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Accelerated statistical computation of collisionless fusion alpha particle losses in stel-
larator con�gurations is presented based on direct guiding-center orbit tracing. The
approach relies on the combination of recently developed symplectic integrators in
canonicalized magnetic �ux coordinates and early classi�cation into regular and chaotic
orbit types. Only chaotic orbits have to be traced up to the end, as their behavior is
unpredictable. An implementation of this technique is provided in the code SIMPLE
(Symplectic Integration Methods for Particle Loss Estimation, Albert et al. (2020b)).
Reliable results were obtained for an ensemble of 1000 orbits in a quasi-isodynamic, a
quasi-helical, and a quasi-axisymmetric con�guration. Overall a computational speed-
up of about one order of magnitude is achieved compared to direct integration via
adaptive Runge-Kutta methods. This reduces runtimes to the range of typical magnetic
equilibrium computations and makes direct alpha particle loss computation adequate for
use within a stellarator optimization loop.

1. Introduction

Finding a stellarator con�guration with favorable properties for magnetic con�nement
fusion poses a high-dimensional multi-objective optimization problem. One of these
objectives is to minimize the losses of energetic fusion alpha particles over their slowing-
down time in order to be able to heat the bulk plasma of a reactor. Direct computation
of such losses with usual numerical methods is relatively time-consuming compared
to other calculations within the optimization loop, in particular computation of 3D
magnetohydrodynamic equilibria. This is why fusion alpha loss estimation is often
performed via faster proxy models (Nemov et al. 2005, 2008; Bader et al. 2019) that,
however, cannot capture the full physics of drift orbits and, therefore, are suited only for
the initial stage of optimization. The reason for this is the high alpha energy of 3.5MeV,
leading to the following consequences. On the one hand, alpha particles show a rather
fast cross-�eld drift and rather wide guiding-center orbits on the bounce time scale . On
the other hand, the collisional decorrelation time of orbits from the magnetic �eld is very
large because of very low collision frequencies for alphas. These two factors combined
can lead to diverse and unpredictable behavior of drift orbits in 3D magnetic geometry.
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Therefore, direct tracing of an ensemble of orbits and statistical estimation of losses is
still a preferable option for accurate results (Lotz et al. 1992; Nemov et al. 2014).
To address this problem, a class of symplectic integrators for guiding-center mo-

tion (Zhang et al. 2014) has recently been extended and applied (Albert et al. 2020a)
to alpha loss computation in stellarator con�gurations. Despite reaching a signi�cant
speed-up of factor 3-6 compared to adaptive Runge-Kutta orbit integration, further
improvements are required to reduce the wall-clock runtime below the time needed to
compute magnetohydrodynamic equilibria.
To reach this goal, fast symplectic guiding-center integration is complemented by

classi�cation of orbits as regular or chaotic based on Poincaré maps. In this context,
�regular� orbits are such that stay bound to some surfaces called �drift surfaces� and,
therefore, can never leave the con�nement volume. In particular, most of passing particle
orbits are regular, as their drift surfaces are close to magnetic surfaces and only somewhat
corrugated by cross �eld drifts. This fact has been used in the past to reduce the
number of orbits that have to be traced (e.g. Nührenberg et al. (1994)), and has inspired
the idea of using a more rigorous classi�cation presented here. The method treats
trapped and passing particles in the same way and, therefore, takes into account possible
losses of particles which would be classi�ed from their starting conditions as passing
(�marginally passing particles�). It should be noted that in modern advanced stellarator
concepts (Nührenberg & Zille 1988; Mikhailov et al. 2002) not only most passing but
also most trapped particles have regular orbits. Therefore the gain in e�ciency via
classi�cation is signi�cant.
The combination of the two techniques allows to reduce the wall-clock time for collision-

less alpha loss estimation by another factor 2-5 compared to using symplectic schemes
alone, and thus reaches the required target to be used directly in optimization. This
claim is supported by the presented results for three stellarator reactor con�gurations
of quasi-isodynamic (Drevlak et al. 2014), quasi-helical (Drevlak et al. 2018), and quasi-
axisymmetric type (Henneberg et al. 2019), respectively.

2. Methods

2.1. Canonicalized �ux coordinates

The guiding-center Lagrangian (Littlejohn 1983; Cary & Brizard 2009) in magnetic
�ux coordinates, omitting the ignorable term with gyrophase velocity φ̇, is given by

Lgc = hr ṙ + (mv‖hϑ +
e

c
Aϑ)ϑ̇+ (mv‖hϕ +

e

c
Aϕ)ϕ̇−H, (2.1)

where hi = Bi/B are covariant components of unit vectors in direction of the magnetic
�eld B, the triple (r, ϑ, ϕ) are some spatial straight �eld line magnetic �ux coordinates,
m and e are particle mass and charge, respectively, c is the speed of light, Ak = Ak(r)
are covariant vector potential components, and

H =
mv2‖

2
+ µB + eΦ (2.2)

is the Hamiltonian containing magnetic moment µ and electrostatic potential Φ.
In spatial coordinates with hr = 0 it is immediately possible to identify canonical

momenta pϑ, pϕ of the reduced 4D phase-space in front of ϑ̇ and ϕ̇ in Eq. (2.1). An
e�cient way for a transformation from arbitrary 3D magnetic �ux coordinates to such
coordinates has been presented recently (Albert et al. 2020a), being a three-dimensional
generalization and synthesis of (Meiss & Hazeltine 1990; Li et al. 2016). Based on such a
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transformation, phase-space coordinates z = (r, ϑ, ϕ, pϕ) are used, with only r remaining
as a non-canonical variable, resulting in dependencies

Lgc(z, ϑ̇, ϕ̇) = pϑ(z)ϑ̇+ pϕϕ̇−H(z), (2.3)

pϑ(z) = mv‖(z)hϑ(r, ϑ, ϕ) +
e

c
Aϑ(r), (2.4)

v‖(z) =
1

mhϕ(r, ϑ, ϕ)

(
pϕ −

e

c
Aϕ(r)

)
. (2.5)

Computations of the exact transformation in the treated stellarator equilibria show
that (r, ϑ, ϕ) remain close to Boozer magnetic coordinates, becoming identical to them
in the zero beta limit. It has been argued by Boozer (2005) that in such coordinates, hr
can be neglected for the purpose of orbit integration, thereby immediately providing ap-
proximate canonicalized �ux coordinates. Using such coordinates would further increase
performance, as they depend on less free 3D parameters for which interpolants have
to be computed during evaluation of the magnetic �eld. Even though for the current
work the exact canonicalization of �ux coordinates has been chosen, a comparison to
computation in Boozer coordinates with negleted hr could be an interesting task for
future investigations.

2.2. Symplectic integration in non-canonical coordinates

With canonical momenta given in terms of (partially) non-canonical coordinates we
can proceed to apply a generalized form of symplectic integration (Zhang et al. 2014;
Albert et al. 2020a) Here dependencies and derivatives of Hamiltonian H are written
in terms of non-canonical phase-space coordinates z, but the quadrature scheme relies
on classical symplectic integrators in canonical coordinates (Hairer et al. 2006). For the
present investigation, a semi-implicit symplectic Euler method has been employed. In
step number (n) with time di�erence ∆t, two implicit equations

0 =
∂pϑ
∂r

(
pϑ,(n+1) − pϑ,(n)

)
+∆t

(
∂pϑ
∂r

∂H

∂ϑ
− ∂pϑ

∂ϑ

∂H

∂r

)
, (2.6)

0 =
∂pϑ
∂r

(
pϕ,(n+1) − pϕ,(n)

)
+∆t

(
∂pϑ
∂r

∂H

∂ϕ
− ∂pϑ

∂ϕ

∂H

∂r

)
(2.7)

are �rst solved in r = r(n,ei) and pϕ = pϕ,(n+1). Partial derivatives of poloidal momentum
pϑ and Hamiltonian H are evaluated at (r(n,ei), ϑ(n), ϕ(n), pϕ,(n+1)), according to (2.2)
and (2.4), expressing v‖ via (2.5). Subscripts (n) denote values at current time t, and
(n + 1) the ones at t + ∆t. The internal stage r(n,ei) (with subscript �ei� for �explicit-
implicit� Euler) doesn't correspond to a full time-step but still remains su�ciently close
to the actual radial position r of the guiding-center. In particular this evaluation point
in phase-space is also used to express the poloidal momentum at step (n+ 1) via

pϑ,(n+1) = pϑ(r(n,ei), ϑ(n), ϕ(n), pϕ,(n+1)). (2.8)

In the remaining stages new positions ϑ, ϕ follow explicitly in two equations

ϑ(n+1) = ϑ(n) +∆t
∂H

∂r

(
∂pϑ
∂r

)−1
, (2.9)

ϕ(n+1) = ϕ(n) +∆t
1

hϕ

(
v‖ −

∂H

∂r

(
∂pϑ
∂r

)−1
hϑ

)
, (2.10)
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Figure 1. Trapped orbit with a Poincaré section (red) at turning points v‖ = 0−, and outer
plasma boundary (blue). The right plot shows the projection of the section to the poloidal plane.
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Figure 2. Passing orbit with Poincaré sections (red) at toroidal �eld periods ϕ = ϕk, and
outer plasma boundary (blue). Right plot: Projection of the section to the poloidal plane.

where derivatives of pϑ and H, as well as hϑ and v‖ are evaluated at the same phase-point
as in Eqs. (2.6) and (2.7).

2.3. Classi�cation of Poincaré sections

As discussed above, regular orbits are bound to �drift surfaces� which reduce to a line
(or set of closed lines) on some given cross-sections (Poincaré sections). For the present
analysis and classi�cation we use two types of Poincaré sections of the whole phase-space
de�ned by

v‖ = 0± , (2.11)

with v‖ switching either from negative to positive (0−) or vice versa (0+), and

ϕ =
2πl

Nper
, (2.12)

where Nper is the number of �eld periods of the con�guration and l is an integer between
0 and Nper − 1. Each of these sections is illustrated based on orbits in Figs. 1-2.
The considered Poincaré sections are actually 3D hypersurfaces in a 4D phase-space

(ignoring gyrophase and treating the conserved magnetic moment µ as an auxilary
parameter). Imposing the additional constraint of conservation of total energyH together
with one of Eqs. (2.11)-(2.12), hypersurfaces are reduced to 1D lines in case of regular
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orbits, or structures of fractal dimension between one and two in case of chaotic orbits.
Classi�cation of the kind of orbit at hand is performed with help of the box counting
fractal dimension described below.
The box-counting fractal dimension of a set of points (see, e.g., Falconer 2014, ch. 3),

also known as Minkowski-Bouligand dimension, is de�ned as follows. One considers the
number of boxes N(ε) of width ε required to cover all points in the set. In the limiting
case of small boxes, the fractal dimension is obtained as a ratio of exponents via

df = lim
ε→0

logN(ε)

log(ε−1)
. (2.13)

For a �nite set of points and for numerical implementation a su�ciently small �nite
minimum value of ε is used instead of this limit. Fig. 3 illustrates the behavior in terms
of a regular orbit and a chaotic orbit. In the regular case, the number N(ε) grows linearly
with ε−1 and df is computed close to one. In comparison, for the chaotic case, more boxes
are required with smaller ε, leading to an estimated fractal dimension df well between
one and two. In the limit of points covering the whole section equally, df approaches two.
In practice, to classify orbits, a threshold value for df has to be set, below which

orbits are classi�ed as regular. In the present implementation this threshold has been
determined empirically as df ≈ 1.6 with adaptation to more conservative criteria with
decreasing number of available points. If all section types (2.11)-(2.12) have a dimension
below the threshold, the orbit is classi�ed as regular. In the actual code realization it is
more convenient to use, instead of the fractal dimension a ratio ν of full boxes Nfull to
the total number of boxes Nbox, linked to df by

df = 2
log(ν)

log(Nbox)
+ 2. (2.14)

Here the threshold is set directly as ν = 0.2.
Fig. 4 shows an example of the estimated fractal dimension as a function of Nbox for

a number of regular and chaotic orbits in a quasi-isodynamic stellarator con�guration.
Actual classi�cation happens when the number of boxes becomes equal to the number of
orbit footprints in the Poincaré section. At higher Nbox this estimate can no longer be
used, which is clearly seen from the behavior of chaotic orbits.

3. Results

In this section numerical results on fusion alpha particle con�nement are presented for
three optimized stellarator con�gurations of similar (reactor) size with on-axis magnetic
�eld of B0 = 5T: a quasi-isodynamic (QI) con�guration (major radius R = 25m,
aspect ratio A = 12, plasma β = 4.9%) of Drevlak et al. (2014) , a quasi-helical (QH)
con�guration (R = 19m, A = 8.7, β = 3.9%) of Drevlak et al. (2018) and a quasi-
axisymmetric (QA) con�guration (R = 10.3m, A = 3.4, β = 3.5%) of Henneberg et al.

(2019). Resulting loss fractions over time match the ones in the references. It should be
stressed once more that the high degree of optimization in these con�gurations makes
the present classi�cation method especially e�cient, as most orbits are regular and losses
are small. Still, the algorithm is expected to give a signi�cant speed-up in optimizing any
magnetic con�guration where the initial equilibrium already has an alpha loss fraction
below 0.5 at their slowing-down time ts. If this is not the case, alpha loss computations
are anyway fast as long as losses happen well before ts and tracing can be terminated
frequently.
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Figure 3. Classi�cation of poloidal projections of Poincaré sections via box counting. The
regular orbit in the upper plots has a one-dimensional projection, while the projection of the
chaotic orbit on the bottom has a fractal dimension between one and two apparent on re�nement.

Figure 4. Estimated fractal dimension df by box counting vs number of boxes Nbox for several
regular (left) and chaotic (right) orbits in a quasi-isodynamic con�guration. Orbits are classi�ed
when Nbox equals the number of footprints using the threshold value df = 1.6 (dashed lines).

Figs. 5-7 show losses of alpha particles over time and a trapping parameter de�ned as

θtrap =

(
µ

µtp
− 1

)(
Bmax

Bmin
− 1

)−1
, (3.1)

where µtp is the magnetic moment corresponding to the trapped passing boundary, and
Bmin and Bmax are maximum and minimum value of the magnetic �eld modulus on
the starting �ux surface, respectively. For deeply trapped particles θtrap = 1, while it
vanishes at the trapped passing boundary. Negative values of θtrap correspond to passing
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Figure 5. Alpha particle losses from s = 0.3 (left) and s = 0.6 (right) over time and trapping
parameter (left axis) for a quasi-isodynamic stellarator con�guration. Density plot over lost
particles (black dots); con�ned fraction fc over time (lower curve, right axis). Error bands at
±1.96σ around this curve describe the 95% con�dence interval due to the Monte Carlo error.

particles. In addition to black dots marking the actual loss of a test particle, shaded plots
from a kernel density estimator based on the statistical samples have been added to mark
regions of losses in time and phase-space. Finally, the con�ned fraction fc over time is
plotted as a curve.

Two cases are considered for each con�guration where particles are started at a �ux
surface with radius r = s ≡ ψtor/ψ

a
tor = 0.6 and s = 0.3, respectively, where ψtor is

the toroidal magnetic �ux and ψa
tor its value at the outer plasma boundary. A total of

Ntot = 1000 randomly chosen orbits are traced up to physical time t = 1 s such that the
slowing-down time is well covered. The estimated standard deviation σ (random error)
in the computed fraction fc of particles which remain con�ned scales inversely with
this number as σ =

√
fc(1− fc)/Ntot. Classi�cation of regular/chaotic orbit types is

performed at t = 10−1 s. After this point regular orbits are considered to be con�ned and
only chaotic orbits are traced further. Initial conditions are set isotropic in velocity space
with spatial positions distributed along the �eld line densely covering the �ux surface
so that particle density is constant in the �ux tube. This method has worked without
problems in the present cases and is also suitable in the general case where the coordinate
system is not necessarily �ux-surface aligned (Nemov et al. 2014). It has, however, some
disadvantage if the starting surface is close to a low order rational surface such that one
needs a very long �eld line to cover it. In that case the method of (Bader et al. 2019) for
�ux coordinate systems would be preferable.

At the outer �ux surface s = 0.6 the QI con�guration in Fig. 5 �rst shows some
prompt losses (t = 10−4 s) near the trapped-passing boundary. Those are orbits that
are such that they immediately cross the boundary at s = 1.0 before even completing
a signi�cant number of poloidal or toroidal turns in the device. At intermediate times
between t = 10−3 s and 10−2 s originally deeply trapped particles are lost as drift motion
and stochasticity remove them from their magnetic well. Finally, late losses at the
trapped-passing boundary set in due to chaotic trajectories. In the QH con�guration
in Fig. 6 most losses from s = 0.6 happen already early between t = 10−4 s and 10−3 s
for trapped particles that are neither deeply nor marginally trapped. Late losses are
again located around the trapped-passing boundary, where chaotic e�ects are especially
pronounced. The QA con�guration in Fig. 7 spreads losses from s = 0.6 more evenly over
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Figure 6. Alpha particle losses from s = 0.3 (left) and s = 0.6 (right) over time and trapping
parameter (left axis) for a quasi-helical stellarator con�guration in the style of Fig. 5. Final
losses at s = 0.3 are below 2%, including error bars.
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Figure 7. Alpha particle losses from s = 0.3 (left) and s = 0.6 (right) over time and trapping
parameter (left axis) for a quasi-axisymmetric stellarator con�guration in the style of Fig. 5.

both, time, and trapping parameter. Most losses happen at t between 10−3 s and 10−2 s,
depleting the population in the region near the trapped-passing boundary.
At the inner �ux surface s = 0.3 alpha con�nement in the QI con�guration in Fig. 5

is governed by late losses close to the trapped-passing boundary. In contrast, the QH
con�guration in Fig. 6 shows a few prompt losses and retains alphas up to the tracing
time of 1 s. In the quasi-axisymmetric con�guration in Fig. 7 losses appear over the whole
trapped region with deeply and marginally trapped orbits lost earlier. Here the region of
losses also extends into the marginally passing range.
If the threshold for the fractal dimension to identify chaotic orbits is set too high

the classi�cation might produce �false negatives�. In that case an orbit is classi�ed as
regular despite being chaotic and lost if traced up to the end. In that case �nal losses
are underestimated if classi�cation is used. In the computations for Figs. 5-7 no false
negatives occurred, meaning that classi�cation did not deteriorate results on late losses.
In contrast, �false positive� classi�cation of chaotic orbits just increases computation
time by tracing them up to the end, but doesn't in�uence the result. This trade-o�
between accuracy and computation time is adjusted via the choice of the threshold fractal
dimension (2.13) to decide whether an orbit is chaotic. As mentioned above, this option
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Figure 8. Orbit types over initial condition in v‖/v and ϑ from s = 0.6 for QI (left), QH
(middle) and QA con�guration (right). The background (�) is �lled by regular orbits, early
losses before t = 0.1 s are marked as �◦�, and chaotic orbits potentially causing late losses after
t = 0.1 s as �×� with some �false positives� visible that still remain con�ned. The trapped-passing
boundary is marked by a white line.

Table 1. Fractions of regular orbits in trapped and passing region for di�erent con�gurations.

Type �ux surface s regular trapped regular passing

QI 0.3 0.8219 0.9987
QI 0.6 0.6751 0.9946
QH 0.3 0.5343 0.9594
QH 0.6 0.5884 0.9780
QA 0.3 0.0927 0.9607
QA 0.6 0.0657 0.9721

has been left at default settings independent from the treated cases and could potentially
be optimized.
Fig. 8 shows the classi�cation results depending on initial conditions in pitch parameter

v‖/v and poloidal angle ϑ for 104 orbits started at s = 0.6 and ϕ = ϕn/2, i.e. in the
middle of the �rst �eld period. All three con�gurations show regular orbits in the passing
region at some distance from the trapped-passing boundary. For QI and QH con�guration
there is a clear separation of early losses of orbits that cross the plasma boundary soon
and chaotic orbits that slowly di�use away. Losses are localized at the trapped-passing
boundary and in certain phase-space regions for more deeply trapped orbits. In the QA
con�guration most trapped orbits are chaotic, but some are lost relatively late due to
slow stochastic di�usion. The described behavior is also seen in Figs. 5-7. Therefore the
classi�cation is of less use in the QA case, as most regular orbits are passing and could be
identi�ed in simpler ways. In contrast, for QI and QH types the method allows to exclude
also a large portion of the trapped region from further computation. A relatively small
number of �false positives� that are incorrectly classi�ed as chaotic is seen in particular
in the QI con�guration and traced to the end despite being actually regular.
Table 1 shows numerical values of respective regular fractions for trapped and passing

orbits in the considered con�gurations. A signi�cant portion of chaotic trapped orbits
in QH and QA con�gurations stays con�ned within t = 1 s, which makes con�nement
properties of alphas acceptable even in cases where only a small fraction of trapped orbits
is regular.
Computations were performed on the COBRA cluster of MPCDF on a single node with

40 cores / 80 threads of Intel(R) Xeon(R) Gold 6126 CPUs. Table 2 shows a summary
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Table 2. Wall-clock runtimes in minutes on 40 CPU cores with hyperthreading for the
considered con�gurations. Computation for the QA equilibrium at inner �ux surfaces is least
e�cient, as most orbits are chaotic, even when con�ned over their slowing-down time.

Type �ux surface s no classi�cation with classi�cation

QI 0.3 27:26 07:28
QI 0.6 25:21 07:25
QH 0.3 29:33 11:39
QH 0.6 31:26 07:24
QA 0.3 41:53 16:55
QA 0.6 40:03 07:23

of computation wall-clock time using a symplectic integrator alone compared to added
classi�cation after 1/10th of the integration time. The obtained speed-up of another 2-5
compared to an integration method that is already factor 3-6 faster than conventional
Runge-Kutta integation for alpha loss results of the same accuracy (Albert et al. 2020a)
leads to a total speed-up of factor 6-30 compared to conventional methods.

4. Summary and Outlook

A combined method of symplectic integration and early classi�cation has been pre-
sented to accelerate computation of loss fractions of fusion alpha particles over their
slowing-down time in stellarator reactor con�gurations. Reliable results could be obtained
for three di�erent stellarator con�guration types within wall-clock times around 10
minutes. This corresponds to a speed-up of about an order of magnitude compared to
conventional methods and makes the technique useful to be integrated in stellarator
optimization, where computation times for magnetic equilibria are of the same order.
Currently the approach is limited to collisionless orbits. Adding collisions could limit

the e�ectiveness of early classi�cation by additional di�usion and requires further inves-
tigations. Even though mis-classi�cations in�uencing �nal results were rare with default
settings, the classi�cation algorithm could bene�t from additional tuning in order to
become even more robust. Finally, the in�uence of using Boozer coordinates instead of
exact canonicalized �ux coordinates should be studied further, as it provides room for
further e�ciency improvements.
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