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Facial expressions of emotion states and their
neuronal correlates in mice
Nejc Dolensek1,2, Daniel A. Gehrlach1,3, Alexandra S. Klein1,3, Nadine Gogolla1*

Understanding the neurobiological underpinnings of emotion relies on objective readouts of the emotional
state of an individual, which remains a major challenge especially in animal models. We found that mice
exhibit stereotyped facial expressions in response to emotionally salient events, as well as upon targeted
manipulations in emotion-relevant neuronal circuits. Facial expressions were classified into distinct
categories using machine learning and reflected the changing intrinsic value of the same sensory stimulus
encountered under different homeostatic or affective conditions. Facial expressions revealed emotion
features such as intensity, valence, and persistence. Two-photon imaging uncovered insular cortical
neuron activity that correlated with specific facial expressions and may encode distinct emotions. Facial
expressions thus provide a means to infer emotion states and their neuronal correlates in mice.

E
motions are patterns of behavioral, hor-
monal, and autonomic responses aimed
at promoting survival. Emotions result
from brain states that reflect the dynamic
integration of external cues, bodily sig-

nals, and cognitive processes (1–5). Although
emotions have been subject to intensive re-
search efforts in neuroscience, psychology, and
philosophy (1, 4, 6, 7), we still lack a mechanis-
tic understanding of how emotions arise in
neuronal circuits (3, 4, 8, 9). The functional
dissection and causal interrogation of the
neuronal circuit underpinnings of emotion
rely on research in animal models. However,
whether animals experience emotions similar
to those of humans and how to best define or
investigate emotions are still matters of con-
troversy (3, 5, 8–10). Although most research-
ers would agree that externally observable
behaviors indicate that forms of evolutionarily
conserved “emotion states” exist across species
(1, 3, 5), investigating emotions using modern
neuroscientific tools has been hindered by a
lack of rapid and precise readouts of emotion
states in model organisms, such as mice (3).
In humans and monkeys, facial expres-

sions have been proposed to provide univer-
sal indicators of emotions (11, 12). Rodents
may also use their orofacial musculature to
signal longer-lasting internal states (13–15).
We asked whether mice reacted to emotion-
ally salient stimuli with stereotyped facial
expressions and whether these reflect core
emotion properties, such as intensity, valence,
flexibility, and persistence (3, 4). We then in-
vestigated neuronal correlates of inferred emo-
tion states in the insular cortex, an area of the

brain that in humans has been implicated in
subjective affective experiences (16, 17).
To study facial expressions, we exposed mice

to a diverse set of sensory stimuli that can be
assumed to trigger changes in emotion state.
In addition to these triggers, we also moni-
tored spontaneous behavioral expressions of
emotion states, such as the exhibition of es-
tablished fear behaviors. These “emotion events”
of different types therefore included painful
tail shocks, sweet sucrose, bitter quinine, and
lithium chloride injections, which induce vis-
ceral malaise (14, 18), as well as freezing and
escape behaviors (see methods). We video mon-
itored the faces of head-fixedmice (Fig. 1A and
fig. S1, A and B). Mice reacted to each emotion
event with a noticeable facial movement visi-
ble to naïve human observers (Fig. 1B, fig. S2A,
and movie S1). However, the valence or type
of the underlying emotion event was not
intuitively recognizable (fig. S2, B and C) and
required extensive experience (Fig. 1B).
To achieve objective and temporally precise

classification of facial expressions we used
machine vision. We chose “histogram of ori-
ented gradients” (HOG) (19) descriptors to rep-
resent the statistics of local image features in
a standardized way and provide one numer-
ical vector for each video frame (see mate-
rials and methods for advantages of the HOG
method). This allowed us to compare facial
expressions of mice reacting to emotion events
quantitatively through comparison of their
corresponding HOG descriptors.
We first assessed the facial expressions re-

sulting from each type of emotion event sep-
arately by comparing all video frames collected
in the vicinity (before and after) of three repeti-
tions of the same event in individual mice.
Pairwise correlations of all frames in these
clips rendered two discrete clusters of highly
similar facial expressions: One cluster belonged
to the pre-event epochs, and the second clus-
ter belonged to the epochs during or imme-
diately after the event (Fig. 1, C and D). No

distinct clusters and thus no consistent change
in facial expressions were detected when frames
were selected in the same temporal sequence
but from mice recorded during a baseline
period (see “neutral” condition, Fig. 1D, top).
Next, we examinedwhether facial expressions

were specific to the underlying emotion and
visualized frames from all of the emotion events
using t-distributed stochastic neighbor embed-
ding (t-SNE). We observed a clean separation
into discrete frame clusters for each event type
within individual mice, suggesting emotion-
specific facial expressions (Fig. 1E and fig. S3).
To test whether the underlying emotion

event in any given mouse could be predicted
solely from its facial expressions, we trained a
random forest classifier (see materials and
methods). The decoder could predict each
underlying emotion event across different
mice reaching accuracies >90%. Perform-
ance dropped on average below 15% if the
decoder was trained on temporally shuffled
data (Fig. 1F, fig. S4, and table S1).
These results raised the question of whether

the observed expressions may reflect separate
basic emotion states, similar to emotion cat-
egories in humans (7, 10). We collected the
most characteristic video frames following
each type of emotion event separately and
averaged the corresponding HOG vectors
into a single descriptor (Fig. 2A and mate-
rials and methods), which we termed “emo-
tion prototype.”We constructed prototypical
HOG descriptors assuming the following
event ≈ emotion state contingencies: quinine ≈
disgust, sucrose ≈ pleasure, tail shock ≈ pain,
lithium chloride ≈ malaise, escape ≈ active
fear, and freezing ≈ passive fear.
We first tested the sufficiency of the proto-

types to capture the characteristics of the
distinct facial expressions across individu-
als (Fig. 2, B and C, fig. S5, and table S1). We
measured the similarity of facial expressions
to the emotion prototypes and, indeed, each
single prototype was specific to only one emo-
tion state, except for the active fear prototype,
which resembled facial expressions evoked by
bitter, pain, and escape and may thus capture
features of diverse emotion states (Fig. 2C).
Comparing each frame of any video sequence
across time to an emotion prototype captured
the dynamics of facial expressions at high
resolution (fig. S6 and movie S2).
Although our results so far suggested that

facial expressionsmay relate to internal emotion
states, an alternative explanation could be that
facial expressions are stereotyped, reflex-like
reactions. We therefore aimed to test whether
facial expressions reflected fundamental fea-
tures of emotions (3, 4), such as intensity, va-
lence, generalization, flexibility, and persistence
(Fig. 2, D to G).
Scalability refers to the observation that

emotions vary by intensity (3, 5). We thus
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Fig. 1. Emotion-driven facial
expressions in mice. (A) Facial
videography setup. (B) (Left) Single
representative video frames from
individual mice captured during
baseline (top) or upon different
emotion events to illustrate
characteristic changes. Images
derived from N = 2 mice. Similar
facial expressions were observed in
all animals reported here. (Right)
Line drawing of faces from the
same frames. Heat-map overlays
denote areas of largest difference
compared to the neutral expres-
sion. Scale bar: 6 mm. (C) Compu-
tational strategy to compare facial
expressions. (D) Similarity matrices
containing pairwise similarity coef-
ficients for all frames obtained
in the vicinity of three events for
each condition within one animal.
To the right, post hoc temporal as-
signments for each frame are
shown in color during the event and
in gray before each event. Dendro-
grams represent hierarchical
clustering. (E) t-SNE visualization of
frames obtained from all emotion
events in an individual mouse.
(F) A random forest classifier reli-
ably predicts and distinguishes
between all event-related facial
expressions. The classifier reaches
high decoding accuracies (neutral,
bitter, and sweet: 99 ± 1%; pain:
96 ± 5%; freezing: 92 ± 7%;
malaise and escape: 99 ± 2%).
Decoder performance dropped if
the decoder was trained on tem-
porally shuffled data (neutral: 14 ±
1%; bitter: 19 ± 1%; sweet 12 ± 1%;
malaise: 13 ± 1%; pain: 14 ± 2%;
freezing: 16 ± 2%; escape: 15 ± 1%).
Mann-Whitney test revealed a
significant (****P < 0.0001) dif-
ference in classifier’s prediction
performance between the real
and shuffled data for each single
facial expression.
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varied the stimulus strength and quantified
the similarity of the resulting facial expres-
sions to our prototypes. The similarity to proto-
typical descriptors increased significantly and
in a graded manner when the strength of tail

shocks, or the concentration of sucrose or
quinine solutions, increased (Fig. 2D and table
S1), although the sequence of stimulation did
not influence the facial expression intensity at
the chosen intertrial intervals (fig. S7, A and B).

Another property of emotions is their valence—
namely, they are experienced as good or bad in
humans and trigger approach or retreat in ani-
mals (3, 5, 14, 18). Salt is appetitive for rodents
at low concentrations but aversive at high
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Fig. 2. Facial expressions
reflect core features of
emotion states. (A) Sche-
matic of emotion prototype
creation. (B) Similarities of
facial expressions for each
event type (three occurrences
each) in one exemplary mouse
to each emotion prototype.
(C) Prototypes are valid and
specific universally across
mice. To calculate a similarity
score, data from N = 9 mice
and n = 27 trials per stimulus
were averaged, then min-max
normalized; the highest sim-
ilarity value was set to 1, and
the maximal baseline value
and negative values were set
to 0. Facial expressions were
highly experience specific
[ordinary one-way analysis of
variance, ****P < 0.0001,
Dunnett’s post hoc compari-
sons revealed significant dif-
ferences (****P < 0.0001) to
the neutral condition only for
the event matching the proto-
type, except for escape which
carried components of pain
and disgust.] (D) Sensory
stimuli of increasing strength
elicit more intense facial
expressions. (Left) Example
traces of face similarities to
the pain prototype in one
example mouse experiencing
increasingly strong tail shocks.
To the right, box-and-whisker
plots quantifying the facial
expression similarity to the
pain prototype upon increas-
ing tail shock intensities
(N = 9 mice, n = 27 trials
per intensity); the pleasure
similarity upon drinking
solutions of increasing
sucrose content (N = 9 mice,
n = 27 trials per concentra-
tion); and disgust similarity upon drinking solutions
of increasing quinine content (N = 10 mice, n = 30 trials per concentration).
(E) Drinking solutions of low salt content (75 mM) evoke pleasure-like facial
expression (left) but little disgust-like facial expressions (right). The inverse pattern
was observed upon drinking solutions with high salt content (500 mM). N = 5
mice, n = 15 trials per concentration. (F) Facial expressions reveal the changing
affect upon experiencing sucrose or water in either thirsty or quenched states.
N = 5 mice, n = 15 trials per state. (G) Facial expressions reveal associative

aversion learning. Mice expressed highly pleasurable and low disgust facial
expressions when drinking sucrose solutions before CTA. After CTA, mice
exhibited disgusted facial expressions and low pleasure when drinking sucrose.
N = 5 mice, n = 15 trials per timepoint. In all panels: *P ≤ 0.05, **P ≤ 0.01,
***P ≤ 0.001, ****P < 0.0001, two-tailed Mann-Whitney tests. Box-and-whisker
plots in the style of Tukey containing trial averages. Line graphs are z-scored
face similarities normalized to the 2 s preceding the stimulus, averaged
across three trials in a single animal. Shaded areas are SEM.
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concentrations. Facial expressions reflected the
innate valence of salt at different concentra-
tions, because salt at low concentration elicited
facial expressions of high similarity to our pro-
totypical “pleasure” facial expression and weak
similarity to our “disgust” prototype, whereas
the opposite was observed for high salt concen-
trations (Fig. 2E and table S1). Facial expressions
are thus decoupled from the underlying stimu-
lus and generalize between different sensory
experiences. Both sucrose and low-concentra-
tion salt solution elicited pleasure-like expres-

sions, whereas quinine and high-concentration
salt solution both evoked disgust.
Emotions reflect an integrated account of

external and internal information (3, 9) and
are thus flexible. We next varied the internal
state of the animal but kept the stimulus con-
stant. When mice drank an identically concen-
trated sucrose solution or water in either thirsty
or quenched states, both liquids elicited sig-
nificantly stronger pleasure-like facial expres-
sions when mice were thirsty than when they
were quenched (Fig. 2F and table S1).

Emotions are thought to arise from pre-
dictions about how internal or external events
may affect the well-being of the individual (or
the well-being of closely related conspecifics)
(1, 9, 10). These predictions can depend on the
innate or learnt value of stimuli. We already
saw how the innate value of salt depended on
its concentration. Would learning affect facial
expressions in a similar way? We exposed mice
to sucrose solution and then injected them
with malaise-inducing lithium chloride to in-
duce conditioned taste aversion (CTA). Sucrose
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Fig. 3. Facial expressions are variable and asso-
ciated with internal brain states. (A) Similarity
traces (1-s binned) for each relevant emotion
prototype (tail shock, pain prototype; quinine,
disgust prototype; sucrose, pleasure prototype).
(Top) Individual event-triggered facial expression
traces exhibit great variability within the same
individual and across mice. (Bottom) Population
average (pain and sucrose N = 9 animals,
n = 27 trials; quinine N = 10 animals, n = 30 trials).
Shaded area: 95% confidence interval. (B) Quantifi-
cation of facial expression onsets (top) and
durations (bottom). Probability density is based
on kernel density estimates. (C) Experimental
approach for combined facial videography and
optogenetic circuit manipulations to elicit changes
in internal brain states. (D) Optogenetic stimulation
sites in the posterior insular cortex (pIC),
anterior insular cortex (aIC), and ventral pallidum
(VP). (E) Experimental strategy to determine
the nature of the optogenetically evoked facial
expressions and their description. (F) Individual
frames for each optogenetic stimulation epoch
were individually classified. For each emotion,
the average fraction of classified frames was then
plotted per trial (pIC, n = 12 trials, N = 4 mice; aIC
and VP, n = 18 trials, N = 6 mice). One sample
Wilcoxon test revealed significantly higher detection
values than random (14.3%) only for one emotion
for each optogenetic condition: disgust for pIC
and pleasure for aIC and VP (****P < 0.0001).
(G) Plot of the normalized similarity (Pearson’s r)
for all pre- and peri-event frames against the
prototype as suggested by the classifier (dashed
line indicates stimulus onset). Lines are mean
z-scored face similarities across all trials (as above)
with shaded areas representing the SEM.
Colored lines from animals expressing ChR2
(channelrhodopsin-2), gray lines from control
animals expressing eYFP (enhanced yellow
fluorescent protein). (H) Optogenetic strategy to
activate the aIC→BLA pathway. (I) Animals were
exposed to quinine for 2 s under control (“no light”)
and optogenetic activation (“light on”) of the
aIC→BLA pathway. n = 9 trials from N = 3 mice.
Similarities were normalized so that during no-light
conditions, the mean value for pleasure = 0 and
mean value for disgust = 1 in order to reveal the changes
from the previously established baseline values.
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before CTA learning elicited pleasure but not
disgust. After CTA learning, mice displayed
disgusted facial expressions in response to
sucrose and thus their expressions reflected
the learnt change in subjective value of sucrose
(Fig. 2G and table S1).

Emotions are thought to reflect complex
internal brain states. Because we cannot con-
trol all emotion-relevant information streams,
one would hypothesize that even under iden-
tical stimulus conditions, the triggered emo-
tion state should vary. We therefore analyzed

the variability of stimulus-triggered facial ex-
pressions. Within the same mouse but also
across different mice, repeating the same
stimulus elicited facial expressions that varied
in intensity, onset, and duration (Fig. 3, A
and B). Facial expressions could wane and
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Fig. 4. Neuronal correlates
of emotion state in the pos-
terior insular cortex. (A) Illus-
tration of combined facial
videography with awake two-
photon calcium imaging.
(B) Schematic of the chronic
window implant above the
posterior insular cortex (IC,
red) with respect to major
blood vessels: medial cerebral
artery (MCA) and rhinal vein
(RV). (C) Schematic of neuro-
nal activity prediction through
stimulus and face convolution
with GCaMP6s kernel.
(D and E) Representative
normalized fluorescence traces
(black) overlaid with predicted
stimulus or facial expression
traces (colored). R values are
Pearson’s r for the correlation
between normalized fluores-
cence and the overlaid con-
volved trace. (F) Scatter plot
containing 1198 neurons
from two animals experiencing
quinine, plotted on the basis
of their correlation to the
convolved stimulus trace
(quinine) and convolved face
similarity trace (disgust proto-
type) for three stimulus pre-
sentations. A subset of
neurons correlated strongly
to the disgust similarity trace
is labeled pink. A subset
of neurons correlated strongly
to the quinine stimulus trace
is colored purple (for thresh-
olds, see materials and
methods). (G) Same as (F),
but with sucrose stimulus.
Neurons most strongly
correlated to the pleasurable
facial expression are labeled
light green, neurons most
strongly correlated to sucrose
stimulus are in dark green,
and the subset of neurons
highly correlated to both
are colored black (for thresh-
olds, see materials and
methods). (H) An example field
of view from one animal with labeled regions of interest (ROIs) (gray circular shapes). Neurons, as identified and labeled in (F) and (G), are overlaid with the appropriate
color. White ROIs indicate neurons with mixed coding properties (mostly multisensory neurons). (I and J) Venn diagrams representing the overlap in coding properties
between sensory-coding cells (I) and face-coding cells (J). Scale bar: 100 mm.
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spontaneously reappear, possibly reflecting
dynamic fluctuations in the underlying emo-
tion state (Fig. 3A). Although the greatmajority
of stimulus presentations resulted in immedi-
ate facial expressions (~90% of stimuli evoked
facial expressions within 5s of stimulus onset),
a considerable number of overall facial expres-
sions occurred late after the stimulus (>5 s after
stimulus start). Similarly, the duration of facial
expressions was highly variable. Most facial ex-
pressions triggered by 2-s-long sensory stimuli
lasted for less than 5 s (~60%); however, a sub-
stantial fraction of facial expressions lasted for
relatively long periods (5- to 15-s duration,
~23%), or even persisted for more than 15 s
(~17%) (Fig. 3B).
Direct brain stimulations can evoke specific

emotions (20, 21). We used optogenetics to
test whether manipulating activity in emotion-
relevant neuronal circuits could drive facial
expressions (Fig. 3, C and D). We activated
subregions and specific projections of the
insular cortex (IC) that have been shown in
humans and animals to evoke emotional sen-
sations and behaviors (20, 22–25). Further-
more, we manipulated the g-aminobutyric
acid–releasing neurons in the ventral pallidum
(VP) that process rewarding properties of plea-
sant stimuli (26) (Fig. 3D). Each region-specific
optogenetic manipulation evoked strong fa-
cial expressions (fig. S8 and movie S3). To
analyze whether the evoked facial expressions
would fall into our previously created emotion-
state categories, we used the same random
forest classifier as in Fig. 1F and categorized all
frames during the optogenetic stimulations (Fig.
3, E and F). For each of these three manipu-
lations, the classifier identified one specific
emotion to be displayed—namely, pleasure—
for the anterior IC and VP, but disgust for the
posterior IC stimulations (Fig. 3F and table S1).
Whenwe compared the optogenetically evoked
facial expressions to our emotion prototypes,
we found a similar temporal build-up and
persistence of the facial expressions to those
triggered externally (Fig. 3G and movie S3).
Projections from the insular cortex to the amyg-
dala can influence the emotional value of tastants
(25). Indeed, in agreementwith this earlier report,
the activation of the anterior IC→basolateral
amygdala (aIC→BLA) pathway during the ex-
posure to quinine attenuated the expression of
disgust (Fig. 3, H and I).
Our data so far suggest that facial expressions

are sensitive reflections of internal emotion
states, which correspond to brain states. There-
fore, we assumed that facial expressions should
have neuronal correlates in emotion-relevant
brain regions. The insular cortex is a critical
brain region for emotional experience and
behavior (16, 17, 20–24). We combined facial
videography with two-photon calcium imaging
in the posterior IC (pIC) to search for neuronal
correlates of facial expressions (Fig. 4, A and B,

and fig. S9). We identified single neurons that
reliably encoded sensory stimuli in the pIC
(Fig. 4, C to G), consistent with previous studies
(22, 27). We also identified neurons that ex-
hibited strong correlations to the facial expres-
sion dynamics and only low correlations with
the stimuli (Fig. 4, D to G). Indeed, these
“face” neurons captured the characteristic
persistence and spontaneity of the facial expres-
sion. Although a substantial fraction of stimulus
neurons was multisensory, face-responsive neu-
rons were highly segregated and exhibited al-
most no overlap.
In this study, we have identified facial ex-

pressions as reliable indicators of emotion
states and their neuronal correlates in mice.
But why do mice exhibit facial expressions?
Charles Darwin suggested that facial expres-
sions reveal affective processes across species,
implying an evolutionarily conserved func-
tion of these behaviors (1). Though often dis-
cussed in the context of social communication,
facial expressions may have evolved first as
parts of emotional action programs, prepar-
ing for motor behaviors and adapting sensory
acquisition to changes in the internal or ex-
ternal milieu (2, 28, 29). Indeed, head-fixed
mice, which do not socially interact, consist-
ently respond to emotionally salient events with
stereotyped facial expressions. Although the value
of facial expressions for uncovering emotional
processes in humans remains controversial (30),
thismay be partially due to the volitional control
that humans exert over emotions and their
expression. It would therefore be interesting to
examine how facial expressions are modified
by the presence of conspecifics in mice.
Direct observation of facial expressions is

possible in quasi–real time (fig. S10) and al-
lows for the mechanistic investigation of the
neural underpinnings of emotions in mice.
Correlation of emotional facial expressions with
neuronal activity recordings and closed-loop
manipulations are promising approaches to
search for and test the causal role of the neuronal
substrates of basic emotional building blocks,
such as intensity, valence, and persistence.
Our data suggest that facial expressions can

be classified into different basic categories.
An important question for future studies
may be to what degree emotion states are
dimensional or categorical states at the level
of not only behavioral expressions but also the
underlying brain circuitries. The relatively sim-
ple implementation of HOG feature descrip-
tors may become a useful addition to studying
emotional facial or postural expressions in
other laboratory animals, such as rats, shrews,
lemurs, and monkeys. It may also help in iden-
tifying unknown, species-specific emotion states
and assist in moving toward a more universal
and evolutionarily based definition and under-
standing of emotions and their neural under-
pinnings across species.
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