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Spike count correlations (SCCs) are ubiquitous in sensory cortices,
are characterized by rich structure, and arise from structured
internal dynamics. However, most theories of visual perception
treat contributions of neurons to the representation of stimuli
independently and focus on mean responses. Here, we argue that,
in a functional model of visual perception, featuring probabilistic
inference over a hierarchy of features, inferences about high-level
features modulate inferences about low-level features ultimately
introducing structured internal dynamics and patterns in SCCs.
Specifically, high-level inferences for complex stimuli establish the
local context in which neurons in the primary visual cortex (V1)
interpret stimuli. Since the local context differentially affects multiple
neurons, this conjecture predicts specific modulations in the fine
structure of SCCs as stimulus identity and, more importantly, stimulus
complexity varies. We designed experiments with natural and
synthetic stimuli to measure the fine structure of SCCs in V1 of awake
behaving macaques and assessed their dependence on stimulus
identity and stimulus statistics. We show that the fine structure of
SCCs is specific to the identity of natural stimuli and changes in SCCs
are independent of changes in response mean. Critically, we demon-
strate that stimulus specificity of SCCs in V1 can be directly manipu-
lated by altering the amount of high-order structure in synthetic
stimuli. Finally, we show that simple phenomenological models of
V1 activity cannot account for the observed SCC patterns and conclude
that the stimulus dependence of SCCs is a natural consequence of
structured internal dynamics in a hierarchical probabilistic model of
natural images.
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Spike count correlations (SCCs), covariation of neuronal re-
sponses across multiple presentations of the same stimulus,

are ubiquitous in sensory cortices and span different modalities
(1–3) and processing stages (4–7). In the visual system, SCCs, also
termed noise correlations, have traditionally been considered to
be independent of the stimulus and hence have been thought to
impede stimulus encoding (8). Studies on stimulus-independent
aspects of SCCs in the primary visual cortex (V1) sought to cap-
ture correlation patterns that were solely accounted for by dif-
ferences in receptive field structure (9, 10). Initial investigations of
dependence of SCCs on low-level stimulus features, such as ori-
entation and contrast, focused on the population mean of SCCs
(11–13), but stimulus-dependent changes in the mean are modest in
awake animals (9, 14). Only recently has orientation and contrast
dependence of the fine structure of SCCs been demonstrated in
anesthetized cats and awake mice (15). Recent studies using cal-
cium imaging of V1 in awake mice revealed a dependence of the
fine structure of correlations on stimulus statistics (14, 16). These
observations raise the possibility that not only single-neuron re-
sponses (mean activities) but joint response statistics (notably, cor-
relations) too are tied to the properties of complex natural stimuli.
SCCs are emerging from the internal dynamics of cortical

neuron populations. Internal dynamics is determined both by
lateral connections and feedback from higher cortical areas, both

of which have been demonstrated to shape the activity in V1 (15,
17–19). Lateral (20–23) and feedback interactions (24, 25) have
been linked to regularities characteristic to natural stimuli, sug-
gesting a possible role of internal dynamics in the interpretation
of complex stimuli. Internal dynamics captured during sponta-
neous activity distorts the population activity directly evoked by
the stimulus (26) and has been proposed to contribute toward
the interpretation of naturalistic stimuli during perceptual in-
ference (27). It is still unclear, however, whether stimulus-
dependent SCCs can be explained by the internal dynamics im-
plied by perceptual inference.
Natural visual stimuli are complex and provide insufficient

information for unambiguous interpretation. Evidence suggests
that the visual system represents an internal model of the envi-
ronment, which serves the integration of information about the
current stimulus with previously acquired knowledge of natural
scene statistics (28, 29). Recently, it has been demonstrated that
neural response variability can be linked to inference in the in-
ternal model (30) and that contextual influences in the internal
model predict the stimulus dependence of surround suppression
(31). Crucially, when interpreting complex stimuli, the context
plays an essential role: the likelihood of the presence or absence
of a particular visual feature is dependent on the presence or
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absence of a large number of contextual features. Indeed, when
assessing the orientation of an edge in a small image patch,
which V1 simple cells are selective to, the context of being on a
pebbly beach or in a wheat field provides information about
curvatures and spatial frequencies. Furthermore, given that the
visual cortex processes visual information in a series of hierar-
chical processing stages, contextual information from the higher
levels of the processing hierarchy can inform and constrain the
activity at lower levels of processing through feedback (25, 32,
33). Thus, we argue that in the primary visual cortex high-level
visual context introduces modulations of the internal dynamics,
and ultimately results in stimulus-specific SCC structure.
Feedback modulation of higher-order statistics of responses,

including variance (34) and correlations (35) in V1, were shown
to contribute to multiplicative effects in activity fluctuations.
Indeed, patterns in V1 SCCs in response to periodic grating
stimuli were shown to be aligned with a simple phenomenolog-
ical model of V1 responses that only considers stimulus de-
pendence of neuronal responses in terms of tuning curves and
assumes that joint modulations are stimulus independent (15).
This model, however, does not aim to account for stimulus-
dependent modulations of internal dynamics. Similarly, a func-
tional account of V1 that links (co)variability of neuronal re-
sponses to perceptual uncertainty but lacks a representation of
higher-order stimulus features fails to predict stimulus specificity
in the correlation structure (30). Modulations of the fine struc-
ture of correlations have been predicted by functional models of
attention (36, 37), which related changes in correlation structure
to inference of task variables. Here, we go beyond these accounts
and argue that hierarchical perceptual inference has a direct
predictable effect on the structure of SCCs in V1, which is in-
dependent from task or attentional influences. We hypothesize
that, for stimuli with high-order structure, inferences on the
presence of high-level visual features modulate inferences on the
presence of low-level features through top-down modulation of
V1 responses, leading to stimulus specificity in SCC patterns.
Conversely, we hypothesize that, without high-level structure,
stimulus specificity of correlation patterns dwindles.
To test these hypotheses, we designed an experiment in which

we can characterize the full correlation matrix, the so-called
partial correlations. First, we established that correlation pat-
terns in response to natural images are stimulus specific. We
developed the contrastive rate matching (CRM) method to
identify modulations in the correlation structure that are in-
dependent of changes in the mean of the responses. Second, we
carried out a decoding analysis to test whether stimulus-specific
correlations carry information about stimulus identity. Third, we
designed synthetic image families with low-level or high-level
structure. Importantly, in a hierarchical model of visual per-
ception, high-level synthetic images, but not low-level synthetic
images, are expected to elicit stimulus-specific top-down in-
fluences and consequently to introduce stimulus-specific cor-
relations. Our V1 recordings confirm these predictions and
demonstrate that the stimulus specificity of SCCs is dependent
on stimulus structure: synthetic stimuli characterized solely by
low-level structure elicit correlation patterns with reduced
stimulus specificity, while synthetic stimuli characterized by high-
level structure restore stimulus specificity of correlations. Finally,
using surrogate datasets from phenomenological models of
population responses, we demonstrate that accounts that do not
consider stimulus-specific contextual modulation cannot account
for the patterns observed in our recordings.

Results
To phrase predictions on the effect of top-down interactions on
V1 internal dynamics and specifically on SCCs, we introduce a hi-
erarchical model of visual processing in the ventral stream. The
model naturally extends earlier probabilistic models of V1 activity
(30, 38, 39) by assuming an additional layer of processing. The ad-
ditional layer is analogous to higher processing layers in the ventral
stream, and for simplicity, we identify it with the secondary visual

cortex (V2). V2 neurons are assumed to be selective to texture-like
patterns (40, 41) that emerge from combinations of elementary fea-
tures (i.e., Gabor functions). Probabilistic models of perceptual in-
ference, similar to the one proposed here, have beenmotivated by the
fundamentally noisy and ambiguous nature of environmental stimuli
and have gained extensive experimental support from behavioral
studies (42, 43). Importantly, probabilistic models reveal that efficient
computation requires the maintenance of uncertainty about the
inferred environmental features; therefore, we consider neural rep-
resentations that can represent such uncertainties (30, 32, 44).
Assuming a hierarchical internal model for the representation

of natural images in the visual cortex (Fig. 1A), probabilistic
inference in the model corresponds to stimulus perception (45).
In this context, activities of neurons correspond to activation of
variables, and selectivities of neurons correspond to filter prop-
erties of variables. In this model, the activity level of a neuron is
assumed to represent the inferred intensity of its preferred visual
feature. At different levels of the hierarchy, neurons are sensitive
to features of different complexity. In a simple approximation,
the receptive fields of V1 neurons can be characterized by Gabor
filters, while the receptive fields of V2 neurons can be charac-
terized by texture-like filters (40). Upon the presentation of a
particular image, x, the posterior distribution for the activations
of V1 neurons, y, conveys detailed information about the un-
certainty of the features represented by V1 receptive fields, in-
cluding the specification of not only mean activations but
variances and covariances as well (see also SI Appendix):

PðyjxÞ=
Z

Pðyjx, zÞ  PðzjxÞdz.

The first term of the integral is the probability distribution of the
joint activations of V1 neurons given a particular image and a
particular set of activations, z, at a hierarchical level beyond V1
(Fig. 1B). The second term establishes weights for averaging over
possible high-level activations. This equation highlights three
important points: (i) activations at the lower level of the hierar-
chy, V1, depend on high-level activations, that is, specific
predictions can be obtained from top-down interactions; (ii)
activations at V1 can be correlated; that is, if a high-level feature
represented in V2 assigns high probability to particular combi-
nations of features, then variability in z will induce correlations
in y (Fig. 1B); (iii) since the probability of different combinations
of high-level activations, P(z j x), changes with the stimulus, cor-
relations in V1 will be stimulus dependent. As a consequence,
hierarchical statistical inference predicts stimulus-dependent
correlations for structured stimuli, for example, for natural im-
ages, thus reflecting top-down influences (Fig. 1C). However, in
the absence of high-level structure, stimuli will not be informa-
tive with respect to high-level inferences and therefore will result
in unspecific top-down influences, and hence hierarchical statis-
tical inference predicts unspecific correlations (Fig. 1D). These
predictions are functional in nature and remain agnostic about
the anatomical connections that contribute to the implementa-
tion of probabilistic computations in the hierarchical internal
model. Nonlinear interaction patterns of receptive fields (22,
23, 46) that implement hierarchical computations are expected
to involve not only bottom-up and top-down projections but
lateral connections as well.

Stimulus Dependence of SCCs. Parallel multielectrode recordings
(32 channels) were obtained from area V1 of two awake be-
having monkeys (Macaca mulatta). The receptive fields of the
recorded units were located ∼2–4° (monkey A) and 3–7° (mon-
key I) from the fixation spot (SI Appendix, Fig. S1). Monkeys
were trained to perform an attention task in which, after initi-
ating fixation (Fig. 2A), they were presented with a pair of nat-
ural images located left and right from the fixation spot, one of
which overlapped with the receptive fields of the recorded units.
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After 700 ms, a change in fixation spot color cued the monkeys to
report an incoming change in either the left or right image. The
task was used to ensure the engagement of the animal, and our
analysis was constrained to neural responses evoked by stimulus
presentation before appearance of the cue signal (Materials and
Methods). Initial transient responses after stimulus onset were
omitted from the analysis to reduce stimulus locked correlations,
leaving a window of 400 ms to assess response statistics (Fig. 2A).
Reliable estimation of the full SCC matrix between recorded
channels required a large number of repetitions; therefore, the
number of different images was limited to six or eight images per
session, providing a range of 65–180 repetitions per image. The
mean population response, as characterized by the average firing
rate across units, was selective for stimulus identity (Fig. 2A) and
exhibited a high level of dissimilarity of firing rate patterns in
response to different natural images compared with a lower dis-
similarity of responses to identical stimulus presentations (Fig. 2B).
First, our goal was to establish the stimulus specificity of the

fine correlation patterns in population responses to natural im-
age patches. For each stimulus, we calculated a SCC matrix, by

extracting correlations between the activities of any two neurons
across repeated presentations of the same stimulus (Fig. 3A). We
analyzed the stimulus specificity of the structure of SCC matrices
by comparing the difference between the correlation matrices
extracted in two different conditions: (i) from two independent
subsets of data in response to the same stimulus (within-
stimulus); (ii ) from the responses of neurons to different
stimuli (across-stimuli; Fig. 3B and SI Appendix, Fig. S2 B and
C). This treatment goes beyond traditional approaches that
only characterize the population mean of the distribution of
correlations (Fig. 3C). In supplementary analysis, we charac-
terized the stimulus dependence of correlations using addi-
tional techniques, sensitive to different properties of the
response distribution. The linear predictability of SCCs across
different conditions (SI Appendix, Fig. S2B) revealed stimulus-
dependent structural changes in SCC matrices. Furthermore,
we ranked SCCs according to one condition and measured
rank correlation in SCCs in another condition, which yields a
measure that is agnostic to changes in SCC magnitude. Mea-
suring rank correlation across stimuli based on a rank estab-
lished for a particular stimulus provided further support for
the claim that stimulus content affected the structure of SCCs
and their magnitude (SI Appendix, Fig. S2C).
Measurement of SCCs from a finite number of trials is noisy,

and therefore estimates of the SCC matrix are variable (Fig. 3A).
As a consequence, the within-stimulus difference of SCC matrices
can be used to establish a baseline for the estimates of across-
stimuli differences of SCCs. The baseline shrinks with increasing
the number of trials (set size). To establish the number of trials
needed for a reliable estimate of SCCs, we assessed dissimilarity as
a function of set size (Fig. 3D). There is a steep drop in dissimi-
larity at low trial counts due to high variance of correlation
estimates. We balanced the trade-off between the number of
repetitions and the size of the stimulus set in an experimental
session by aiming for ∼80 repetitions per stimulus. We used the
dependence of within-stimulus dissimilarity of SCCs on the
number of repetitions to establish an approximate baseline for
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Fig. 1. Illustration of inference in a hierarchical statistical model. (A) An
image, x, is assumed to be generated by combining features of different
complexity: high-level features, zi (green and blue circles), determine the
large-scale structure of low-level features, for example, textures determine
the joint statistics of edges (z0 is a bias term that represents an interpretation
where no higher-order structure is present). Low-level features, yi, capture
simple regularities in images, for example, darker and lighter image areas
underlying edges (orange and red circles). In the visual system, upon pre-
sentation of a stimulus, the contribution of different features to the ob-
served image is inferred: different images (Left and Right) elicit different
intensity responses from the neurons (Inset bar plots). (B) The statistical in-
ternal model establishes a joint probability distribution for the coactivation
of low-level features upon observing a stimulus: beyond the most probable
joint activations (black dots), a wide range of coactivations is compatible
with the high-level percept, albeit with different probabilities (colors
matching those on A). Given the activation of a particular high-level feature
(z1 or z2 for the Left and Right, respectively), the joint distribution over ac-
tivations of low-level features (contours) displays a covariance specific to the
high-level feature. (C) The posterior distribution for low-level features is
characterized both by the mean and covariance of the distribution (Top).
Posterior distribution for a distinct structured image (Bottom) is character-
ized by a different mean and correlation structure. (D) A stimulus with no
higher level structure is invoking an interpretation that low-level features
are independent; therefore, the correlation structure of images with only
low-level structure will be identical. Arrows define conditional dependencies
throughout the figure.
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Fig. 2. Structure of the experiment and mean neural responses. (A) Time
course of neural activity upon the presentation of two natural images (Top and
Bottom). After presenting a fixation point for 500 ms (timeline in Middle), a
pair of stimuli are presented off-foveally at equal distances from the fixation
point. One of the images (shown on the Left for the example trial) covers the
receptive fields of recorded V1 neurons. After another 700 ms, the color of the
fixation point changes, cuing the monkey to which of the images it needs to
focus its attention. In the following 800 ms, one of the images is rotated, and
the monkey is asked to respond if the cued stimulus changes and to withhold
responses to changes of the noncued stimulus. MUA is recorded on multiple
channels and spiking activity is obtained (raster plots). After an initial transient
following stimulus onset (peaks in the channel-averaged activity; top trace), a
sustained but weaker activity follows. Analysis of spiking activity was con-
strained to this segment of 400 ms (gray shading). Mean firing rate of recorded
channels in the presented trial (Left raster plot) and average across trials (Right
side raster plot) display specificity to stimulus. Ordering of the channels was
established based on the trial-average responses to the first image (Top Right
raster). (B) Dissimilarity of patterns in average firing rates calculated either
across subsets of trials using the same stimulus (within stimulus) or to different
stimuli (across stimuli). *P < 0.05, **P < 0.01, ***P < 0.001; n.s., P ≥ 0.05 in this
and all subsequent figures.
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correlation dissimilarity. As within-stimulus difference could only be
calculated from a lower number of repetitions than across-stimuli
comparisons, this relationship was used to extrapolate the estimate
for within-stimulus dissimilarity for higher number of trials.
We checked whether stimulus specificity of SCCs can be

established based on the mean of the correlation distribution.
Comparison of changes in the mean was not conclusive since the
dissimilarity of the mean correlation across stimuli was not sig-
nificantly higher than that within stimulus (t test, P = 0.064, t =
−1.89, df = 58; Fig. 3E). Comparison of SCC matrices instead of
the mean of SCC distributions is sensitive to changes in the
patterns of correlations and therefore provides more detailed
information on the stimulus dependence of population responses
(Fig. 3F). Dissimilarity of SCC matrices was significantly higher
across stimuli than within stimulus (t test, P = 7.4e-20, t = −9.14,
df = 8,766). We also determined that the significance of the
difference in dissimilarities is not merely the result of a larger
sample size due to the large number of elements of correlation
matrices. To this end, we constructed a measure that matches the
sample size of the population mean of correlations. We calcu-
lated a single dissimilarity value for a particular pair of stimuli
and compared this measure across conditions (t test, P = 1.76e-5,
t = −4.68, df = 58; SI Appendix, Fig. S2F). Furthermore, both
linear predictability of SCCs across conditions and rank corre-
lations consistently showed similar changes across stimuli (t tests,
Pearson correlation: P = 1.05e-05, t = 4.83, df = 58; Kendall rank
correlation: P = 8.25e-06, t = 4.89, df = 58; SI Appendix, Fig. S2
D and E). Comparison of correlation matrices implicitly estab-
lishes a comparison between two multivariate normal distri-
butions. A widely used measure to assess the dissimilarity of
probability distributions is the Kullback–Leibler (KL) diver-
gence, which can be calculated analytically for normal distribu-
tions and can be used to assess the dissimilarity of the correlation
structures. We found a similar pattern in the difference in dis-
similarities with KL divergence as with other measures (t test,
P = 1.65e-3, t = −3.3, df = 58; SI Appendix, Fig. S2G). Taken
together, these analyses indicate that, when natural scenes are
presented, the resulting fine patterns in SCCs are specific to
stimulus identity.

Contrastive Rate Matching. Firing rate has a major effect on the
estimate of SCCs from spiking activity (47, 48). As a conse-
quence, firing rate changes could constitute a potential confound
for establishing stimulus specificity of SCCs. To address this
potential confound, we devised the CRM method (SI Appendix
and Fig. 4). Briefly, for a given condition, we calculated the 2D
distribution of across-trial changes in firing rates and correlations
(Fig. 4A). To eliminate the dependence of the estimate of cor-
relation change on firing rate changes, the marginal distribution
of firing rate changes is matched across the two conditions to be
contrasted (Fig. 4B) by subsampling the data points. On these
subsampled data, the magnitude of firing rate changes will be
equal in the two conditions and the residual condition de-
pendence of correlations can be assessed.
To demonstrate the power of CRM, we used synthetic data in

which the two conditions can be fully controlled (SI Appendix,
Fig. S3). A network of 40 neurons was simulated in which
membrane potential correlations and firing rates were set for
each condition and the simulation matched the experimental
conditions in terms of the amount of data used. In each exper-
iment, the first condition assessed had identical firing rate and
SCCs profiles in every trial (SI Appendix, Fig. S3A). We in-
vestigated three different scenarios for the second condition.
First, dissimilarity of SCC matrices was assessed across trials with
identical SCC patterns but different mean activations (SI Ap-
pendix, Fig. S3B). Under these conditions, we expect that, due to
firing rate differences, SCCs will vary across trials. Indeed, dis-
similarity of correlation matrices is higher in the condition where
firing rate differences are present even though the membrane
potential correlations are identical (SI Appendix, Fig. S3E).
However, CRM eliminates this difference. Second, dissimilarity
of SCC matrices was assessed across trials with identical mean
activations but different SCC patterns (SI Appendix, Fig. S3C).
As expected, dissimilarity of correlations remained significant in
both the nonmatched and in the matched cases (SI Appendix,
Fig. S3F). The last analysis tested the scenario where both firing
rates and correlations show differences across trials (SI Appen-
dix, Fig. S3D). Residual differences in correlation dissimilarity
after CRM demonstrated that differences in membrane potential
correlations can be identified in SCCs (SI Appendix, Fig. S3G).
We assessed within-stimulus and across-stimuli dissimilarity of

SCC matrices using CRM on data recorded from V1 (Fig. 4C).
As expected, CRM eliminates the condition dependence of firing
rate dissimilarity (t test, P = 0.99, t = −0.02, df = 6,362). In
addition, the analysis confirmed that differences in correlation
dissimilarity are significant even after CRM (t test, P = 1.3e-13,
t = −7.43, df = 6,362); therefore, stimulus specificity of the fine
structure of SCC is not a result of changes in firing rates.
SCCs are dependent on tuning similarity (9, 10). We tested

how this dependence may affect CRM on synthetic data. We
used the same 40-neuron network as before but introduced de-
pendence between the stimulus-driven changes in firing rates
and correlations. First, only firing rates differed across condi-
tions (SI Appendix, Fig. S4A). Second, across-condition firing
rates were set such that for each pair of neurons firing rates were
correlated with their membrane potential correlations. Increased
SCC dissimilarity resulting from across-condition changes in
firing rates could be removed with CRM at all levels of de-
pendence between SCCs and tuning similarity. As expected,
higher SCC dissimilarity was preserved when the two conditions
differed both in firing rates and membrane potential correlations
(SI Appendix, Fig. S4B).

Stimulus Structure Dependence of SCCs. We argued that higher-
order stimulus structure elicits differential responses at the
network level both in V1 and at higher levels of processing. In
our data, we identified stimulus-specific correlation structure in
V1 activity congruent with the idea that high-level inferences
impose differential top-down modulations at V1. This pre-
diction, however, is not exclusive to hierarchical inference since
it can be accounted for by alternative models. Therefore, we
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Fig. 3. Stimulus dependence of SCC. (A) Natural images used in the ex-
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different colors on the same plot). (D) Dependence of within-stimulus dis-
similarity of SCC matrices on the number of trials used for the estimation. (E)
Dissimilarity of mean SCCs within stimulus and across stimuli. (F) Dissimilarity
of SCC matrices within stimulus and across stimuli.

2726 | www.pnas.org/cgi/doi/10.1073/pnas.1816766116 Bányai et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816766116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1816766116


formulated a more specific prediction: if stimulus specificity is a
consequence of stimulus-specific feedback from higher levels of
processing, then removing higher-order structure from images
should reduce stimulus specificity of correlations.
We tested this hypothesis explicitly by recording additional

electrophysiological data in two monkeys, performing the same
task. In these experiments, two sets of images were used: natural
images and synthetic images. Synthetic images were constructed
by overlaying Gabor functions with varying locations and orien-
tations independently. These images retained the low-level
structure preferred by V1 simple cells but contained no further
dependencies [low-level (LL)–synthetic stimuli; Materials and
Methods and SI Appendix, Fig. S5]. We calculated the average
dissimilarity of firing rates and SCC matrices across natural
images and compared them to the average dissimilarity of firing
rates and correlations across LL-synthetic stimuli (Fig. 5A). We
found that both firing rate dissimilarity and correlation dissimi-
larity were significantly higher for natural images than for LL-
synthetic stimuli (Fig. 5B; t test, P = 7.4e-286, t = 37.29, df =
10,474, and P = 1.46e-21, t = 9.56, df = 10,474 for firing rate and
correlation, respectively). Similar difference between the response
distributions elicited by natural and LL-synthetic was found when
we calculated the KL divergence of the correlations structures
(paired t test, P = 1.44e-2, t = 3.11, df = 8; SI Appendix, Fig. S6A).
The limited number of available repetitions establishes a lower

bound on the dissimilarity measures (Fig. 3D). To directly obtain
a lower bound for this experiment, the within-stimulus dissimi-
larities would have to be computed across data split into two
halves. Such a manipulation, however, would result in higher
variance in our primary measure of interest, the across-stimuli
dissimilarity. Therefore, we obtained the lower bound indirectly,
by extrapolating within-stimulus dissimilarity from dissimilarities
calculated for lower numbers of repetitions (by subsampling the
available data; SI Appendix).
Differences in firing rate dissimilarity can result in differences

SCC dissimilarity. We applied CRM to eliminate such differ-
ences in firing rate dissimilarity (Fig. 5C; t test, P = 0.99, t =
0.015, df = 7,468). After this correction, residual SCC dissimi-
larity was still much higher for natural than for LL-synthetic stimuli
and highly significant (t test, P = 4.17e-10, t = 6.26, df = 7,468). In
addition, the difference was not sensitive to the time window chosen
here: both the original and the matched data showed higher stim-
ulus specificity to natural than to LL-synthetic stimuli for various
temporally shifted windows (SI Appendix, Fig. S7).
Eye movements can introduce correlated changes in neuronal

responses and can in principle lead to stimulus specificity of
SCCs. While the difference in SCCs induced by natural and LL-
synthetic images is a more specific prediction of hierarchical
inference, similar patterns might arise from eye movements,
under specific assumptions about neuronal sensitivities. A full
receptive field characterization was not feasible in our paradigm
(Materials and Methods); therefore, we investigated indirectly
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Fig. 4. Contrastive rate matching (CRM) for controlling for the effects of
firing rate changes on SCC distributions. (A) Distribution of the magnitude of
changes in firing rates and correlations upon presenting stimulus “i” or “j.”
One point on the scatter plot represents the response of a pair of channels to
a pair of stimuli in a given condition (gray dots); horizontal and vertical
histograms show marginal distributions for firing rate differences and cor-
relation differences, respectively. Data from all sessions are aggregated.
Difference in firing rates is calculated as the absolute difference between
the geometric mean of the firing rates of the neuron pair (gray bars on
Middle). SCC difference for a particular pair of neurons was calculated as the

difference between the Pearson correlations in the two analyzed conditions
(Bottom, dots represent individual trials). (B) Under a different condition
where stimuli “k” and “l” are presented, joint distribution of firing rate
differences and correlation differences for two novel stimuli (gray dots). To
eliminate the effect of firing rate changes, the marginal distributions of
firing rate differences in condition A and condition B are matched by sub-
sampling the trials (green histograms). Firing rate difference-matched cor-
relation differences are obtained by calculating correlation difference
distributions (gold and purple histograms) from the subsampled joint dis-
tributions (black dots on the scatter on both A and B). (C) Using within-
stimulus comparison as condition A and across-stimuli comparison as con-
dition B (Left), dissimilarity of firing rates (Top row) and correlations (Bottom
row) when the distributions of firing rate differences are intact (Middle) or
matched (Right). Initial differences in firing rate dissimilarity (Top row, gray
bars) are eliminated by CRM (Top row, green bars) but not in the dissimilarity
of correlations (Bottom row, gray bars), which remain significant after CRM
(Bottom row, colored bars, colors matching those of histograms at A and B).
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how eye movements affect our findings. We found that the fre-
quency of saccades initiated after stimulus onset was similar for
natural images and controls (t test, P = 0.84; SI Appendix, Fig.
S8A), suggesting that the different stimulus types attracted eye
movements in a similar manner. More interestingly, we identi-
fied a temporal window after the attentional cue onset, where
saccade probability was dramatically reduced (SI Appendix, Fig.
S8B). This temporal window coincided with that where the fre-
quency of microsaccades decreases (49), which provided us with
an ideal control opportunity. We repeated the SCC dissimilarity
analysis with natural and LL-synthetic stimuli in two different
time windows after cue onset. First, in the 300-ms time window
in which both large and small eye movements are inhibited (SI
Appendix, Fig. S8C; t test, P = 0.043, t = 2.022, df = 7,604), and
second, in a slightly larger 400-ms window that matched our
previous analysis (SI Appendix, Fig. S8D; t test, P = 0.002, t =
3.082, df = 7,494). The comparisons showed similar differences
between natural and LL-synthetic images as found before, sug-

gesting that eye movements are not the main drivers behind the
observed effects.
Our analyses revealed that SCCs have stimulus-specific

structure; however, it remains to be demonstrated whether
stimulus-specific correlations convey information about stimulus
identity. We tested whether such information can be recovered
through simple decoding approaches. We constructed decoders
that were sensitive to different aspects of the response statistics
(SI Appendix). The stimulus-dependent correlation decoder (c-
decoder) learned the stimulus-dependent mean responses and
featured separate covariance structure for every stimulus. The
independent decoder (i-decoder) learned about the mean re-
sponses but was agnostic to the correlation structure. We
assessed the performance of the decoders on the spike count
responses to natural images from all of the recorded sessions.
We tested whether the stimulus specificity in the covariance
structure alone is sufficient to obtain information about stimulus
identity by z-scoring the data and applying the c-decoder.
Higher-than-chance decoding performance demonstrated that
the decoder could consistently discriminate stimulus information
from the correlation structure alone (t test, P = 0.032, t = 2.34,
df = 16; Fig. 5D). However, the decoding performance depended
on the type of stimulus applied: decoding of z-scored responses
was more efficient for natural than for synthetic stimuli (paired
t test, P = 0.033, t = −2.57, df = 8; Fig. 5D). Finally, to test
whether the correlation structure carries information beyond the
mean and variance of the responses, we tested the decoders on
the original data (not z-scored). The analysis revealed that the
performance of the i-decoder was consistently lower than that of
c-decoder for natural stimuli but not for synthetic stimuli (paired
t test, P = 0.37, t = −0.94, df = 8; Fig. 5E), suggesting that cor-
relations are more relevant for natural images.

Controls for Finite Data Effects and Global Fluctuations. Since our
measurements are based on a finite population, firing rate has an
effect on the variability of measured correlations: higher firing
rates can limit the number of possible binary words formed from
spikes, which can affect dissimilarity measurements. We con-
structed surrogate data using a phenomenological model of
population activity, the raster marginal model (RMM) (SI Ap-
pendix), to control for this effect. The RMM provided a distri-
bution of correlation matrices for every single image. Correlation
dissimilarities were calculated from 1,000 correlation matrices
obtained from each distribution (Fig. 6A). The histogram of
correlation dissimilarities determines how likely it is that the
dissimilarity measured on the data can be traced back to changes
in basic firing statistics. Histograms obtained for the two condi-
tions did not show significant differences in their mean (t test,
P = 0.12, t = 1.54, df = 1,998), but the histogram for natural
images revealed that the dissimilarity obtained from the data
were in the tail of the distributions of possible dissimilarities (P <
0.001; while for synthetic images, P = 0.076; Fig. 6A). Analysis of
all recorded sessions reveals that, in all cases, the activity evoked
by natural images is highly unlikely under the RMM model (Fig.
6B). However, responses to the LL-synthetic stimulus set were
significantly different from an RMM account only in five out of
nine sessions at the P < 0.05 level. Taken together, comparison
of the results obtained with natural and LL-synthetic data, ex-
cludes the possibility that observed dissimilarities were merely
resulting from changes accounted for by the RMM model.
We wanted to test whether simple collective modulations of

the stimulus-induced drive can account for the patterns in cor-
relation dissimilarities observed in our experiments. The phe-
nomenological joint-fluctuation model (JFM), which incorporates
collective additive and/or multiplicative noise components, has
been shown to account for stimulus-specific SCCs in responses to
superimposed grating stimuli (15). Three variants of the JFM in-
clude the following: (i) in the multiplicative model, featuring a
common gain modulation, gt, of the stimulus-specific drives of
individual neurons (n), dn,sðiÞ, firing rates are covarying on a trial-
by-trial basis, fn,t = gtdn,sðiÞ; (ii) in the additive model, the trial-by-trial
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Fig. 5. Comparison of stimulus specificity of correlation patterns induced by
different stimulus structures. (A) Natural image patches and synthetic image
patches generated from a V1 model of images (LL-synthetic) used in the
experiments. (B) Stimulus specificity of firing rate responses (Top) and SCC
patterns (Bottom) in the original (unmatched) data for natural and LL-
synthetic images. While correlations show higher specificity for natural im-
ages, specificity of firing rate responses is also higher in the reference con-
dition. Shaded areas show the extrapolated estimate of within-stimulus
dissimilarity for both firing rates and correlations (SI Appendix). Note that
the baseline for correlation dissimilarity is set to the mean of the extrapo-
lated within-stimulus baseline minus 1SD. (C) CRM eliminates stimulus
specificity of firing rate responses, but the residual dissimilarity of SCCs is still
significantly higher for natural images than for LL-synthetic stimuli. Baseline
for correlation dissimilarity as in B. (D and E) Decoding stimulus information
from neuron population responses. (D) Performance of a decoder that learns
about the correlation structure of the data using a z-scored version of the
data. Z-scoring removes mean and variance information from the data
leaving the correlations intact. The performance is calculated relative to the
chance level (0 means chance performance, 1 means perfect performance).
The decoder performs better than chance for the natural and LL-synthetic
datasets but shows higher performance for natural stimuli. (E) Relative
performance of the c-decoder and i-decoder on the original data for natural
(Left) and LL-synthetic (Right) stimuli. The c-decoder performs better than
the i-decoder for natural stimuli but not for synthetic stimuli.
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collective fluctuation, at, is added to the stimulus-specific drive:
fn,t =   dn,sðiÞ + at   hn; (iii) the affine model features both sources of
joint fluctuations, gt and at: fn,t = gtdn,sðiÞ + athn. Stimulus de-
pendence in JFM is established through the stimulus-specific
drive, dn,sðiÞ, which is different from our proposed functional
model where joint modulations can also have explicit depen-
dence on stimulus. To obtain a phenomenological model with
the same level of flexibility as our proposed model, we extended
the JFM such that the additive component became dependent of
the stimulus by fitting separate modulatory weights, hn,i, for each
image i (extended affine model).
We synthetized population spike counts from the phenome-

nological models by fitting the values of trial-invariant variables,
dn,sðiÞ and h, and the distributions of trial-dependent variables, g
and a, to spiking responses to natural or synthetic images (Ma-
terials and Methods). We calculated the dissimilarity of SCCs for
natural and synthetic image pairs and provided a baseline by
calculating within-stimulus dissimilarities. Dissimilarities of a set
of synthetic trials with the parameters fit to one particular re-
cording session from the affine model have the same magnitude
as those in physiological data (Fig. 6C) and SCCs are specific to
stimuli (across-stimulus dissimilarities vs. within-stimulus dis-
similarity, t tests, for natural and synthetic images, P = 2.4e-4,
t = −3.67, df = 14,004; P = 2.06e-7, t = −5.2, df = 14,004, re-
spectively), confirming earlier results (15). However, difference
between dissimilarities measured for natural and synthetic
stimuli was not evident in the affine model (t test, P = 0.17,

t = 1.37, df = 10,474) but was significant in the extended affine
model (t test, P = 1.3e-4, t = 3.82, df = 10,474; Fig. 6D).
Simulations of multiple sets of trials introduce variability in

SCC differences (Fig. 6E, Inset). We use the mean of SCC dif-
ferences to compare how different phenomenological models
can capture the stimulus specificity of SCC measured in recorded
data (Fig. 6E). Differences between the dissimilarities in natural
and synthetic stimuli were close to zero in all three variants of
JFM, only the extended affine model could produce differences
comparable to those measured from neuron populations. We
assessed how fitted model parameters behave for different
stimuli (Fig. 6F) to obtain an insight on why the extended affine
model can replicate the physiological data.
We calculated the variability in the collective modulation

across images for the two stimulus sets by calculating the vari-
ability in the fitted values of hn,sðiÞ across stimuli. Comparing
variability for natural and LL-synthetic images revealed higher
variability in natural images and explained the higher stimulus
specificity of SCCs in the extended affine model. In summary,
differences in correlation dissimilarities for stimuli with different
complexities could not be explained by phenomenological
models that assumed stimulus-independent joint comodulation
of neurons but could be reproduced by models that assumed
stimulus-specific joint modulation, thus having a similar expres-
sive capacity as the proposed hierarchical inference model.

Higher-Order Structure over Elementary Features Induces Stimulus-
Specific Correlation Patterns. Our experiment contrasting natural im-
ages and LL-synthetic images indicated that higher-order stimulus
content contributes to the stimulus specificity of SCCs. LL-synthetic
images were constructed to mimic filter properties of V1 simple
cells. However, using Gabor functions to construct images with low-
level structure also affected the spectral content of the stimuli. To
rule out the possibility that changes in spectral content and not high-
order structure underlie the observed differences in SCCs, we per-
formed two control experiments.
First, keeping the spectral content similar to the LL-synthetic

stimuli, we constructed stimuli with high-level structure. In
particular, we generated an additional set of synthetic stimuli
that combined Gabor functions into texture-like patterns,
thus introducing the kind of higher-level structure, which is
expected to elicit differential responses in V2 (40). In additional
recordings, we interleaved synthetic images characterized by low-
level structure (LL-synthetic stimuli) with texture-like synthetic
images characterized by high-level structure (HL-synthetic
stimuli; Fig. 7A). Both firing rates and SCCs showed higher
specificity for HL-synthetic stimuli than for LL-synthetic stimuli
(Fig. 7B; t test, P = 2.6e-180, t = 29.3, df = 8,998, and P = 5.56e-
16, t = 8.11, df = 8,998 for firing rates and correlations, re-
spectively). Comparison of responses to HL-synthetic and LL-
synthetic stimuli using KL divergence of SCCs distributions also
showed a higher dissimilarity for HL-synthetic stimuli (paired
t test, P = 1.9e-2, t = 4.63, df = 3; SI Appendix, Fig. S6B). CRM
was applied to eliminate differences caused by firing rate dis-
similarity (t test, P = 0.94, t = 0.076, df = 6,794; Fig. 7C). This
manipulation did not alter the conclusion on stimulus specificity
of SCCs: the difference between the correlation dissimilarity
remained significant (t test, P = 8.55e-09, t = 5.76, df = 6,794).
Second, we recorded data in which the natural images were

contrasted to phase scrambled controls—altered images with
identical spectral content (50–52) (Materials and Methods). We
found a significant decrease in SCC dissimilarity to controls
(t test, P = 2.12e-02, t = 2.31, df = 644; SI Appendix, Fig. S9)
compared with the original images.
Taken together, these results demonstrate that SCCs are

stimulus specific, and more importantly that the stimulus speci-
ficity hinges upon the presence of higher-order stimulus struc-
ture: removing high-level structure reduces stimulus specificity,
while reintroducing high-level structure in controlled synthetic
images restores the stimulus specificity of SCCs.

A

B

C

D F

E

Fig. 6. (A) Raster marginal models (RMMs) fitted to the spike trains recor-
ded in response to natural images and to LL-synthetic images in an example
session (Top and Middle, respectively). Distributions of dissimilarities are
calculated between correlation matrices sampled from RMMs obtained from
the population activities recorded for individual stimuli. Black triangles mark
the mean dissimilarity calculated from the electrophysiological data. (B)
Likelihoods of recorded dissimilarity under the RMM model in all of the
sessions in the natural and LL-synthetic conditions (colors match those of the
Top and Middle). Dissimilarity indices of 500 pairs of correlation matrices
sampled from the RMM model were used to assess the likelihood of the recor-
ded data. Stimulus dependence of correlation matrices under natural image
stimulation could not be explained by an RMM model in any of the recorded
sessions. Dissimilarity determined for LL-synthetic stimuli was significantly dif-
ferent from the RMM model in five out of nine sessions. (C–F) Analysis of the
joint-fluctuation models (JFMs). (C) SCC dissimilarity of synthetic data generated
from the affine model fitted to an example recording session. SCC shows stim-
ulus specificity both for synthetic and natural stimuli, but stimulus specificity of
SCCs is not significantly different for synthetic and natural stimuli. (D) Same as C
but for the extended affine model. Stimulus-specific additive component intro-
duces sensitivity to the covariance structure characteristic of the responses of
natural images, which supports a difference in SCC dissimilarity between natural
and synthetic stimuli. (E) Multiple simulations with the same parameters yield a
distribution of differences between SCC dissimilarities (Inset, colors of example
models match those in the main panel). Sensitivity of the JFMs to differences in
natural and synthetic stimuli was measured by the mean of the differences
calculated for every given session was calculated for the four JFMs. (F) Com-
parison of stimulus specificity of parameters in the extended affine model for
natural and LL-synthetic stimuli. Variability of the weight of the stimulus-
specific additive component was measured. Individual points represent sepa-
rate channels. All recording sessions are included.
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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the visual cortex and introduces top-down effects (33). Such mod-
ulatory effects of top-down computations related to attention have
been demonstrated in population responses throughout the visual
processing hierarchy, both regarding single-cell statistics [mean (60)
and variance (34)] and pairwise statistics [SCCs (18, 19, 36, 37, 59)].
An interesting link between task execution and SCCs can be
established by analyzing information limiting correlations (61). In-
formation limiting correlation is a form of correlation that is aligned
with the covariation of neural responses caused by perturbing the
variable being assessed in the task. Such correlations depend on the
task, that is, if the task is discrimination of a set of stimuli, in-
formation limiting correlations will depend on the stimuli. It is the
subject of further investigations how the changes in correlations
found in our study are related to information limiting correlations.
A recent phenomenological model of correlations suggested

that multiplicative components might reflect top-down influ-
ences (15). Here, the so-called affine model could account for
patterns in correlations emerging in anesthetized animals through
collective gain modulation. However, our analyses demonstrated
that, in awake task-engaged animals, stimulus structure dependence
cannot be accounted for by this simple phenomenological model. A
simple collective modulation of responses cannot explain our main
experimental results, which show that joint activation patterns in
V1 neuron populations depend on the presence of higher-level
image features.
Deep networks, which are characteristically hierarchical archi-

tectures for image processing, have become vastly successful in
recent years, closing the gap between human and machine perfor-
mance in complex visual tasks (62, 63). Interestingly, the sensitiv-
ities of hierarchically organized neurons in the deep learning model
show structural similarities to those in the biological system (64, 65).
However, the predominantly feedforward architecture of deep
networks remains at odds with the top-down, recurrent connections
observed in the biological system. Recently, when performance of
feedforward architectures was tested against that of humans and
monkeys in an object perception task, systematic differences were
found (66), possibly indicating the requirement of feedback. Our
proposed probabilistic model differs from deep learning architec-
tures by representing the uncertainty in inferences, which is in-
timately linked to the feedback influences incurred by the model.
While the predictions of deep networks on mean responses provide
valuable insights into hierarchical processing, the patterns in SCCs
investigated here arise as a consequence of feedback and are not
predicted by feedforward architectures. Recent advances may
provide the tools to investigate hierarchical inference in deep
generative models of vision (67, 68), allowing for further insights
into the joint statistics of neuronal responses in the visual cortex.

Testable Predictions of the Model. Analyzing mean responses of
V1 and V2 neurons to texture images (41) revealed that the V1 and
V2 neurons display different levels of invariance against manipu-
lations at different levels of statistics: while mean responses of both
V1 and V2 neurons showed a high level of variance to texture type
(termed texture family), mean responses of V2 neurons, but not
those of V1 neurons, were largely invariant across different image
realizations from the same texture family. According to our account,
it is the high-level inference that determines the correlation struc-
ture, and since different samples from the same texture family elicit
similar responses in V2, we expect the correlation structure to be
more similar across samples from the same texture family than
across families. The same behavioral paradigm could accommodate
an experiment with two or three texture families, each family con-
taining three samples. Hierarchical probabilistic inference predicts
that, while V1 responses will show high specificity to both sample
identity and texture family, correlations show invariance across
samples but not across families.

Materials and Methods
Electrophysiological Recordings. This study was conducted on two adult rhesus
macaques (Macaca mulatta; monkey A, male, 8 y; and monkey I, female, 12 y).
All experimental procedures were approved by the local authorities (Regier-

ungspräsidium, Hessen, Darmstadt, Germany) and were in accordance with the
animal welfare guidelines of the European Union’s Directive 2010/63/EU. We
recorded multiunit activity (MUA) from V1 using a chronically implanted
microdrive containing 32 independently movable glass-coated tungsten elec-
trodes with impedance between 0.7 and 1.5 MΩ and 1.5-mm interelectrode
distance (SC32; Gray Matter Research; 69). The recording chamber was positioned
based on stereotactic coordinates derived from MRI and CT scans following (70).
Signals were amplified (TDT, PZ2 preamplifier) digitized at a rate of 25 kHz and
bandpass filtered between 300 and 4,000 Hz for MUA recordings. For MUA
analysis, a threshold was set at 4SD above noise level to extract spiking activity.

Behavioral Paradigm. Animals were seated in a custom-made primate chair at
a distance of 64 cm in front of a 477 × 298-mmmonitor (Samsung SyncMaster
2233RZ; 120-Hz refresh rate). Eye tracking was performed using an infrared-
camera eye-control system (ET-49; Thomas Recording). At the beginning of
each recording week, the receptive field locations and orientation prefer-
ences of the recorded units were mapped with a moving light bar drifting in
a randomized sequence in eight different directions (SI Appendix, Fig. S1)
(71). The two monkeys performed an attention-modulated change detection
task. To initiate a trial, the monkey had to maintain fixation on a white spot
(0.1° visual angle) presented in the center of a black screen and press a lever.
After 500 ms, two visual stimuli appeared in an aperture of 2.8–5.1° at a
distance of 2.3–3.2° from the fixation point. One of the stimuli covered the
receptive fields of the recorded units, the other was placed at the mirror
symmetric site in the other hemifield. After an additional 700 ms, the color
of the fixation spot changed, cuing the monkey to direct its covert attention
to one of the two stimuli. When the cued image was rotated (20°), the monkey
had to release a lever within a fixed time window (600 ms for monkey A; 900 ms
for monkey I) to receive a reward. A break in fixation (fixation window, 1.5°
diameter) or an early lever release resulted in the abortion of the trial, which was
announced by a tone signal. The number of completed trials varied between
524 and 1,110 per recording session. No more than one session was recorded on
a given day. To obtain a balance between the reliable estimation of SCCs (Fig.
3D) and the number of comparisons between stimulus pairs, we used six or eight
different stimuli per session, resulting in 65–180 repetitions (124 on average) per
stimulus, 64 stimuli in total for sessions showing natural and synthetic images
and 24 for sessions showing only synthetic images. The order of stimulus pre-
sentations was randomized. The number of good channels varied between
15 and 23 per session. Trials in which the signals were contaminated by clear
electrical artifacts were discarded from the analysis. The maximum number of
trials discarded from a recording session was 3 (0.8 on average).

Visual Stimulus Design. Stimuli were static, black and white natural images,
phase scrambled versions of natural images, or synthetic images generated
from an imagemodel. Stimuli were presented in a square or circular aperture.
Static stimuli were chosen to avoid potential confounds caused by firing
rate-dependent or stimulus-dependent variances and correlations. Phase-
scrambled images were generated by obtaining the Fourier-transformed ver-
sions of the original images and randomizing the phase spectrum under the
constraint of symmetric complex conjugates. We generated synthetic control
stimuli thatmatched the low-level statistical properties of the natural images, but
lacked any high-level statistical structure. As neurons in V1 are sensitive to ori-
ented edges,wedesigneda set of 3,000Gabor functions adapted to the receptive
field characteristics of the recordedneurons. TheGabor functions differed in their
positions and orientations covering the image patch uniformly. Spatial scale of
Gabor filters wasmatched to that of visual cortical neurons at the eccentricity our
recordings were performed at. For each Gabor function, an activation variable
was set that determined the level of contribution of the particular Gabor function
to the image. The activation-scaled Gabor functions were linearly combined to
obtain a synthetic image patch. For each synthetic control stimulus, we sampled
the activations of 500–3,000 Gabor functions from the empirical distribution of
Gabor filter responses to a particular natural image. The pixel distributions of
synthetic control stimuli were then matched to the corresponding natural ones
in terms of mean (luminance) and variance (contrast) (SI Appendix, Fig. S5). For a
second set of experiments, we reintroduced higher-level statistical structure to
synthetic images by calculating the responses of the filter set on photos of
natural texture patterns, then setting up a correlationmatrix for filter activations
in such a way that two filters were more strongly correlated if their responses to
the texture photo were more similar. Samples from this correlated filter activa-
tion distribution were used to linearly combine activation-scaled Gabor func-
tions. This procedure resulted in texture-like synthetic patterns corresponding
to the statistical structures typically represented in V2. In each recording
session, half of the stimuli were synthetic images with statistical structure
corresponding to the representation in V1 (LL-synthetic stimuli), and the other
half consisted of natural and synthetic images with structures corresponding
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to representations in V2 (HL-synthetic stimuli), in the first and second set of
experiments, respectively. An additional set of LL-synthetic stimuli was gen-
erated for HL-synthetic stimuli such that the spectral distribution of LL-
synthetic images matched that of HL-synthetic images.

To generate images where the frequency spectrum is not affected but
higher-order structure is removed, we generated phase scrambled versions of
natural image patches. We computed a 2D fast Fourier transform (FFT),
resulting in a complexmagnitude/phasemap of each image. The phase values
were scrambled by assigning a random value to each element taken from a
uniform distribution across the range (−π, π). An inverse FFT was then applied

to the resulting magnitude/phase maps to produce scrambled control ver-
sions of the original images.
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