cm) overlooked the maze and was situated at the point where all arms converged. The cage

andmaze compartment were separated by a Plexiglas door, which could slide downward to allow the rat to move from one compart-

ment to the other without interference by the experimenters. The door and the two side walls of the cage weremade from transparent

Plexiglas to allow the rat a full view on the maze compartment. The cage compartment included two reward wells (size 10 3 7 cm)

right next to each other and placed along a left-right axis inside the cage. Reward (80-90 mL of a 15% sucrose solution in water) was

delivered upon a correct nose poke. The reward wells were positioned such that the rat had visual access to the maze while sitting

behind the reward wells and such that an implanted rat could make reward responses without hitting the door with its microdrive. The

wells were equipped with LEDs and infrared photobeam detectors to monitor both nose pokes and licks. Photobeams were posi-

tioned in the middle of each individual arm of the maze to track the location of either the rat or the robot. During the Rat-on-Maze

phases (Figure 1A), food pellets were distributed across the maze to stimulate exploration behavior. All behavioral events were

time stamped by the recording software (tcl) and saved within a Neuralynx event file. For the Observation Period (Figure 1A), a
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remotely controlled minirobot was used (e-puck; G-tec, Austria; height: 7 cm; cylindrical diameter: 7.7 cm; Mondada et al., 2009).

Movements of the e-puck were remotely controlled by manual operation of keyboard presses, converted to e-puck commands

via a custom-made MATLAB script. This e-puck was operated by a trained driver. The salience of the e-puck was enhanced by illu-

minating four LED lights on the minirobot’s body. The step motor driving wheel movement produced an audible sound.

Behavioral training and behavioral procedure during recordings
During the first two weeks after arrival, rats were handled daily to get them accustomed to being handled by the experimenters.

Following pre-training, rats were trained to perform the Front and Mid Task. During the Front Task, the robot moved from the middle

position (inter-trial interval, ITI, 3 s) into either the left or right side arm closest to the cage, a movement that we label as ‘‘outbound

trajectory’’ (Figure 1B). Upon reaching the point halfway of the side arms, the robot broke a photo-beam. One second after the beam

was broken, the lights above the wells were turned on. With these lights on, the rats could acquire a reward by making a nose poke in

the reward port (left or right) corresponding with the side of the maze the robot had traveled (left or right). For instance, upon a right-

wardmovement of the robot (from the perspective of the rat facing themaze compartment), the rat obtained a reward by poking in the

right reward well. Nose pokes into the other well were not rewarded. After either a correct or incorrect response the reward lights were

turned off. Upon reaching the end of the side arm, the robot remained in place for 3 s before driving back to the middle of the maze.

During this inbound trajectory, no rewards could be obtained (Figure 1B). The side chosen for the robot to travel to was pseudoran-

domly selected by the computer program (the number of trials consecutively to the same side was three at maximum). In addition to

the Front Task, we also trained the animals on the Mid Task. This task was the same as the Front Task, except that the robot started

right in front of the cage andmoved into either themiddle left ormiddle right arm (Figure 1C). In both versions of the task the rat always

had to select the reward well corresponding to the (outbound) travel direction of the e-puck. Rats were trained daily on both the Front

and Mid Task. The order of performing the two task versions was randomized across sessions. During the last 5 training sessions

before implantation, rats were also accustomed to exploring the maze by allowing them 15 minutes of free exploration per day.

To facilitate full sampling of the maze, rats were rewarded with food pellets (BioServ, dustless precision pellets 14 mg, Flemington,

NJ) placed with random intervals at several locations throughout the maze.

During recording sessions, the behavioral procedure was as follows. A session commencedwith a period ofmaze exploration (Rat-

on-Maze 1; 15min.), after which the rat entered the observation cage. In the subsequent Observation period, the rat engaged either in

the Front orMid Task (Figure 1A). The order of these task versions was pseudo-randomly determined. After performing one of the two

tasks, the other version was performed (each task lasted 15 min.). During the Free Roaming control period (FR-control), the e-puck

would be roaming across themaze, however without requiring the rat to perform any particular action (no rewardswere applied; dura-

tion: 5 min.). This stage was followed by a period in which the e-puck was absent (No Robot Control, NR-control; no task and no

rewards were applied; duration: 5 min.). The session was concluded with a second period of maze exploration (Rat-on-Maze 2;

15 min). Note that the main text presents some of the behavioral conditions in a different order than the behavioral sequence as

applied during recording sessions.

Surgical procedure and tetrode recordings
Hippocampal area CA1 in the right hemisphere was targeted with a custom-made microdrive containing 14 individually movable tet-

rodes (Gray et al., 1995; coordinates:�4.1mmposterior and +2.5mm lateral relative to Bregma; Paxinos andWatson, 2006; tetrodes

made from nichromewires, California FineWire, lead diameter: 13 mm, gold-plated to 500-800 kU impedance at 1 kHz). We recorded

neural activity with a 64-channel Digital Neuralynx Cheetah setup (Neuralynx, Bozeman MT). Twelve tetrodes were used for record-

ings and two served as reference electrodes. The design of the microdrive was similar to previously used versions (Lansink et al.,

2007).

Prior to surgery rats received subcutaneous injections of Buprenorphin (Buprecare, 0.01 - 0.05 mg/kg), Meloxicam (Metacam,

2 mg/kg), and Baytril (5 mg/kg, Henry Schein Animal Health, Cuijk, the Netherlands). Rats were anesthetized using 3.0% (induction)

and 1.0% - 3.0% (maintenance) isoflurane in pure oxygen and mounted in a stereotaxic frame. Body temperature was maintained

between 35 and 36 ◦C using a heating pad. After the cranium was exposed, six holes were drilled to accommodate six surgical

screws. The craniotomy, allowing implantation of the tetrode bundle, was approximately 2.3 mm in diameter. After removing the

dura, the bundlewas lowered onto the exposed cortex. The craniotomywas sealedwith Kwik-Sil (World Precision Instruments, Fried-

burg, Germany) before the microdrive was fixed to six surgical screws in the skull (1.4 mm x 5 mm stainless steel, King Microscrews,

Borculo, the Netherlands) using dental cement (Simplex Rapid, Dental Union, Nieuwegein, the Netherlands). A skull screw located on

the caudal part of the parietal skull plate contralateral to the drive location served as ground. Next, the tetrodes were lowered 1 mm

into the neocortex. Over the next seven days, rats were allowed to recover, with ad libitum food and water available. The recording

tetrodes were gradually lowered to the CA1 pyramidal cell layer of the hippocampus over the course of 7-9 days after surgery.

Electrode depths were continuously registered throughout the vertical descent. Positioning of the tetrodes was guided by keeping

track of depths (estimated by the number of turns of the guide screws) and by online monitoring of LFPs and spike signals.

After the final recording session, current (12 mA for 10 s) was passed through one lead per tetrode to mark the end point of the

tetrode track with a small lesion. At least 24 h after making the lesions, the animals were deeply anesthetized with Nembutal (sodium

pentobarbital, 60 mg/ml, 1.0 mL i.p.; Ceva Sante Animale, Maassluis, the Netherlands) and transcardially perfused with a 0.9%NaCl

solution, followed by a 4% paraformaldehyde solution (pH 7.4 phosphate-buffered). Following immersion post-fixation, coronal
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sections of 40 mmwere cut using a vibratome and stained with Cresyl Violet to reconstruct tetrode tracks and localize the endpoints.

For all rats reported in this study, placement of tetrode endpoints in area CA1 was histologically verified.

Data acquisition
Signals recorded from tetrodes were passed through a unity-gain preamplifier headstage, a 64-channel commutator and band-pass

filtered between 600-6000 Hz for spike recordings. Onems epochs of activity from all four leads were digitized at 32 kHz if a signal on

any of the leads of a tetrode crossed a pre-set voltage threshold. Spike trains were sorted to isolate single units using a semi-auto-

mated clustering algorithm followed by manual refinement (KlustaKwik, K. Harris, and MClust 3.5, A. D. Redish). During recordings,

rats were videotracked at 25 Hz, and an array of light-emitting diodes on the headstage allowed offline tracking of the rat’s position

and head direction.

DATA ANALYSIS

Spike sorting and waveform quantification
Automated and manual clustering of spikes was performed using the waveform peak amplitude, energy, and first derivative of the

energy (‘‘energyD1’’). Clusters were accepted as single units when having no more than 0.1% of their inter-spike intervals shorter

than 2 ms. During recordings, rats were videotracked at 25 Hz. An array of light-emitting diodes on the headstage allowed offline

tracking of the rat’s position and head direction.

To segment spike waveforms into groups corresponding to putative interneurons and excitatory cells, we quantified their wave-

form duration (peak to trough interval, in ms) and repolarization level (normalized amplitude at 0.45 ms after the spike peak, also

known as decay of spike valley; Lansink et al., 2010). Waveforms were classified into three groups: fast-spiking cells (putative inter-

neurons), broad-spiking cells (putative pyramidal neurons), and unclassified cells (Figures 6B and 6C; Vinck et al., 2016). The distri-

bution of peak-to-trough durations was significantly bimodal (Hartigan’s dip test, p = 0.002).

Place fields and robot firing fields
Place fields were classically defined as pertaining to subregions of space where the firing rate was selectively enhanced as a function

of rat location. When studying firing rate as a function of robot position, we will refer to ‘firing fields’ as our results do not indicate

discrete place fields for the robot. Classic place fields were determined using 3 3 3 cm spatial bins to segment the complete task

space, including both the maze and observation cage. Only bins visited > 200 ms were included in the analysis. We next selected

those bins having a non-zero firing rate and being surrounded by at least 3 other non-zero bins. In addition, the cluster of adjacent

non-zero bins was required to comprise at least 9 bins (Save et al., 2000). Selected firing fields were smoothed with a 5-point

Gaussian. Next, we computed the maximal firing rate obtained from this smoothed distribution. We defined the place field as the

collection of bins falling within 80% of the maximal rate (Leutgeb et al., 2007), provided that this collection remained in excess of

9 bins and that the maximal firing rate was > 1 Hz. If coverage of a place field exceeded 80% of the total area visited, the neuron

was considered to be a putative interneuron (see Figure 6 for additional criteria). Firing fields for the robot were determined using

the same criteria used to determine place fields. To calculate robot firing fields, we used the neuronal data from the rat and the po-

sition data of the robot.

To examine the properties of rat place fields and robot firing fields, we contrasted the field size and maximum firing rate of each

unit. The size of the field was expressed as the percentage of the total field (determined as above) activity divided by the total visited

space. Differences between conditions, based on the same units, were tested using Friedman’s test with Tukey-Kramer’s post hoc

test. For comparison across all units, a Kruskal-Wallis test was used (a = 0.05).

Mirror-like place fields and overlap between rat place field and robot firing field
In order to examinewhether hippocampal neurons coded place fields common to both the rat and robot (‘‘mirror-like place fields’’) we

determined place fields for each unit whichwas not deemed to be an interneuron, during three different periods: (1) place fields based

on rat position during the first maze exploration period (Rat-on-Maze 1); (2) place fields during the second maze exploration period

(Rat-on-Maze 2) and (3) firing fields based on robot position during the Task Phase (Figure 1A). The percentage of overlap between

place field locations was determined by comparing Rat-on-Maze 1 and Rat-on-Maze 2. Overlap was calculated as the portion of bins

visited in both conditions which are shared by the two firing fields, and cells were only included which displayed place fields in both

conditions. To calculate the overlap between the combined Rat-on-Maze 1 and Rat-on-Maze 2 periods (yielding place fields for the

rat) on the one hand, and the Task Phase (yielding robot firing fields) on the other hand, we concatenated the place field locations of

Rat-on-Maze 1 and Rat-on-Maze 2 before determining the overlap with the firing fields in the Task Phase. Again, only cells showing

place and firing fields in both conditions were included and overlap was restricted to areas visited in both conditions. Wilcoxon’s

signed rank test was used to compare the conditions (a = 0.05).

To determine howmuch overlap between the robot firing field and the rat place field of a neuron is expected by chance, we gener-

ated a distribution of chance-level overlap by computing the overlap of the robot firing field with all recorded rat place fields. We then

calculated a p value as the proportion of overlaps in the chance-level distribution which were larger than or equal to the observed

overlap (i.e., the overlap between rat and robot fields of the same neuron). We repeated this computation for all neurons and
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Bonferroni-adjusted the p values. For this analysis, we considered only cells which had a robot firing field according to our definition

(see above), and which had a place field in at least one of the Rat-on-Maze periods. If a cell had a place field in bothmaze periods, we

combined the place field occupancies before computing the overlap.

Cell sensitivity to contrasting behavioral conditions
When studying hippocampal sensitivity to two contrasting conditions (e.g., FR-control versus Task Phase), we focused on the subset

of recorded CA1 cells showing place fields in one or both of these contrasting conditions. To determine whether a given CA1 neuron

was sensitive to the contrast between two behavioral conditions, we performed a randomization test for each cell. For instance, to

assess the statistical significance of Mid-Front Task differences for individual neurons, we randomly reallocated trials from both con-

ditions to shuffled sets of trials and computed the difference in maximum firing rate within the place fields per permutation, thereby

constructing a distribution of 1000 samples under the null hypothesis of having no difference between the two conditions. For those

conditions lacking a trial structure, we subdivided every stage into segments of 30 s and randomly interchanged these between the

two conditions, again constructing a permutation distribution. We then examined whether the ratio of firing rates reached in the two

conditions exceeded the 2.5% or 97.5% percentile, indicating statistical significance at p < 0.05. We used a test of proportion to

assess whether the fraction of significantly modulated units was different from chance (a = 0.05; Sokal and Rohlf, 1995; van Duuren

et al., 2009):

Zvalue =
pcond � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pcondð1�pcondÞ

n

q

Where pcond is the proportion of significant units out of a population of n neurons.

Linearized peri-event space histograms
The consistency of CA1 neuronal responses to specific elements of robot behavior across trials was tested using peri-event space

histograms plotting the binned firing of a single neuron as a function of linearized robot position (Figure 4C). Rasters were separately

constructed for different spatial segments of the robot’s trajectories, e.g., inbound versus outbound journeys in the Mid Task. The

advantage of using these histograms is that they not only present spatial dependencies of average firing rate with respect to an event

such as an outbound journey, but also spike density rasters across individual trials. Trajectories of the robot were linearized for each

trial (using 3 cm bins) and firing rates were calculated for each bin. Firing rates of bins with an occupancy of less than 0.2 s (5 video

frames) were excluded. This resulted in peri-event space histograms with robot position on the x axis instead of time. Firing rates are

indicated using a gray tone code. Within these linearized peri-event space histograms, we compared bins from the Front versus Mid

Task aswell as outbound versus inbound trajectories. Comparisons between Front andMid taskswere conducted usingMann–Whit-

ney’s U test with false discovery rate (FDR) corrections. Differences between outbound and inbound trajectories within a single task

were tested using Wilcoxon’s signed rank test. Again, FDR corrections were applied to control for multiple comparisons (a = 0.05).

Population coding using Random Forest Decoders
Neurons were included in the analysis only if they fired at least 50 spikes during the segment of data considered (Glaser et al., 2017).

Spikes were binned in 500 ms time bins, resulting in a neural activity feature vector di = ðsi;0;.; si;NÞ for every time bin i, where si;j is

the count of spikes of neuron j which fall in time bin i. To provide the random forest decoder (RFD) with information on neighboring

time bins, as well as the current one, an expanded feature vector was generated by stacking neural activity vectors from subsequent

time bins, as follows: dE
i = ðdi�kb; di�kb +1;.;di;di + 1;.di + kaÞ, where ka and kb denote the number included preceding and subsequent

bins respectively. In this way, each sample contains a short temporal trajectory of neural activity (Glaser et al., 2017). Rat position was

linearly interpolated at the centers of the temporal bins used for spikes to obtain a feature vector of the stacked x and y position of the

rat at time i, and every sample was expanded in the same way to include a short spatial trajectory of the animal. For the reported

analysis, we used ka = kb = 2: Similar results were obtained when including only history ka = 2, kb = 0, or no expansion at all, ka =

kb = 0 (data not shown).

The combination of neural data and position input is obtained by stacking the two feature vectors, r i = ðdE
i ;p

E
i Þ. When training the

RFD on either neural activity or rat position alone, we padded the feature vectors with zero in order to keep the dimensionality of the

input constant. That is, we generated rneurali = ðdE
i ;0Þ, where 0 denotes a vector of zeros of the same size of pE

i , and rpositioni = ð0;pE
i Þ,

where 0 denotes a vector of zeros of the same size of dE
i .

To discriminate between behavioral epochs we employed a random forest classifier with 200 trees. To ensure reproducibility,

random forests were seeded. To predict robot position, we first interpolated the position tracking of the robot at the centers of

the bins used to bin spikes, then used a random forest regressor to predict the x and y position of the robot at every time point.

For both algorithms we relied on the implementation provided by Scikit-learn (Pedregosa et al., 2011).

Training and testing of the decoders was performed separately for each recording session, as each session yields a different

population of neurons. When discriminating behavioral epochs, every dataset (corresponding to one recording session) was

balanced with random undersampling (resampling the majority class without replacement to obtain as many samples as are present

in the minority class), and classification accuracy (the fraction of correctly classified samples) was used as the performance metric.
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When predicting robot and rat position, we quantified the goodness of fit as the fraction of explained variance (Glaser et al., 2017),

given by

R2 = 1�
P
i

ðbyi � yiÞ2
P
i

ðyi � yÞ2

where byi are the predictions, yi is the actual robot/rat position, and y is the average robot/rat position. Note that in this formulation R2

can be negative in case of overfitting (cf. Figure 4E). Expressing decoding performance in terms of variance explained (as opposed to

a simple distance between true and predicted location, i.e., the Euclidean error) has the advantage of being more generalizable, as it

accounts for the variance of the signal that is being predicted. This is particularly important since we want to compare the prediction

errors of two signals which are quite different: while the movement of the robot is slow, regular, and restricted to a subregion of the

whole arena (fixed trajectories during the Task Phase), the rat explorations are faster, unpredictable, and can cover the whole space

of the arena, with the possibility that some locations are only visited sporadically or just once. Given that rat position covers a larger

range of locations than robot position, a comparison of the Euclidean errors will likely be misleading. We computed a value of R2 for

the x and y components of robot position separately and reported their average. The reported decoding accuracies and R2 were

averaged over 5 repetitions of 10-fold cross-validations. In each fold, samples were assigned randomly to the training and test

set. For a given session, decoding using different inputs (e.g., neural data and rat position) was performed on the same random folds,

to prevent differences in the random partitioning of training and test data to cause differences in decoding performance. For the de-

coding of robot position, training and testing were carried out separately for Front and Mid Task, and the results averaged across the

two epochs. For rat position, decoding was performed separately for Rat-on-Maze 1, Rat-on-Maze 2, Front Task, and Mid Task; we

then averaged the two Rat-on-Maze periods and the two stages of the task.

To compare the accuracies (or R2 values) of the three types of inputs (neural data, rat position, and the combination of the two)

across sessions we used a Wilcoxon signed-rank test and report Bonferroni-adjusted p values (i.e., the p values are multiplied by

the number of comparisons). For the boxplots data points which exceed the high and low quartiles by twice the interquartile range

are graphically depicted as outliers, but all data points are always considered for the statistical tests.

Population coding using logistic regression and feed-forward neural networks
We replicated the random forest decoder (RFD) analysis using two different algorithms, namely a logistic regression with L2 regula-

rization, as implemented in Scikit-learn (Pedregosa et al., 2011), and a fully connected feed-forward neural network (Figure S2). For

the latter, we adapted the implementation published by (Glaser et al., 2017) based on the Keras library (https://keras.io). The network

consisted of two hidden layers, each containing 50 neurons. Hidden layers had rectified linear unit (ReLU) activations (Glorot et al.,

2011) and 30% dropout (Srivastava et al., 2014; dropout is a common method to reduce overfitting by randomly ignoring a subset of

units during training). The output layer uses a Softmax activation function (Bishop, 2006). The model was trained with categorical

cross-entropy loss and with the Adam optimizer (Kingma and Ba, 2014) for a maximum of 30 epochs. For the neural network, the

test data was further split in equal-sized test and validation sets. The validation set was used for early stopping with delta 10�6

and patience of 10 epochs. This means that improvements in accuracy on the validation set smaller than 10�6 were considered

absence of improvement, and training was terminated after 10 epochs with no improvement. To ensure sufficient test and validation

data, we employed 5-fold cross-validation (reported accuracy was averaged over 5 repetitions of the cross-validation).

Receiver operating characteristic analysis
For the Receiver Operating characteristic (ROC) analysis, the spikes of each unit were first binned in 200 ms bins. We selected all

spatial bins in which the animal spent at least 30 s in both the Front and the Mid Task. For each neuron we further restricted our anal-

ysis to the spatial bins in which at least 10 spikes were fired. Then, for each spatial bin, we constructed an ROCcurve, which indicates

howwell the spiking activity of the neuron at that bin discriminates between the Front andMid Task, and computed the area under the

curve (AUC) and its 95% confidence interval using the method of DeLong et al. (1988) as implemented in the pROC package (Robin

et al., 2011). The AUC value for a given neuron at a given bin was considered significant if its confidence interval did not contain 0.5.

To obtain a single AUC value per neuron we took the maximum AUC values across all bins, and we refer to neurons as having a

significant AUC when they have a significant AUC value in at least one spatial bin. The confidence intervals for the sensitivities

(Figure 5A) were computed using bootstraps (Robin et al., 2011). Results obtained by different temporal binning, and by requiring

a significant AUC in more than one spatial bin, are shown in Figure S5. Results with different requirements for the minimum number

of seconds spent at a single location are shown in Figure S5A. Results obtained by different temporal binning, and by requiring a

significant AUC in more than one spatial bin, are shown in Figures S5B–S5F. AUC values determined by taking the average across

all spatial bins instead of the maximum were qualitatively equivalent, as shown throughout Figure S5.

Conditional mutual information
Spike trains of each neuron were binned in 200 ms bins, considering data from the full Task Phase, and excluding neurons which

did not fire any spikes throughout this phase (N= 3). The positions of the animal and robot used to compute information theoretic
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quantities were obtained by linearly interpolating the output of the position tracking at the times of the temporal bin centers. For in-

formation about Front versus Mid Task, we specified animal position in spatial bins of 333 cm and computed discrete mutual infor-

mation (MI) IðX;YÞ between the neuron’s binned spike count and the binary variable indicating task type, and the discrete conditional

mutual information (cMI) IðX;Y jZÞ between the neuron’s spike count and task type, conditional on the position of the rat. MI captures

both linear and non-linear correlations between spiking activity and task type, while cMI additionally removes the information already

provided by rat position. For information about robot position, we replaced the binary task type variable with the position of the robot

and employed the first Kraskov-Stoegbauer-Grassberger (KSG) estimator (Kraskov et al., 2004; Lizier, 2014). Importantly, the esti-

mation of information theoretic quantities with finite sample sizes may suffer from a bias, which causes non-zero estimated informa-

tion, even if no information is actually shared between the variables. A common way to address this problem is to test whether the

estimated information quantity is statically different from zero by comparing it to an empirical null distribution, generated with an

appropriate resampling method (Lizier, 2014). For a given neuron, we generated 1000 surrogate datasets by randomly permuting

the spike count vector di (importantly, the target variable and rat position vectors were not shuffled). We computed MI and cMI

for each shuffled dataset to obtain the null distributions, then computed a p value equal to the fraction of surrogate datasets for which

the values of MI and cMI was higher than the observed MI and cMI. This process was repeated for all neurons, and p values were

adjusted with Bonferroni correction over all neurons. The reported scores are debiased by subtracting from the observed MI and

cMI of each neuron the average MI and cMI of all its shuffled surrogates.

QUANTIFICATION AND STATISTICAL ANALYSIS

The dataset comprises 3 rats, with 15, 6 and 5 recording sessions per rat, yielding 330, 145 and 146 units, respectively. Details of

statistical comparisons and the definition of center, dispersion, and precision measures are contained in the figure legends. In gen-

eral, we applied non-parametric statistical tests: Wilcoxon’s signed-rank test (paired data), Mann-Whitney’s U test (unpaired data),

Kruskal-Wallis ANOVA, and Friedman’s test (with Tukey-Kramer’s post hoc test). We tested at the a = 0.05 level, and, whenever

appropriate, corrected for multiple comparisons using False Discovery Rate (FDR) and Bonferroni correction. The cross-validation

strategy for the decoding, the significance of AUC values in the ROC analysis, and the shuffling procedure used to debias information

measures are detailed in the corresponding sections. Relevant software for the statistical analysis includes the pROCpackage (Robin

et al., 2011) used to compute AUC values and their confidence intervals, and the Seaborn library (https://github.com/mwaskom/

seaborn), used to obtain bootstrap confidence intervals for the bar plots (Figures 6C–6E).

DATA AND CODE AVAILABILITY

The dataset and code supporting the current study are available from the corresponding author upon request.
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