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Abstract: We study generating series of torus integrals that contain all so-called modular

graph forms relevant for massless one-loop closed-string amplitudes. By analysing the differ-

ential equation of the generating series we construct a solution for its low-energy expansion

to all orders in the inverse string tension α′. Our solution is expressed through initial data

involving multiple zeta values and certain real-analytic functions of the modular parameter

of the torus. These functions are built from real and imaginary parts of holomorphic it-

erated Eisenstein integrals and should be closely related to Brown’s recent construction of

real-analytic modular forms. We study the properties of our real-analytic objects in detail

and give explicit examples to a fixed order in the α′-expansion. In particular, our solution

allows for a counting of linearly independent modular graph forms at a given weight, confirm-

ing previous partial results and giving predictions for higher, hitherto unexplored weights. It

also sheds new light on the topic of uniform transcendentality of the α′-expansion.ar
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1 Introduction

Closed-string scattering amplitudes at perturbative one-loop order are formulated as integrals

over the complex structure parameter τ of the torus worldsheet. The function of τ in the

integrand has to be modular invariant under the group SL2(Z) of large diffeomorphisms of the

torus and arises from integrating a conformal field theory (CFT) correlator over the punctures

zi of the torus. This work is dedicated to performing the integrals over torus punctures in

a low-energy expansion in powers of Mandelstam variables sij (in units of the inverse string

tension α′).

The families of modular invariants and more generally modular forms that can arise in

this low-energy expansion have been studied from various perspectives [1–31]1, and they are

now known as modular graph forms (MGFs). The name MGF refers to the fact that they

can be characterised by (decorated) Feynman-like graphs on the torus where the vertices of

1See [32–37] for higher-genus incarnations of modular graph forms.
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the graphs correspond to the integrated punctures in the CFT correlator. Moreover, MGFs

have a definite modular behaviour under SL2(Z) acting on τ .

On the one hand, it is straightforward to obtain MGFs as nested lattice sums over discrete

loop momenta on the torus by Fourier transformation of the underlying CFT correlators. On

the other hand, many crucial properties of MGFs, including their behaviour at the cusp

τ → i∞, are laborious to extract from their lattice-sum representations. In particular, the

lattice sum representation does not manifest that MGFs obey an intricate web of relations over

rational numbers and multiple zeta values (MZVs). The last years have witnessed tremendous

progress in performing basis reductions of individual MGFs [4, 5, 9, 13, 20], mostly through the

differential equations they satisfy. Still, the workload in simplifying the low-energy expansion

of torus integrals grows drastically with the order in the α′-expansion.

In this work, we study generating series of torus integrals and derive an all-order formula

for their α′-expansion as our main result, that also exposes all relations among MGFs. These

generating series are conjectured to contain all MGFs that are relevant to closed-string one-

loop amplitudes of type-II, heterotic and bosonic string theories. The advantage of working

with generating series is that their differential equations in τ , derived in our previous work [30],

are valid to all orders in α′ and take a simple form for any number n of punctures.

Similar types of generating series have been constructed for one-loop open-string ampli-

tudes, i.e. for a conjectural basis of integrals over punctures on the boundary of a cylinder

or Möbius-strip worldsheet [38, 39]. Their differential equations have been solved to yield

explicitly known combinations of iterated integrals over holomorphic Eisenstein series Gk at

all orders of the open-string α′-expansions.2 We shall here exploit that the first-order differ-

ential equations of closed-string generating series have the same structure as their open-string

counterparts [30]: Our main result is a solution of the closed-string differential equations that

pinpoints a systematic parametrization of arbitrary MGFs in terms of iterated Eisenstein

integrals and their complex conjugates.3 The existence of such parametrizations is implied

by the constructive proof announced in talks by Panzer, cf. e.g. [47]. Our generating series

also provide a new angle on the problem of constructing bases of MGFs at given modular

weights and reducing the topology of graphs one needs to consider.

The results of this work provide a link to recent developments in the mathematics litera-

ture: Brown constructed a class of non-holomorphic modular forms from iterated Eisenstein

integrals and their complex conjugates which share the algebraic and differential proper-

ties of MGFs [46, 48, 49]. We expect the combinations of iterated Eisenstein integrals in

2The α′-expansion of the cylinder- and Möbius-strip integrals in the simplest one-loop open-string am-
plitudes is known to be expressible in terms of iterated Eisenstein integrals from earlier work [40–43]. An
alternative method to determine all-order α′-expansions of open-string integrals from differential equations in
auxiliary punctures has been introduced in [44].

3The relation between MGFs and iterated Eisenstein integrals has already been established for certain
classes of examples [8, 17, 45, 46].
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our parametrization of MGFs to occur in Brown’s generating series of single-valued iterated

Eisenstein integrals that drive his construction of modular forms: At the level of the respec-

tive generating series, single-valued iterated Eisenstein integrals and closed-string integrals

both obey differential equations of Knizhnik–Zamolodchikov–Bernard-type in τ . Moreover,

both constructions give rise to modular forms with an identical counting of independent rep-

resentatives, which is governed by holomorphic integration kernels τ jGk(τ) with 0 ≤ j ≤ k−2

and Tsunogai’s derivation algebra [50].

In order to generate MGFs from first-order differential equations of closed-string integrals,

we need to supplement initial values at the cusp τ → i∞. Our generating series at n points is

believed to degenerate to genus-zero integrals over moduli spaces of (n+2)-punctured spheres

similar to those in closed-string tree amplitudes. The appearance of sphere integrals will be

made explicit at n = 2 and is under investigation at n ≥ 3 [51], i.e. conjectural at the time of

writing. Once the degeneration to sphere integrals is fully established at n points, the initial

values in our α′-expansions at genus one are series in single-valued MZVs4 which arise in the

α′-expansion of sphere integrals [54–60]. Hence, the formalism in this work should reduce

all MGFs to single-valued MZVs and real-analytic iterated Eisenstein integrals. Our results

can thus be viewed as a concrete step towards genus-one relations between closed strings and

single-valued open-string amplitudes as pioneered in [7, 8, 17, 21, 28].

The present work concerns MGFs that are the building blocks of closed-string scattering

amplitudes. In order to obtain the actual scattering amplitude one still has to perform the

integral over the modular parameter τ . While our methods do not directly give new insights

into this final step, we note that a parametrisation in terms of iterated Eisenstein integrals

can help in view of recent progress in representing these in terms of Poincaré series [18, 23, 61].

Poincaré-series representations of modular-invariant functions feature crucially in the Rankin–

Selberg–Zagier method for integrals over τ [1, 62–65] and related work in the context of MGFs

can be found in [4, 22, 25].

1.1 Summary of results

The generating series of MGFs that is central to the present paper can be written in the

schematic form

Y τ
~η (σ|ρ) = (τ−τ̄)n−1

∫ ( n∏
j=2

d2zj
Im τ

)
exp

( n∑
1≤i<j

sijG(zi−zj , τ)
)

(1.1)

× σ
[
ϕτ (zj , ηj , η̄j)

]
ρ
[
ϕτ (zj , (τ−τ̄)ηj , η̄j)

]
,

where the n punctures zj are integrated over a torus of modular parameter τ (after fixing

z1 = 0 by translation invariance) and the ηj and η̄j are the formal variables of the generating

4Single-valued MZVs are obtained from evaluating single-valued polylogarithms at unit argument [52, 53].
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series. Expanding with respect to these and the dimensionless Mandelstam variables

sij = −α
′

2
ki · kj , 1 ≤ i < j ≤ n (1.2)

generates MGFs. The integrand of (1.1) involves doubly-periodic functions ϕτ (zj , . . .) =

ϕτ (zj+1, . . .) = ϕτ (zj+τ, . . .) that will be spelled out below in (2.8). The asymmetric rescaling

of the holomorphic bookkeeping variables ηj and η̄j in the last factor ϕτ (zj , (τ−τ̄)ηj , η̄j) is

chosen in view of the modular properties of the generating series. The integrals Y τ
~η in (1.1)

are indexed by permutations σ, ρ ∈ Sn−1 that act on the subscripts 2, 3, . . . , n of the {zj , ηj}
variables and leave z1 inert. Finally, the permutation-invariant exponent in (1.1) features the

closed-string Green function G(z, τ) on the torus that will be reviewed in section 2 below,

where we also comment on the role of σ, ρ in the open string [30, 38, 39].

We have conjectured in [30] that one can use integration by parts and Fay identities such

that all basis integrals appearing in torus amplitudes in various string theories are contained

in the generating series Y τ
~η . This is true for all examples studied thus far (see e.g. appendix

D of [21]), and it would be interesting to find a general proof, for instance by computing the

dimension of the underlying twisted cohomology as done at tree level by Aomoto [66].5

It was shown in [30] that the integrals Y τ
~η in (1.1) obey a first-order differential equation

in τ of schematic form

∂τY
τ
~η (σ|ρ) =

1

(τ−τ̄)2

n∑
j=2

η̄j∂ηjY
τ
~η (σ|ρ) +

∑
α∈Sn−1

Dτ~η(ρ|α)Y τ
~η (σ|α) . (1.3)

The (n−1)!× (n−1)! matrix Dτ~η(ρ|α) comprises second derivatives in ηj , Weierstraß functions

of ηj , τ and has a pole in (τ−τ̄)−2. It is closely related to analogous operators Dτ
~η in differential

equations of open-string integrals [38, 39].

One of the key steps for presenting the solution of (1.3) in terms of iterated integrals is

a redefinition of the generating series by the exponentiated action of a differential operator

R~η(ε0) that is related to Tsunogai’s derivation algebra [50]. The redefinition

Ŷ τ
~η (σ|ρ) =

∑
α∈Sn−1

exp
(
−

R~η(ε0)

2πi(τ−τ̄)

)
ρ
αY τ

~η (σ|α) (1.4)

streamlines the differential equation (1.3) and in particular removes the poles ∼ (τ−τ̄)−2 in

both terms on the right-hand side. This results in a differential equation of the form

∂τ Ŷ
τ
~η (σ|ρ) =

∞∑
k=4

k−2∑
j=0

(τ−τ̄)jGk(τ)
∑

α∈Sn−1

O~η,j,k(ρ|α)Ŷ τ
~η (σ|α) . (1.5)

5See for instance [67, 68] for a discussion in a physics context.
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The O~η,j,k(ρ|α) are matrix-valued operators that importantly do not depend on τ and involve

at least one power in sij and therefore α′. Hence, one can solve (1.5) perturbatively by iterated

integrals over holomorphic Eisenstein series Gk(τ) and thereby build up the α′-expansion of

(1.4). The range of the accompanying powers (τ−τ̄)j , j ∈ {0, 1, . . . , k−2} ties in with Brown’s

iterated Eisenstein integrals [46, 48, 49]. More specifically, (1.5) will be shown to admit an

all-order solution for the original integrals (1.1)

Y τ
~η (σ|ρ) =

∞∑
`=0

(−1)`
∑

k1,k2,...,k`
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k`−2∑
j`=0

(2πi)−`+
∑`
i=1(ki−ji)βsv

[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

(1.6)

×
∑

α,β∈Sn−1

[
O~η,j`,k` · . . . · O~η,j2,k2

· O~η,j1,k1

]
(ρ|α) exp

( R~η(ε0)

2πi(τ−τ̄)

)
α
βŶ i∞

~η (σ|β) ,

see (3.11) for the exact expression. The βsv
[
j1 j2 ... j`
k1 k2 ... k`

]
are the central objects in this paper

and expressible in terms of holomorphic iterated Eisenstein integrals and their complex con-

jugates. In case of a single column with entries k ≥ 4 and 0 ≤ j ≤ k−2, they are related to

non-holomorphic Eisenstein series, their derivatives and (conjecturally single-valued) MZVs,

and we expect general βsv to occur in Brown’s generating series of single-valued iterated Eisen-

stein integrals. The right-hand side of (1.6) also features matrix products . . .O~η,j2,k2
·O~η,j1,k1

of the operators in (1.5), and these operators will be seen to be related to Tsunogai’s deriva-

tion algebra. Moreover, the degeneration Ŷ i∞
~η (σ|β) of the integrals (1.4) at the cusp τ → i∞

is a series in sij , ηj , η̄j and is conjectured6 to contain only single-valued MZVs ζsv
k1,...,kr

in its

coefficients. For ordinary MZVs of depth r (see e.g. [69] for their relations over Q)

ζk1,k2,...,kr =

∞∑
0<n1<···<nr

n−k1
1 n−k2

2 . . . n−krr , k1, k2, . . . , kr ∈ N , kr ≥ 2 (1.7)

the single-valued map7 [52, 53] at r = 1 only retains cases of odd weight k1,

ζsv
2k+1 = 2ζ2k+1 , ζsv

2k = 0 . (1.8)

The degeneration limit Ŷ i∞
~η (σ|β) at n = 2 points will be explicitly reduced to ζsv

k via (4.2)

which proves our claim in this case, and the degenerations at higher multiplicities n ≥ 3 are

under investigation [51].

We shall investigate the modular and reality properties of the βsv appearing in (1.6) and

express them in terms of iterated Eisenstein integrals and their complex conjugates. These

6This is a stronger form of Zerbini’s conjecture [7, 19] that the expansion of modular graph functions around
the cusp contains only single-valued MZVs.

7Strictly speaking, the single-valued map as in (1.8) is only defined to exist in passing to motivic MZVs.
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representations βsv will follow solely based on their derivative w.r.t. τ together with the

reality properties of the generating series Y τ
~η . In particular, the antiholomorphic constituents

of βsv
[
j1 j2
k1 k2

]
up to k1+k2 ≤ 10 turn out to involve only ζsv

k as follows from detailed studies

of the two- and three-point generating series.

The relation of the βsv to the derivation algebra imply that not all combinations of βsv

can actually appear independently in the generating series. Together with the conjecture that

Y τ
~η contains all possible MGFs, this allows us to give a precise count and determination of

the relations between MGFs beyond the weights that have been studied to date.

By exploiting also the reality properties of the βsv, the counting allows us to distinguish

between real and imaginary MGFs in the basis. Since imaginary MGFs are cuspidal [22], we

can hence also identify the number of imaginary non-holomorphic cusp forms in the spec-

trum of MGFs with our method. In particular, we show that at modular weight (5, 5) three

imaginary cusp forms are necessary for a basis of MGFs of arbitrary topology, extending the

analysis of two-loop graphs in [22] by one new cusp form. The total number of indepen-

dent MGFs of modular weight (w,w) with w ≤ 8 and the number of imaginary cusp forms

contained in these is given by

mod. weight (w, w̄) (0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8)

# MGFs 1 0 1 1 4 7 19 43 108

# imag. cusp forms 0 0 0 0 0 3 5 19 42

This counting includes products of MGFs but excludes products involving MZVs. In this

table, we have focused on cases with w = w̄ that can be turned into modular invariant

functions by multiplying by (Im τ)w and these cases include not only the modular graph

functions originally studied in [4, 8], but also more general modular invariant objects. A

more detailed counting including cases with w 6= w̄ will be presented in section 6.2.

1.2 Outline

We introduce the ingredients of the generating series Y τ
~η and its properties in section 2. In

section 3, we study in detail the transition from (1.3) to (1.5) and how this leads to the βsv

together with their relation to iterated Eisenstein integrals. This includes a discussion of

integration ambiguities given by antiholomorphic functions and how they can be fixed from

reality properties. In section 4, we implement the general scheme in the simplest two-point

case and show how this fixes already a large number of βsv. Further βsv are then fixed by

adding in data from n = 3 points in section 5, where we also encounter imaginary cuspidal

MGFs and study their properties. Section 6 is devoted to modular transformation properties

of general βsv as well as their implications on the classification of independent MGFs and the

transcendentality properties of closed-string integrals. A summary with some open questions
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is contained in section 7. Several appendices collect complementary details and some of the

more lengthy expressions for the βsv and similar objects Esv.

Note: Some of the explicit expressions relating MGFs, βsv and Esv can be quite lengthy,

and the arXiv submission of this paper includes an ancillary Mathematica and data file where

these relations and expansions of the generating series Y τ
~η at n = 2 and n = 3 points up to

total order 10 are available.

2 Generating series of closed-string integrals

In this section, we will spell out the detailed form of the generating series Y τ
~η in (1.1) and

recall its differential equations derived in [30]. For this we first need to introduce the basic

building blocks entering Y τ
~η and also review the connection to modular graph forms.

2.1 Kronecker–Eisenstein integrands and Green function

The generating series Y τ
~η is constructed out of the so-called doubly-periodic Kronecker–

Eisenstein series and a Koba–Nielsen factor that involves the scalar Green function on the

worldsheet torus.

The torus Kronecker–Eisenstein series in its doubly-periodic form reads [70, 71]

Ω(z, η, τ) := exp

(
2πiη

Im z

Im τ

)
θ′(0, τ)θ(z + η, τ)

θ(z, τ)θ(η, τ)
(2.1)

with θ(z, τ) the odd Jacobi theta function and θ′(z, τ) its derivative in the first argument.

The function Ω(z, η, τ) is doubly-periodic in the torus variable z ∼= z + 1 ∼= z + τ and can

be Laurent-expanded in the formal variable η. This expansion yields an infinite tower of

doubly-periodic functions f (w)(z, τ) via

Ω(z, η, τ) =

∞∑
w=0

ηw−1f (w)(z, τ) . (2.2)

The significance of the functions f (w) is that all correlation functions of one-loop massless

(and possibly massive) closed-string amplitudes in bosonic, heterotic and type-II theories are

expressible through them [21]8. Their simplest instances are

f (0)(z, τ) = 1 , f (1)(z, τ) = ∂z log θ(z, τ) + 2πi
Im z

Im τ
, (2.3)

and all the f (w≥2) are non-singular on the entire torus. Only f (1) has a simple pole at z = 0

and in fact at all lattice points z ∈ Z + τZ.

8More specifically, see [40, 72] and [73] for the appearance of f (w)(z, τ) in the spin sums of the RNS
formalism and the current algebra of heterotic strings, respectively.

– 7 –



The real scalar Green function on the torus is

G(z, τ) = − log

∣∣∣∣θ(z, τ)

η(τ)

∣∣∣∣2 +
2π(Im z)2

Im τ
, (2.4)

where η(τ) = q1/24
∏∞
n=1(1− qn) denotes the Dedekind eta-function and q = e2πiτ .

Under modular transformations with
(
α β
γ δ

)
∈ SL2(Z) the doubly-periodic functions and

the Green function obey the following simple transformation laws:

Ω

(
z

γτ + δ
,

η

γτ + δ
,
ατ + β

γτ + δ

)
= (γτ + δ)Ω(z, η, τ) , (2.5a)

f (w)

(
z

γτ + δ
,
ατ + β

γτ + δ

)
= (γτ + δ)wf (w)(z, τ) , (2.5b)

G

(
z

γτ + δ
,
ατ + β

γτ + δ

)
= G(z, τ) . (2.5c)

Objects that transform with a factor of (γτ +δ)w(γτ̄ +δ)w̄ under SL2(Z) will be said to carry

(holomorphic and antiholomorphic) modular weight (w, w̄). Thus, one can read off weight

(1, 0) for Ω, weight (w, 0) for f (w) and weight (0, 0) for the Green function which is also

referred to as modular invariant.

One-loop amplitudes of closed-string states are built from n-point correlation function

of vertex operators on a worldsheet torus. The plane-wave parts of vertex operators with

massless external momenta ki (i = 1, 2, . . . , n) always contribute the so-called Koba–Nielsen

factor [74]

KNτ
n :=

n∏
1≤i<j

exp (sijG(zij , τ)) , (2.6)

comprising Green functions connecting the various vertex insertions and the Mandelstam

variables sij defined in (1.2).

2.2 Generating series and component integrals

An n-point correlation function of massless vertex operators on a worldsheet torus with fixed

modular parameter τ depends on the punctures zi via Green functions, f (w) and f (w) [21].

Since the f (w) and f (w) are generated by the Kronecker–Eisenstein series Ω via (2.2) and

the Green functions from the Koba–Nielsen factor KNτ
n via (2.6), it is natural to consider

generating functions involving these objects. Moreover, one-loop closed-string amplitudes

require integrating the punctures zi ∼= zi+mτ+n, m, n ∈ Z over the torus, and the modular

invariant integration measure is normalised as
∫

d2zi
Im τ = 1.
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In order to exhibit our generating series of torus integrals, we begin with the simplest

two-point case, where the above reasoning leads to considering [30]

Y τ
η = (τ−τ̄)

∫
d2z2

Im τ
Ω(z12, η, τ)Ω(z12, (τ−τ̄)η, τ) KNτ

2 (2.7)

with zij = zi − zj , and we have used translation invariance on the torus to fix z1 = 0.

The n-point generalisation is an (n−1)!×(n−1)! matrix Y τ
~η (σ|ρ) labelled by permutations

σ, ρ ∈ Sn−1 and involving n−1 parameters ~η = (η2, η3, . . . , ηn) [30],

Y τ
~η (σ|ρ) = Y τ

~η

(
1, σ(2, . . . , n)|1, ρ(2, . . . , n)

)
= (τ−τ̄)n−1

∫ ( n∏
j=2

d2zj
Im τ

)
KNτ

n

× σ
[
Ω(z12, η23...n, τ) Ω(z23, η34...n, τ) · · ·Ω(zn−2,n−1, ηn−1,n, τ) Ω(zn−1,n, ηn, τ)

]
(2.8)

× ρ
[
Ω(z12, (τ−τ̄)η23...n, τ) Ω(z23, (τ−τ̄)η34...n, τ) · · ·Ω(zn−1,n, (τ−τ̄)ηn, τ)

]
,

where we have used the shorthand ηi...j = ηi + . . . + ηj . The permutations σ, ρ act on

the subscripts of the generating parameters ηi and insertion points zi and are necessary to

obtain homogeneous first-order differential equations in τ for the matrix Y τ
~η (σ|ρ). We will

refer to the entries of Y τ
~η (σ|ρ) by writing the images of the elements (2, 3, . . . , n) under the

permutations ρ and σ. Thus, Y τ
η2,η3

(2,3|2,3) at n = 3 corresponds to the trivial elements

of S2 while Y τ
η2,η3

(3,2|2,3) represents the non-trivial element σ ∈ S2 that maps the factor of

Ω(z12, η23, τ) Ω(z23, η3, τ) in the integrand to Ω(z13, η23, τ) Ω(z32, η2, τ).

In the open-string versions of the integrals (2.8), the permutation σ refers to an integration

domain (a cyclic ordering of open-string punctures on a cylinder boundary) in the place of the

complex conjugate Ω [30, 38, 39]. The asymmetric choice of second arguments (τ−τ̄)ηj and

η̄j for the Ω and Ω in the generating series (2.8) is motivated by aiming for specific modular

weights as we shall discuss below.

We will use extensively the following component integrals

Y τ
(a|b) =

1

(2πi)b
Y τ
η2

∣∣
ηa−1

2 η̄b−1
2

=
(τ−τ̄)a

(2πi)b

∫
d2z2

Im τ
KNτ

2 f
(a)
12 f

(b)
12 (2.9)

with the shorthand

f
(a)
ij = f (a)(zi − zj , τ) , (2.10)

where the normalising factor (2πi)−b was chosen to simplify some relations under complex

conjugation below. The components of the n-point generating function (2.8) are similarly

defined as

Y τ
(a2,a3,...,an|b2,b3,...,bn)(σ|ρ) =

1

(2πi)b2+b3+...+bn
Y τ
~η (σ|ρ)

∣∣
η
a2−1
23...nη

a3−1
3...n ...η

an−1
n η̄

b2−1
23...nη̄

b3−1
3...n ...η̄

bn−1
n

– 9 –



=
(τ−τ̄)a2+a3+...+an

(2πi)b2+b3+...+bn

( n∏
j=2

∫
d2zj
Im τ

)
KNτ

n (2.11)

× ρ
[
f

(a2)
12 f

(a3)
23 . . . f

(an)
n−1,n

]
σ
[
f

(b2)
12 f

(b3)
23 . . . f

(bn)
n−1,n

]
.

By the modular transformations (2.5) together with

Im

(
ατ + β

γτ + δ

)
=

Im τ

(γτ + δ)(γτ̄ + δ)
(2.12)

the modular weights of the component integrals (2.9) and (2.11) are

Y τ
(a|b) ↔ weight (0, b−a) , Y τ

(a2,...,an|b2,...,bn)(σ|ρ)↔ weight
(

0,

n∑
j=2

(bj−aj)
)
. (2.13)

This property holds at each order in the α′-expansion, so the integrals are generating func-

tions of modular forms. The fact that the holomorphic modular weight of the component

integral vanishes was the reason for making the asymmetric definitions (2.7) and (2.8). These

definitions also lead to a more tractable differential equation that we shall analyse in detail

in this paper.

We will later make essential use of the following reality properties: Complex conjugation

of component integrals over f
(a)
12 f

(b)
12 exchanges a↔ b, so we have

Y τ
(a|b) = (4y)a−bY τ

(b|a) , Y τ
(a|b) = (4y)a−bY τ

(b|a) , (2.14)

where y = π Im τ , and similarly,

Y τ
(a2,...,an|b2,...,bn)(σ|ρ) =

( n∏
j=2

(4y)aj−bj
)
Y τ

(b2,...,bn|a2,...,an)(ρ|σ) . (2.15)

2.3 Modular graph forms

In a series-expansion w.r.t. α′, the component integrals (2.9) and (2.11) can be conveniently

performed in Fourier space, see appendix A.1. This leads to nested lattice sums over non-

vanishing discrete momenta p = mτ + n on the torus with m,n ∈ Z. In the case of the

two-point component integrals (2.9), the z2 integration yields for instance expressions of the

type

C
[ a1 a2 ... aR
b1 b2 ... bR

]
(τ) =

∑
p1,...,pR 6=0

δ(p1 + . . .+ pR)

pa1
1 p̄

b1
1 · · · p

aR
R p̄bRR

(2.16)

– 10 –



C
[ a1 a2 ... aR
b1 b2 ... bR

]
←→ •

(a1, b1)

•
(a2, b2)

...
...

(aR, bR)

Figure 1: Dihedral graph with decorated edges and notation for modular graph form.

with integer labels ai, bi. Here,
∑

p 6=0 instructs us to sum over all p = mτ+n with (m,n) ∈ Z2

and (m,n) 6= (0, 0), resulting in modular weight
∑R

i=1(ai, bi).

Formula (2.16) is an example of a modular graph form (MGF) [8, 9], here associated

with a dihedral graph topology of lines connecting the two insertion points, see figure 1. The

momentum-conserving delta function obstructs nonzero one-column MGFs, so the simplest

examples of dihedral topology are

C
[
a 0
b 0

]
(τ) =

∑
p 6=0

1

pap̄b
=

∑
(m,n)∈Z2

(m,n) 6=(0,0)

1

(mτ+n)a(mτ̄+n)b
. (2.17)

Special cases are given by non-holomorphic Eisenstein series (convergent for k ≥ 2)

Ek(τ) =
( Im τ

π

)k
C
[
k 0
k 0

]
(τ) =

( Im τ

π

)k∑
p 6=0

1

|p|2k
. (2.18)

They are real and modular invariant due to the prefactor (Im τ)k, see (2.12).

Similar to the MGF (2.16) associated with the dihedral topology in figure 1, one can

introduce MGFs for any graph Γ with labelled edges [8, 9]. As exemplified for the trihedral

case in appendix A.2, the notation CΓ

[A
B
]

for the corresponding MGF has to track the holo-

morphic labels A, the antiholomorphic labels B and the adjacency properties of the edges of

the graph Γ. We follow the conventions of [30] for their normalisation where the modular

weight (w, w̄) is obtained by summing the labels of all edges,

CΓ

[A
B
]
↔ modular weight (w, w̄) =

(∑
a∈A

a,
∑
b∈B

b

)
, (2.19)

cf. appendix A.2 for the trihedral case. Even though more complicated graph topologies are

ubiquitous in the MGF literature, one of the results of the present paper is that, up to total

modular weight w+w̄ = 12, dihedral MGFs are sufficient for providing a basis of all MGFs.

This is discussed in more detail in section 6.2.6.
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2.3.1 Differential operators and equations

The more general case of (2.17) with a 6= b can be accounted for by using the following

derivative operators9

∇ := 2i(Im τ)2∂τ , ∇ := −2i(Im τ)2∂τ̄ . (2.20)

The operator ∇ has the property that it maps an object of modular weight (0, w̄) to (0, w̄−2)

and, by (2.13), is therefore an appropriate operator for the component integrals (2.11). The

operator ∇ similarly maps weight (w, 0) to (w−2, 0).

Acting with the differential operator ∇ on the non-holomorphic Eisenstein series Ek

in (2.18) leads to

∇mEk(τ) =
(Im τ)k+m

πk
(k +m− 1)!

(k − 1)!
C
[
k+m 0
k−m 0

]
(τ) . (2.21)

Cases with m = k yield holomorphic Eisenstein series

Gk(τ) = C
[
k 0
0 0

]
(τ) =

∑
p 6=0

1

pk
(2.22)

that converge absolutely for k ≥ 4 and vanish for odd k. Formula (2.21) specialises in this

case to

(π∇)kEk(τ) =
(2k − 1)!

(k − 1)!
(Im τ)2kG2k(τ) . (2.23)

We will encounter the following generalisations that are also real and modular-invariant [17]:

E2,2 =
( Im τ

π

)4
C[ 1 1 2

1 1 2 ]− 9

10
E4 , (2.24a)

E2,3 =
( Im τ

π

)5
C[ 1 1 3

1 1 3 ]− 43

35
E5 , (2.24b)

E3,3 =
( Im τ

π

)6(
3 C[ 1 2 3

1 2 3 ] + C[ 2 2 2
2 2 2 ]

)
− 15

14
E6 , (2.24c)

E′3,3 =
( Im τ

π

)6(
C[ 1 2 3

1 2 3 ] +
17

60
C[ 2 2 2

2 2 2 ]
)
− 59

140
E6 , (2.24d)

E2,4 =
( Im τ

π

)6(
9 C[ 1 1 4

1 1 4 ] + 3 C[ 1 2 3
1 2 3 ] + C[ 2 2 2

2 2 2 ]
)
− 13E6 , (2.24e)

E2,2,2 =
( Im τ

π

)6(232

45
C[ 2 2 2

2 2 2 ] +
292

15
C[ 1 2 3

1 2 3 ] +
2

5
C[ 1 1 4

1 1 4 ]− C[ 1 1 2 2
1 1 2 2 ]

)
+ 2E2

3 + E2E4 −
466

45
E6 . (2.24f)

9These were called ∇DG in [30] and correspond to (Im τ) times Maaß raising and lowering operators. The
normalisation conventions for ∇ are identical to those in [9, 13, 17, 21, 22].
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The above MGFs all belong to the dihedral class and arise in (n≥2)-point component integrals.

More complicated graph topologies arise for the higher-point component integrals (2.11), and

a brief review of trihedral modular graph forms can be found in appendix A.2.

The particular choice of combinations in the above expressions simplifies the differential

equation and delays the occurrence of holomorphic Eisenstein series Gk as much as possible

when taking Cauchy–Riemann derivatives. This leads for instance to the following differential

equations [9, 17]

(π∇)3E2,2 = −6(Im τ)4G4π∇E2 , (2.25)

(π∇)3E2,3 = −2(π∇E2)(π∇)2E3 − 4(Im τ)4G4π∇E3 .

2.3.2 Examples in α′-expansions

As an example of how MGFs occur in the component integrals of the generating series Y τ
~η ,

we consider the two-point integrals (2.9). It can be checked by using identities for modular

graph forms [9] that the first few component integrals have the following α′-expansions10

Y τ
(0|0) = 1 +

1

2
s2

12E2 +
1

6
s3

12(E3 + ζ3) + s4
12

(
E2,2 +

1

8
E2

2 +
3

20
E4

)
(2.26a)

+ s5
12

(1

2
E2,3 +

1

12
E2(E3 + ζ3) +

3

14
E5 +

2ζ5

15

)
+O(s6

12) ,

Y τ
(2|0) = 2s12π∇E2 +

2

3
s2

12π∇E3 + s3
12

(3

5
π∇E4 + 4π∇E2,2 + E2π∇E2

)
(2.26b)

+ s4
12

(6

7
π∇E5 + 2π∇E2,3 +

1

3
E2π∇E3 +

1

3
E3π∇E2 +

1

3
ζ3π∇E2

)
+O(s5

12) ,

Y τ
(4|0) = −4

3
s12(π∇)2E3 + s2

12

(
−6

5
(π∇)2E4 + 2(π∇E2)2

)
(2.26c)

+ s3
12

(
−12

7
(π∇)2E5 − 4(π∇)2E2,3 −

4

3
(π∇E2)(π∇E3)− 2

3
E2(π∇)2E3

)
+O(s4

12) .

2.3.3 Laurent polynomials

The expansion of MGFs around the the cusp τ → i∞ are expected to take the form

CΓ

[A
B
]

=
∑
m,n≥0

cm,n(Im τ)qmq̄n , (2.27)

where cm,n(Im τ) are Laurent polynomials in Im τ , see e.g. Theorem 1.4.1 of [19]. An im-

portant property of MGFs is the Laurent polynomial c0,0(Im τ) corresponding to the q- and

10When comparing with the α′-expansions in (2.69) of [30], note that the component integrals (2.9) are

related to the W τ
(a|b) in the reference via Y τ(a|b) = (2i Im τ)a

(2πi)b
W τ

(a|b).
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q̄-independent terms in (2.27). As exemplified by (with Bernoulli numbers B2k) [2, 4]

Ek = (−1)k−1 B2k

(2k)!
(4y)k +

4(2k−3)!

(k−2)!(k−1)!

ζ2k−1

(4y)k−1
+O(q, q̄) , (2.28a)

E2,2 = − y4

20250
+
yζ3

45
+

5ζ5

12y
− ζ2

3

4y2
+O(q, q̄) , (2.28b)

E2,3 = − 4y5

297675
+

2y2ζ3

945
− ζ5

180
+

7ζ7

16y2
− ζ3ζ5

2y3
+O(q, q̄) , (2.28c)

the coefficients in the Laurent polynomials c0,0(Im τ) are conjectured11 to be Q-linear com-

binations of single-valued MZVs [7, 8, 19] when written in terms of y = π Im τ .

2.3.4 Cusp forms

Modular graph forms have a simple transformation under complex conjugation that just

exchanges the ai and bi labels. For dihedral graphs this means

C
[ a1 a2 ... aR
b1 b2 ... bR

]
= C

[
b1 b2 ... bR
a1 a2 ... aR

]
. (2.29)

We will encounter imaginary combinations of MGFs in the context of three-point Y τ
~η -integrals,

A[
a1 a2 ... aR
b1 b2 ... bR ] = C

[ a1 a2 ... aR
b1 b2 ... bR

]
− C

[ a1 a2 ... aR
b1 b2 ... bR

]
. (2.30)

Imaginary MGFs of this type have been first studied in [22] and were shown to be cusp forms

with vanishing Laurent-polynomials ∼ q0q̄0: The A [· · · ] (τ) in (2.30) are odd under τ → −τ̄
that sends Re τ → −Re τ while keeping Im τ unchanged. This reflection moreover acts on any

modular graph form by12 C[· · · ](−τ̄) = C[· · · ](τ) since this operation exchanges holomorphic

and antiholomorphic momenta up to a change of summation variable, thus making A [· · · ] (τ)

an odd function under this reflection. But since Im τ and thus the zero mode c0,0(Im τ) −
c0,0(Im τ) of A [· · · ] (τ) are even this means that the zero mode must vanish. Also real cusp

forms occur among MGFs, for instance products of two imaginary cusp forms (2.30).

2.4 Differential equation

The differential equation of the generating series Y τ
~η defined in section 2.2 was derived in [30].

At two points, the integral (2.7) was shown to obey the homogeneous first-order equation

2πi∂τY
τ
η =

{
− 1

(τ−τ̄)2
Rη(ε0) +

∞∑
k=4

(1−k)(τ−τ̄)k−2Gk(τ)Rη(εk)

}
Y τ
η (2.31)

11In the case of modular graph functions with aj = bj , the coefficients in the Laurent polynomials c0,0(Im τ)
are proven to be Q-linear combinations of cyclotomic MZVs [7, 19].

12Here, we make use of the assumption that the entries ai and bi of the MGFs are integers [22].
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with the following η- and η̄-dependent operators

Rη(ε0) = s12

( 1

η2
− 1

2
∂2
η

)
− 2πiη̄∂η , Rη(εk) = s12η

k−2 , k ≥ 4 . (2.32)

The generalisation to (n≥3) points requires (n−1)!×(n−1)! matrix-valued operators R~η(εk)ρ
α

acting on the indices ρ of the integrals (2.8). The first-order differential equation is

2πi∂τY
τ
~η (σ|ρ) =

∑
α∈Sn−1

{
− 1

(τ−τ̄)2
R~η(ε0)ρ

α +

∞∑
k=4

(1−k)(τ−τ̄)k−2Gk(τ)R~η(εk)ρ
α

}
Y τ
~η (σ|α) ,

(2.33)

see also [30] for homogeneous second-order Laplace equations among the Y τ
~η (σ|ρ). At three

points, for instance, the R~η(εk) in (2.33) are 2× 2 matrices

Rη2,η3(ε0) =
1

η2
23

(
s12 −s13

−s12 s13

)
+

1

η2
2

(
0 0

s12 s12+s23

)
+

1

η2
3

(
s13+s23 s13

0 0

)

−

(
1 0

0 1

)(1

2
s12∂

2
η2

+
1

2
s13∂

2
η3

+
1

2
s23(∂η2−∂η3)2 + 2πi(η̄2∂η2+η̄3∂η3)

)
, (2.34)

Rη2,η3(εk) = ηk−2
23

(
s12 −s13

−s12 s13

)
+ ηk−2

2

(
0 0

s12 s12+s23

)
+ ηk−2

3

(
s13+s23 s13

0 0

)
, k ≥ 4 ,

and their higher-multiplicity analogues following from [30, 38, 39] are reviewed in appendix B.

The differential equations among the Y τ
~η are generating series for differential equations

among the component integrals. The simplest two-point examples are13

2πi∂τY
τ

(0|0) =
s12

4(Im τ)2
Y τ

(2|0) , 2πi∂τY
τ

(2|0) = − s12

2(Im τ)2
Y τ

(4|0) + 12s12(Im τ)2G4(τ)Y τ
(0|0) ,

(2.35)

and generalise to (we are setting Y τ
(a|−1) := 0)

2πi∂τY
τ

(a|b) = − a

4(Im τ)2
Y τ

(a+1|b−1) +
(1−a)(a+2)s12

8(Im τ)2
Y τ

(a+2|b)

+ s12

a+2∑
k=4

(1−k)Gk(τ)(2i Im τ)k−2Y τ
(a+2−k|b) . (2.36)

The expansion of the component integrals in terms of MGFs given in (2.26) together with

the differential equations (2.23) and (2.25) of the MGFs can be used to verify (2.35) order

13When comparing with the differential equations in (3.25) and (3.26) of [30], note that the component

integrals are related by Y τ(a|b) = (2i Im τ)a

(2πi)b
W τ

(a|b). Moreover, the powers of Im τ are tailored such that the

operators ∇(w) in the reference can be effectively replaced by (τ−τ̄)∂τ .
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by order in α′. Conversely, one can use (2.36) and its generalisations to n points to deduce

properties of MGFs.

We also note that Y τ
~η satisfies the following equation when differentiated with respect to

τ̄ [30, Eq. (6.12)]:

−2πi∂τ̄Y
τ
~η (σ|ρ) =

∑
α∈Sn−1

{
2πi

n∑
j=2

[
2ηj∂η̄j +

ηj∂ηj − η̄j∂η̄j
τ − τ̄

]
δσα −R~η(ε0)

α
σ (2.37)

+
∑
k≥4

(1−k)Gk(τ)R~η(εk)α
σ
}
Y τ
~η (α|ρ) .

We shall not use this equation extensively but rather the holomorphic τ -derivative (2.33)

together with the reality properties (2.15) of the component integrals. Similar to Brown’s

construction [46, 49, 75] of non-holomorphic modular forms, the series Y τ
~η is engineered to

simplify the holomorphic derivative (2.33) at the expense of the more lengthy expression

(2.37) for the antiholomorphic one.

2.5 Derivation algebra

The notation R~η(εk) for the operators in the differential equations (2.31) and (2.33) was chosen

to highlight a connection with Tsunogai’s derivations εk [50]. They arise in the differential

equation of the elliptic KZB associator and act on its non-commutative variables [76–78]. The

derivation algebra {εk, k ≥ 0} is characterised by a variety of relations, and the operators

R~η(εk) in this work are believed to form matrix representations of these the relations. For

instance, from the absence of k = 2 in (2.31) and (2.33), we have R~η(ε2) = 0 which is

consistent with the general relation

[ε2, εk] = 0 . (2.38)

With the notation

admεj (εk) = [εj , [εj , [. . . [εj , [εj︸ ︷︷ ︸
m

, εk]] . . .]]] (2.39)

for the repeated adjoint action adεj (εk) = [εj , εk], a crucial set of relations among Tsunogai’s

derivations is the (adjoint) nilpotency of ε0

adk−1
ε0 (εk) = 0 , k ≥ 2 , (2.40)

for instance [ε0, [ε0, [ε0, ε4]]] = 0. By the arguments in section 4.5 of [39], the operators R~η(εk)

in the differential equations (2.31) and (2.33) are expected to preserve (2.40)

R~η
(
adk−1

ε0 (εk)
)

:= adk−1
R~η(ε0)

(
R~η(εk)

)
= 0 , k ≥ 2 , (2.41)

– 16 –



as furthermore supported by a variety of explicit checks.14 There is a variety of further

relations in the derivation algebra [41, 79, 80] that are related to the counting of holomorphic

cusp forms at various modular weights [80]

0 = [ε10, ε4]− 3[ε8, ε6] , (2.42a)

0 = 2[ε14, ε4]− 7[ε12, ε6] + 11[ε10, ε8] , (2.42b)

0 = 80[ε12, [ε4, ε0]] + 16[ε4, [ε12, ε0]]− 250[ε10, [ε6, ε0]]

− 125[ε6, [ε10, ε0]] + 280[ε8, [ε8, ε0]]− 462[ε4, [ε4, ε8]]− 1725[ε6, [ε6, ε4]] . (2.42c)

We have tested that these relations are preserved by the R~η(εk), e.g.

R~η
(
[ε10, ε4]− 3[ε8, ε6]

)
:=
[
R~η(ε10), R~η(ε4)

]
− 3
[
R~η(ε8), R~η(ε6)

]
= 0 . (2.43)

Similarly, the R~η(εk) at n ≤ 5 points have been checked to preserve various generalisations of

(2.42) that can be downloaded from [81]:

• relations among [εk1 , εk2 ] at k1+k2 ≤ 30 and n=2, 3, 4 as well as k1+k2 ≤ 18 and n=5,

• relations among [ε`1 , [ε`2 , ε`3 ]] at `1+`2+`3 ≤ 30 and n = 2, 3, 4,

• relations among [εp1 , [εp2 , [εp3 , εp4 ]]] at p1+p2+p3+p4 ≤ 26, n = 2, 3 as well as (partially

relying on numerical methods) p1+p2+p3+p4 ≤ 18, n = 4

We will see in section 6.2 that relations like (2.42) will play a key role in the counting of

independent MGFs at given modular weights in their lattice-sum representation (2.16), in

the same way as they did for the counting of elliptic MZVs [41].

Even though the operators R~η(εk) satisfy the derivation-algebra relations (at least to the

orders checked), their instances at given multiplicity n are not a faithful representation of

the derivation algebra. In other words, they can also satisfy more relations at fixed n. For

instance, the two-point example (2.32) implies that all Rη(εk) for k ≥ 4 at n = 2 commute

which is stronger than (2.42). As we shall use compositions of the operators R~η(εk) in the

rest of the paper to solve (2.33), this means that their coefficients only occur in specific linear

combinations in low-point results. This will lead to multiplicity-specific dropouts of MGFs

in the α′-expansion of Y τ
~η at fixed n, in the same way as four-point closed-string tree-level

amplitudes do not involve any MZVs of depth ≥ 2.

14Reference [39] deals with open-string amplitudes and features operators r~η(εk) that agree with R~η(εk) for
k 6= 0. The difference for ε0 is that r~η(ε0) contains an additional term proportional to ζ2 but does not contain
the term ∼ η̄j∂ηj of R~η(ε0).
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3 Solving differential equations for generating series

The goal of this section is to derive the form of the all-order α′-expansion of the Y τ
~η integrals

(2.8) from their differential equation (2.33). As a first step we will rewrite the differential

equation in a slightly different form using relations in the derivation algebra. This improved

differential equation will allow for a formal solution whose properties we discuss in this section.

In the next sections we make the formal solution fully explicit at certain orders by exploiting

the reality properties of two- and three-point integrals.

3.1 Improving the differential equation

Given that the differential equation (2.33) is linear and of first order in τ , it is tempting to

solve it (up to antiholomorphic integration ambiguities) formally by line integrals over τ . In

particular, the appearance of (τ−τ̄)k−2Gk(τ) on the right-hand side will introduce iterated

integrals over holomorphic Eisenstein series in a formal solution. However, the differential

equation features singular terms ∼ (τ−τ̄)−2 that do not immediately line up with Brown’s

iterated Eisenstein integrals over τ jGk(τ), j = 0, 1, . . . , k−2 with well-studied modular trans-

formations [48].

Therefore we first strive to remove the singular term ∼ (τ−τ̄)−2 in (2.33) that does not

have any accompanying Eisenstein series Gk≥4. This can be done by performing the invertible

redefinition15

Ŷ τ
~η = exp

(
−

R~η(ε0)

2πi(τ−τ̄)

)
Y τ
~η = exp

(R~η(ε0)

4y

)
Y τ
~η ⇔ Y τ

~η = exp
(
−
R~η(ε0)

4y

)
Ŷ τ
~η , (3.1)

where the matrix multiplication w.r.t. the second index of Y τ
~η (σ|ρ) is suppressed for ease of

notation16. The redefined integrals obey a modified version of (2.33)

2πi∂τ Ŷ
τ
~η =

∞∑
k=4

(1−k)Gk(τ)(τ−τ̄)k−2e
−

R~η(ε0)

2πi(τ−τ̄)R~η(εk)e
R~η(ε0)

2πi(τ−τ̄) Ŷ τ
~η , (3.2)

where now the term without holomorphic Eisenstein series is absent and the R~η(εk) are

conjugated by exponentials of R~η(ε0). By the relations (2.41) in the derivation algebra, the

exponentials along with a fixed R~η(εk) truncate to a finite number of terms,

e
−

R~η(ε0)

2πi(τ−τ̄)R~η(εk)e
R~η(ε0)

2πi(τ−τ̄) =

k−2∑
j=0

1

j!

( −1

2πi(τ−τ̄)

)j
R~η
(
adjε0(εk)

)
, (3.3)

15We are grateful to Nils Matthes and Erik Panzer for discussions that led to this redefinition.
16More explicitly, Ŷ τ~η (σ|ρ) =

∑
α∈Sn−1

exp
(R~η(ε0)

4y

)
ρ
αY τ~η (σ|α).
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where we use the following shorthands here and below

R~η
(
adjε0(εk)

)
:= adjR~η(ε0)R~η(εk) , R~η(εk1εk2) := R~η(εk1)R~η(εk2) . (3.4)

Hence, the differential equation (3.2) simplifies to

2πi∂τ Ŷ
τ
~η =

∞∑
k=4

(1−k)Gk(τ)
k−2∑
j=0

1

j!

(−1

2πi

)j
(τ−τ̄)k−2−jR~η

(
adjε0(εk)

)
Ŷ τ
~η . (3.5)

Now, the operator on the right-hand side is manifestly free of singular terms in (τ−τ̄), and

the sum over k starts at k = 4. All the integration kernels in this differential equation are of

the form (τ−τ̄)jGk(τ) with k ≥ 4 and 0 ≤ j ≤ k−2. Hence, our kernels line up with those of

Brown’s holomorphic and single-valued iterated Eisenstein integrals [46, 48, 49].

3.2 Formal expansion of the solution

The form (3.5) bodes well for a representation in terms of Ŷ τ
~η as an (iterated) line integral

from τ to some reference point that we take to be the cusp at τ → i∞. In particular, the

differential equation contains no negative powers of (τ−τ̄) or y = π Im τ , and this property

will propagate to the solution Ŷ τ
~η , see section 3.4 for further details. The original integrals

Y τ
~η , in turn, involve combinations of MGFs with negative powers of y from their Laurent

polynomials cm,n(Im τ) in (2.27). The absence of negative powers of y in Ŷ τ
~η is a crucial

difference as compared to Y τ
~η and is due to the redefinition (3.1). We shall later make this

more manifest when we discuss explicit examples obtained from low-point amplitudes.

A formal solution of (3.5), that also exposes the α′-expansion of the integrals, is given by

the series

Ŷ τ
~η =

∞∑
`=0

∑
k1,k2,...,k`
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k`−2∑
j`=0

(∏̀
i=1

(−1)ji(ki − 1)

(ki − ji − 2)!

)
Esv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

×R~η
(
adk`−j`−2

ε0 (εk`) . . . adk2−j2−2
ε0 (εk2)adk1−j1−2

ε0 (εk1)
)
Ŷ i∞
~η , (3.6)

if the τ -dependent constituents solve the initial-value problem

2πi∂τEsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

= −(2πi)2−k`+j`(τ − τ̄)j`Gk`(τ)Esv
[
j1 j2 ... j`−1

k1 k2 ... k`−1
; τ
]
, (3.7a)

lim
τ→i∞

Esv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

= 0 . (3.7b)

The vanishing at the cusp here is understood in terms of a regularised limit that will be

discussed in more detail in section 3.4 and is akin to the method of ‘tangential-base-point

regularisation’ introduced in [48]. Its net effect can be summarised by assigning
∫ τ
i∞ dτ ′ = τ
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which regularises the τ → i∞ limit of all (strictly) positive powers of τ and τ̄ to zero (in the

absence of negative powers) and hence limτ→i∞(Im τ)n = 0 for all n > 0.

The parameter ` in (3.6) will be referred to as ‘depth’, and we define at depth zero that

Esv[ ; τ ] = 1. Since the sums over the ki start at ki = 4, and all the R~η(εk≥4) in (2.32), (2.34)

and appendix B are linear in sij , the depth-` contributions to (3.6) involve at least ` powers

of α′. As we will see, any order in the α′-expansion of the component integrals (2.11) can be

obtained from a finite number of terms in (3.6) on the basis of elementary operations. Like

this, the relation (3.6) reduces the α′-expansion of the generating series Ŷ τ
~η to the way more

tractable problem of determining the initial values Ŷ i∞
~η and the objects Esv:

• The initial values Ŷ i∞
~η at the cusp are series in ηi, η̄i, sij whose coefficients should be

Q-linear combinations of single-valued MZVs from genus-zero sphere integrals [51]. We

shall give a closed formula at two points in section 4.1. Given that Ŷ i∞
~η at higher points

are still under investigation [51], we shall here use MGF techniques to determine the

initial data at three points to certain orders, see section 5. As will be detailed in section

3.4, we exploit the absence of negative powers of y in the expansion of Ŷ τ
~η around the

cusp to extract a well-defined initial value Ŷ i∞
~η .

• The objects Esv are partly determined by the differential equations (3.7) but, since the

Esv are non-holomorphic the ∂τ derivative is not sufficient to determine them: As will

be detailed in section 3.5, one can add antiholomorphic functions of τ̄ that vanish at

the cusp at every step in their iterative construction. The analysis in [30] also provides

a differential equation for the ∂τ̄ -derivative of Y , see (2.37). However, we shall be able

to determine the Esv from the reality properties (2.15) of the component integrals, i.e.

without making recourse to the differential equation with respect to ∂τ̄ .

As we shall see in the next section, it turns out to be useful for expressing the Y τ
~η rather than

the Ŷ τ
~η to redefine the Esv into specific linear combinations that satisfy differential equations

that are advantageous for the analysis. The notation Esv is chosen due to the similarity to

holomorphic and single-valued iterated Eisenstein integrals defined by Brown and obeying

similar first-order differential equations [46, 48, 49]. Explicit expressions for the Esv in terms

of holomorphic iterated Eisenstein integrals and their complex conjugates will be given in

section 3.5 below, where we also address the issue of the integration constants.

3.3 Solution for the original integrals

Our original goal was to expand the Y τ
~η -integrals (2.8) in α′. In order to translate the formal

solution (3.6) for the redefined integrals Ŷ τ
~η to the original ones Y τ

~η we have to invert the

exponentials in (3.1). In the first place, this introduces the exponential in the second line of
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the α′-expansion (3.6)

Y τ
~η =

∞∑
`=0

∑
k1,k2,...,k`
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k`−2∑
j`=0

(∏̀
i=1

(−1)ji(ki − 1)

(ki − ji − 2)!

)
Esv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

(3.8)

× exp
(
−
R~η(ε0)

4y

)
R~η
(
adk`−j`−2

ε0 (εk`) . . . adk2−j2−2
ε0 (εk2)adk1−j1−2

ε0 (εk1)
)
Ŷ i∞
~η

that we then commute through adjoint derivation operators to act on the value Ŷ i∞
~η at the

cusp. This amounts to conjugating the adki−ji−2
ε0 (εki) via

exp
(
−
R~η(ε0)

4y

)
R~η
(
adk−j−2

ε0 (εk)
)

exp
(R~η(ε0)

4y

)
=

j∑
p=0

1

p!

(
− 1

4y

)p
R~η
(
adk−j+p−2

ε0 (εk)
)
. (3.9)

The modified powers of adε0 regroup the Esv into the combination

βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

=

k1−j1−2∑
p1=0

k2−j2−2∑
p2=0

. . .

k`−j`−2∑
p`=0

(
k1−j1−2

p1

)(
k2−j2−2

p2

)
· · ·
(
k`−j`−2

p`

)
×
( 1

4y

)p1+p2+...+p`
Esv
[
j1+p1 j2+p2 ... j`+p`
k1 k2 ... k`

; τ
]

(3.10)

with 0≤ji≤ki−2 and βsv[ ; τ ] = 1, i.e. the α′-expansion (3.8) can be compactly rewritten as

Y τ
~η =

∞∑
`=0

∑
k1,k2,...,k`
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k`−2∑
j`=0

(∏̀
i=1

(−1)ji(ki − 1)

(ki − ji − 2)!

)
βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

(3.11)

×R~η
(
adk`−j`−2

ε0 (εk`) . . . adk2−j2−2
ε0 (εk2)adk1−j1−2

ε0 (εk1)
)

exp
(
−
R~η(ε0)

4y

)
Ŷ i∞
~η .

This is the formal solution of the α′-expansion of the generating series Y τ
~η of worldsheet

integrals. As we reviewed in section 2.3, the component integrals appearing in the Laurent

expansion of Y τ
~η with respect to the ~η variables can be represented in terms of MGFs. Hence,

(3.11) results in a representation of arbitrary MGFs in terms of βsv and the ingredients of

exp(−R~η(ε0)
4y )Ŷ i∞

~η — conjecturally Q[y−1]-linear combinations of single-valued MZVs. We

stress that by this, all the relations among MGFs [4, 5, 9, 13] will be automatically exposed

in view of the linear-independence result on holomorphic iterated Eisenstein integrals of [82].
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3.3.1 Properties of βsv

The simplest examples of the relation (3.10) at depths one and two read

βsv
[
j1
k1

; τ
]

=

k1−j1−2∑
p1=0

(
k1−j1−2

p1

)( 1

4y

)p1

Esv
[
j1+p1

k1
; τ
]
, (3.12)

βsv
[
j1 j2
k1 k2

; τ
]

=

k1−j1−2∑
p1=0

k2−j2−2∑
p2=0

(
k1−j1−2

p1

)(
k2−j2−2

p2

)( 1

4y

)p1+p2

Esv
[
j1+p1 j2+p2

k1 k2
; τ
]
.

One can straightforwardly invert the map between Esv and βsv at any depth `

Esv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

=

k1−j1−2∑
p1=0

k2−j2−2∑
p2=0

. . .

k`−j`−2∑
p`=0

(
k1−j1−2

p1

)(
k2−j2−2

p2

)
· · ·
(
k`−j`−2

p`

)
×
(
− 1

4y

)p1+p2+...+p`
βsv
[
j1+p1 j2+p2 ... j`+p`
k1 k2 ... k`

; τ
]
. (3.13)

From (3.10) and (3.7) one can check that the differential equations obeyed by the βsv is

−4π∇βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

=
∑̀
i=1

(ki−ji−2)βsv
[
j1 j2 ... ji−1 ji+1 ji+1 ... j`
k1 k2 ... ki−1 ki ki+1 ... k`

; τ
]

− δj`,k`−2(τ−τ̄)k`Gk`(τ)βsv
[
j1 j2 ... j`−1

k1 k2 ... k`−1
; τ
]
, (3.14)

where we have used the differential operator ∇ defined in (2.20) as it has a nice action on the

MGFs appearing in the component integrals. Compared to (3.7), the differential equation

produces holomorphic Eisenstein series only when the last pair (j`, k`) of βsv obeys j` = k`−2.

As the βsv are linear combinations of the Esv, the boundary condition for the βsv is still that

lim
τ→i∞

βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

= 0 , (3.15)

again in the sense of a regularised limit. As was the case for the Esv, the ∂τ derivative (3.14)

and the boundary condition are not sufficient to determine the βsv but the reality properties

of the component Y -integrals will resolve the integration ambiguities.

At depths one and two the differential equation (3.14) specialises as follows

−4π∇βsv
[
j1
k1

; τ
]

= (k1−j1−2)βsv
[
j1+1
k1

; τ
]
− δj1,k1−2(τ−τ̄)k1Gk1(τ) , (3.16a)

−4π∇βsv
[
j1 j2
k1 k2

; τ
]

= (k1−j1−2)βsv
[
j1+1 j2
k1 k2

; τ
]

+ (k2−j2−2)βsv
[
j1 j2+1
k1 k2

; τ
]

− δj2,k2−2(τ−τ̄)k2Gk2(τ)βsv
[
j1
k1

; τ
]
. (3.16b)
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3.3.2 Constraints from the derivation algebra

The relations of the derivation algebra such as (2.43) imply that, starting from
∑

i ki ≥ 14,

not all Esv and βsv appear individually in the expansion of the generating series Y τ
~η and Ŷ τ

~η

but only certain linear combinations can arise. We currently do not have an independent

definition of all Esv, βsv and such a definition is not needed for the component integrals in

this paper that conjecturally cover all closed-string one-loop amplitudes.

The simplest instance where the derivation-algebra relation (2.43) yields all-multiplicity

dropouts of certain βsv is in the weight-14 part of the expansion (3.11)

Y τ
~η =

[
. . .+ 27βsv[ 8 2

10 4 ]R~η(ε4ε10) + 27βsv[ 2 8
4 10 ]R~η(ε10ε4)

+ 35βsv[ 6 4
8 6 ]R~η(ε6ε8) + 35βsv[ 4 6

6 8 ]R~η(ε8ε6) + . . .

]
exp

(
−
R~η(ε0)

4y

)
Ŷ i∞
~η (3.17)

=

[
. . .+

{
27βsv[ 8 2

10 4 ] + 27βsv[ 2 8
4 10 ]

}
R~η(ε4ε10) +

{
35βsv[ 6 4

8 6 ]− 81βsv[ 2 8
4 10 ]

}
R~η(ε6ε8)

+
{

35βsv[ 4 6
6 8 ] + 81βsv[ 2 8

4 10 ]
}
R~η(ε8ε6) + . . .

]
exp

(
−
R~η(ε0)

4y

)
Ŷ i∞
~η ,

where we have solved (2.43) for R~η(ε10ε4) in the second step. This shows that only a three-

dimensional subspace of the four-dimensional span
〈
βsv[ 8 2

10 4 ] , βsv[ 2 8
4 10 ] , βsv[ 6 4

8 6 ] , βsv[ 4 6
6 8 ]

〉
is

realised by the generating series (3.11). The manipulations in (3.17) can be repeated for con-

tributions to Y τ
~η with adjε0 acting on the R~η(ε4), R~η(ε10), R~η(ε6), R~η(ε8). This implies similar

dropouts among the βsv
[
j1 j2
10 4

]
, βsv

[
j1 j2
4 10

]
, βsv

[
j1 j2
8 6

]
, βsv

[
j1 j2
6 8

]
at all values of j1+j2 ≤ 10

and modifies the counting of MGF at various modular weights, see section 6.2.4 for details.

3.4 Improved initial data and consistent truncations

In this section, we illustrate the usefulness of the redefinition (3.1) from Y τ
~η to Ŷ τ

~η further by

discussing how it acts on and improves the initial data at the cusp τ → i∞ that is contained

in the Laurent polynomial defined in (2.27). In this context, we also discuss practical aspects

of extracting information on the component integrals by truncating the series Y τ
~η and Ŷ τ

~η to

specific orders in sij , ηi and η̄i.

3.4.1 Behaviour of generating series near the cusp

Another virtue of the redefinition (3.1) is that Ŷ τ
~η is better behaved at the cusp than Y τ

~η .

While the Laurent polynomial of Y τ
~η is known to feature both positive and negative powers

of y = π Im τ (see e.g. (2.28) for Laurent polynomials of MGFs in the α′-expansion), we shall

see that the Laurent polynomial of Ŷ τ
~η only has non-negative powers. In order to define an
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initial value supplementing the differential equations, we will take a regularised limit of the

Laurent polynomial with the convention to discard strictly positive powers of y as τ → i∞.17

However, such a regularised limit leads to inconsistencies with products such as 1 =

yn · y−n, n > 0 when both positive and negative powers are present. This problem is relevant

to Y τ
~η but not to Ŷ τ

~η , where negative powers of y are absent. While their absence is not

immediately obvious from the redefinition, we have already remarked above that it can be

understood from the differential equations as we shall now explain in more detail.

The differential equation (3.5) relates ∂τ Ŷ
τ
~η to products Gk(τ)(τ−τ̄)k−2−jR~η

(
adjε0(εk)

)
Ŷ τ
~η

with k ≥ 4 and j ≤ k−2. The lowest explicit power of y = π Im τ is therefore y0 and in general

only non-negative powers arise since Gk is holomorphic in τ and the derivations R~η
(
adjε0(εk)

)
do not depend on τ at all. The differential equation is therefore consistent with Ŷ τ

~η having

only non-negative powers of y.

We note that the differential operator on the left-hand side of (3.5) lowers the y-power

via ∂τy
−m = −my−m−1 and therefore the presence of any negative power y−m in Ŷ τ

~η requires

the presence of even more negative powers by the differential equation.18 This is even true

at any fixed order in the Mandelstam variables sij and the parameters η̄i since any operator

on the right-hand side of (3.5) is either linear in sij or in η̄i by looking at the expressions in

section 2.4.

From the argument above we could still allow for an infinite series of negative powers in y

appearing in Ŷ τ
~η . To rule this out we consider the component integrals arising in the original

generating series Y τ
~η defined in (2.8). The integrands of the n-point component integrals

(2.11) have negative powers of y bounded by y≥−(a+b) at the order of saij η̄
b−n+1
i . This bound

follows from the fact that Green functions and f (k) or f (k) contribute at most y−1 and

y−k, respectively, as can for instance be seen from their lattice-sum representations (A.2).19

Moreover, this bound is uniformly valid at all orders in ηj since the latter are introduced

in the combinations (τ−τ̄)ηi by the Kronecker–Eisenstein integrands in (2.8). Finally, the

bound of y≥−(a+b) at the order of saij η̄
b−n+1
i can be transferred from Y τ

~η to Ŷ τ
~η since they are

related by the exponential of
R~η(ε0)
y and the derivation in the numerator is linear in (sij , η̄i).

Therefore, we conclude that Ŷ τ
~η does not contain any negative powers of y at any order in its

α′-expansion.

17One can think of this regularised limit as realising the τ → i∞ limit of integrals
∫ τ
i∞ that remove strictly

positive powers of Im τ through their tangential-base-point regularisation [48].
18Since the derivative of a constant vanishes, this argument does not connect positive to negative powers.
19In terms of the lattice sums, factors of p = mτ + n or p̄ = mτ̄ + n both count as a factor of y when

approaching the cusp as Re τ does not matter there. Inspecting the powers of p and p̄ in the lattice-sum
representations (A.2) of the Green function and f (k) or f (k) leads to the claim. An alternative way of seeing
this for f (k) is to note from (2.1) that the cuspidal behaviour receives contributions from the exponential
prefactor exp(2πiη Im z

Im τ
), and the order of ηk−1 is thus accompanied by up to k inverse powers of y. For the

Green function one may also inspect its explicit Laurent polynomial given for example in [2, Eq. (2.15)].
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On these grounds, we define the initial value by the regularised limit,

Ŷ i∞
~η = Ŷ τ

~η

∣∣
q0q̄0

∣∣
y0 , (3.18)

which does not suffer from inconsistencies caused by products involving negative powers of y.

3.4.2 Expansion and truncation of initial data

The absence of negative powers of y in the Laurent polynomials of Ŷ τ
~η can also be verified

explicitly in examples at fixed order in the expansion variables. In practice, this is done by

imposing cutoffs on the powers of sij , ηj , η̄j in the expansion of Y τ
~η or Ŷ τ

~η . We will make our

scheme of cutoffs more transparent by defining the order of a series in ηi η̄i and sij through

the assignment

order(ηi) = 1 , order(η̄i) = 1 , order(sij) = 2 . (3.19)

More precisely, the order of Y τ
~η and Ŷ τ

~η is counted relative to the most singular term of

homogeneity degree η1−n
j η̄1−n

j to make sure that the α′ → 0 limit of the plain Koba–Nielsen

integrals Y τ
(0,...,0|0,...,0)(σ|ρ) = (

∏n
j=2

∫ d2zj
Im τ )KNτ

n = 1 +O(α′2) has order zero. The assignment

(3.19) is consistent with a counting of (inverse) lattice momenta: every factor of ηi or η̄i

corresponds to an inverse momentum according to (A.2) while sij always appears together

with a Green function that contains two inverse momenta.

The notion of order in (3.19) ensures that order(R~η(ε0)) = 0 by inspection of its explicit

form in section 2.4, i.e. that the operator
R~η(ε0)

4y in the exponential preserves the order of an

expression. As we have shown above, Ŷ τ
~η does not have any negative powers of y at any order

in the sense of (3.19) and, at the same time, it has bounded positive powers of y at each order

by inspection of the component integrals. Since Y τ
~η has a bounded negative power of y at any

order, this implies that the exponential exp(
R~η(ε0)

4y ) entering the redefinition (3.1) terminates

to a polynomial at any fixed order.

For instance, in the case of two points, (3.18) results in the following initial data

Ŷ i∞
η =

1

η̄

{1

η

[
1 +

1

6
s3

12ζ3 +
43

360
s5

12ζ5

]
+ η
[
−2s12ζ3 −

5

3
s3

12ζ5 −
1

3
s4

12ζ
2
3

]
+ η3

[
−2s12ζ5 + 2s2

12ζ
2
3 −

7

2
s3

12ζ7

]
+ η5

[
−2s12ζ7 + 4s2

12ζ3ζ5

]
+ η7

[
−2s12ζ9

]}
+ (2πi)

{
−
[ 1

s12
+
s2

12

6
ζ3 +

43s4
12

360
ζ5

]
+ η2

[
2ζ3 +

5

3
s2

12ζ5 +
s3

12

3
ζ2

3

]
+ η4

[
2ζ5 − 2s12ζ

2
3 +

7

2
s2

12ζ7

]
+ η6

[
2ζ7 − 4s12ζ3ζ5

]
+ η8

[
2ζ9

]}
(3.20)

+ (2πi)2η̄
{1

η

[s3
12ζ3

60

]
− η
[s3

12ζ5

30

]}
− (2πi)3η̄2

{[s2
12ζ3

60

]
+ η2

[s2
12ζ5

30

]}
− (2πi)4η̄3

{1

η

[s3
12ζ3

1512

]}
+ (2πi)5η̄4

{[s2
12ζ3

1512

]}
+ (terms of order ≥ 12) ,
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where we have given all terms of the form ηa−1η̄b−1sc12 up to the order a + b + 2c ≤ 10.

The above expression has been obtained from a general formula for the two-point Laurent

polynomial that we shall present in (4.2) below and the expansion (3.20) is also available in

machine-readable form in an ancillary file within the arXiv submission of this paper. When

disregarding the (2πi)kη̄k−1, the all-order expansion of Ŷ i∞
η features no MZVs other than ζsv

k ,

in agreement with the results of [24, 28] on the terms ∼ η−1η̄−1.

At low orders, (3.20) can be crosschecked by analysing the MGFs in Y τ
η , inserting their

Laurent polynomials in (2.28) and extracting the initial value according to (3.18). In both

approaches, the redefinition (3.1) has been performed and the exponential
Rη(ε0)

4y truncates

to a polynomial and one can verify order by order that all negative y-powers are eliminated

from the Laurent polynomials.

With the assignments in (3.19), the operators R~η
(
adjε0(εk)

)
in (3.4) have order k for any

value of j = 0, 1, . . . , k−2. This is evident from the explicit examples given in section 2.4

as well as appendix B and this is important for truncations of the formal solution of the

differential equation to a fixed order. The expansions of Y τ
~η and Ŷ τ

~η to the m-th order can be

related by the truncation of the exponential exp(±R~η(ε0)
4y )→

∑m
r=0

1
r!(±

R~η(ε0)
4y )r when acting

on the expansions.

Once the contributions of the operators R~η(adj`ε0εk` . . . adj1ε0εk1) in (3.11) are computed to

the order of k1 + . . .+k` = m, one can access the component integrals Y τ
(a2,...,an|b2,...,bn)(σ|ρ) up

to and including homogeneity degree 1
2m−

1
2

∑n
j=2(aj+bj) in sij . Conversely, the βsv

[
j1 ... j`
k1 ... k`

]
appearing at homogeneity degree swij in the α′-expansion of Y τ

(a2,...,an|b2,...,bn)(σ|ρ) are bounded

to feature k1 + . . .+ k` ≤ 2w +
∑n

j=2(aj+bj).

The above bounds rely on the fact that, at n points, the order of the series Ŷ i∞
~η is bounded

by the most singular term η1−n
j η̄1−n

j exposed by the Kronecker–Eisenstein integrand in (2.8).

At two points, for instance, the bound is saturated by the terms Ŷ i∞
η → 1

ηη̄ −
2πi
s12

without

ζ2k+1 in (3.20). Their three-point analogues are given by

Ŷ i∞
η2,η3

(2, 3|2, 3) =
1

η23η3η̄23η̄3
− 2πi

η3η̄3s12
− 2πi

η23η̄23s23
+
( 1

s12
+

1

s23

)(2πi)2

s123
+ . . . ,

Ŷ i∞
η2,η3

(2, 3|3, 2) =
1

η23η2η̄23η̄3
+

2πi

η23η̄23s23
− (2πi)2

s23s123
+ . . . (3.21)

and permutations in 2 ↔ 3, where s123 = s12+s13+s23, and all the terms in the ellipsis

comprise MZVs and are higher order in the sense of (3.19).

3.5 Real-analytic combinations of iterated Eisenstein integrals

In this section, we relate the objects we called Esv in (3.6) to iterated integrals over holomor-

phic Eisenstein series. We will use Brown’s holomorphic iterated Eisenstein integrals subject
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to tangential-base-point regularisation [48],

E
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

= −(2πi)1+j`−k`
∫ τ

i∞
dτ ′ (τ ′)j`Gk`(τ

′)E
[
j1 j2 ... j`−1

k1 k2 ... k`−1
; τ ′
]

= (−1)`
(∏̀
i=1

(2πi)1+ji−ki
)∫ τ

i∞
dτ` (τ`)

j`Gk`(τ`)

∫ τ`

i∞
dτ`−1 (τ`−1)j`−1Gk`−1

(τ`−1) . . .

. . .

∫ τ3

i∞
dτ2 (τ2)j2Gk2(τ2)

∫ τ2

i∞
dτ1 (τ1)j1Gk1(τ1) , (3.22)

which can be expressed straightforwardly in terms of the iterated Eisenstein integrals γ0(. . .)

or E0(. . .) seen in the α′-expansion of open-string integrals [17, 38, 39, 41, 43], cf. appendix F.

The holomorphic iterated integrals (3.22) obey the following differential equations and initial

conditions

2πi∂τE
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

= −(2πi)2−k`+j`τ j`Gk`(τ)E
[
j1 j2 ... j`−1

k1 k2 ... k`−1
; τ
]
, (3.23a)

lim
τ→i∞

E
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

= 0 . (3.23b)

These equations are similar to those of Esv in (3.7) but feature τ j`Gk`(τ) in the place of

(τ−τ̄)j`Gk`(τ). The holomorphic iterated Eisenstein integrals (3.22) obey the standard shuffle

identities

E [A1, A2, . . . , A`; τ ] E [B1, B2, . . . , Bm; τ ] = E [(A1, A2, . . . , A`)�(B1, B2, . . . , Bm); τ ] (3.24)

with respect to the combined letters Ai = ji
ki

, e.g. E
[
j1
k1

; τ
]
E
[
j2
k2

; τ
]

= E
[
j1 j2
k1 k2

; τ
]
+E
[
j2 j1
k2 k1

; τ
]

and where � denotes the standard shuffle product of ordered sequences. There are no linear

relations among the E with different entries [82].

It is tempting to define a solution to our differential equations (3.7) by starting from (3.22)

and simply replacing the holomorphic integration kernels τ j`Gk`(τ) by the non-holomorphic

expression (τ−τ̄)j`Gk`(τ):

Esv
min

[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

= (−1)`
(∏̀
i=1

(2πi)1+ji−ki
)∫ τ

i∞
dτ` (τ`−τ̄)j`Gk`(τ`) (3.25)∫ τ`

i∞
dτ`−1 (τ`−1−τ̄)j`−1Gk`−1

(τ`−1) · · ·
∫ τ2

i∞
dτ1 (τ1−τ̄)j1Gk1(τ1) .

Since τ̄ is not the complex conjugate of the integration variables τj , these integrals are homo-

topy invariant. We call (3.25) the minimal solution of (3.7), and it also obeys the standard

shuffle relations (3.24) with Esv
min in the place of E . Binomial expansion of the integration
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kernels straightforwardly relates this minimal solution to the holomorphic iterated Eisenstein

integrals (3.22)

Esv
min

[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

=

j1∑
r1=0

j2∑
r2=0

. . .

j∑̀
r`=0

(
j1
r1

)(
j2
r2

)
· · ·
(
j`
r`

)
(3.26)

× (−2πiτ̄)r1+r2+...+r`E
[
j1−r1 j2−r2 ... j`−r`
k1 k2 ... k`

; τ
]
.

However, (3.6) is supposed to generate real-analytic modular forms such as Ek(τ) in (2.18)

and its Cauchy–Riemann derivatives, as e.g. (2.26). Hence, the minimal solutions (3.25) need

to be augmented by antiholomorphic functions f
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

that vanish at the cusp, and

we shall solve (3.7) via

Esv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

=
∑̀
i=0

f
[
j1 j2 ... ji
k1 k2 ... ki

; τ
]
Esv

min

[
ji+1 ... j`
ki+1 ... k`

; τ
]

(3.27)

with f [ ; τ ] = Esv
min[ ; τ ] = 1. The functions f

[
j1 ... j`
k1 ... k`

; τ
]

will be determined systematically

by extracting the α′-expansion of the component integrals (2.11) and imposing their reality

properties (2.15). In particular, these reality properties imply that the f must be express-

ible in terms of antiholomorphic iterated Eisenstein integrals (with Q-linear combinations of

MZVs and powers of τ̄ in its coefficients): Referring back to (2.37), we see that the anti-

holomorphic derivative ∂τ̄Y
τ
~η contains only (τ−τ̄)−1 and the kernels Gk of antiholomorphic

iterated Eisenstein integrals, thus excluding any other objects in f .

3.5.1 Depth one

As will be derived in detail in section 4.5, the appropriate choice of integration constants at

depth ` = 1 is given by the purely antiholomorphic expression

f
[
j1
k1

; τ
]

=

j1∑
r1=0

(−2πiτ̄)r1
(
j1
r1

)
(−1)j1−r1E

[
j1−r1
k1

; τ
]
. (3.28)

Hence, for Esv at depth one, we obtain,

Esv
[
j1
k1

; τ
]

=

j1∑
r1=0

(−2πiτ̄)r1
(
j1
r1

)(
E
[
j1−r1
k1

; τ
]

+ (−1)j1−r1E
[
j1−r1
k1

; τ
])
, (3.29)

where the contributions ∼ (−2πiτ̄)r1E
[
j1−r1
k1

; τ
]

match the minimal solution (3.26) while

the additional terms are due to (3.28). Such expressions should be contained in Brown’s
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generating series of single-valued iterated Eisenstein integrals [46, 48, 49], and similar objects

have been discussed in [83] as building blocks for a single-valued map at depth one. The

reality properties of our component integrals yield an independent construction of (3.29) that

will be detailed in section 4.5.

The simplest instances of (3.29) are given by

Esv[ 0
4 ; τ ] = E [ 0

4 ; τ ] + E [ 0
4 ; τ ] ,

Esv[ 1
4 ; τ ] = E [ 1

4 ; τ ]− E [ 1
4 ; τ ] + (−2πiτ̄)

(
E [ 0

4 ; τ ] + E [ 0
4 ; τ ]

)
, (3.30)

Esv[ 2
4 ; τ ] = E [ 2

4 ; τ ] + E [ 2
4 ; τ ] + 2(−2πiτ̄)

(
E [ 1

4 ; τ ]− E [ 1
4 ; τ ]

)
+ (−2πiτ̄)2

(
E [ 0

4 ; τ ] + E [ 0
4 ; τ ]

)
,

and it is easy to check from (3.23) that Esv
[
j
4

]
at j = 0, 1, 2 satisfy (3.7). As the holomorphic

iterated Eisenstein integrals (and their complex conjugates) are homotopy-invariant, these ex-

pressions represent well-defined real-analytic functions, and one can straightforwardly obtain

their (q, q̄)-expansion from the methods of appendix F.1.

3.5.2 Depth two

We next elaborate on the general form of the depth-two Esv. Starting from the minimal solu-

tion (3.26), the reality properties of the component integrals dictate the following integration

constant at depth ` = 2

f
[
j1 j2
k1 k2

; τ
]

=

j1∑
r1=0

j2∑
r2=0

(2πiτ̄)r1+r2(−1)j1+j2

(
j1
r1

)(
j2
r2

)
E
[
j2−r2 j1−r1
k2 k1

; τ
]

+α
[
j1 j2
k1 k2

; τ
]
, (3.31)

where E
[
j2−r2 j1−r1
k2 k1

; τ
]

and α
[
j1 j2
k1 k2

; τ
]

are purely antiholomorphic and individually vanish

at the cusp in the regularised limit τ → i∞. Together with the depth-one expression (3.28),

the decomposition (3.27) into Esv
min then implies

Esv
[
j1 j2
k1 k2

; τ
]

=

j1∑
r1=0

j2∑
r2=0

(−2πiτ̄)r1+r2

(
j1
r1

)(
j2
r2

){
E
[
j1−r1 j2−r2
k1 k2

; τ
]

+ (−1)j1−r1E
[
j1−r1
k1

; τ
]
E
[
j2−r2
k2

; τ
]

+ (−1)j1+j2−r1−r2E
[
j2−r2 j1−r1
k2 k1

; τ
]}

+ α
[
j1 j2
k1 k2

; τ
]
, (3.32)

where the first term is the minimal solution (3.26). We expect similar expressions to fol-

low from Brown’s generating series of single-valued iterated Eisenstein integrals [46, 48, 49].

Moreover, the first two lines of (3.32) with lower-depth corrected versions of E , E and the

need for further antiholomorphic corrections have featured in discussions about finding an
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explicit form of a single-valued map at depth two [83]. As we shall see in sections 4.5 and 5.4,

the reality properties of our component integrals yield an independent construction of (3.32).

We have separated the two terms in (3.31) for the following reasons:

• The E
[
j2−r2 j1−r1
k2 k1

; τ
]

exhaust the antiholomorphic iterated Eisenstein integrals at depth

two within Esv
[
j1 j2
k1 k2

; τ
]

which are necessary to satisfy the required reality proper-

ties. The α
[
j1 j2
k1 k2

; τ
]

in turn conjecturally comprise ζ2k+1 and antiholomorphic iterated

Eisenstein integrals of depth one. They are determined on a case-by-case basis for

(k1, k2) = (4, 4), (6, 4), (4, 6) in this paper, see (4.31) and (5.16), and we leave a general

discussion for the future.

We also note that, since the derivation-algebra relations such as (2.42) imply that at

higher weight only certain linear combinations of the Esv arise in the solution of Y τ
~η ,

not all integration constants can be determined individually from the component inte-

grals. For instance, (2.43) implies that certain linear combinations of α
[
j1 j2
k1 k2

; τ
]

with

(k1, k2) ∈ {(10, 4), (4, 10), (8, 6), (6, 8)} and ji ≤ ki−2 do not occur in the expansion of

Y τ
~η and are inaccessible with the methods of this work.

• Even in absence of α
[
j1 j2
k1 k2

; τ
]
, the right-hand side of (3.32) is invariant under the

modular T -transformation τ → τ + 1. As will be argued in section 6.1 the Esv must be

T -invariant as well, so the unknown α
[
j1 j2
k1 k2

; τ
]

need to be individually T -invariant (on

top of being antiholomorphic and vanishing at the cusp).

An exemplary expression resulting from (3.32) is

Esv[ 2 0
4 4 ; τ ] = E [ 2 0

4 4 ; τ ] + E [ 2
4 ; τ ]E [ 0

4 ; τ ] + E [ 0 2
4 4 ; τ ]

+ 2(−2πiτ̄)
{
E [ 1 0

4 4 ; τ ]− E [ 1
4 ; τ ]E [ 0

4 ; τ ]− E [ 0 1
4 4 ; τ ]

}
+ (−2πiτ̄)2

{
E [ 0 0

4 4 ; τ ] + E [ 0
4 ; τ ]E [ 0

4 ; τ ] + E [ 0 0
4 4 ; τ ]

}
+

2ζ3

3

(
E [ 0

4 ; τ ]− iπτ̄

360

)
, (3.33)

where the last line corresponds to α[ 2 0
4 4 ; τ ] that will be determined in (4.31).

3.5.3 Higher depth and shuffle

The Esv at depth ` ≥ 3 will introduce additional antiholomorphic f
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

that vanish

at the cusp. These antiholomorphic integration constants will preserve the shuffle relations

Esv[A1, A2, . . . , A`; τ ] Esv[B1, B2, . . . , Bm; τ ] = Esv[(A1, A2, . . . , A`)�(B1, B2, . . . , Bm); τ ]

(3.34)
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analogous to those of the holomorphic counterparts (3.24). At depth two, the last terms of

(3.32) are then constrained to obey α
[
j1 j2
k1 k2

; τ
]

+α
[
j2 j1
k2 k1

; τ
]

= 0. We expect that the decom-

position (3.27) of Esv is related to Brown’s construction of single-valued iterated Eisenstein

integrals [46, 48, 49] by composing holomorphic and antiholomorphic generating series. A

discussion of depth-(` ≥ 3) instances and more detailed connections with the work of Brown

are left to the future.

Given the expressions (3.29) and (3.32) for the simplest Esv, also the βsv at depth ` ≤ 2

can be reduced to iterated Eisenstein integrals via (3.10). More specifically, this completely

determines the βsv at depth one and fixes their depth-two examples up to the antiholomor-

phic and T -invariant α
[
j1 j2
k1 k2

; τ
]

in (3.32). The latter will later be exemplified to comprise

antiholomorphic iterated Eisenstein integrals at depth one and powers of τ̄ . Note that the

relation (3.10) between Esv and βsv preserves the shuffle property and therefore

βsv[A1, A2, . . . , A`; τ ]βsv[B1, B2, . . . , Bm; τ ] = βsv[(A1, A2, . . . , A`)�(B1, B2, . . . , Bm); τ ] .

(3.35)

3.5.4 Expansion around the cusp

The expansion of the above Esv around the cusp takes the same form as that of MGFs in

(2.27). Tangential-base-point regularisation of the holomorphic iterated Eisenstein integrals

leads to the behaviour [48]

E
[
j1
k1

; τ
]

=
Bk1

k1!

(2πiτ)j1+1

j1 + 1
+O(q) , (3.36)

E
[
j1 j2
k1 k2

; τ
]

=
Bk1Bk2

k1!k2!

(2πiτ)j1+j2+2

(j1 + 1)(j1 + j2 + 2)
+O(q)

with Bernoulli numbers Bki . As a consequence of (3.29) and (3.32), the Laurent monomial

at the order of q0q̄0 in Esv at depth ≤ 2 can be given in closed form,

Esv
[
j1
k1

; τ
]

=
Bk1

k1!

(−4y)j1+1

j1 + 1
+O(q, q̄) , (3.37)

Esv
[
j1 j2
k1 k2

; τ
]

=
Bk1Bk2

k1!k2!

(−4y)j1+j2+2

(j1 + 1)(j1 + j2 + 2)
+O(q, q̄) .

The α
[
j1 j2
k1 k2

; τ
]

which are currently unknown at k1+k2 ≥ 12 cannot contribute to the Laurent

monomial since they need to be antiholomorphic, T -invariant and vanishing at the cusp. Note

that the regime (3.37) of Esv can be formally obtained from (3.36) for E by replacing τ → τ−τ̄ ,

in line with the proposal for an elliptic single-valued map in [17].
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The Laurent monomials of the βsv at depth ≤ 2 resulting from (3.12) and (3.37) read

βsv
[
j1
k1

; τ
]

=
Bk1j1!(k1−2−j1)!(−4y)j1+1

k1! (k1−1)!
+O(q, q̄) , (3.38a)

βsv
[
j1 j2
k1 k2

; τ
]

=
Bk1Bk2(j1+j2+1)!(k2−2−j2)!(−4y)j1+j2+2

(j1+1)k1!k2!(k2+j1)!
(3.38b)

× 3F2

[
1+j1, 2+j1+j2, 2+j1−k1

2+j1, 1+j1+k2
; 1
]

+O(q, q̄) .

4 Explicit forms at two points

In this section, we evaluate explicitly the generating function Y τ
η at two points up to order 10

and use this to determine several βsv and Esv that were introduced in the previous section. The

starting point is an explicit determination of the Laurent polynomial to obtain the initial data

Ŷ i∞
η for equation (3.11) where we present an all-order result for two points. By exploiting the

reality properties of the resulting two-point component integrals, we can find the integration

constants in various βsv and Esv.

4.1 Laurent polynomials and initial data

The general idea is to obtain the initial data at n points by reducing the one-loop calculation

in the degeneration limit τ → i∞ of the torus to an (n+2)-point tree-level calculation on the

sphere.20 At n = 2, mild generalisations of the techniques of [24, 28] lead to a closed formula

involving the usual Virasoro–Shapiro four-point amplitude on the sphere,

Γ(1−a)Γ(1−b)Γ(1−c)
Γ(1+a)Γ(1+b)Γ(1+c)

= exp
(

2

∞∑
k=1

ζ2k+1

2k+1

[
a2k+1 + b2k+1 + c2k+1

])
, a+ b+ c = 0 . (4.1)

Its specific combinations that generate the two-point Laurent polynomial of (2.7) can be

written in the following form [51], using the shorthand ξ = iπη̄
2y ,

Y τ
η

∣∣
q0q̄0 = iπ exp

(s12y

3

){[
cot(2iηy)− i

][
cot(πη̄) + i

]
× exp

(s12

8y
∂2
η

) 1

s12+2η+2ξ

[
Γ(1+ s12

2 +η+ξ)Γ(1−s12)Γ(1+ s12
2 −η−ξ)

Γ(1− s12
2 +η+ξ)Γ(1+s12)Γ(1− s12

2 −η−ξ)
− e−y(s12+2η+2ξ)

]
+
[

cot(2iηy) + i
][

cot(πη̄)− i
]

× exp
(s12

8y
∂2
η

) 1

s12−2η−2ξ

[
Γ(1+ s12

2 +η+ξ)Γ(1−s12)Γ(1+ s12
2 −η−ξ)

Γ(1− s12
2 +η+ξ)Γ(1+s12)Γ(1− s12

2 −η−ξ)
− e−y(s12−2η−2ξ)

]
− 2

s12
exp

(s12

8y
∂2
η

)Γ(1+ s12
2 +η+ξ)Γ(1−s12)Γ(1+ s12

2 −η−ξ)
Γ(1− s12

2 +η+ξ)Γ(1+s12)Γ(1− s12
2 −η−ξ)

}
. (4.2)

20For open-string integrals over the A-cycle of the torus, the τ → i∞ limit at n points has been reduced to
explicitly known combinations of (n+2)-point disk integrals in [38, 39].
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By tracking the coefficients of ηa−1η̄b−1, this results in the Laurent polynomials of the com-

ponent integrals Y τ
(a|b) defined in (2.9). Some exemplary instances are

Y τ
(0|0)

∣∣
q0q̄0 = 1 + s2

12

(y2

90
+
ζ3

2y

)
+ s3

12

( y3

2835
+
ζ3

6
+

ζ5

8y2

)
+ s4

12

( y4

22680
+
yζ3

36
+

5ζ5

12y
− ζ2

3

8y2
+

3ζ7

32y3

)
(4.3a)

+ s5
12

( y5

561330
+
y2ζ3

324
+

19ζ5

144
+

ζ2
3

12y
+

7ζ7

32y2
− 3ζ3ζ5

16y3
+

15ζ9

128y4

)
+O(s6

12) ,

Y τ
(2|0)

∣∣
q0q̄0 = s12

(4y3

45
− 2ζ3

)
+ s2

12

(4y4

945
− ζ5

y

)
+ s3

12

( 2y5

2835
+
y2ζ3

9
− 5ζ5

3
+
ζ2

3

y
− 9ζ7

8y2

)
+ s4

12

( 2y6

56133
+

2y3ζ3

81
− ζ2

3

3
− 7ζ7

4y
+

9ζ3ζ5

4y2
− 15ζ9

8y3

)
+O(s5

12) , (4.3b)

Y τ
(4|2)

∣∣
q0q̄0 = −8y4

945
+

2ζ5

y
+ s12

(
− 8y5

14175
+

2y2ζ3

45
− 2ζ2

3

y
+

45ζ7

8y2

)
+ s2

12

(
− 4y6

22275
− yζ5

30
+

7ζ7

2y
− 45ζ3ζ5

4y2
+

135ζ9

8y3

)
+O(s3

12) , (4.3c)

see appendix C.1 for similar expressions for the Laurent polynomials of Y τ
(0|2), Y

τ
(4|0) and Y τ

(3|5).

These expressions have been consistently expanded up to total order 10: According to the

discussion around (3.19), two-point component integrals Y τ
(a|b) are said to be expanded to the

order 2k if the coefficients up to and including s
k−(a+b)/2
12 are worked out.

As one can see clearly, the Laurent polynomials (4.3) of the Y τ
η -integrals contain negative

powers of y = π Im τ . Passing to Ŷ τ
η via the redefinition (3.1), the negative powers of y

disappear, and we extract the initial value already given in (3.20) from the zeroth power in y.

4.2 Component integrals in terms of βsv

Having obtained the initial value (3.20), we now need to apply the series of operators in (3.11)

and extract the coefficients of ηa−1η̄b−1 to identify the component integrals Y τ
(a|b) defined in

(2.9). The two-point representation (2.32) of the derivation algebra is not faithful and realises

fewer linear combinations of βsv[ ...... ; τ ] as compared to the R~η(εk) at (n ≥ 3) points: Since

the operators Rη(εk≥4) at two points are multiplicative (∂η only occurs in Rη(ε0)), all the

commutators [Rη(εk1), Rη(εk2)] with k1, k2 ≥ 4 vanish.

Given that [Rη(ε4), Rη(ε6)] = 0, for instance, only a restricted set of βsv
[
j1 j2
4 6

; τ
]

and

βsv
[
j1 j2
6 4

; τ
]

can be found in (3.11). In particular, βsv[ 2 4
4 6 ; τ ] and βsv[ 4 2

6 4 ; τ ] do not show

up individually but always appear in the symmetric combination βsv[ 2 4
4 6 ; τ ] + βsv[ 4 2

6 4 ; τ ] =

βsv[ 4
6 ; τ ]βsv[ 2

4 ; τ ]. In order to determine all the βsv
[
j1 j2
4 6

; τ
]

individually, we shall study

three-point integrals and their reality properties in section 5.
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Applying the operators in (3.11), we extract for example the following expressions for the

simplest component integrals in terms of the initial data following from (4.2) and the βsv:

Y τ
(0|0) = 1 + s2

12

(
−3βsv[ 1

4 ; τ ] +
ζ3

2y

)
+ s3

12

(
−5βsv[ 2

6 ; τ ] +
ζ3

6
+

ζ5

8y2

)
+ s4

12

(
−21βsv[ 3

8 ; τ ] + 9βsv[ 1 1
4 4 ; τ ]− 18βsv[ 2 0

4 4 ; τ ]

+ 12ζ3β
sv[ 0

4 ; τ ]− 3ζ3

2y
βsv[ 1

4 ; τ ]− ζ2
3

8y2
+

5ζ5

12y
+

3ζ7

32y3

)
+ s5

12

(
−135βsv[ 4

10 ; τ ]− 60βsv[ 3 0
6 4 ; τ ] + 15βsv[ 1 2

4 6 ; τ ] + 15βsv[ 2 1
6 4 ; τ ]− 60βsv[ 2 1

4 6 ; τ ]

− 1

2
ζ3β

sv[ 1
4 ; τ ] +

6ζ5

y
βsv[ 0

4 ; τ ]− 3ζ5

8y2
βsv[ 1

4 ; τ ] + 40ζ3β
sv[ 1

6 ; τ ]− 5ζ3

2y
βsv[ 2

6 ; τ ]

+
43ζ5

360
+

ζ2
3

12y
+

7ζ7

32y2
− 3ζ3ζ5

16y3
+

15ζ9

128y4

)
+O(s6

12) , (4.4a)

Y τ
(2|0) = s12(3βsv[ 2

4 ; τ ]− 2ζ3) + s2
12

(
10βsv[ 3

6 ; τ ]− ζ5

y

)
+ s3

12

(
63βsv[ 4

8 ; τ ]− 9βsv[ 1 2
4 4 ; τ ] + 27βsv[ 2 1

4 4 ; τ ]

− 18ζ3β
sv[ 1

4 ; τ ] +
3ζ3

2y
βsv[ 2

4 ; τ ]− 5ζ5

3
+
ζ2

3

y
− 9ζ7

8y2

)
+ s4

12

(
540βsv[ 5

10 ; τ ]− 30βsv[ 1 3
4 6 ; τ ] + 165βsv[ 2 2

4 6 ; τ ]− 15βsv[ 2 2
6 4 ; τ ]

+ 90βsv[ 3 1
6 4 ; τ ] + 60βsv[ 4 0

6 4 ; τ ] +
1

2
ζ3β

sv[ 2
4 ; τ ]− 24ζ5β

sv[ 0
4 ; τ ]

− 9ζ5

y
βsv[ 1

4 ; τ ] +
3ζ5

8y2
βsv[ 2

4 ; τ ]− 110ζ3β
sv[ 2

6 ; τ ] +
5ζ3

y
βsv[ 3

6 ; τ ]

− ζ2
3

3
− 7ζ7

4y
+

9ζ3ζ5

4y2
− 15ζ9

8y3

)
+O(s5

12) , (4.4b)

Y τ
(0|2) = s12

(
3βsv[ 0

4 ; τ ]− ζ3

8y2

)
+ s2

12

(
10βsv[ 1

6 ; τ ]− ζ5

16y3

)
+ s3

12

(
63βsv[ 2

8 ; τ ]− 9βsv[ 0 1
4 4 ; τ ] + 27βsv[ 1 0

4 4 ; τ ]− 9ζ3

2y
βsv[ 0

4 ; τ ]

+
3ζ3

8y2
βsv[ 1

4 ; τ ] +
ζ3

60
− 5ζ5

48y2
+

ζ2
3

16y3
− 9ζ7

128y4

)
+ s4

12

(
540βsv[ 3

10 ; τ ]− 15βsv[ 0 2
4 6 ; τ ] + 90βsv[ 1 1

4 6 ; τ ]− 30βsv[ 1 1
6 4 ; τ ]

+ 60βsv[ 2 0
4 6 ; τ ] + 165βsv[ 2 0

6 4 ; τ ] +
ζ3

2
βsv[ 0

4 ; τ ]− 40ζ3β
sv[ 0

6 ; τ ]

− 15ζ3

y
βsv[ 1

6 ; τ ] +
5ζ3

8y2
βsv[ 2

6 ; τ ]− 33ζ5

8y2
βsv[ 0

4 ; τ ] +
3ζ5

16y3
βsv[ 1

4 ; τ ]

+
ζ5

120y
− ζ2

3

48y2
− 7ζ7

64y3
+

9ζ3ζ5

64y4
− 15ζ9

128y5

)
+O(s5

12) . (4.4c)

Further expansions of component integrals to order 10 can be found in appendix C.1.
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4.3 βsv versus modular graph forms

As exemplified by (2.26), the α′-expansion of component integrals Y τ
(a|b) is expressible in terms

of MGFs. By comparing the expansion of various component integrals in terms of MGFs with

those in terms of the βsv as derived above, we arrive at a dictionary between the two types of

objects. More specifically, the two-point component integrals Y τ
(a|b) are sufficient to express

all βsv at depth one and all depth-two βsv with (k1, k2) = (4, 4) in terms of MGFs. Depth-two

instances with (k1, k2) = (6, 4) or (k1, k2) = (4, 6) are not individually accessible at two points

as explained at the beginning of section 4.2 and will be fixed from three-point considerations

in section 5.

The resulting expressions one obtains in this way at depth one are21

βsv[ 0
6 ] = −(π∇)2E3

960y4
+

ζ5

640y4
,

βsv[ 0
4 ] =

π∇E2

24y2
+

ζ3

24y2
, βsv[ 1

6 ] =
π∇E3

240y2
+

ζ5

160y3
,

βsv[ 1
4 ] = −1

6
E2 +

ζ3

6y
, βsv[ 2

6 ] = − 1

30
E3 +

ζ5

40y2
,

βsv[ 2
4 ] =

2

3
π∇E2 +

2ζ3

3
, βsv[ 3

6 ] =
1

15
π∇E3 +

ζ5

10y
,

βsv[ 4
6 ] = − 4

15
(π∇)2E3 +

2ζ5

5

(4.5a)

as well as

βsv[ 3
8 ] = − 1

140
E4 +

ζ7

224y3
, βsv[ 4

10 ] = − 1

630
E5 +

ζ9

1152y4
, (4.5b)

and similar expressions for the remaining βsv
[
j
8

]
, βsv

[
j
10

]
in terms of Cauchy–Riemann

derivatives of E4,E5 can be found in appendix C.2.

At depth two, we find the modular graph function E2,2 in (2.24a) and its derivatives:

βsv[ 0 0
4 4 ] =

(π∇E2)2

1152y4
+
ζ3π∇E2

576y4
+

ζ2
3

1152y4
=

1

2

(
βsv[ 0

4 ]
)2
,

βsv[ 0 1
4 4 ] = −π∇E2,2

144y2
− E2π∇E2

144y2
− ζ3E2

144y2
+

ζ3

2160
− 5ζ5

1728y2
+

ζ2
3

288y3
,

βsv[ 0 2
4 4 ] =

E2,2

18
+

(π∇E2)π∇E2

36y2
+
ζ3π∇E2

36y2
− 5ζ5

216y
+

ζ2
3

72y2
,

21We will no longer spell out the argument τ of βsv[. . .] in (4.5) and later equations unless the argument is
transformed. The same notation applies to Esv[. . .] (which is real-analytic like the βsv[. . .]) and the holomorphic
quantities E [. . .], α[. . .], f [. . .].
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βsv[ 1 0
4 4 ] =

π∇E2,2

144y2
+
ζ3π∇E2

144y3
− ζ3

2160
+

5ζ5

1728y2
+

ζ2
3

288y3
,

βsv[ 1 1
4 4 ] =

E2
2

72
− ζ3E2

36y
+

ζ2
3

72y2
=

1

2

(
βsv[ 1

4 ]
)2
, (4.5c)

βsv[ 1 2
4 4 ] = −π∇E2,2

9
− E2π∇E2

9
+
ζ3π∇E2

9y
− 5ζ5

108
+

ζ2
3

18y
,

βsv[ 2 0
4 4 ] = −E2,2

18
+
ζ3π∇E2

36y2
+

5ζ5

216y
+

ζ2
3

72y2
,

βsv[ 2 1
4 4 ] =

π∇E2,2

9
− ζ3E2

9
+

5ζ5

108
+

ζ2
3

18y
,

βsv[ 2 2
4 4 ] =

2(π∇E2)2

9
+

4ζ3π∇E2

9
+

2ζ2
3

9
=

1

2

(
βsv[ 2

4 ]
)2
.

Similar expressions arise when the associated Esv are expressed in terms of MGFs via (3.13),

see appendix D.2. From the expressions above one can verify the shuffle property (3.35) of

the βsv in a straightforward manner, e.g.

βsv[ 0 2
4 4 ] + βsv[ 2 0

4 4 ] = βsv[ 0
4 ]βsv[ 2

4 ] . (4.6)

4.3.1 Modular graph forms in terms of βsv

These relations can also be inverted to obtain expressions for the modular graph forms in

terms of the βsv. At depth one they are

(π∇)2E3

y4
= −960βsv[ 0

6 ] +
3ζ5

2y4
,

π∇E2

y2
= 24βsv[ 0

4 ]− ζ3

y2
,

π∇E3

y2
= 240βsv[ 1

6 ]− 3ζ5

2y3
,

E2 = −6βsv[ 1
4 ] +

ζ3

y
, E3 = −30βsv[ 2

6 ] +
3ζ5

4y2
, (4.7a)

π∇E2 =
3

2
βsv[ 2

4 ]− ζ3 , π∇E3 = 15βsv[ 3
6 ]− 3ζ5

2y
,

(π∇)2E3 = −15

4
βsv[ 4

6 ] +
3ζ5

2

as well as

E4 = −140βsv[ 3
8 ] +

5ζ7

8y3
, E5 = −630βsv[ 4

10 ] +
35ζ9

64y4
(4.7b)
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and similar expressions for the Cauchy–Riemann derivatives of E4 and E5 given in ap-

pendix C.2. Inverting the depth-two relations (4.5c) leads to the shuffle-irreducible MGFs

π∇E2,2

y2
= 144βsv[ 1 0

4 4 ]− 24ζ3

y
βsv[ 0

4 ] +
ζ3

15
− 5ζ5

12y2
+

ζ2
3

2y3
,

E2,2 = −18βsv[ 2 0
4 4 ] + 12ζ3β

sv[ 0
4 ] +

5ζ5

12y
− ζ2

3

4y2
, (4.7c)

π∇E2,2 = 9βsv[ 2 1
4 4 ]− 6ζ3β

sv[ 1
4 ]− 5ζ5

12
+
ζ2

3

2y
.

At two points, one can still derive expressions for the modular graph function E2,3 in (2.24b)

and its Cauchy–Riemann derivatives:

(π∇)2E2,3

y4
= −3840βsv[ 0 1

4 6 ]− 7680βsv[ 1 0
4 6 ]− 11520βsv[ 1 0

6 4 ]

+
1280ζ3

y
βsv[ 0

6 ] +
160ζ3

y2
βsv[ 1

6 ] +
72ζ5

y3
βsv[ 0

4 ] +
8ζ3

189
− 2ζ5

15y2
+

7ζ7

8y4
− 3ζ3ζ5

y5
,

π∇E2,3

y2
= 960βsv[ 1 1

4 6 ] + 480βsv[ 2 0
4 6 ] + 1440βsv[ 2 0

6 4 ]

− 320ζ3β
sv[ 0

6 ]− 160ζ3

y
βsv[ 1

6 ]− 36ζ5

y2
βsv[ 0

4 ] +
ζ5

15y
− 7ζ7

8y3
+

3ζ3ζ5

2y4
,

E2,3 = −120βsv[ 2 1
4 6 ]− 120βsv[ 3 0

6 4 ] +
12ζ5

y
βsv[ 0

4 ] + 80ζ3β
sv[ 1

6 ]− ζ5

36
+

7ζ7

16y2
− ζ3ζ5

2y3
,

(4.7d)

π∇E2,3 = 90βsv[ 2 2
4 6 ] + 60βsv[ 3 1

6 4 ] + 30βsv[ 4 0
6 4 ]

− 60ζ3β
sv[ 2

6 ]− 12ζ5β
sv[ 0

4 ]− 6ζ5

y
βsv[ 1

4 ]− 7ζ7

8y
+

3ζ3ζ5

2y2
,

(π∇)2E2,3 = −45βsv[ 2 3
4 6 ]− 15βsv[ 3 2

6 4 ]− 30βsv[ 4 1
6 4 ]

+ 30ζ3β
sv[ 3

6 ] + 12ζ5β
sv[ 1

4 ] +
3ζ5

2y
βsv[ 2

4 ] +
7ζ7

8
− 3ζ3ζ5

y
.

However, we will need three-point input to solve for the individual βsv in terms of MGFs.

In particular, we will fix the antiholomorphic integrations constants α
[
j1 j2
6 4

]
or α

[
j1 j2
4 6

]
in

section 5.

4.3.2 Closed formulae at depth one

As detailed in appendix C.3, one can compute the (s12 → 0)-limit of the component integrals

Y τ
(a|b) with a+b ≥ 4 in closed form. By comparing the leading order of Y τ

(k|k) resulting from

(3.11) with the lattice-sum representations (2.18) of non-holomorphic Eisenstein series, one
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obtains

Ek =
(2k−1)!

[(k−1)!]2

{
−βsv

[
k−1
2k

]
+

2ζ2k−1

(2k−1)(4y)k−1

}
. (4.8)

Similarly, the lattice-sum representations (2.21) of their Cauchy–Riemann derivatives arise at

the s0
12 order of Y τ

(a|b) with a 6= b, and comparison with (3.11) implies (0 ≤ m ≤ k−1)

(π∇)mEk =
(
−1

4

)m (2k−1)!

(k−1)!(k−1−m)!

{
−βsv

[
k−1+m

2k

]
+

2ζ2k−1

(2k−1)(4y)k−1−m

}
, (4.9a)

(π∇)mEk
y2m

=
(−4)m(2k−1)!

(k−1)!(k−1−m)!

{
−βsv

[
k−1−m

2k

]
+

2ζ2k−1

(2k−1)(4y)k−1+m

}
. (4.9b)

By solving these relations for the βsv, one arrives at

βsv
[
k−1
2k

]
= − [(k−1)!]2

(2k−1)!
Ek +

2ζ2k−1

(2k−1)(4y)k−1
(4.10)

as well as (0 ≤ m ≤ k−1)

βsv
[
k−1+m

2k

]
= −(−4)m(k−1)! (k−1−m)! (π∇)mEk

(2k−1)!
+

2ζ2k−1

(2k−1)(4y)k−1−m , (4.11a)

βsv
[
k−1−m

2k

]
= −(k−1)! (k−1−m)! (π∇)mEk

(−4)m(2k − 1)!y2m
+

2ζ2k−1

(2k−1)(4y)k−1+m
. (4.11b)

4.4 Simplifying modular graph forms

By the linear-independence result on iterated Eisenstein integrals [82], the βsv are suitable for

obtaining relations between MGFs which are hard to see from their lattice-sum representation.

In the following, we will illustrate this with the relation

D3 = E3 + ζ3 (4.12)

due to Zagier, where D3 is the two-loop instance of the ‘banana’ graph functions, the coeffi-

cients in the α′-expansion of the component integral Y τ
(0|0), defined by [2, 4]

Y τ
(0|0) =

∞∑
n=0

1

n!
(s12)nDn(τ) , Dn(τ) =

∫
d2z

Im τ

(
G(z, τ)

)n
=
( Im τ

π

)n
C[ 1 1 ... 1

1 1 ... 1︸ ︷︷ ︸
n

](τ) . (4.13)

The lattice sums C[. . .] are defined in (2.16), and immediately pinpoint the simplest non-trivial

banana graph function D2 = E2. (One has D0 = 1 and D1 = 0.)

The identity (4.12) was first proven by explicitly performing one of the sums in D3. To

prove (4.12) independently using the βsv, we have to identify both MGFs in the relation as

coefficients in the α′-expansion of component integrals Y τ
(a|b) which we can write in terms of
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βsv using (3.11). Hence, (4.12) follows from comparing

D3 = 6Y τ
(0|0)

∣∣∣
s312

= −30βsv[ 2
6 ] + ζ3 +

3ζ5

4y2
(4.14)

E3 = Y τ
(3|3)

∣∣∣
s012

= −30βsv[ 2
6 ] +

3ζ5

4y2
. (4.15)

Higher-loop generalisations of (4.12) are known from MGF techniques [4, 5, 9, 13],

D4 = 24E2,2 + 3E2
2 +

18

5
E4 (4.16a)

D5 = 60E2,3 + 10E3E2 +
180

7
E5 + 10ζ3E2 + 16ζ5 , (4.16b)

see also [24, 28] for all-order results on the Laurent polynomials of banana graph functions.

Relations among MGFs like (4.16) can be proven in the same way as (4.12): They become

manifest once all MGFs in the relation are identified as α′ coefficients of component integrals

and expressed in terms of βsv via (3.11). This will in fact expose all the relations among

MGFs since the βsv
[
j1 j2 ... j`
k1 k2 ... k`

]
with different entries ji, ki are linearly independent.

Of course, the reach of this procedure depends on the multiplicity of the Y τ
~η -integrals un-

der consideration. For instance, E2,2 and E2,3 in (4.16) contain the two-loop graphs C[ 1 1 2
1 1 2 ]

and C[ 1 1 3
1 1 3 ] which do not appear in any two-point component integral Y τ

(a|b).
22 Instead,

the C
[

1 1 k
1 1 k

]
first appear as the coefficient of s2

23 in the three-point component integral

Y τ
(k,0|k,0)(2, 3|3, 2) discussed in section 5.

As a reference, we express the lowest-loop banana graphs Dn in terms of βsv, by comparing

(4.13) with (4.4a), yielding

D2 = −6βsv[ 1
4 ] +

ζ3

y
, (4.17a)

D3 = −30βsv[ 2
6 ] + ζ3 +

3ζ5

4y2
, (4.17b)

D4 = 216βsv[ 1 1
4 4 ]− 432βsv[ 2 0

4 4 ]− 504βsv[ 3
8 ] (4.17c)

+ 288ζ3β
sv[ 0

4 ]− 36ζ3

y
βsv[ 1

4 ] +
10ζ5

y
− 3ζ2

3

y2
+

9ζ7

4y3
,

D5 = 1800βsv[ 1 2
4 6 ]− 7200βsv[ 2 1

4 6 ] + 1800βsv[ 2 1
6 4 ]− 7200βsv[ 3 0

6 4 ]

− 16200βsv[ 4
10 ]− 60ζ3β

sv[ 1
4 ] + 4800ζ3β

sv[ 1
6 ]− 300ζ3

y
βsv[ 2

6 ] (4.17d)

+
720ζ5

y
βsv[ 0

4 ]− 45ζ5

y2
βsv[ 1

4 ] +
43ζ5

3
+

10ζ2
3

y
+

105ζ7

4y2
− 45ζ3ζ5

2y3
+

225ζ9

16y4
,

22The α′-expansion of two-point component integral Y τ(a|b) only involves the lattice sums C[ a 0
0 b

1 1 ... 1
1 1 ... 1 ] [30].
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see appendix C.4 for similar βsv-representations of D6 and D7. As expected, these expressions

satisfy the relations (4.16) if we plug in the βsv representations (4.7) of the modular graph

functions on the right-hand sides.

4.5 Explicit βsv from reality properties at two points

In this section, we derive the antiholomorphic integration constants in certain instances of

Esv in (3.29) and (3.32) from reality properties (2.14) of two-point component integrals. This

will make the iterated-Eisenstein-integral representation of the associated βsv and MGFs fully

explicit.

4.5.1 Depth one

From reality of y = π Im τ and Y τ
(0|0), the orders s2

12 and s3
12 of its α′-expansion (4.4a) imme-

diately imply that βsv[ 1
4 ] and βsv[ 2

6 ] are real. Similarly, from the instance Y τ
(2|0) = 16y2Y τ

(0|2)

of (2.14), the s12 and s2
12 orders of (4.4b) and (4.4c) imply that

βsv[ 2
4 ] = (4y)2βsv[ 0

4 ] , βsv[ 3
6 ] = (4y)2βsv[ 1

6 ] . (4.18)

By combining (2.14) with the s0
ij-order of general Y τ

(a|b) with a + b ≥ 4 derived in appendix

C.3, one arrives at the closed depth-one formula

βsv
[
j
k

]
= (4y)2+2j−kβsv

[
k−2−j
k

]
. (4.19)

By (3.13), this also determines the complex conjugation properties of Esv

Esv
[
j
k

]
= (−1)j

j∑
p=0

(
j

p

)
(4y)pEsv

[
j−p
k

]
. (4.20)

This is crucial extra information beyond the initial-value problem (3.7): The latter only deter-

mines Esv
[
j1 j2 ... j`
k1 k2 ... k`

]
up to antiholomorphic integration constants denoted by f

[
j1 j2 ... j`
k1 k2 ... k`

]
in (3.27). The complex-conjugation property (4.20) in turn relates these integration constants

to the holomorphic ingredients Esv
min that are fixed by their differential equation and can be

read off from its minimal solution (3.26). At k = 4, for instance, (4.20) reads

Esv[ 0
4 ] = Esv[ 0

4 ] ,

Esv[ 1
4 ] = −4yEsv[ 0

4 ]− Esv[ 1
4 ] , (4.21)

Esv[ 2
4 ] = 16y2Esv[ 0

4 ] + 8yEsv[ 1
4 ] + Esv[ 2

4 ]
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and selects the antiholomorphic completion in Esv
[
j
4

]
= Esv

min

[
j
4

]
+ f

[
j
4

]
: By inserting the

expansion (3.26) of the minimal Esv
min in terms of holomorphic iterated integrals (3.22)

Esv
min[ 0

4 ] = E [ 0
4 ] ,

Esv
min[ 1

4 ] = E [ 1
4 ]− 2πiτ̄E [ 0

4 ] , (4.22)

Esv
min[ 2

4 ] = E [ 2
4 ]− 4πiτ̄E [ 1

4 ] + (2πiτ̄)2E [ 0
4 ]

into (4.21) and isolating the purely antiholomorphic terms, one is uniquely led to

f [ 0
4 ] = E [ 0

4 ] ,

f [ 1
4 ] = −E [ 1

4 ]− 2πiτ̄E [ 0
4 ] , (4.23)

f [ 2
4 ] = E [ 2

4 ] + 4πiτ̄E [ 1
4 ] + (2πiτ̄)2E [ 0

4 ] .

This reasoning results in the expressions (3.30) for Esv
[
j
4

]
and can be straightforwardly re-

peated at k ≥ 6: The reality properties (4.20) completely fix the E
[
j−r
k

]
in (3.29) and uniquely

determine Esv
[
j
k

]
in terms of iterated Eisenstein integrals and their complex conjugates.

By combining the expression (3.29) for Esv
[
j
k

]
with the dictionaries (3.12) and (4.7) to

βsv
[
j
k

]
and MGFs, both Ek and their Cauchy–Riemann derivatives can then be reduced to

holomorphic iterated Eisenstein integrals and their complex conjugates, e.g.

π∇E2 =
3

2
Esv[ 2

4 ]− ζ3 (4.24)

= −12π2τ̄2 Re E [ 0
4 ] + 12πτ̄ Im E [ 1

4 ] + 3 Re E [ 2
4 ]− ζ3 ,

E2 = −6Esv[ 1
4 ]−

3Esv[ 2
4 ]

2y
+
ζ3

y
(4.25)

=
12π2τ τ̄ Re E [ 0

4 ]− 6π(τ+τ̄) Im E [ 1
4 ]− 3 Re E [ 2

4 ] + ζ3

y
,

π∇E2 = 24y2Esv[ 0
4 ] + 12yEsv[ 1

4 ] +
3

2
Esv[ 2

4 ]− ζ3 (4.26)

= −12π2τ2 Re E [ 0
4 ] + 12πτ Im E [ 1

4 ] + 3 Re E [ 2
4 ]− ζ3 .

At depth one, these iterated-Eisenstein-integral representations of Ek are well-known [8, 45]

and serve as a cross-check for the expansion methods of this work. At higher depth, however,

only a small number of MGFs has been expressed in terms of iterated Eisenstein integrals [17,

46], and we will later provide new representations for non-holomorphic imaginary cusp forms.

Most importantly, the reality properties of component integrals determine the integration

constants in higher-depth Esv and βsv without referring to the MGFs in the α′-expansion.
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4.5.2 Depth two

Based on the α′-expansions (4.4) of two-point component integrals, the s4
12-order of Y τ

(0|0) =

Y τ
(0|0) and the s3

12-order Y τ
(2|0) = 16y2Y τ

(0|2) imply

βsv[ 1 1
4 4 ] = βsv[ 1 1

4 4 ] , βsv[ 0 0
4 4 ] =

βsv[ 2 2
4 4 ]

256y4
, (4.27a)

βsv[ 2 0
4 4 ] = βsv[ 2 0

4 4 ]− 2ζ3

3
βsv[ 0

4 ] +
ζ3

24y2
βsv[ 2

4 ] , (4.27b)

βsv[ 0 2
4 4 ] = βsv[ 0 2

4 4 ] +
2ζ3

3
βsv[ 0

4 ]− ζ3

24y2
βsv[ 2

4 ] , (4.27c)

βsv[ 1 0
4 4 ] =

βsv[ 2 1
4 4 ]

16y2
− ζ3

24y2
βsv[ 1

4 ] +
ζ3

96y3
βsv[ 2

4 ]− ζ3

2160
, (4.27d)

βsv[ 0 1
4 4 ] =

βsv[ 1 2
4 4 ]

16y2
+

ζ3

24y2
βsv[ 1

4 ]− ζ3

96y3
βsv[ 2

4 ] +
ζ3

2160
. (4.27e)

These simplest depth-two examples illustrate that βsv
[
j1 j2
k1 k2

]
introduce admixtures of single-

valued MZVs and βsv of lower-depth. There is no depth-one analogue of this feature in the

expression (4.19) for βsv
[
j
k

]
. In section 5.4, three-point α′-expansions will be used to extract

similar complex-conjugation properties for all the individual βsv
[
j1 j2
4 6

]
and βsv

[
j1 j2
6 4

]
. Our

examples will line up with the conjectural closed depth-two formula

βsv
[
j1 j2
k1 k2

]
= (4y)4+2j1+2j2−k1−k2βsv

[
k2−2−j2 k1−2−j1

k2 k1

]
mod depth < 2 (4.28)

which translates as follows to the Esv

Esv
[
j1 j2
k1 k2

]
= (−1)j1+j2

j1∑
p1=0

j2∑
p2=0

(
j1
p1

)(
j2
p2

)
(4y)p1+p2Esv

[
j2−p2 j1−p1

k2 k1

]
mod depth < 2 .

(4.29)

These complex conjugation properties of Esv are consistent with the general depth-two ex-

pression (3.32), assuming the conjecture that the iterated Eisenstein integrals in α[· · · ] have

depth one and zero.

The ζ3-admixtures in (4.27) propagate to the following shuffle-inequivalent Esv
[
j1 j2
4 4

]
,

Esv[ 1 0
4 4 ] = −4yEsv[ 0 0

4 4 ]− Esv[ 0 1
4 4 ] ,

Esv[ 2 0
4 4 ] = 16y2Esv[ 0 0

4 4 ] + 8yEsv[ 0 1
4 4 ] + Esv[ 0 2

4 4 ]− yζ3

270
+

2ζ3

3
Esv[ 0

4 ] , (4.30)

Esv[ 2 1
4 4 ] = −64y3Esv[ 0 0

4 4 ]− 32y2Esv[ 0 1
4 4 ]− 4yEsv[ 0 2

4 4 ]− 16y2Esv[ 1 0
4 4 ]

− 8yEsv[ 1 1
4 4 ]− Esv[ 1 2

4 4 ] +
y2ζ3

135
− 8yζ3

3
Esv[ 0

4 ]− 2ζ3

3
Esv[ 1

4 ] .
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These equations uniquely fix all the integration constants α
[
j1 j2
4 4

]
: One has to first express

the Esv in terms of holomorphic iterated Eisenstein integrals E and their complex conjugates

via (3.29) and (3.32). Then by comparing the purely holomorphic terms ∼ τ, E , α
[
j1 j2
4 4

]
on

the two sides of (4.30), one can read off

α[ 1 0
4 4 ] = α[ 0 1

4 4 ] = 0 ,

α[ 2 0
4 4 ] =

2ζ3

3

(
E [ 0

4 ] +
iπτ

360

)
= −α[ 0 2

4 4 ] , (4.31)

α[ 2 1
4 4 ] =

2ζ3

3

(
2πiτE [ 0

4 ]− E [ 1
4 ]− π2τ2

360

)
= −α[ 1 2

4 4 ] .

The expressions for α
[
j1 j2
4 4

]
that enter the actual Esv

[
j1 j2
4 4

]
follow from complex conjugation,

and we have used the shuffle relations (3.34) to infer the α
[
j1 j2
4 4

]
with j1 < j2. Moreover, as

exhibited in appendix F, the α
[
j1 j2
4 4

]
in (4.31) are invariant under the modular T : τ → τ + 1

transformation, in line with the discussion in section 3.5.

5 Explicit forms at three points

An analysis similar to the one of section 4 can be done at three points. Unlike formula (4.2) we

do not have a closed expression for the all-order Laurent polynomial at three points to obtain

the initial data directly. For this reason, we first discuss a basis of modular graph forms that

we use for expanding the component integrals Y τ
~η . From this expansion and the knowledge

of the Laurent polynomials of the modular graph forms as given in [4] we can construct

the initial data Ŷ i∞
~η and solve for the remaining βsv at depth two having (k1, k2) = (4, 6) or

(k1, k2) = (6, 4). The expansion of the initial data to order 10 is available in machine-readable

form in an ancillary file within the arXiv submission of this paper. As a consistency check

of our procedure the instances of βsv that were determined from the two-point analysis in

section 4 are consequences of the three-point considerations.

The detailed discussion of βsv
[
j1 j2
4 6

]
, βsv

[
j1 j2
6 4

]
and the associated MGFs in this section

is motivated as follows: The depth-two integrals βsv
[
j1 j2
4 4

]
have been described in terms of

real MGFs E2 and E2,2, see (4.5c) and (4.7c), and their reality is a particularity of having

the same Eisenstein series G4 in both integration kernels. Generic βsv
[
j1 j2
k1 k2

]
with k1 6= k2,

by contrast, introduce complex MGFs. The irreducible MGFs besides products of depth-one

quantities can be organised in terms of real MGFs such as E2,3 and imaginary MGFs such

as the non-holomorphic cusp forms (2.30) which have been discussed first in [22]. Hence,

the βsv
[
j1 j2
4 6

]
, βsv

[
j1 j2
6 4

]
in this section are the simplest non-trivial window into the generic

properties of depth-two MGFs.
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5.1 Bases of modular graph forms up to order 10

At two points, the expansion of any component integral Y τ
(a|b) to order 10 is entirely express-

ible in terms of the modular graph functions Ek≤5,E2,2,E2,3 as well as their Cauchy–Riemann

derivatives, cf. (4.4) and appendix C.2. At three points, this is no longer the case: The α′-

expansion of various component integrals (2.11) introduces additional MGFs that are not

expressible in terms of the real quantities Ek≤5,E2,2 and E2,3. This resonates with the com-

ments in early section 4.2 that the operators Rη(εk) in the two-point differential equations

obey relations that no longer hold for their three-point analogues Rη2,η3(εk) in (2.34).

The additional MGFs that start appearing at three points can be understood from the

perspective of lattice sums. Expanding three-point component integrals Y τ
(a2,a3|b2,b3) to order

10 introduces a large variety of dihedral and trihedral MGFs23 whose modular weight adds

up to ≤ 10. In the notation C
[ a1 a2 ... aR
b1 b2 ... bR

]
for the dihedral case in (2.16), this amounts to

holomorphic and antiholomorphic modular weights w =
∑R

j=1 aj and w̄ =
∑R

j=1 bj subject to

w + w̄ ≤ 10.

Already the two-loop graphs C
[ a1 a2 a3
b1 b2 b3

]
with w+ w̄ = 10 were found in [22] to introduce

irreducible cusp forms A[
a1 a2 a3
b1 b2 b3 ] as defined in (2.30) with vanishing Laurent polynomial.

The known types of relations among dihedral and trihedral MGFs [9, 13, 20] – see [84] for a

Mathematica implementation and data mine – leave three independent cusp forms built from

C
[ a1 a2 ... aR
b1 b2 ... bR

]
with w = w̄ = 5. One of them is expressible as the antisymmetrised product

(∇E2)∇E3 − (∇E2)∇E3

(Im τ)2
= 6
( Im τ

π

)5{
C[ 3 0

1 0 ] C[ 2 0
4 0 ]− C[ 1 0

3 0 ] C[ 4 0
2 0 ]

}
, (5.1)

and we additionally have two irreducible cusp forms that can be taken to be A[ 0 2 3
3 0 2 ] and

A[ 0 1 2 2
1 1 0 3 ]. While (5.1) and A[ 0 2 3

3 0 2 ] have been discussed in [22], the cusp form A[ 0 1 2 2
1 1 0 3 ]

exceeds the loop orders studied in the reference.

For lattice sums C
[ a1 a2 ... aR
b1 b2 ... bR

]
with different holomorphic and antiholomorphic modu-

lar weights w 6= w̄, one can construct basis elements from Cauchy–Riemann derivatives of

modular invariants. As detailed in table 1, the bases24 for w + w̄ ≤ 8 can be assembled from

Cauchy–Riemann derivatives of Ek≤4 and E2,2 (including products of E2, ∇E2 and ∇E2). For

w + w̄ = 10 in turn, one needs to adjoin combinations of E5, E2,3, A[ 0 2 3
3 0 2 ], A[ 0 1 2 2

1 1 0 3 ] and

their Cauchy–Riemann derivatives to obtain complete lattice-sum bases.

In order to obtain simple expressions for the full range of βsv
[
j1 j2
4 6

]
and βsv

[
j1 j2
6 4

]
in

terms of lattice sums, it is convenient to delay the appearance of holomorphic Eisenstein

23See appendix A.2 for trihedral MGFs.
24We are not counting combinations of MGFs that evaluate to MZVs or products involving MZVs or holo-

morphic Eisenstein series in the table. This is why we did not include ζ3 = ( Im τ
π

)3( C[ 1 1 1
1 1 1 ] − C[ 3 0

3 0 ]) at

(w, w̄) = (3, 3) or any of ζ5, ζ3E2, G4∇
2
E3 at (w, w̄) = (5, 5).
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weight (w, w̄) basis elements

(2,2) E2

(3,1) ∇E2

(3,3) E3

(4,2) ∇E3

(5,1) ∇2E3

(4,4) E4, E2,2, E2
2, (Im τ)−2∇E2∇E2

(5,3) ∇E4, ∇E2,2, E2∇E2

(6,2) ∇2E4, (∇E2)2

(7,1) ∇3E4

(5,5) E5, E2,3, E2E3, (Im τ)−2∇E2∇E3, (Im τ)−2∇E2∇E3, B2,3, B′2,3
(6,4) ∇E5, ∇E2,3, E3∇E2, E2∇E3, (Im τ)−2∇E2∇2E3, ∇B2,3, ∇B′2,3
(7,3) ∇2E5, ∇2E2,3, ∇E2∇E3, E2∇2E3, ∇2B′2,3
(8,2) ∇3E5, ∇E2∇2E3, ∇3B′2,3
(9,1) ∇4E5

Table 1: Basis of MGFs of modular weight w + w̄ ≤ 10 in terms of ∇kE... and imaginary
cusp forms and their derivatives. There is a similar basis with w̄ > w where ∇ is replaced by
∇ and B... by B.... The modular weights (w, w̄) refer to the lattice sums C[. . .] after stripping
off overall suitable factors of (Im τ)k. For instance, Ek is counted as (w, w̄) = (k, k) from the
lattice-sum contribution C

[
k 0
k 0

]
=
∑

p 6=0 |p|−2k to (2.18). Additional factors of (Im τ)−2 have

been added explicitly in the table whenever there is an ∇ to ensure that all entries in one row
have the same modular properties.

series in the Cauchy–Riemann equations. This can be achieved by taking the combinations

B2,3 =

(
Im τ

π

)5

A[ 0 1 2 2
1 1 0 3 ] +

(∇E2)∇E3 − (∇E2)∇E3

6(Im τ)2
, (5.2a)

B′2,3 = B2,3 +
1

2

(
Im τ

π

)5

A[ 0 2 3
3 0 2 ]− 21

4
E2,3 −

1

2
ζ3E2 (5.2b)

as basis elements for the lattice sums with w = w̄ = 5, where the rescaling by Im τ/π is

analogous to (2.18) or (2.24) and renders B2,3,B
′
2,3 modular invariant. The lowest-order

Cauchy–Riemann derivatives that contain holomorphic Eisenstein series are

(π∇)2B2,3 = +
3

2
(π∇)2E2,3 +

2

7
(π∇)2B′2,3 −

3

2
E2(π∇)2E3

+
3

2
(π∇E2)(π∇E3) + (Im τ)4G4(9E3 + 3ζ3) , (5.3a)

(π∇)4B′2,3 = 1260(Im τ)6G6π∇E2 . (5.3b)
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While the modular graph form B2,3 is also an imaginary cusp form, the second form B′2,3 is

neither real nor a cusp form, and its Laurent polynomial is determined by the known Laurent

polynomials (2.28) of E2,3 and E2,

B2,3 = O(q, q̄) , B′2,3 =
y5

14175
− y2ζ3

45
+

7ζ5

240
− ζ2

3

2y
− 147ζ7

64y2
+

21ζ3ζ5

8y3
+O(q, q̄) . (5.4)

Accordingly, the complex-conjugation properties are

B2,3 = −B2,3 , B
′
2,3 = −B′2,3 −

21

2
E2,3 − ζ3E2 . (5.5)

The imaginary cusp forms with w = w̄ = 5 studied in [22] were denoted by A1,2;5 and A1,4;5

there and can be rewritten in our basis as follows25

A1,2;5 =
1

3

(
Im τ

π

)5

A[ 0 2 3
3 0 2 ] =

2

3

(
B′2,3 − B2,3 +

21

4
E2,3 +

ζ3

2
E2

)
, (5.6a)

A1,4;5 =
(∇E2)∇E3 − (∇E2)∇E3

6(Im τ)2
. (5.6b)

The extra cusp form A[ 0 1 2 2
1 1 0 3 ] entering the definition of B′2,3 did not arise in [22] as its

lattice-sum representation requires three-loop graphs on the worldsheet.

The reason for defining the particular combinations (5.2) is that their derivatives ∇B2,3,

∇B′2,3, ∇2B′2,3 and ∇3B′2,3 do not contain any explicit holomorphic Eisenstein series. The

collection of MGFs in table 1 forms a basis for MGFs of total modular weight w + w̄ = 10,

excluding factors of Gk or MZVs. First, the techniques in the literature have been used

to decompose all dihedral and trihedral MGFs with w + w̄ = 10 in the basis of the table

[84]. Second, the counting of basis elements matches the number of βsv that can enter the

α′-expansion of Y τ
~η at the relevant order. As will be detailed in the following sections, see in

particular (5.10) and (5.12) to (5.14) or (D.1), the correspondence between lattice-sum and

iterated-integral bases is

E2,3, E2E3, (Im τ)−2∇E2∇E3

(Im τ)−2∇E2∇E3, B2,3, B′2,3

}
↔
{
βsv[ 0 3

4 6 ] , βsv[ 1 2
4 6 ] , βsv[ 2 1

4 6 ]

βsv[ 3 0
6 4 ] , βsv[ 2 1

6 4 ] , βsv[ 1 2
6 4 ]

∇E2,3, E3∇E2, E2∇E3

(Im τ)−2∇E2∇2E3, ∇B2,3, ∇B′2,3

}
↔
{
βsv[ 0 4

4 6 ] , βsv[ 1 3
4 6 ] , βsv[ 2 2

4 6 ]

βsv[ 4 0
6 4 ] , βsv[ 3 1

6 4 ] , βsv[ 2 2
6 4 ]

(5.7)

∇2E2,3, ∇E2∇E3, E2∇2E3, ∇2B′2,3 ↔ βsv[ 1 4
4 6 ] , βsv[ 2 3

4 6 ] , βsv[ 4 1
6 4 ] , βsv[ 3 2

6 4 ]

∇E2∇2E3, ∇3B′2,3 ↔ βsv[ 2 4
4 6 ] , βsv[ 4 2

6 4 ] ,

25Note that the normalisation conventions of [22] for C
[ a1 a2 ... aR
b1 b2 ... bR

]
and A[

a1 a2 ... aR
b1 b2 ... bR

] differ from ours in

(2.16) and (2.30) by an additional factor of ( Im τ
π

)
1
2

∑R
j=1(aj+bj).
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where the powers of Im τ were inserted to harmonise the modular weights. Similarly, we have

∇mE5 ↔ βsv
[

4+m
10

]
, (Im τ)2m∇mE5 ↔ βsv

[
4−m

10

]
with m ≤ 4 according to (C.3). All the βsv

in (5.7) are understood to carry admixtures of lower depth analogous to the terms involving

ζk in (4.7). Generalisations of (5.7) to higher weight will be discussed in section 6.2.

5.2 Three-point component integrals and cusp forms

Based on the generating series (3.11), we have expanded all three-point component integrals

Y τ
(a2,a3|b2,b3)(σ|ρ) to order 10. Similar to the two-point case, the leading orders of the simplest

cases Y τ
(0,0|0,0)(σ|ρ) or Y τ

(1,0|1,0)(σ|ρ), Y τ
(1,0|0,1)(σ|ρ) are still expressible in terms of Ek and Ep,q.

The α′-expansion of Y τ
(0,0|0,0)(σ|ρ) involves trihedral modular graph functions Da,b,c(τ) that

are discussed in appendix A.2. They serve as consistency checks of the expansion method

(3.11) and as another showcase of how the βsv expose the relations among MGFs.

The simplest instances of cusp forms or the alternative basis elements in (5.2) occur in

the α′-expansion of the following component integrals:

Y τ
(2,0|0,2)(2, 3|2, 3)− Y τ

(0,2|2,0)(2, 3|2, 3) = s13(s23 − s12)(s12 + s13 + s23)

(
Im τ

π

)5

A[ 0 1 2 2
1 1 0 3 ]

+ (s23 − s12)(2s2
13 + s12s23)

(∇E2)∇E3 − (∇E2)∇E3

12(Im τ)2
+O(s4

ij)

= (s12−s23)(2s12s13−s12s23+2s13s23)
(∇E2)∇E3 − (∇E2)∇E3

12(Im τ)2

+ s13(s23−s12)(s12+s13+s23)B2,3 +O(s4
ij) , (5.8a)

Y τ
(2,1|3,0)(2, 3|2, 3)− Y τ

(3,0|2,1)(2, 3|2, 3) = s12s13
(∇E2)∇E3 − (∇E2)∇E3

4(Im τ)2

− s13(s13+s23)

(
Im τ

π

)5

A[ 0 1 2 2
1 1 0 3 ] +

2

3
s12s13

(
Im τ

π

)5

A[ 0 2 3
3 0 2 ] +O(s3

ij)

= s12s13

(4B′2,3
3

+ 7E2,3 +
2

3
ζ3E2

)
− 1

3
s13(4s12+3s13+3s23)B2,3

+ s13(3s12+2s13+2s23)
(∇E2)∇E3−(∇E2)∇E3

12(Im τ)2
+O(s3

ij) . (5.8b)

The expressions in (5.8) have been obtained by integrating over z2, z3 in Fourier space as

reviewed in appendix A.1 and simplifying the lattice sums via known MGF techniques. By

matching these results with the α′-expansions due to (3.11),

Y τ
(2,1|3,0)(2, 3|2, 3)− Y τ

(3,0|2,1)(2, 3|2, 3)
∣∣∣
s213

= −60βsv[ 0 3
4 6 ] + 270βsv[ 1 2

4 6 ] + 60βsv[ 1 2
6 4 ]

− 390βsv[ 2 1
4 6 ]− 270βsv[ 2 1

6 4 ] + 390βsv[ 3 0
6 4 ] + 3ζ3β

sv[ 1
4 ] + 260ζ3β

sv[ 1
6 ]− 45ζ3

y
βsv[ 2

6 ]

+
5ζ3

2y2
βsv[ 3

6 ]− 39ζ5

y
βsv[ 0

4 ] +
27ζ5

4y2
βsv[ 1

4 ]− 3ζ5

8y3
βsv[ 2

4 ] +
13ζ5

120
(5.9a)

– 47 –



Y τ
(2,1|3,0)(2, 3|2, 3)− Y τ

(3,0|2,1)(2, 3|2, 3)
∣∣∣
s12s13

= −90βsv[ 0 3
4 6 ] + 360βsv[ 1 2

4 6 ] + 90βsv[ 1 2
6 4 ]

+ 330βsv[ 2 1
4 6 ]− 360βsv[ 2 1

6 4 ]− 330βsv[ 3 0
6 4 ]− 220ζ3β

sv[ 1
6 ]− 60ζ3

y
βsv[ 2

6 ] +
15ζ3

4y2
βsv[ 3

6 ]

+
33ζ5

y
βsv[ 0

4 ] +
9ζ5

y2
βsv[ 1

4 ]− 9ζ5

16y3
βsv[ 2

4 ]− ζ5

90
(5.9b)

one can extract the following βsv-representation of B2,3 and B′2,3

B2,3 = 450βsv[ 2 1
4 6 ]− 450βsv[ 3 0

6 4 ] + 270βsv[ 2 1
6 4 ]− 270βsv[ 1 2

4 6 ] (5.10a)

− 3ζ3β
sv[ 1

4 ]− 300ζ3β
sv[ 1

6 ] +
45ζ3β

sv[ 2
6 ]

y
+

45ζ5β
sv[ 0

4 ]

y
−

27ζ5β
sv[ 1

4 ]

4y2
− 13ζ5

120
,

B′2,3 = 1260βsv[ 2 1
4 6 ]− 840ζ3β

sv[ 1
6 ] +

7ζ5

240
− ζ2

3

2y
− 147ζ7

64y2
+

21ζ3ζ5

8y3
. (5.10b)

Similarly, (5.2) implies βsv-representations of the cusp forms(
Im τ

π

)5

A[ 0 1 2 2
1 1 0 3 ] = 60βsv[ 0 3

4 6 ]− 60βsv[ 1 2
6 4 ] + 270βsv[ 2 1

6 4 ]− 270βsv[ 1 2
4 6 ] + 390βsv[ 2 1

4 6 ]

− 390βsv[ 3 0
6 4 ]− 3ζ3β

sv[ 1
4 ]− 260ζ3β

sv[ 1
6 ] +

45ζ3

y
βsv[ 2

6 ]− 5ζ3

2y2
βsv[ 3

6 ]

+
39ζ5

y
βsv[ 0

4 ]− 27ζ5

4y2
βsv[ 1

4 ] +
3ζ5

8y3
βsv[ 2

4 ]− 13ζ5

120
, (5.11a)(

Im τ

π

)5

A[ 0 2 3
3 0 2 ] = 540βsv[ 1 2

4 6 ]− 540βsv[ 2 1
6 4 ] + 360βsv[ 2 1

4 6 ]− 360βsv[ 3 0
6 4 ]− 240ζ3β

sv[ 1
6 ]

− 90ζ3

y
βsv[ 2

6 ] +
36ζ5

y
βsv[ 0

4 ] +
27ζ5

2y2
βsv[ 1

4 ]− ζ5

60
, (5.11b)

where the vanishing of their Laurent polynomials can be crosschecked through the asymp-

totics (3.38) of the βsv. Once we have fixed the antiholomorphic integration constants of the

βsv
[
j1 j2
4 6

]
and βsv

[
j1 j2
6 4

]
in section 5.4, one can extract the q-expansions of the MGFs from

their new representations (5.10) and (5.11), see appendix F.

5.3 Cauchy–Riemann derivatives of cusp forms and βsv

The above procedure to relate the new basis elements B2,3 and B′2,3 to cusp forms can be

repeated based on component integrals Y τ
(a2,a3|b2,b3)(σ|ρ) of non-vanishing modular weight

(0, b2+b3−a2−a3). Their expansion in terms of βsv to order 10 is available in an ancillary file

within the arXiv submission of this paper. On top of (5.10), we find

π∇B2,3 = 135βsv[ 1 3
4 6 ]− 270βsv[ 2 2

4 6 ]− 135

2
βsv[ 2 2

6 4 ] + 90βsv[ 3 1
6 4 ] +

225

2
βsv[ 4 0

6 4 ] +
3ζ3

4
βsv[ 2

4 ]

+ 180ζ3β
sv[ 2

6 ]− 45ζ3

2y
βsv[ 3

6 ]− 45ζ5β
sv[ 0

4 ]− 9ζ5

y
βsv[ 1

4 ] +
27ζ5

16y2
βsv[ 2

4 ] , (5.12a)
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π∇B2,3

y2
= 1440βsv[ 1 1

4 6 ]− 1080βsv[ 0 2
4 6 ] + 2160βsv[ 1 1

6 4 ] + 1800βsv[ 2 0
4 6 ]− 4320βsv[ 2 0

6 4 ]

− 12ζ3β
sv[ 0

4 ]− 1200ζ3β
sv[ 0

6 ]− 240ζ3

y
βsv[ 1

6 ] +
45ζ3

y2
βsv[ 2

6 ] +
108ζ5

y2
βsv[ 0

4 ]

− 27ζ5

2y3
βsv[ 1

4 ]− ζ5

4y
, (5.12b)

as well as

(π∇)3B
′
2,3

y6
= −483840βsv[ 0 0

6 4 ] +
756ζ5

y4
βsv[ 0

4 ]− 8ζ3

15y
− 7ζ5

5y3
− 63ζ3ζ5

4y6
, (5.13a)

(π∇)2B
′
2,3

y4
= 120960βsv[ 1 0

6 4 ]− 756ζ5

y3
βsv[ 0

4 ]− 2ζ3

15
+

7ζ5

5y2
− 147ζ7

32y4
+

63ζ3ζ5

4y5
, (5.13b)

π∇B
′
2,3

y2
= −15120βsv[ 2 0

6 4 ]− 24ζ3β
sv[ 0

4 ] +
378ζ5

y2
βsv[ 0

4 ]− 7ζ5

10y
+

ζ2
3

2y2
+

147ζ7

32y3
− 63ζ3ζ5

8y4

(5.13c)

and

π∇B′2,3 = −945βsv[ 2 2
4 6 ] + 630ζ3β

sv[ 2
6 ] +

ζ2
3

2
+

147ζ7

32y
− 63ζ3ζ5

8y2
, (5.14a)

(π∇)2B′2,3 =
945

2
βsv[ 2 3

4 6 ]− 315ζ3β
sv[ 3

6 ]− 147ζ7

32
+

63ζ3ζ5

4y
, (5.14b)

(π∇)3B′2,3 = −945

8
βsv[ 2 4

4 6 ] +
315ζ3

4
βsv[ 4

6 ]− 63

4
ζ3ζ5 . (5.14c)

Higher derivatives in turn involve holomorphic Eisenstein series, see (5.3). These relations

can be inverted to express all βsv
[
j1 j2
k1 k2

]
with k1 + k2 = 10 in terms of MGFs. The full

expressions are given in appendix D.1.

5.4 Explicit βsv from reality properties at three points

We shall now outline the computation of the antiholomorphic integration constants α
[
j1 j2
6 4

]
that enter the key quantities βsv

[
j1 j2
6 4

]
of this section via (3.12) and (3.32). Similar to the

steps in section 4.5, we first determine the complex conjugate βsv
[
j1 j2
6 4

]
from the reality

properties Y τ
(a2,a3|b2,b3)(σ|ρ) = (4y)a2+a3−b2−b3Y τ

(b2,b3|a2,a3)(ρ|σ) of the component integrals,

βsv[ 0 0
6 4 ] =

βsv[ 2 4
4 6 ]

4096y6
− ζ3

6144y6
βsv[ 4

6 ] +
ζ5

10240y6
βsv[ 2

4 ]− ζ3

907200y
− ζ5

345600y3
, (5.15a)

βsv[ 1 0
6 4 ] =

βsv[ 2 3
4 6 ]

256y4
− ζ3

384y4
βsv[ 3

6 ] +
ζ5

2560y5
βsv[ 2

4 ] +
ζ3

907200
− ζ5

86400y2
, (5.15b)

βsv[ 0 1
6 4 ] =

βsv[ 1 4
4 6 ]

256y4
− ζ3

1536y5
βsv[ 4

6 ] +
ζ5

640y4
βsv[ 1

4 ]− ζ3

226800
+

ζ5

172800y2
, (5.15c)
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βsv[ 2 0
6 4 ] =

βsv[ 2 2
4 6 ]

16y2
− ζ3

10080y2
βsv[ 2

4 ]− ζ3

24y2
βsv[ 2

6 ] +
ζ5

640y4
βsv[ 2

4 ]− ζ5

21600y
, (5.15d)

βsv[ 1 1
6 4 ] =

βsv[ 1 3
4 6 ]

16y2
+

ζ3

6720y2
βsv[ 2

4 ]− ζ3

96y3
βsv[ 3

6 ] +
ζ5

160y3
βsv[ 1

4 ] +
ζ5

43200y
, (5.15e)

βsv[ 0 2
6 4 ] =

βsv[ 0 4
4 6 ]

16y2
− ζ3

1680y2
βsv[ 2

4 ]− ζ3

384y4
βsv[ 4

6 ] +
ζ5

40y2
βsv[ 0

4 ]− ζ5

21600y
, (5.15f)

βsv[ 3 0
6 4 ] = βsv[ 2 1

4 6 ]− ζ3

210
βsv[ 1

4 ]− 2ζ3

3
βsv[ 1

6 ] +
ζ5

160y3
βsv[ 2

4 ]− ζ5

5400
, (5.15g)

βsv[ 2 1
6 4 ] = βsv[ 1 2

4 6 ] +
ζ3

315
βsv[ 1

4 ]− ζ3

6y
βsv[ 2

6 ] +
ζ5

40y2
βsv[ 1

4 ] +
ζ5

10800
, (5.15h)

βsv[ 1 2
6 4 ] = βsv[ 0 3

4 6 ]− ζ3

210
βsv[ 1

4 ]− ζ3

24y2
βsv[ 3

6 ] +
ζ5

10y
βsv[ 0

4 ]− ζ5

5400
, (5.15i)

βsv[ 4 0
6 4 ] = 16y2βsv[ 2 0

4 6 ]− 16ζ3y
2

105
βsv[ 0

4 ]− 32ζ3y
2

3
βsv[ 0

6 ] +
ζ5

40y2
βsv[ 2

4 ]− yζ5

1350
, (5.15j)

βsv[ 3 1
6 4 ] = 16y2βsv[ 1 1

4 6 ] +
4ζ3y

2

105
βsv[ 0

4 ]− 8ζ3y

3
βsv[ 1

6 ] +
ζ5

10y
βsv[ 1

4 ] +
yζ5

2700
, (5.15k)

βsv[ 2 2
6 4 ] = 16y2βsv[ 0 2

4 6 ]− 8ζ3y
2

315
βsv[ 0

4 ]− 2ζ3

3
βsv[ 2

6 ] +
2ζ5

5
βsv[ 0

4 ]− ζ5y

1350
, (5.15l)

βsv[ 4 1
6 4 ] = 256y4βsv[ 1 0

4 6 ]− 128ζ3y
3

3
βsv[ 0

6 ] +
2ζ5

5
βsv[ 1

4 ]− 16y4ζ3

14175
+
y2ζ5

675
, (5.15m)

βsv[ 3 2
6 4 ] = 256y4βsv[ 0 1

4 6 ]− 32ζ3y
2

3
βsv[ 1

6 ] +
8ζ5y

5
βsv[ 0

4 ] +
4y4ζ3

14175
− 2ζ5y

2

675
, (5.15n)

βsv[ 4 2
6 4 ] = 4096y6βsv[ 0 0

4 6 ]− 512ζ3y
4

3
βsv[ 0

6 ] +
32ζ5y

2

5
βsv[ 0

4 ]− 64y5ζ3

14175
− 8y3ζ5

675
. (5.15o)

We emphasise that this reasoning does not rely on any MGF representation and can be applied

at higher orders k1 + k2 ≥ 12, where a basis of lattice sums may not be explicitly available.

These results line up with the closed depth-two formula (4.28) modulo admixtures of lower

depth and determine βsv
[
j1 j2
4 6

]
via shuffle relations and (4.19).

In close analogy with (4.30), one can now solve (5.15) for the Esv
[
j1 j2
6 4

]
and introduce

the desired integration constants via (3.32). By comparing the purely holomorphic terms, we

arrive at

α[ 0 0
6 4 ] = α[ 1 0

6 4 ] = α[ 0 1
6 4 ] = 0 , (5.16a)

α[ 2 0
6 4 ] = − iπτζ3

226800
− ζ3

630
E [ 0

4 ] , (5.16b)

α[ 1 1
6 4 ] =

iπτζ3

151200
+

ζ3

420
E [ 0

4 ] , (5.16c)

α[ 0 2
6 4 ] =

iπτζ3

56700
− ζ3

105
E [ 0

4 ]− 2ζ3

3
E [ 0

6 ] , (5.16d)

α[ 3 0
6 4 ] =

π2τ2ζ3

75600
− iπτζ3

105
E [ 0

4 ] +
ζ3

210
E [ 1

4 ] , (5.16e)
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α[ 2 1
6 4 ] = −π

2τ2ζ3

113400
+

2iπτζ3

315
E [ 0

4 ]− ζ3

315
E [ 1

4 ] , (5.16f)

α[ 1 2
6 4 ] = −π

2τ2ζ3

32400
− iπτζ3

105
E [ 0

4 ] +
ζ3

210
E [ 1

4 ]− 4iπτζ3

3
E [ 0

6 ] +
2ζ3

3
E [ 1

6 ] , (5.16g)

α[ 4 0
6 4 ] =

iπ3τ3ζ3

28350
+

4π2τ2ζ3

105
E [ 0

4 ] +
4iπτζ3

105
E [ 1

4 ]− ζ3

105
E [ 2

4 ] +
iπτζ5

900
+

2ζ5

5
E [ 0

4 ] , (5.16h)

α[ 3 1
6 4 ] = − iπ

3τ3ζ3

113400
− π2τ2ζ3

105
E [ 0

4 ]− iπτζ3

105
E [ 1

4 ] +
ζ3

420
E [ 2

4 ] , (5.16i)

α[ 2 2
6 4 ] = − iπ

3τ3ζ3

18900
+

2π2τ2ζ3

315
E [ 0

4 ] +
2iπτζ3

315
E [ 1

4 ]− ζ3

630
E [ 2

4 ]

+
8π2τ2ζ3

3
E [ 0

6 ] +
8iπτζ3

3
E [ 1

6 ]− 2ζ3

3
E [ 2

6 ] , (5.16j)

α[ 4 1
6 4 ] = −π

2τ2ζ5

900
+

4iπτζ5

5
E [ 0

4 ]− 2ζ5

5
E [ 1

4 ] , (5.16k)

α[ 3 2
6 4 ] =

π4τ4ζ3

11340
+

16iπ3τ3ζ3

3
E [ 0

6 ]− 8π2τ2ζ3E [ 1
6 ]− 4iπτζ3E [ 2

6 ] +
2ζ3

3
E [ 3

6 ] , (5.16l)

α[ 4 2
6 4 ] =

2iπ5τ5ζ3

14175
− 32π4τ4ζ3

3
E [ 0

6 ]− 64iπ3τ3ζ3

3
E [ 1

6 ] + 16π2τ2ζ3E [ 2
6 ] +

16iπτζ3

3
E [ 3

6 ]

− 2ζ3

3
E [ 4

6 ]− iπ3τ3ζ5

675
− 8π2τ2ζ5

5
E [ 0

4 ]− 8iπτζ5

5
E [ 1

4 ] +
2ζ5

5
E [ 2

4 ] . (5.16m)

Note that shuffle relations determine α
[
j1 j2
4 6

]
= −α

[
j2 j1
6 4

]
, and manifestly T -invariant rep-

resentations can be found in (F.7).

5.5 Laplace equations of cusp forms

In this section, we discuss the Laplace equations of the extra basis MGFs corresponding to

βsv
[
j1 j2
6 4

]
and βsv

[
j1 j2
4 6

]
. Their representatives (5.2) satisfy

(∆ + 2)B2,3 = 4B′2,3 + 21E2,3 +
3
(
(∇E2)∇E3 − (∇E2)∇E3

)
2(Im τ)2

+ 2ζ3E2 , (5.17a)

(∆− 16)B′2,3 = −14B2,3 +
105

2
E2,3 + 21E2E3 + 7ζ3E2 −

21

40
ζ5 , (5.17b)

as can be shown by combining their βsv representations in (5.10) with the differential equa-

tions (3.14) obeyed by the βsv.26 This system can be diagonalised to

(∆− 12)(−B2,3 + B′2,3) =
63

2
E2,3 + 21E2E3 + 5ζ3E2 −

21

40
ζ5 (5.18a)

−
3
(
(∇E2)∇E3 − (∇E2)∇E3

)
2(Im τ)2

,

26To obtain these Laplace equations, one first expresses ∇B2,3 and ∇B′2,3 through a combination of βsv

as in (5.12) and then acts with ∇. The resulting expression is then converted back into MGFs by using the
inverse relations shown in e.g. (4.5) and appendix D.1. The same result can also be obtained by acting with
the derivatives on the lattice sum representations of B2,3 and B′2,3 and decomposing the result into the basis
summarised in table 1.

– 51 –



(∆− 2)(−7B2,3 + 2B′2,3) = −42E2,3 + 42E2E3 −
21

20
ζ5 (5.18b)

−
21
(
(∇E2)∇E3 − (∇E2)∇E3

)
2(Im τ)2

.

It is rewarding to rewrite these Laplace equations in terms of cusp forms, i.e. eliminate B′2,3
in favour of the three-column cusp form A1,2;5 in the normalisation conventions of (5.6):

(∆− 12)A1,2;5 =
(∇E3)∇E2 − (∇E3)∇E2

(Im τ)2
, (5.19a)

(∆− 2)B2,3 = 6A1,2;5 −
3
(
(∇E3)∇E2 − (∇E3)∇E2

)
2(Im τ)2

. (5.19b)

Note that (5.19a) is a special case of the Laplace equation among two-loop MGFs studied in

[22]. The system (5.19) can be diagonalised through the following linear combination of cusp

forms

(∆− 2)
(

B2,3 −
3

5
A1,2;5

)
= −

21
(
(∇E3)∇E2 − (∇E3)∇E2

)
10(Im τ)2

. (5.20)

Even though they diagonalise the Laplacian, A1,2;5 and B2,3− 3
5A1,2;5 have not been chosen as

basis elements in table 1 since their Cauchy–Riemann derivatives yield holomorphic Eisenstein

series in earlier steps than B2,3 and B′2,3, see (5.3).

6 Properties of the βsv and their generating series Y τ
~η

In this section, we study the central objects βsv and Y τ
~η in more detail. Based on the modular

properties of their generating series Y τ
~η , we will determine the SL2(Z) transformations of the

βsv and assign a modular weight modulo corrections by βsv of lower depth. This will be used

to infer the counting of independent MGFs at various modular weights from the entries ji, ki of

the βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

that occur in the expansion of Y τ
~η . Finally, based on the transcendental

weights of the βsv and the accompanying combinations of y and MZVs, we prove that the

α′-expansion of Y τ
~η is uniformly transcendental if the initial values Ŷ i∞

~η are.

6.1 Modular properties

We first explore the modular properties of the βsv that can be written in more compact form

than those of the Esv. The modular T - and S-transformation of the βsv will be inferred from

their appearance (3.11) in the generating function Y τ
~η . The torus-integral representation (2.8)

of Y τ
~η and the modular properties (2.5) of its ingredients imply the SL2(Z) transformation

Y
ατ+β
γτ+δ

~η (σ|ρ)
∣∣∣ηj→(γτ̄+δ)ηj

η̄j→
η̄j

(γτ̄+δ)

= Y τ
~η (σ|ρ) . (6.1)
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The asymmetric transformation law for the η̄j and ηj stems from the different choices of

arguments for Ω and Ω in the definition (2.8) of the generating series Y τ
~η . By the series

expansion (3.11) of both sides of (6.1) in terms of βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

and βsv
[
j1 j2 ... j`
k1 k2 ... k`

; ατ+β
γτ+δ

]
,

respectively, we can aim to infer the SL2(Z)-properties of βsv.

6.1.1 T - and S-transformations

The T -modular transformation τ → τ+1 is an invariance of both Y τ
~η and the operator

exp(−R~η(ε0)
4y ) acting on the initial values Ŷ i∞

~η in (3.11). Hence, the T -invariance of the

closed-string integrals can be transferred to the βsv,

βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ+1
]

= βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]
, (6.2)

as is also evident from the explicit low-depth examples worked out in the previous sections.

Under an S-modular transformation τ → −1/τ , by contrast, we also have to take into

account the (asymmetric) transformation of the ηj , η̄j and that the imaginary part Im τ =

y/π appears explicitly in the operator exp(−R~η(ε0)
4y )Ŷ i∞

~η in (3.11). Hence, the S-modular

transformations of the βsv can be obtained by inserting

Y
−1/τ
~η

∣∣ηj→τ̄ ηj
η̄j→η̄j/τ̄

=
∞∑
`=0

∑
k1,...,k`

=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k`−2∑
j`=0

(∏̀
i=1

(−1)ji(ki − 1)

(ki − ji − 2)!

)
βsv
[
j1 j2 ... j`
k1 k2 ... k`

;− 1
τ

]

×R~η
(
adk`−j`−2

ε0 (εk`) . . . adk2−j2−2
ε0 (εk2)adk1−j1−2

ε0 (εk1)
)

(6.3)

× exp
(
−|τ |2

R~η(ε0)

4y

)
Ŷ i∞
~η

∣∣ηj→τ̄ ηj
η̄j→η̄j/τ̄

into the left-hand side of (6.1), where the substitution on the η variables applies to all occur-

rences on the right-hand side of (6.3).

Once a given instance of βsv has been expressed in terms of MGFs, its S-modular prop-

erties can alternatively be inferred from the well-known transformation laws of the MGFs.

Both approaches lead to the following exemplary transformations of the βsv:

βsv
[

0
4 ;− 1

τ

]
= τ̄2

{
βsv[ 0

4 ; τ ] +
ζ3

24y2

(
τ2−1

)}
, (6.4a)

βsv
[

1
4 ;− 1

τ

]
= βsv[ 1

4 ; τ ] +
ζ3

(
|τ |2−1

)
6y

, (6.4b)

βsv
[

2
4 ;− 1

τ

]
=

1

τ̄2

{
βsv[ 2

4 ; τ ] +
2ζ3

3

(
τ̄2−1

)}
, (6.4c)

βsv
[

2 0
4 4 ;− 1

τ

]
= βsv[ 2 0

4 4 ; τ ] +
2ζ3

3
(τ̄2−1)βsv[ 0

4 ; τ ] +
5ζ5

(
|τ |2−1

)
216y

+
ζ2

3

(
1−2τ̄2+|τ |4

)
72y2

, (6.4d)
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βsv
[

1 2
6 4 ;− 1

τ

]
= βsv[ 1 2

6 4 ; τ ] +
ζ5

(
τ3τ̄−1

)
160y3

βsv[ 2
4 ; τ ]−

ζ2
3

(
|τ |2−1

)
2520y

−
7ζ7

(
|τ |4−1

)
3840y2

+
ζ3ζ5

(
|τ |6−2τ3τ̄+1

)
480y3

. (6.4e)

Based on the general relations (4.10) and (4.11) to non-holomorphic Eisenstein series, modular

S-transformations at depth one can be given in closed form

βsv
[
j
k

;− 1
τ

]
= τ̄k−2−2jβsv

[
j
k

; τ
]
− 2ζk−1τ̄

k−2−2j

(k−1)(4y)k−2−j +
2ζk−1|τ |2(k−2−j)

(k−1)(4y)k−2−j , (6.5)

and their analogues at depth two and k1+k2 ≤ 10 can be found in appendix E.

One important immediate consequence of (6.3) is that the maximal-depth term of any

S-modular transformation is

βsv
[
j1 j2 ... j`
k1 k2 ... k`

;− 1
τ

]
= τ̄−2`−2(j1+j2+...+j`)+k1+k2+...+k`βsv

[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

mod depth ≤ `−1 ,

(6.6)

where the terms of subleading depth are illustrated by the examples in (6.4). This follows

simply from taking the identity term of the exponential and considering only the rescaling

of the ηj , η̄j in the operators R~η(adki−ji−2
ε0 (εki)) that have finite adjoint powers of ε0. Refer-

ring back to section 2.4, we see that R~η(εk) ∼ sijη
k−2
j picks up a factor of τ̄k−2 under the

transformation (ηj , η̄k) → (τ̄ ηj , η̄j/τ̄) of (6.3). In particular, since R~η(ε0) picks up a factor

of τ̄−2, the operators R~η(adki−ji−2
ε0 (εki)) in (6.3) transform by τ̄2+2ji−ki . Demanding the S-

transformation of the βsv to cancel all of these factors leads to (6.6). Therefore, even though

the βsv are not genuine modular forms, they can be assigned leading modular weights given

by

βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]
←→ ‘modular weight’

(
0,−2`+

∑̀
i=1

(ki−2ji)
)

mod depth ≤ `−1 ,

(6.7)

and these will be the modular weights of MGFs associated with the given βsv as their leading-

depth contributions. In order to compensate for the lower-depth corrections to the transfor-

mation (6.6) and attain a genuine modular form, expressions like (4.7d), (4.9) for MGFs

comprise a tail of βsv of lower depth. Note that there are only non-holomorphic weights just

as for the component integrals in (2.13) as the generating function Y τ
~η was rescaled by Im τ

to absorb all holomorphic modular weights.
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6.1.2 A caveat from the derivation-algebra relations

An important qualification of the above arguments is that the derivation-algebra relations

such as (2.43) imply that the generating series Y τ
~η will not contain each possible βsv with

ji ≤ ki−2 individually but certain combinations always appear together. The first instance

of this implied by (2.43) occurs at ` = 2, k1+k2 = 14 and was spelt out in (3.17). Therefore,

even though Y τ
~η has a perfectly well-defined modular transformation given by (6.1), this

does not uniquely fix the modular behaviour of all the individual βsv. Instead, from weight∑
i ki ≥ 14 onward, only the specific combinations of βsv realised in the α′-expansion of Y τ

~η

(see for instance (3.17)) have to obey the modular properties (6.2) and (6.6). In principle,

there is the freedom for the individual βsv in these combinations to depart from the above T -

and S-transformations, as long as these departures cancel from the Y τ
~η .

Fortunately, this ambiguity does not affect the closed-string integrals or the MGFs in its

α′-expansion. For the combinations of βsv that drop out from Y τ
~η (and therefore all component

integrals) by derivation-algebra relations, we do not need or give an independent definition in

this work.27 Hence, (6.6) can be used as an effective modular transformation that holds for

all combinations of βsv relevant to this work. When studying the implications on MGFs in

the next section, the dropouts of βsv at given
∑

i ji and
∑

i ki will be taken into account, so

the counting of MGFs can be safely based on (6.6) and the relations in the derivation algebra.

6.2 Counting of modular graph forms

The modular properties (6.6) of the βsv can be used to count the number of independent

MGFs of a given weight. This will lend further support to our basis of MGFs in table 1. The

modular weights (w, w̄) of general lattice sums CΓ

[A
B
]

(cf. (2.19)) are related to the entries of

the highest-depth terms βsv
[
j1 j2 ... j`
k1 k2 ... k`

]
in their integral representation via

w + w̄ =
∑̀
i=1

ki , w − w̄ = 2`+
∑̀
i=1

(2ji − ki) . (6.8)

Note that our convention of modular weights is implied by the lattice-sum conventions (2.16)

and differs by the factor of ( Im τ
π )

1
2

(w+w̄) from [9, 13, 22].

While the second correspondence involving w−w̄ is simply a consequence of (6.7), the first

one w+w̄ =
∑`

i=1 ki requires further justification since C[ a ...b ... ] and Im τ C
[
a+1 ...
b+1 ...

]
have the

same total modular weight. It can be understood by comparing the integral-representation

(2.8) of Y τ
~η with its α′-expansion (3.11) in terms of βsv.

The integrals can be performed order by order in α′ and ηj , η̄j , where the lattice-sum

representations (A.2) of G(z, τ), f (k)(z, τ) and f (k)(z, τ) yield MGFs such as C
[ a1 a2 ... aR
b1 b2 ... bR

]
27For combinations of βsv that drop out from the α′-expansion (3.11), we cannot determine the antiholo-

morphic integration constants from the reality properties (2.15) of component integrals either.
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and higher graph topologies [21]. The respective contributions to the expansion variables and

the modular weights of the lattice sums are

G(z, τ) ↔ sij & modular weights (1, 1)

f (k)(z, τ) ↔ (ηj)
k & modular weights (k, 0) (6.9)

f (k)(z, τ) ↔ (η̄j)
k & modular weights (0, k) .

We are disregarding powers of Im τ and overall prefactors ∼ (ηj η̄j)
1−n of the Y τ

~η , i.e. the

modular weight (1, 1) of the Green function refers to its contributions to the entries of C[ ...... ].
In the α′-expansion (3.11), in turn, the correlation between powers of sij , ηj , η̄j and

the entries of βsv is governed by the derivations. Their homogeneity degrees are R~η(ε0) ∼
sij/η

2
j + η̄j/ηj and R~η(εk) ∼ sijηk−2

j , which correspond to modular weights R~η(ε0)↔ (−1, 1)

and R~η(εk)↔ (k−1, 1) from the lattice-sum viewpoint (6.9). Hence, the (sij , ηj , η̄j)-counting

of any operator R~η(adjε0εk) is the same as having an extra w+w̄ = k in lattice sums, regardless

of the power j of adε0 . This explains why w+w̄ has to grow with
∑`

i=1 ki.

Finally, the absence of a ki-independent offset w+w̄−
∑`

i=1 ki can be checked by compar-

ing the overall powers of (sij , ηj , η̄j) in the initial value Ŷ i∞
~η and the integral representation

of Y τ
~η . This is most conveniently done by noting the low-energy limit Y τ

(0,...,0|0,...,0)(σ|ρ) =

1 +O(α′2) of the simplest component integral at the leading order ∼ (ηj η̄j)
1−n.

On these grounds, we will perform a counting of independent MGFs on the basis of (6.8)

in the rest of this section. Our counting only refers to MGFs that do not evaluate to MZVs or

products involving MZVs or holomorphic Eisenstein series. We explain our methods in most

detail for modular invariant objects, where we also distinguish between real and imaginary

invariants, but these methods also cover weights (w, w̄) with w 6= w̄ that we list in table 2.

6.2.1 Reviewing weight w + w̄ ≤ 8

Up to total weight
∑

i ki < 8 the only possible basis elements stem from βsv
[
j
k

]
of depth one.

At fixed k, each choice of 0 ≤ j ≤ k−2 leads to a different modular weight according to (6.7).

This is in agreement with table 1 featuring only a single basis element for all total weights

w+w̄ < 8. For instance, modular invariants are obtained for βsv
[
j
k

]
whenever j = k−2

2 ,

and they are related to the Ek/2 shown in the (k2 ,
k
2 ) rows of table 1, see also the explicit

formula (4.8).

Starting from lattice sums of total weight w + w̄ = 8, there can also be invariant combi-

nations of depth-two βsv. The condition for modular invariance implied by (6.6) becomes

βsv
[
j1 j2
4 4

]
weight (0, 0) ⇔ 2 = j1 + j2 , 0 ≤ j1, j2 ≤ 2 , (6.10)

– 56 –



and there are three solutions to this condition given by (j1, j2) ∈ {(0, 2), (1, 1), (2, 0)}, leading

to three additional modular invariants of total weight 8 besides E4. Two linear combinations

of such βsv
[
j1 j2
4 4

] ∣∣
j1+j2=2

can be realised by the shuffles βsv[ 1
4 ]

2
and βsv[ 0

4 ]βsv[ 2
4 ] which

correspond to E2
2 and (∇E2)∇E2 by (4.5a).28 Hence, there is a single shuffle-irreducible

modular invariant at depth two which can be chosen to be E2,2, expressed through βsv in

(4.7c). Together with E4 ↔ βsv[ 3
8 ] at depth one, this reasoning agrees with the total of four

entries at weight (4, 4) in table 1.

The same counting strategy can be applied at non-zero modular weight. Let us consider

the example of (w, w̄) = (5, 3) in table 1 which translates into modular weight (0,−2) after

multiplication by (Im τ)5. The relevant βsv
[
j1 j2
4 4

]
at depth two with antiholomorphic weight

−2 have j1+j2 = 3 by (6.7) and this leaves the two options (j1, j2) ∈ {(1, 2), (2, 1)}. One

of them is the shuffle E2∇E2, and the irreducible representative is ∇E2,2, see (4.7c). The

connection with the irreducible modular invariant E2,2 can be anticipated by comparing the

differential equation (3.16b) of the βsv with the equations satisfied by the MGFs.

In general, the appearance of holomorphic Eisenstein series in Cauchy–Riemann deriva-

tives or relations to shuffles as in ∇2E2,2 = −1
2(∇E2)2 implies that the number of basis MGFs

with weights (w+k,w−k) decreases with |k|. An overview of the MGFs and irreducible rep-

resentatives at w+w̄ ≤ 14 can be found in table 2 below.

6.2.2 Reviewing weight w + w̄ = 10

Continuing to total weight 10, there are now additional possibilities at depth two coming

from (k1, k2) = (4, 6) or (6, 4). The condition for modular invariant βsv
[
j1 j2
4 6

]
and βsv

[
j1 j2
6 4

]
becomes j1+j2 = 3 (with 0≤j1≤2 & 0≤j2≤4 in the former case and 0≤j1≤4 & 0≤j2≤2 in

the latter). Both cases lead to three solutions each, and thus there is a total of six modular

invariants contributing to the lattice sums of weights (w, w̄) = (5, 5) that can be expressed

through depth-two βsv. Together with the single contribution E5 ↔ βsv[ 4
10 ] from depth one,

we find seven modular invariant combinations of βsv which matches the number of basis

elements in the (5, 5) sector in table 1.

Three combinations of the modular invariant βsv
[
j1 j2
4 6

]
and βsv

[
j1 j2
6 4

]
can be realised as

a shuffle of βsv
[
j
4

]
βsv
[

3−j
6

]
with j = 0, 1, 2. This translates into modular invariant products

E2E3, (∇E2)∇E3, (∇E2)∇E3 and leaves three irreducible modular invariants at depth two

that can be chosen to be E2,3 and B2,3,B
′
2,3 in table 1, see (4.7d) and (5.10) for their expres-

sions in terms of βsv. Alternatively, one can trade B2,3,B
′
2,3 for the imaginary cusp forms

A[ 0 2 3
3 0 2 ], A[ 0 1 2 2

1 1 0 3 ] and organise the modular invariants according to their reality properties:

28For ease of notation, we will suppress here and in the following the overall factors of (Im τ)#. They are
always implicit and understood to be such that the holomorphic modular weight vanishes, cf. (6.7). Therefore,
(Im τ)−2(∇E2)∇E2 will be just written as (∇E2)∇E2.
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three real basis elements E2E3, Re[(∇E2)∇E3], E2,3 (one of them irreducible) and three

imaginary basis elements Im[(∇E2)∇E3], A[ 0 2 3
3 0 2 ], A[ 0 1 2 2

1 1 0 3 ] (two of them irreducible).

The counting of real and imaginary forms can also be obtained based on the reality

properties (4.19) and (4.28) of the βsv: in the modular-invariant case, complex conjugation

is only an operation on the labels of the βsv at leading order in depth. Therefore one has

to form combinations of the βsv that are mapped to themselves or minus themselves under

complex conjugation. For instance, since

βsv[ 2 1
4 6 ] = βsv[ 3 0

6 4 ] modulo lower depth, (6.11)

the combinations βsv[ 2 1
4 6 ] ± βsv[ 3 0

6 4 ] give real and imaginary MGFs modulo lower depth,

respectively. See e.g. the real E2,3 in (4.7d) and the imaginary cusp form B2,3 in (5.10a).

The analogous counting of MGFs with w+w̄ = 10 and w 6= w̄ based on the βsv can be

found in table 2 below.

6.2.3 Predictions for weight w + w̄ = 12

For lattice sums of weight w+w̄ = 12, a basis of 19 modular invariants can be anticipated

from βsv at depth ` = 1, 2, 3:

(i) a single depth-one invariant E6 ↔ βsv[ 5
12 ]

(ii) 5 depth-two invariants βsv
[
j1 j2
6 6

]
with j1 + j2 = 4 and 0 ≤ j1, j2 ≤ 4

(iii) 6 depth-two invariants βsv
[
j1 j2
4 8

]
& βsv

[
j2 j1
8 4

]
with j1+j2 = 4 and 0≤j1≤2 & 0≤j2≤6

(iv) 7 depth-three invariants βsv
[
j1 j2 j3
4 4 4

]
with j1 + j2 + j3 = 3 and 0 ≤ ji ≤ 2

We will analyse the shuffle- and reality properties separately in each sector (ii), (iii), (iv) and

connect with known irreducible modular graph functions.

Sector (ii) comprises three shuffle βsv[ 2
6 ]

2
, βsv[ 1

6 ]βsv[ 3
6 ] and βsv[ 0

6 ]βsv[ 4
6 ] that correspond

to E2
3, (∇E3)∇E3 and (∇2E3)∇2

E3 according to (4.5). This leaves two irreducibles which

can be taken to be the quantities

E3,3 = 450βsv[ 4 0
6 6 ]− 180ζ5β

sv[ 0
6 ] +

ζ7

16y
− 7ζ9

64y3
+

9ζ2
5

64y4
, (6.12)

E′3,3 = 120(βsv[ 4 0
6 6 ]− βsv[ 3 1

6 6 ])− 48ζ5β
sv[ 0

6 ] +
12ζ5

y
βsv[ 1

6 ] +
3ζ7

160y
− 7ζ9

480y3
(6.13)

corresponding to the lattice sums (2.24c) and (2.24d). The βsv representations have been

inferred from the differential equations and the Laurent polynomials of the real MGFs E3,3

and E′3,3.
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Sector (iii) also admits three shuffles βsv[ 0
4 ]βsv[ 4

8 ] , βsv[ 1
4 ]βsv[ 3

8 ] and βsv[ 2
4 ]βsv[ 2

8 ] cor-

responding to (∇E2)∇E4, E2E4 and (∇E2)∇E4, respectively. Two of them are real E2E4,

Re[(∇E2)∇E4] whereas a third one Im[(∇E2)∇E4] is imaginary. The remaining three invari-

ants are shuffle irreducible, and one real representative

E2,4 = −5670βsv[ 4 0
8 4 ]− 5670βsv[ 2 2

4 8 ] + 3780ζ3β
sv[ 2

8 ]

+
405ζ7

4y2
βsv[ 0

4 ]− 9ζ7

80y
+

25ζ9

8y3
− 135ζ3ζ7

32y4
(6.14)

corresponds to the lattice sum given in (2.24e). As will be argued below, the remaining two

shuffle irreducibles can be chosen to be imaginary.

Sector (iv) admits 2+3 shuffles E3
2, E2(∇E2)∇E2 and E2E2,2, (∇E2)∇E2,2, (∇E2)∇E2,2.

Among the leftover two shuffle-irreducibles, one real representative

E2,2,2 = −216βsv[ 2 1 0
4 4 4 ] + 144ζ3β

sv[ 1 0
4 4 ] + 10ζ5β

sv[ 0
4 ]

− 12ζ2
3

y
βsv[ 0

4 ] +
ζ2

3

30
+

661ζ7

1800y
− 5ζ3ζ5

12y2
+

ζ3
3

6y3
(6.15)

corresponds to the lattice sum (2.24f). As will be argued below, the second shuffle irreducible

is imaginary.

In order to anticipate the number of real and imaginary irreducible modular invariants,

the known types of relations among MGFs have been exhaustively applied to all dihedral and

trihedral graph topologies at weights (w, w̄) = (6, 6) [84]. The solution to the large equation

system identifies 14 real and 5 imaginary independent modular invariants, again excluding

MZVs and Gk from our counting conventions. Given that modular invariant combinations

of the known E... already exhaust the 14 real invariants, the remaining shuffle irreducibles

must admit imaginary representatives. This conclusion lends support to extending the reality

properties of the βsv given in (4.28) beyond k1+k2 > 10, and it is tempting to extrapolate it

to arbitrary depth

βsv
[
j1 j2 ... j`
k1 k2 ... k`

]
= (4y)2`+

∑`
i=1(2ji−ki)βsv

[
k`−2−j` ... k2−2−j2 k1−2−j1

k` ... k2 k1

]
mod depth ≤ `−1 .

(6.16)

This conjecture leads to the same counting of imaginary representatives, and the power of 4y

therein vanishes exactly if the modular weight of βsv in (6.7) does.

Hence, the 5 imaginary invariants at (w, w̄) = (6, 6) are Im[(∇E2)∇E4], Im[(∇E2)∇E2,2],

two irreducible cusp forms from (iii) and one irreducible cusp form from (iv). The paper [22]

identified two cusp forms at (w, w̄) = (6, 6) among the two-loop graphs on the worldsheet.

Accordingly, three out of the five cusp forms in our counting must require lattice sums as-

sociated with (L ≥ 3)-loop graphs. Indeed, a detailed analysis of the relations between
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dihedral and trihedral MGFs suggests that A[ 0 2 4
5 0 1 ], A[ 0 1 2 3

2 1 3 0 ] and A[ 0 2 2 2
3 0 1 2 ] qualify as a

basis of shuffle-irreducible cusp forms at (w, w̄) = (6, 6), and Im[(∇E2)∇E2,2] also exceeds

the two-loop graphs when written in terms of lattice sums.

In summary, the 19 modular invariant lattice sums of weight (w, w̄) = (6, 6) comprise 11

shuffles (3 from (ii), 3 from (iii) and 5 from (iv)) and 8 shuffle irreducibles. The irreducibles

admit 5 real representatives known in the literature (E6 from (i), E3,3,E
′
3,3 from (ii), E2,4

from (iii), E2,2,2 from (iv)) and 3 imaginary cusp forms (two from (iii) and one from (iv))

generalising A[ 0 2 3
3 0 2 ], A[ 0 1 2 2

1 1 0 3 ] described in section 5.

The analogous counting of MGFs with w+w̄ = 12 and w 6= w̄ can be found in table 2

below.

6.2.4 Weight w + w̄ = 14 and the derivation algebra

By extending the above counting method to weight w+w̄ = 14, one is näıvely led to 44

modular invariants (26 of them shuffles). If all the βsv were realised independently in the

expansion (3.11) of Y τ
~η , the total of 44 would arise from the following sectors:

(a) a single depth-one invariant E7 ↔ βsv[ 6
14 ]

(b) 6 depth-two invariants βsv
[
j1 j2
4 10

]
& βsv

[
j2 j1
10 4

]
with j1+j2 = 5 and 0≤j1≤2 and 0≤j2≤8

(c) 10 depth-two invariants βsv
[
j1 j2
6 8

]
& βsv

[
j2 j1
8 6

]
with j1+j2 = 5 and 0≤j1≤4 and 0≤j2≤6

(d) 27 depth-three invariants βsv
[
j1 j2 j3
6 4 4

]
with j1 + j2 + j3 = 4 and 0 ≤ j1 ≤ 4 as well as

0 ≤ j2, j3 ≤ 2 and permutations of (k1, k2, k3)

However, weight
∑`

i=1 ki = 14 is the first instance where the derivation algebra exhibits

relations beyond the nilpotency properties in (2.41) that we have already used in the derivation

of (3.11). The simplest instance was exhibited in (3.17), see also appendix C.4 for expressions

of the MGF D7 at w + w̄ = 14 in terms of βsv.

More generally, the relation (2.43) implies additional relations under the adjoint ε0 action

according to29

0 = R~η

[
adjε0

([
ε10, ε4

]
− 3
[
ε8, ε6

])]
(6.17)

=

j∑
r=0

(
j

r

)
R~η

([
adrε0(ε10), adj−rε0 (ε4)

]
− 3
[
adrε0(ε8), adj−rε0 (ε6)

])
,

29We have checked that more general relations of the form(
R~η(ε0)

)j1([R~η(ε10), R~η(ε4)
]
− 3
[
R~η(ε8), R~η(ε6)

])(
R~η(ε0)

)j2 = 0 ,

do not yield any further relations among the operators R~η
(
adj1ε0(εk1)adj2ε0(εk2)

)
in the expansion (3.11) of Y τ~η .
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and similar relations arise at higher weight and depth, see (2.42) and [41, 79, 80]. In passing to

the second line, we have rewritten the relation in terms of the quantitiesR~η
(
adj1ε0(εk1)adj2ε0(εk2)

)
that occur in the expansion (3.11) of Y τ

~η (setting j≤10 in (6.17) and using R~η(adk−1
ε0 (εk)) = 0).

As a consequence, the βsv in the sectors (b) and (c) cannot all appear independently in the

generating series Y τ
~η of MGFs.

More specifically, (6.17) implies exactly one dropout among the βsv
[
j1 j2
k1 k2

]
with k1+k2 =

14 for each value j = j1+j2 with 0 ≤ j ≤ 10. At j = 5, this reduces the total number

of independent modular invariants with weight (w, w̄) = (7, 7) by one, leading to 43 rather

than 44. The commutators in (6.17) imply that this reduction affects the shuffle-irreducible

MGFs, and the dropout at (w, w̄) = (7, 7) concerns an imaginary modular invariant when

the combinations of βsv are organised into real and imaginary ones. Further details and the

analogous counting of forms with w 6= w̄ can be found in table 2. The conjectural relation

(6.16) implies that the basis at (w, w̄) = (7, 7) can be spanned by 24 real and 19 imaginary

invariants.30 It would be interesting to study at the level of the Laurent polynomials if our

basis of real MGFs at this weight contains a cusp form.

6.2.5 Weight w + w̄ ≥ 16 and the derivation algebra

We have not performed a similarly detailed analysis at higher weight and only offer some

general comments. At weight w+w̄ = 16, similar dropouts in the näıve count of MGFs

via βsv arise from the depth-three relation (2.42c), obstructing for instance the independent

appearance of all the βsv
[
j1 j2 j3
8 4 4

]
with 0 ≤ j1 ≤ 6 and 0 ≤ j2, j3 ≤ 2. In case of modular

invariants with w = w̄ = 8, this leads to the dropout of a real MGF, leaving in total 108

MGFs, out of which 42 are imaginary cusp forms.

Weight w+w̄ = 18 even allows for three sources of dropouts:

• the irreducible depth-two relation (2.42b) involving (ki, kj) ∈ {(4, 14), (6, 12), (8, 10)}

• left- and right-multiplication of the (k1+k2 = 14)-relation (2.42a) by a single ε4 and

arbitrary powers of ε0

• an irreducible depth-four relation first seen in [80] and available for download at [81]

The systematics of relations in the derivation algebra is governed by the counting of holomor-

phic cusp forms [80]. The propagation of irreducible relations to higher depth and weight by

multiplication with additional εk has been discussed in detail in [41]. The latter reference is

30As an immediate consequence of (6.16), we have a single real invariant E7 in sector (a) as well
as 15 real and 12 imaginary invariants in sector (d). The sectors (b) and (c) are coupled through
the relations (6.17) in the derivation algebra. It follows from (6.16) that the 15 independent instances
of R~η

(
adj1ε0(εk1)adj2ε0(εk2)

)
in (3.11) are accompanied by 8 real and 7 imaginary linear combinations of

βsv
[
j1 j2
4 10

]
, βsv

[
j2 j1
10 4

]
, βsv

[
j1 j2
6 8

]
, βsv

[
j2 j1
8 6

]
at j1+j2 = 5.
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weight # βsv # MGFs of which shuffle irred. real MGFs imag. MGFs

(2,2) 1 1 1 1 0
(3,1) 1 1 1 – –

(3,3) 1 1 1 1 0
(4,2) 1 1 1 – –
(5,1) 1 1 1 – –

(4,4) 4 4 2 4 0
(5,3) 3 3 2 – –
(6,2) 2 2 1 – –
(7,1) 1 1 1 – –

(5,5) 7 7 4 4 3
(6,4) 7 7 4 – –
(7,3) 5 5 3 – –
(8,2) 3 3 2 – –
(9,1) 1 1 1 – –

(6,6) 19 19 8 14 5
(7,5) 17 17 8 – –
(8,4) 13 13 6 – –
(9,3) 8 8 4 – –
(10,2) 4 4 2 – –
(11,1) 1 1 1 – –

(7,7) 44 43 17 24 19
(8,6) 41 40 16 – –
(9,5) 33 32 13 – –
(10,4) 22 21 9 – –
(11,3) 12 11 5 – –
(12,2) 5 4 2 – –
(13,1) 1 1 1 – –

Table 2: Counting of modular graph forms (MGF) up to total weight w+w̄ = 14 based on the
number of βsv. The entries list the total number of MGFs, the number of shuffle-irreducible
MGFs as well as the number of real and imaginary MGFs in the modular invariant sectors.
Up to total weight w + w̄ ≤ 12, the counting has been confirmed by independent methods for
dihedral and trihedral MGFs. For w + w̄ = 14, the derivation algebra imposes the additional
constraint (2.43) on the combinations of the βsv that can appear in the generating function
Y τ
~η , leading to a mismatch of the number of βsv and MGFs.

dedicated to classifying relations among elliptic MZVs and counting their irreducible repre-

sentatives at various lengths and depths. In this way [41] can be viewed as the open-string

prototype of the present counting of MGFs.
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6.2.6 Depth versus graph data

We emphasise that the above counting of MGFs applies to closed-string integrals of arbitrary

multiplicity and therefore to arbitrary graph topologies. The reason is that the R~η(εk) were

assumed to obey no further relations besides those in the derivation algebra, i.e. multiplicity-

specific relations such as commutativity of the Rη(εk≥4) at two points were disregarded.

Our bases of MGFs at w+w̄ ≤ 10 and (w, w̄) = (6, 6) as well as (w, w̄) = (7, 5) were built

from dihedral representatives (2.16). Hence, the results of this section imply that any MGF

at these weights associated with arbitrarily complicated graph topologies can be reduced to

dihedral MGFs (possibly with Q-linear combinations of MZVs in their coefficients), extending

the explicit calculations for dihedral and trihedral graphs in [84]. It would be interesting to

determine the first combination of weights, where the appearance of a trihedral basis MGF

is inevitable.

We have not found any general correlation between the loop order of an MGF and the

maximum depth of the associated βsv. On the one hand, one-loop MGFs (2.21) are still

in one-to-one correspondence with βsv at depth one by (4.9). On the other hand, a basis

of MGFs with w+w̄ = 10 requires at least one three-loop graph (e.g. A[ 0 1 2 2
1 1 0 3 ]) while the

associated βsv cannot exceed depth two. Up to w+ w̄ = 12 all examples satisfy that the loop

order of an irreducible βsv of depth ` is at least `, i.e., the depth of an irreducible βsv appears

to be a lower bound for the loop order.

6.3 Towards uniform transcendentality

This section is dedicated to the transcendentality properties of the generating series Y τ
~η that

become manifest from our results. We will show that the component integrals (2.11) are

uniformly transcendental provided that the same is true for the initial values31 Ŷ i∞
~η . In other

words, the matrix- and operator-valued series

Λτ~η =
∞∑
`=0

∑
k1,k2,...,k`
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k`−2∑
j`=0

(∏̀
i=1

(−1)ji(ki − 1)

(ki − ji − 2)!

)
Esv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

(6.18)

× exp
(
−
R~η(ε0)

4y

)
R~η
(
adk`−j`−2

ε0 (εk`) . . . adk2−j2−2
ε0 (εk2)adk1−j1−2

ε0 (εk1)
)

relating Y τ
~η = Λτ~ηŶ

i∞
~η by (3.8) will be demonstrated to enjoy uniform transcendentality. Our

reasoning closely follows the lines of section 7.1 in [39], where the open-string analogues of

the Y τ
~η are shown to be uniformly transcendental.

31It will be the main goal of [51] to express the initial values Ŷ i∞~η in terms of uniformly transcendental
sphere integrals as done in (4.1) and (4.2) for the two-point example.
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6.3.1 Weight assignments and uniform transcendentality of the generating series

We assign the following transcendental weights to the holomorphic building blocks in the

α′-expansion of open- and closed-string integrals,

quantity ζn1,n2,...,nr π E
[
j1 j2 ... j`
k1 k2 ... k`

]
τ

transcendental

weight

r∑
j=1

nj 1 `+
∑̀
i=1

ji 0

leading to weight 0 for ∇ and for instance weight j1+1 for E
[
j1
k1

]
.

Moreover, complex conjugation is taken to preserve the weight, which leads to weight 0

for τ̄ , weight 1 for y and weight `+
∑`

i=1 ji for E
[
j1 j2 ... j`
k1 k2 ... k`

]
. The weights of the holomorphic

iterated Eisenstein integrals are inherited from those of elliptic MZVs [41].

In order to infer the weight of the real-analytic Esv in the α′-expansion (6.18), we first note

that their building blocks Esv
min

[
j1 j2 ... j`
k1 k2 ... k`

]
involving only holomorphic E [. . .] have transcen-

dental weight `+
∑`

i=1 ji as is manifest in their representation (3.26). We will demonstrate in

section 6.3.2 that this propagates to the antiholomorphic integration constants f
[
j1 j2 ... j`
k1 k2 ... k`

]
in the decomposition (3.27) of Esv

[
j1 j2 ... j`
k1 k2 ... k`

]
.

With these definitions we will show that the component integrals carry uniform transcen-

dental weight

Y τ
(a2,...,an|b2,...,bn)(σ|ρ) at order α′

w ←→ transcendental weight w +

n∑
j=2

aj . (6.19)

In order to give a uniform transcendental weight to the whole generating series Y τ
~η we have

to assign

sij , ηj , η̄j ←→ transcendental weight −1 . (6.20)

With this convention and the inverse factors of (2πi) in the definition (2.11) of component

integrals, (6.19) is equivalent to having

claim: Y τ
~η ←→ transcendental weight 2(n−1) (6.21)

for the generating series at n points. This will be shown under the assumption that the initial

data has uniform transcendental weight,

assumption: Ŷ i∞
~η ←→ transcendental weight 2(n−1) . (6.22)
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6.3.2 Transcendentality of the series in βsv

We start by inspecting the constituents of the series Λτ~η in (6.18). By the homogeneity

degrees R~η(ε0) ∼ sij/η
2
j + 2πiη̄j/ηj and R~η(εk≥4) ∼ sijη

k−2
j of the derivations in section 2.4

and appendix B, we get

R~η(εk) ←→ transcendental weight 1−k , k ≥ 0 . (6.23)

As an immediate consequence, the operators in the series (6.18) are assigned

exp
(
−
R~η(ε0)

4y

)
←→ transcendental weight 0 (6.24)

R~η
(
adk−j−2

ε0 (εk)
)
←→ transcendental weight −(j+1) .

Hence, the transcendental weight we have found for the Esv
min cancels that of the accompanying

derivations,

Esv
min

[
j1 ... j`
k1 ... k`

]
R~η
(
adk`−j`−2

ε0 (εk`) . . . adk1−j1−2
ε0 (εk1)

)
←→ transcendental weight 0 . (6.25)

We shall now argue that this has to extend to the full Esv
min → Esv: By the vanishing tran-

scendental weight of exp(−R~η(ε0)
4y ), it follows from (6.25) that the Esv

min contributions to the

series (6.18) have weight zero, i.e. Λτ~η can only depart from vanishing transcendental weight

via Esv − Esv
min. The latter reduce to antiholomorphic integration constants f

[
j1 j2 ... j`
k1 k2 ... k`

]
, so

by our assumption (6.22) on the initial values, the claims (6.21) on the the series Y τ
~η and

(6.19) on the component integrals can only be violated by antiholomorphic quantities.

However, a purely antiholomorphic violation of uniform transcendentality is incompat-

ible with the reality properties (2.15) of the component integrals: The contributions from

holomorphic iterated Eisenstein integrals are uniformly transcendental by (6.25), so the same

must be true for those of the antiholomorphic ones. More precisely, by induction in the depth

` (which can be separated by only considering fixed orders in α′), one can show that the

f
[
j1 j2 ... j`
k1 k2 ... k`

]
must share the transcendental weights of the Esv

min, i.e.

Esv
[
j1 j2 ... j`
k1 k2 ... k`

]
, βsv

[
j1 j2 ... j`
k1 k2 ... k`

]
←→ transcendental weight `+

∑̀
i=1

ji (6.26)

Esv
[
j1 ... j`
k1 ... k`

]
R~η
(
adk`−j`−2

ε0 (εk`) . . . adk1−j1−2
ε0 (εk1)

)
←→ transcendental weight 0 .

The matching transcendental weights of Esv and βsv follow from their relation (3.10) and y

having weight 1. Based on (6.26) and (6.24), each term in the series (6.18) has transcendental
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weight zero, and the weight of Y τ
~η agrees with that of the initial value Ŷ i∞

~η . Hence, the claim

(6.21) follows from the assumption (6.22).

At two points, the initial value following from the Laurent polynomials (4.2) has tran-

scendental weight 2, where we again use the vanishing weight of exp
(
−R~η(ε0)

4y

)
. This confirms

the claims (6.19) and (6.21) at n = 2 since the series in Esv preserves the weight by (6.26).

At n ≥ 3 points, the dictionary between Ŷ i∞
~η and (n+2)-point sphere integrals is under

investigation [51]. From a variety of Laurent-polynomials in (n≥3)-point MGFs [4, 7, 13] and

preliminary studies of their generating series, there is substantial evidence that the transcen-

dental weight of Ŷ i∞
~η is 2(n−1).

6.3.3 Basis integrals versus one-loop string amplitudes

We emphasise that the discussion of this section is tailored to the conjectural basis Y τ
~η of torus

integrals. In order to extract the transcendentality properties of one-loop string amplitudes,

it remains to

• express their torus integral in terms of component integrals (6.19), where the expansion

coefficients32 may involve Q-linear combinations of Gk [21, 40, 73]

• study the kinematic factors accompanying the component integrals

• integrate the modular parameter τ over the fundamental domain.

The subtle interplay of τ -integration with the transcendental weights has been explored in

[26] along with a powerful all-order result for the integrated four-point integral Y τ
(0,0,0|0,0,0)

that was shown to enjoy a natural extension of uniform transcendentality. In [85] it was

argued that uniform transcendentality is violated starting from two loops.

The kinematic coefficients of Y τ
(a2,...,an|b2,...,bn) or GkY

τ
(a2,...,an|b2,...,bn) may feature different

transcendentality properties, depending on the string theory under investigation. For the

τ -integrands of type-II superstrings, these kinematic factors should be independent of α′ in

a suitable normalisation of the overall amplitude. This can for instance be seen from the

explicit (4 ≤ n ≤ 7)-point results in [3, 86–88] and the worldsheet supersymmetry in the RNS

formalism, even in case of reduced spacetime supersymmetry [72, 89]. Hence, the τ -integrands

of n-point type-II amplitudes at one loop are expected to be uniformly transcendental.

Heterotic and bosonic strings in turn are known to involve tachyon poles in their chiral

halves due to factors like ∂f
(k)
ij and f

(k)
ij f

(`)
ij in their CFT correlators. They can still be rewrit-

ten in terms of Y τ
(a2,...,an|b2,...,bn) via integration by parts [21], but the expansion coefficients

32The reduction of (n≤4)-point gauge amplitudes of the heterotic string to a basis of Y τ(a2,...,an|b2,...,bn) also

involves the modular version Ĝ2 = G2 − π
Im τ

of G2 =
∑
n∈Z\{0}

1
n2 +

∑
m∈Z\{0}

∑
n∈Z

1
(mτ+n)2

among the

expansion coefficients [21].
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may involve factors like (1 + sij)
−1 that break uniform transcendentality upon geometric-

series expansion. Hence, even if one-loop amplitudes of heterotic and bosonic strings can be

expanded in a uniformly transcendental integral basis, the overall τ -integrand will generically

lose this property through the kinematic factors. This effect is well-known from tree-level

amplitudes in these theories [90–92].

7 Conclusion and outlook

In this work, we have pinpointed the structure of the α′-expansion for the generating series

Y τ
~η of torus integrals seen in one-loop closed-string amplitudes. As main results we have

(i) exhibited that, for any number of external legs, the polynomial structure in Mandel-

stam variables is explicitly determined to all orders in α′ by (3.11). This is based on

conjectural matrix realisations of certain derivations εk dual to Eisenstein series [50].

(ii) reduced the torus-puncture integrals to combinations of iterated Eisenstein integrals

with integration kernels τ jGk with k ≥ 4 & 0 ≤ j ≤ k−2, their complex conjugates and

MZVs from their behaviour at the cusp τ → i∞.

(iii) developed methods to count the number of independent modular graph forms (w.r.t. re-

lations over Q[MZV]) that occur at given modular weight or α′-order in generic one-loop

string amplitudes. Our approach exposes all relations between modular graph forms.

While the main formula (3.11) of (i) is mainly driven by the holomorphic derivative ∂τY
τ
~η ,

the appearance of antiholomorphic iterated Eisenstein integrals in (ii) is inferred from the

complex-conjugation properties of the series. We have presented non-trivial depth-two exam-

ples but leave a detailed study of higher orders for the future. As to (iii), while the methods

of this work determine the counting of modular graph forms at arbitrary weight, it is an open

problem to condense these mechanisms to a closed formula.

The combinations of (anti-)holomorphic Eisenstein integrals in the α′-expansion of this

work are denoted by βsv and we expect them to occur in Brown’s generating series of single-

valued iterated Eisenstein integrals [46, 48, 49]. Both the antiholomorphic constituents of βsv

and their linear combinations that yield modular graph forms involve single-valued MZVs.

Also Brown’s construction of single-valued iterated Eisenstein integrals involves single-valued

MZVs which can be traced back to the multiple modular values in the S-transformation of

their holomorphic counterparts.

In our setup, by contrast, all single-valued MZVs descend from the degeneration of the

n-point Y τ
~η at the cusp, where (n+2)-point sphere integrals should be recovered. Following

earlier work of D’Hoker, Green [24] and Zagier, Zerbini [28], we have made this fully explicit

for the Y τ
~η series at n = 2 points, and the degenerations at n ≥ 3 are under investigation
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[51]. Hence, by combining the results of the present paper with the evaluation of genus-zero

integrals at the cusp, one can completely determine

• the explicit form of the combinations of holomorphic iterated Eisenstein integrals and

their complex conjugates that yield non-holomorphic modular forms

• the generating series of all possible genus-one integrals over closed-string punctures.

Finally, the appearance of the βsv in closed-string one-loop amplitudes suggests a connection

to open strings: At tree level, the sphere integrals in closed-string amplitudes were identified

as single-valued disk integrals occurring in open-string amplitudes [54–60]. This calls for an

extension of the single-valued map for (motivic) MZVs [52, 53] to the holomorphic iterated

Eisenstein integrals in the α′-expansion of one-loop open-string integrals [38, 39]. We hope

to report on the relation between one-loop closed-string integrals and single-valued versions

of the open-string integrals in the near future.
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A Lattice sums

This appendix reviews some more background material on modular graph forms.

A.1 Fourier integrals

In order to perform the component integrals (2.9) and (2.11) order by order in α′, we employ

the Fourier transformations of its doubly-periodic building blocks with respect to the real

coordinates u, v of the torus,

z = uτ + v , u, v ∈ [0, 1] , (A.1)
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Figure 2: Depiction of the worldsheet graph associated with the trihedral modular graph form

C
[
a1 ... aQ
b1 ... bQ

∣∣∣ c1 ... cR
d1 ... dR

∣∣∣ e1 ... eSf1 ... fS

]
.

namely

Ω(z, η, τ) =
1

η
+
∑
p 6=0

e2πi〈p,z〉

p+ η
, (A.2a)

f (w)(z, τ) = (−1)w−1
∑
p 6=0

e2πi〈p,z〉

pw
, (A.2b)

G(z, τ) =
Im τ

π

∑
p 6=0

e2πi〈p,z〉

|p|2
. (A.2c)

The Fourier coefficients are labelled by discrete lattice momenta p ∈ Z+τZ with the notation

p = mτ + n , m, n ∈ Z =⇒ 〈p, z〉 = mv − nu =
pz̄ − p̄z
τ − τ̄

. (A.3)

Note that the result (A.2c) for the Green function [1] is conditionally convergent, and (A.2b)

only applies to w ≥ 1. Moreover, the instances of (A.2b) at w = 1, 2 are not absolutely

convergent for any z on the torus, though the sum at w = 1 is formally consistent with

f (1)(z, τ) = −∂zG(z, τ).

A.2 Trihedral modular graph forms

The α′-expansion of three-point component integrals (2.11) introduces MGFs of trihedral

topology, cf. figure 2, [9]

C
[
a1 ... aQ
b1 ... bQ

∣∣∣ c1 ... cR
d1 ... dR

∣∣∣ e1 ... eSf1 ... fS

]
(τ) =

∑
p1,p2,...,pQ 6=0
k1,k2,...,kR 6=0
`1,`2,...,`S 6=0

δ(
∑Q

i=1 pi −
∑R

i=1 ki)δ(
∑R

i=1 ki −
∑S

i=1 `i)(∏Q
j=1 p

aj
j p̄

bj
j

)(∏R
j=1 k

cj
j k̄

dj
j

)(∏S
j=1 `

ej
j

¯̀fj
j

) ,
(A.4)
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where all of pj , kj , `j refer to lattice momenta of the form (A.3). Similar to dihedral MGFs

(2.16), the integer exponents aj , bj , . . . , fj lead to holomorphic and antiholomorphic modular

weights
∑Q

j=1 aj +
∑R

j=1 cj +
∑S

j=1 ej and
∑Q

j=1 bj +
∑R

j=1 dj +
∑S

j=1 fj , respectively.

The α′-expansion of the simplest three-point component integral Y τ
(0,0|0,0) is well-known

to be expressible in terms of the banana-graph functions Dn in (4.13) and the trihedral MGFs

Da,b,c(τ) =

∫
d2z2

Im τ

d2z3

Im τ

(
G(z12, τ)

)a(
G(z23, τ)

)b(
G(z13, τ)

)c
=
( Im τ

π

)a+b+c
C[ 1 1 ... 1

1 1 ... 1︸ ︷︷ ︸
a

| 1 1 ... 1
1 1 ... 1︸ ︷︷ ︸

b

| 1 1 ... 1
1 1 ... 1︸ ︷︷ ︸

c

](τ) , (A.5)

namely [2]

Y τ
(0,0|0,0) = 1 +

∞∑
n=2

1

n!
(sn12 + sn13 + sn23)Dn(τ) + s12s13s23D1,1,1(τ) (A.6)

+
1

2
s12s13s23(s12 + s13 + s23)D2,1,1(τ) +

1

4
(s2

12s
2
13 + s2

13s
2
23 + s2

12s
2
23)
(
D2(τ)

)2
+

1

6
s12s13s23(s2

12 + s2
13 + s2

23)D3,1,1(τ) +
1

4
s12s13s23(s12s13 + s13s23 + s12s23)D2,2,1(τ)

+
1

12
(s2

12s
3
13 + s3

12s
2
13 + s2

13s
3
23 + s3

13s
2
23 + s2

12s
3
23 + s3

12s
2
23)D2(τ)D3(τ) +O(s6

ij) .

Upon comparison with the α′-expansion obtained from (3.11), i.e. by extracting the coefficient

of η−1
23 η

−1
3 η̄−1

23 η̄
−1
3 in the generating functions, we arrive at the following expressions for the

trihedral modular graph functions (A.5)

D1,1,1 = −30βsv[ 2
6 ] +

3ζ5

4y2
, (A.7a)

D2,1,1 = −126βsv[ 3
8 ]− 18βsv[ 2 0

4 4 ] + 12ζ3β
sv[ 0

4 ] +
5ζ5

12y
− ζ2

3

4y2
+

9ζ7

16y3
, (A.7b)

D3,1,1 = 540βsv[ 1 2
4 6 ]− 900βsv[ 2 1

4 6 ] + 540βsv[ 2 1
6 4 ]− 900βsv[ 3 0

6 4 ]

− 1458βsv[ 4
10 ] + 600ζ3β

sv[ 1
6 ]− 90ζ3

y
βsv[ 2

6 ]

+
90ζ5

y
βsv[ 0

4 ]− 27ζ5

2y2
βsv[ 1

4 ]− ζ5

30
+

105ζ7

32y2
− 3ζ3ζ5

2y3
+

81ζ9

64y4
, (A.7c)

D2,2,1 = −1296βsv[ 4
10 ]− 240βsv[ 2 1

4 6 ]− 240βsv[ 3 0
6 4 ]

+ 160ζ3β
sv[ 1

6 ] +
24ζ5

y
βsv[ 0

4 ] +
11ζ5

45
+

7ζ7

8y2
− ζ3ζ5

y3
+

9ζ9

8y4
. (A.7d)

The combinations of βsv in the right-hand side can be identified with those of Ek, E2,2 and

E2,3 in (4.7). Hence, the βsv-representations (A.7) expose the relations among the simplest
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Da,b,c known from the literature [4, 5, 9, 13]

D1,1,1 = E3 = D3 − ζ3 , (A.8a)

D2,1,1 = E2,2 +
9

10
E4 , (A.8b)

D3,1,1 =
15

2
E2,3 + 3E2E3 +

81

35
E5 +

7ζ5

40
, (A.8c)

D2,2,1 = 2E2,3 +
72

35
E5 +

3ζ5

10
. (A.8d)

B Derivations beyond three points

This appendix is dedicated to the matrices R~η(εk) in the differential equation (2.33) at mul-

tiplicities n ≥ 4 which have been determined in [30, 38, 39].

B.1 Four points

The 6× 6 matrices Rη2,η3,η4(εk) at four points are given by Rη2,η3,η4(ε2) = 0 and

Rη2,η3,η4(εk) = ηk−2
2 r(e2) + ηk−2

3 r(e3) + ηk−2
4 r(e4) + ηk−2

23 r(e23) + ηk−2
24 r(e24) + ηk−2

34 r(e34)

+ ηk−2
234 r(e234)− δk,0

(1

2

4∑
j=2

s1j∂
2
ηj +

1

2

4∑
2≤i<j

sij(∂ηi−∂ηj )2 + 2πi
4∑
j=2

η̄j∂ηj

)
16×6 (B.1)

for k 6= 2 and positive even. The r(e...) are the 6 × 6 matrices appearing in equation (4.21)

and appendix C.1 of [39] as r~η(e...).

B.2 n points

The (n−1)!× (n−1)! matrices R~η(εk) in (2.33) at n points can be generated from [30, 38, 39]

2πi∂τY
τ
~η (σ|1, 2, . . . , n) = −

n∑
j=2

℘
(
(τ−τ̄)ηj,j+1...n, τ

)
Y τ
~η

(
σ|S[12 . . . j−1, j(j+1) . . . n]

)
(B.2)

+
1

(τ−τ̄)2

{
2πi

n∑
j=2

η̄j∂ηj +
1

2

n∑
j=2

s1j∂
2
ηj +

1

2

n∑
2≤i<j

sij(∂ηi−∂ηj )2
}
Y τ
~η (σ|1, 2, . . . , n) .

The entries of R~η(εk) can be read off through the following steps:

• expand out the S[A,B]-map via

Y τ
~η (σ|S[a1a2 . . . ap, b1b2 . . . bq]) =

p∑
i=1

q∑
j=1

(−1)i−j+p−1saibj (B.3)

× Y τ
~η

(
σ|(a1a2 . . . ai−1�apap−1 . . . ai+1), ai, bj , (bj−1 . . . b2b1�bj+1 . . . bq)

)
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• reduce the integrals to a basis of Y τ
~η (σ|1, . . .) by means of Kleiss–Kuijf relations following

from Fay identities [39]

Y τ
~η (σ|a1, a2, . . . , ap, 1, b1, b2, . . . , bq) = (−1)pY τ

~η

(
σ|1, (ap . . . a2a1�b1b2 . . . bq)

)
(B.4)

• expand the Weierstraß functions in (B.2) via

℘(η, τ) =
1

η2
+
∞∑
k=4

(k−1)ηk−2Gk(τ) (B.5)

• insert (B.3), (B.4) and (B.5) into (B.2) and match the result with the form (2.33) of

the differential equation to obtain the first row of the R~η(εk)

• repeat the above steps for permutations ∂τY
τ
~η (σ|1, ρ(2, 3, . . . , n)), ρ ∈ Sn−1 with appro-

priate relabelling of sij and ηj to generate the remaining rows of R~η(εk)

C Two-point results

C.1 α′-expansions of component integrals

In this appendix, we collect further representative examples of α′-expansions of two-point

component integrals (2.9) to order 10. Their Laurent polynomials at the cusp are generated

by (4.2) and yield the component results in (4.3) and

Y τ
(0|2)

∣∣
q0q̄0 = s12

( y

180
− ζ3

8y2

)
+ s2

12

( y2

3780
− ζ5

16y3

)
+ s3

12

( y3

22680
+
ζ3

144
− 5ζ5

48y2
+

ζ2
3

16y3
− 9ζ7

128y4

)
+ s4

12

( y4

449064
+
yζ3

648
− ζ2

3

48y2
+

9ζ3ζ5

64y4
− 7ζ7

64y3
− 15ζ9

128y5

)
+O(s5

12) , (C.1a)

Y τ
(4|0)

∣∣
q0q̄0 = −s12

(32y5

945
+ 2ζ5

)
+ s2

12

(
− 16y6

14175
− 8y3ζ3

45
+ 2ζ2

3 −
9ζ7

2y

)
+ s3

12

(
− 16y7

66825
− 8y4ζ3

135
+
y2ζ5

15
− 7ζ7

2
+

9ζ3ζ5

y
− 45ζ9

4y2

)
+O(s4

12) , (C.1b)

Y τ
(3|5)

∣∣
q0q̄0 = − y3

18900
+

15ζ7

128y4
+ s12

( y4

1871100
+

ζ5

480y
− 15ζ3ζ5

64y4
+

91ζ9

128y5

)
+O(s2

12) . (C.1c)

For generic τ , the α′-expansion (4.4) of the two-point generating series yields components

Y τ
(4|0) = s12(5βsv[ 4

6 ; τ ]− 2ζ5) + s2
12

(
63βsv[ 5

8 ; τ ] + 9βsv[ 2 2
4 4 ; τ ]− 6ζ3β

sv[ 2
4 ; τ ] + 2ζ2

3 −
9ζ7

2y

)
+ s3

12

(
810βsv[ 6

10 ; τ ]− 15βsv[ 1 4
4 6 ; τ ] + 150βsv[ 2 3

4 6 ; τ ] + 30βsv[ 3 2
6 4 ; τ ] (C.2a)

+ 105βsv[ 4 1
6 4 ; τ ]− 100ζ3β

sv[ 3
6 ; τ ] +

5ζ3

2y
βsv[ 4

6 ; τ ]− 42ζ5β
sv[ 1

4 ; τ ]− 3ζ5

y
βsv[ 2

4 ; τ ]

− 7ζ7

2
+

9ζ3ζ5

y
− 45ζ9

4y2

)
+O(s4

12) ,
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Y τ
(4|2) = −20βsv[ 3

6 ; τ ] +
2ζ5

y
+ s12

(
−18βsv[ 1 2

4 4 ; τ ]− 18βsv[ 2 1
4 4 ; τ ] (C.2b)

− 315βsv[ 4
8 ; τ ] + 12ζ3β

sv[ 1
4 ; τ ] +

3ζ3

y
βsv[ 2

4 ; τ ]− 2ζ2
3

y
+

45ζ7

8y2

)
+ s2

12

(
−4860βsv[ 5

10 ; τ ] + 15βsv[ 0 4
4 6 ; τ ]− 240βsv[ 1 3

4 6 ; τ ]− 450βsv[ 2 2
4 6 ; τ ]− 90βsv[ 2 2

6 4 ; τ ]

− 480βsv[ 3 1
6 4 ; τ ]− 105βsv[ 4 0

6 4 ; τ ] + 300ζ3β
sv[ 2

6 ; τ ] +
40ζ3

y
βsv[ 3

6 ; τ ]− 5ζ3

8y2
βsv[ 4

6 ; τ ]

+ 42ζ5β
sv[ 0

4 ; τ ] +
48ζ5

y
βsv[ 1

4 ; τ ] +
9ζ5

4y2
βsv[ 2

4 ; τ ] +
7ζ7

2y
− 45ζ3ζ5

4y2
+

135ζ9

8y3

)
+O(s3

12) ,

Y τ
(3|5) = −105βsv[ 2

8 ; τ ] +
15ζ7

128y4
(C.2c)

+ s12

(
−3276βsv[ 3

10 ; τ ]− 90βsv[ 0 2
4 6 ; τ ]− 15βsv[ 0 2

6 4 ; τ ]− 120βsv[ 1 1
4 6 ; τ ]− 120βsv[ 1 1

6 4 ; τ ]

− 15βsv[ 2 0
4 6 ; τ ]− 90βsv[ 2 0

6 4 ; τ ] + 10ζ3β
sv[ 0

6 ; τ ] +
20ζ3

y
βsv[ 1

6 ; τ ] +
15ζ3

4y2
βsv[ 2

6 ; τ ]

+
9ζ5

4y2
βsv[ 0

4 ; τ ] +
3ζ5

4y3
βsv[ 1

4 ; τ ] +
3ζ5

128y4
βsv[ 2

4 ; τ ]− 15ζ3ζ5

64y4
+

91ζ9

128y5

)
+O(s2

12) .

Consistency with the Laurent polynomials in (4.3) and the asymptotics (3.38) of βsv.

C.2 All βsv at depth one involving G8 and G10

In this section, we spell out the dictionary between βsv
[
j
8

]
, βsv

[
j
10

]
and Cauchy–Riemann

derivatives of E4,E5, complementing the discussion in section 4.3. The MGF-representations

of the βsv
[
j
8

]
and βsv

[
j
10

]
are given by

βsv[ 0
10 ] = − (π∇)4E5

3870720y8
+

ζ9

294912y8
,

βsv[ 0
8 ] =

(π∇)3E4

53760y6
+

ζ7

14336y6
, βsv[ 1

10 ] =
(π∇)3E5

967680y6
+

ζ9

73728y7
,

βsv[ 1
8 ] = −(π∇)2E4

13440y4
+

ζ7

3584y5
, βsv[ 2

10 ] = − (π∇)2E5

120960y4
+

ζ9

18432y6
,

βsv[ 2
8 ] =

π∇E4

1680y2
+

ζ7

896y4
, βsv[ 3

10 ] =
π∇E5

10080y2
+

ζ9

4608y5
, (C.3)

βsv[ 3
8 ] = − 1

140
E4 +

ζ7

224y3
, βsv[ 4

10 ] = − 1

630
E5 +

ζ9

1152y4
,

βsv[ 4
8 ] =

1

105
π∇E4 +

ζ7

56y2
, βsv[ 5

10 ] =
1

630
π∇E5 +

ζ9

288y3
,

βsv[ 5
8 ] = − 2

105
(π∇)2E4 +

ζ7

14y
, βsv[ 6

10 ] = − 2

945
(π∇)2E5 +

ζ9

72y2
,

βsv[ 6
8 ] =

8

105
(π∇)3E4 +

2ζ7

7
, βsv[ 7

10 ] =
4

945
(π∇)3E5 +

ζ9

18y
,

βsv[ 8
10 ] = − 16

945
(π∇)4E5 +

2ζ9

9
,
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consistent with the closed formulae (4.10) and (4.11). These relations can be inverted to

express the MGFs in terms of βsv,
(π∇)4E5

y8
= −3870720βsv[ 0

10 ] +
105ζ9

8y8
,

(π∇)3E4

y6
= 53760βsv[ 0

8 ]− 15ζ7

4y6
,

(π∇)3E5

y6
= 967680βsv[ 1

10 ]− 105ζ9

8y7
,

(π∇)2E4

y4
= −13440βsv[ 1

8 ] +
15ζ7

4y5
,

(π∇)2E5

y4
= −120960βsv[ 2

10 ] +
105ζ9

16y6
,

π∇E4

y2
= 1680βsv[ 2

8 ]− 15ζ7

8y4
,

π∇E5

y2
= 10080βsv[ 3

10 ]− 35ζ9

16y5
,

E4 = −140βsv[ 3
8 ] +

5ζ7

8y3
, E5 = −630βsv[ 4

10 ] +
35ζ9

64y4
, (C.4)

π∇E4 = 105βsv[ 4
8 ]− 15ζ7

8y2
, π∇E5 = 630βsv[ 5

10 ]− 35ζ9

16y3
,

(π∇)2E4 = −105

2
βsv[ 5

8 ] +
15ζ7

4y
, (π∇)2E5 = −945

2
βsv[ 6

10 ] +
105ζ9

16y2
,

(π∇)3E4 =
105

8
βsv[ 6

8 ]− 15ζ7

4
, (π∇)3E5 =

945

4
βsv[ 7

10 ]− 105ζ9

8y
,

(π∇)4E5 = −945

16
βsv[ 8

10 ] +
105ζ9

8
,

consistent with the closed formulae (4.8) and (4.9).

C.3 Component integrals Y τ
(a|b) at leading order

In this appendix, we derive both the closed depth-one formulae (4.8), (4.9) relating non-

holomorphic Eisenstein series to the βsv and the reality properties (4.19) of the latter. For

this purpose, we investigate the s0
12-order of the two-point component integrals Y τ

(a|b) in (2.9)

with a+b ≥ 4, where the (s12 → 0)-limit can be performed at the level of the integrand. By

the lattice-sum representations (A.2b) of the f (w), this limit vanishes if a = 0 or b = 0 and

otherwise yields MGFs

Y τ
(a|b) =

(τ−τ̄)a

(2πi)b
C
[
a 0
b 0

]
+O(s12) , a, b 6= 0 , a+ b ≥ 4 . (C.5)

Once the MGFs are expressed in terms of non-holomorphic Eisenstein series via (2.18) and

(2.21), the s0
12-orders of the component integrals can be rewritten as (k ≥ 2, m < k)

Y τ
(k|k) = Ek +O(s12) ,

Y τ
(k+m|k−m) =

(−4)m(k−1)!(π∇)mEk
(k+m−1)!

+O(s12) , (C.6)

Y τ
(k−m|k+m) =

(k−1)!(π∇)mEk
(−4)m(k+m−1)!y2m

+O(s12) .
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These results will now be compared with the α′-expansion (3.11) in terms of βsv and initial

values. The latter can be inferred from the Laurent polynomials (4.2) by acting with the

two-point derivation Rη(ε0) in (2.32), and one obtains

exp
(
−
R~η(ε0)

4y

)
Ŷ i∞
η =

1

ηη̄
− 2πi

s12
+ 4πi

∞∑
k=1

ζ2k+1

(
η +

iπη̄

2y

)2k
+O(s12) . (C.7)

The s0
12-order of the generating series Y τ

η receives additional contributions when the η-

independent kinematic pole of (C.7) is combined with one power of s12 from the derivations

Rη(εk). This order exclusively stems from the depth-one part of the series (3.11) in βsv,

∞∑
k=4

k−2∑
j=0

(−1)j(k−1)

(k−j−2)!
βsv
[
j
k

]
Rη
(
adk−j−2

ε0 (εk)
)

(C.8)

= s12

∞∑
k=4

k−2∑
j=0

(2πi)k−j−2 (k−1)!

j!(k−j−2)!
ηj η̄k−j−2βsv

[
j
k

]
+O(s2

12, ∂η) ,

where we have inserted Rη(εk) = s12η
k−2 and Rη(ε0) = −2πiη̄∂η +O(s12). In view of (C.7)

and (C.8), the overall (s12 → 0)-limit of the generating series is given by

Y τ
η =

1

ηη̄
− 2πi

s12
+ 4πi

∞∑
k=1

ζ2k+1

(
η +

iπη̄

2y

)2k
(C.9)

−
∞∑
k=4

k−2∑
j=0

(2πi)k−j−1 (k−1)!

j!(k−j−2)!
ηj η̄k−j−2βsv

[
j
k

]
+O(s12) .

By extracting the coefficients of ηa−1η̄b−1, we arrive at the following leading orders of the

component integrals (2.9)

Y τ
(a|b) =

(a+b−2)!

(a−1)!(b−1)!

{2ζa+b−1

(4y)b−1
− (a+b−1)βsv

[
a−1
a+b

] }
+O(s12) , a, b 6= 0 , a+ b ≥ 4 .

(C.10)

Upon comparison with the earlier expression (C.6) for the s0
12-orders in terms of non-holomor-

phic Eisenstein series, one can read off (4.8) by setting (a, b) = (k, k) and (4.9) by setting

(a, b) = (k±m, k∓m) with m < k. Moreover, irrespective of the relation (C.6) with Ek, the

reality properties (2.14) of the Y τ
(a|b) enforce the βsv in (C.10) to obey

βsv
[
a−1
a+b

]
= (4y)a−bβsv

[
b−1
a+b

]
. (C.11)

This is equivalent to (4.19), i.e. we have derived the reality properties of the βsv at depth one

from those of Y τ
(a|b) and the explicit form of their (s12 → 0)-limits (C.10).
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C.4 Banana graphs

In this appendix, we list higher-order examples of the banana graph functions

Dn(τ) = n!Y τ
(0|0)

∣∣
sn12

=

∫
d2z

Im τ
(G(z, τ))n =

( Im τ

π

)n
C[ 1 1 ... 1

1 1 ... 1︸ ︷︷ ︸
n

](τ) , (C.12)

discussed in section 4.4, see (4.17) for Dn≤5 in terms of βsv. By computing the α′-expansion

of the component integral Y τ
(0|0) in terms of the initial data and the βsv, cf. (3.11), one finds

the following new representations of D6 and D7

D6 = −19440βsv[ 1 1 1
4 4 4 ] + 38880βsv[ 1 2 0

4 4 4 ] + 38880βsv[ 2 0 1
4 4 4 ]− 116640βsv[ 2 1 0

4 4 4 ]

+ 45360βsv[ 1 3
4 8 ]− 272160βsv[ 2 2

4 8 ] + 45360βsv[ 3 1
8 4 ]− 272160βsv[ 4 0

8 4 ]

+ 18000βsv[ 2 2
6 6 ]− 144000βsv[ 3 1

6 6 ]− 144000βsv[ 4 0
6 6 ]− 831600βsv[ 5

12 ]

+
3240ζ3

y
βsv[ 1 1

4 4 ]− 25920ζ3β
sv[ 0 1

4 4 ] + 77760ζ3β
sv[ 1 0

4 4 ]− 6480ζ3

y
βsv[ 2 0

4 4 ] (C.13a)

+ 181440ζ3β
sv[ 2

8 ]− 7560ζ3

y
βsv[ 3

8 ]− 600ζ3β
sv[ 2

6 ] + 57600ζ5β
sv[ 0

6 ]

+
14400ζ5

y
βsv[ 1

6 ]− 450ζ5

y2
βsv[ 2

6 ] + 7200ζ5β
sv[ 0

4 ]− 900ζ5

y
βsv[ 1

4 ]

− 4320ζ2
3

y
βsv[ 0

4 ] +
270ζ2

3

y2
βsv[ 1

4 ]− 405ζ7

2y3
βsv[ 1

4 ] +
4860ζ7

y2
βsv[ 0

4 ]

+ 34ζ2
3 +

483ζ7

2y
− 135ζ3ζ5

y2
+

45ζ3
3

y3
+

405ζ9

2y3
− 675ζ3ζ7

4y4
− 675ζ2

5

8y4
+

4725ζ11

32y5
,

D7 = −226800βsv[ 1 1 2
4 4 6 ] + 907200βsv[ 1 2 1

4 4 6 ]− 226800βsv[ 1 2 1
4 6 4 ] + 907200βsv[ 1 3 0

4 6 4 ]

+ 453600βsv[ 2 0 2
4 4 6 ]− 2721600βsv[ 2 1 1

4 4 6 ] + 907200βsv[ 2 1 1
4 6 4 ]− 226800βsv[ 2 1 1

6 4 4 ]

− 1814400βsv[ 2 2 0
4 4 6 ]− 4989600βsv[ 2 2 0

4 6 4 ] + 453600βsv[ 2 2 0
6 4 4 ] + 907200βsv[ 3 0 1

6 4 4 ]

− 2721600βsv[ 3 1 0
6 4 4 ]− 1814400βsv[ 4 0 0

6 4 4 ] + 2041200βsv[ 1 4
4 10 ]− 16329600βsv[ 2 3

4 10 ]

+ 2041200βsv[ 4 1
10 4 ]− 16329600βsv[ 5 0

10 4 ] + 529200βsv[ 2 3
6 8 ]− 6350400βsv[ 3 2

6 8 ]

− 12700800βsv[ 4 1
6 8 ] + 529200βsv[ 3 2

8 6 ]− 6350400βsv[ 4 1
8 6 ]− 12700800βsv[ 5 0

8 6 ]

− 61916400βsv[ 6
14 ] + 1209600ζ3β

sv[ 2 0
4 6 ]− 302400ζ3β

sv[ 0 2
4 6 ] + 1814400ζ3β

sv[ 1 1
4 6 ]

− 604800ζ3β
sv[ 1 1

6 4 ] + 3326400ζ3β
sv[ 2 0

6 4 ] +
37800ζ3

y
βsv[ 1 2

4 6 ]− 151200ζ3

y
βsv[ 2 1

4 6 ]

+
37800ζ3

y
βsv[ 2 1

6 4 ]− 151200ζ3

y
βsv[ 3 0

6 4 ] + 10886400ζ3β
sv[ 3

10 ]− 340200ζ3

y
βsv[ 4

10 ]

+ 7560ζ3β
sv[ 1 1

4 4 ]− 15120ζ3β
sv[ 2 0

4 4 ] + 725760ζ5β
sv[ 0 0

4 4 ]− 90720ζ5

y
βsv[ 0 1

4 4 ] (C.13b)

+
272160ζ5

y
βsv[ 1 0

4 4 ] +
5670ζ5

y2
βsv[ 1 1

4 4 ]− 11340ζ5

y2
βsv[ 2 0

4 4 ]− 17640ζ3β
sv[ 3

8 ]
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+ 5080320ζ5β
sv[ 1

8 ] +
635040ζ5

y
βsv[ 2

8 ]− 13230ζ5

y2
βsv[ 3

8 ] + 168000ζ5β
sv[ 1

6 ]

− 10500ζ5

y
βsv[ 2

6 ]− 403200ζ2
3β

sv[ 0
6 ]− 100800ζ2

3

y
βsv[ 1

6 ] +
3150ζ2

3

y2
βsv[ 2

6 ]

+
907200ζ7

y
βsv[ 0

6 ] +
113400ζ7

y2
βsv[ 1

6 ]− 4725ζ7

2y3
βsv[ 2

6 ]− 1806ζ5β
sv[ 1

4 ]

+ 10080ζ2
3β

sv[ 0
4 ]− 1260ζ2

3

y
βsv[ 1

4 ] +
52920ζ7

y
βsv[ 0

4 ]− 6615ζ7

2y2
βsv[ 1

4 ]

− 68040ζ3ζ5

y2
βsv[ 0

4 ] +
2835ζ3ζ5

y3
βsv[ 1

4 ] +
56700ζ9

y3
βsv[ 0

4 ]− 14175ζ9

8y4
βsv[ 1

4 ]

+
877ζ7

2
+

819ζ3ζ5

y
− 105ζ3

3

y2
+

5145ζ9

4y2
− 1575ζ2

5

2y3
− 1575ζ3ζ7

y3
+

86625ζ11

32y4

+
4725ζ2

3ζ5

4y4
− 33075ζ5ζ7

16y5
− 33075ζ3ζ9

16y5
+

297675ζ13

128y6
.

An expression for the five-loop banana function D6 in terms of simpler modular graph func-

tions can be found in [13]. It takes the following form when expressed in terms of the modular

graph functions of [17],

D6 = 720E2,2,2 + 48E2,4 − 640E3,3 + 1200E′3,3 + 300E6 (C.14)

+ 360E2E2,2 + 54E2E4 + 10E2
3 + 15E3

2 + 20ζ3E3 + 10ζ2
3 ,

see (6.12) to (6.15) for βsv-representations of E2,2,2,E2,4,E3,3 and E′3,3 and (2.24) for their

lattice-sum representations.

D Detailed expressions for E sv, βsv and modular graph forms

In this appendix, we collect for reference the expressions for the βsv and Esv in terms of the

basis of modular graph forms presented in table 1. Expressions for all βsv
[
j
k

]
, Esv

[
j
k

]
and

βsv
[
j1 j2
k1 k2

]
, Esv

[
j1 j2
k1 k2

]
with k ≤ 10 and k1+k2 ≤ 10 in terms of MGFs can also be found in

the ancillary file within the arXiv submission of this paper.

D.1 Expressions for βsv in terms of modular graph forms

The expressions for βsv of weight 10 in terms of modular graph forms can be obtained by

inverting the relations (5.10) and (5.12)–(5.14).

For βsv
[
j1 j2
6 4

]
with 0 ≤ j1 ≤ 4 and 0 ≤ j2 ≤ 2 we find

βsv[ 0 0
6 4 ] = −

(π∇)3B
′
2,3

483840y6
+
ζ5π∇E2

15360y6
− ζ3

907200y
− ζ5

345600y3
+

ζ3ζ5

30720y6
,

βsv[ 0 1
6 4 ] =

(π∇)2B
′
2,3

120960y4
+

(π∇)2E2,3

7680y4
+

E2(π∇)2E3

5760y4
+

(π∇E2)π∇E3

11520y4
− ζ5E2

3840y4
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− ζ3

226800
+

ζ5

172800y2
− 7ζ7

92160y4
+

ζ3ζ5

7680y5
,

βsv[ 0 2
6 4 ] =

π∇B
′
2,3

15120y2
− π∇B2,3

2160y2
− π∇E2,3

2880y2
− E2π∇E3

1440y2
+

E3π∇E2

1440y2
− (π∇E2)(π∇)2E3

1440y4

− ζ3π∇E2

6048y2
+
ζ5π∇E2

960y4
− ζ5

21600y
− ζ2

3

5040y2
− 7ζ7

11520y3
+

ζ3ζ5

1920y4
,

βsv[ 1 0
6 4 ] =

(π∇)2B
′
2,3

120960y4
+
ζ5π∇E2

3840y5
+

ζ3

907200
− ζ5

86400y2
+

7ζ7

184320y4
+

ζ3ζ5

7680y5
,

βsv[ 1 1
6 4 ] =

π∇B2,3

4320y2
−
π∇B

′
2,3

7560y2
− π∇E2,3

1152y2
− E2π∇E3

2880y2
− E3π∇E2

2880y2

− ζ3π∇E2

60480y2
− ζ5E2

960y3
+

ζ5

43200y
+

ζ2
3

20160y2
− 7ζ7

46080y3
+

ζ3ζ5

1920y4
,

βsv[ 1 2
6 4 ] = −

B′2,3
1260

+
(π∇E3)π∇E2

360y2
+
ζ5π∇E2

240y3
+

ζ5

43200
− ζ2

3

2520y
− 7ζ7

3840y2
+

ζ3ζ5

480y3
,

βsv[ 2 0
6 4 ] = −

π∇B
′
2,3

15120y2
− ζ3π∇E2

15120y2
+
ζ5π∇E2

960y4
− ζ5

21600y
− ζ2

3

30240y2
+

7ζ7

23040y3
+

ζ3ζ5

1920y4
,

βsv[ 2 1
6 4 ] = −E2,3

144
+

B2,3

540
−

B′2,3
756

+
E2E3

360
− ζ3E2

1080
− ζ5E2

240y2
+

ζ5

21600
+

ζ2
3

3780y
+

ζ3ζ5

480y3
,

βsv[ 2 2
6 4 ] =

π∇B′2,3
945

− E3π∇E2

45
+
ζ5π∇E2

60y2
− ζ2

3

1890
− 7ζ7

1440y
+

ζ3ζ5

120y2
,

βsv[ 3 0
6 4 ] = −E2,3

120
−

B′2,3
1260

+
ζ5π∇E2

240y3
− ζ5

4800
− ζ2

3

2520y
+

7ζ7

3840y2
+

ζ3ζ5

480y3
,

βsv[ 3 1
6 4 ] =

π∇E2,3

72
+

2π∇B′2,3
945

− π∇B2,3

270
− E2π∇E3

180
+

E3π∇E2

180

+
ζ3π∇E2

540
− ζ5E2

60y
+

ζ2
3

1260
+

7ζ7

2880y
+

ζ3ζ5

120y2
, (D.1)

βsv[ 3 2
6 4 ] = −

2(π∇)2B′2,3
945

+
2(π∇E2)π∇E3

45
+
ζ5π∇E2

15y
− 7ζ7

720
+
ζ3ζ5

30y
,

βsv[ 4 0
6 4 ] =

π∇E2,3

180
+
π∇B2,3

135
−
π∇B′2,3

945
− E3π∇E2

90
+

E2π∇E3

90

− ζ3π∇E2

270
+
ζ5π∇E2

60y2
− ζ2

3

315
+

7ζ7

720y
+

ζ3ζ5

120y2
,

βsv[ 4 1
6 4 ] = −(π∇)2E2,3

30
−

2(π∇)2B′2,3
945

− (π∇E2)π∇E3

45
− ζ5E2

15
+

7ζ7

360
+
ζ3ζ5

30y
,

βsv[ 4 2
6 4 ] =

8(π∇)3B′2,3
945

− 8(π∇E2)(π∇)2E3

45
+

4ζ5π∇E2

15
+

2ζ3ζ5

15
.

The analogous expressions for βsv
[
j1 j2
4 6

]
follow from this via the shuffle relations (3.35).
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D.2 Expressions for Esv in terms of modular graph forms

The MGF expressions for the Esv can be obtained by applying formula (3.13) to the expres-

sions of the βsv in terms of MGFs given in the preceding section D.1.

At depth one, we find

Esv[ 0
6 ] = − E3

80y2
− Re[π∇E3]

120y3
− Re[(π∇)2E3]

480y4
,

Esv[ 0
4 ] =

E2

12y
+

Re[π∇E2]

12y2
Esv[ 1

6 ] =
E3

40y
+
π∇E3

240y2
+
π∇E3

80y2
+

(π∇)2E3

240y3
,

Esv[ 1
4 ] = −E2

6
− π∇E2

6y
, Esv[ 2

6 ] = −E3

30
− π∇E3

30y
− (π∇)2E3

60y2
, (D.2)

Esv[ 2
4 ] =

2π∇E2

3
+

2ζ3

3
, Esv[ 3

6 ] =
π∇E3

15
+

(π∇)2E3

15y
,

Esv[ 4
6 ] = −4(π∇)2E3

15
+

2ζ5

5
.

Using (3.13) and the closed formulae (4.10) and (4.11) one can also find closed expressions

for the Esv at depth one (0 ≤ m ≤ k−1)

Esv
[
k−1+m

2k

]
= −(−4)m

(k−1)!(k−1−m)!

(2k−1)!

k−1−m∑
p=0

(π∇)m+pEk
p! yp

+ δm,k−1
2ζ2k−1

2k−1
,

Esv
[
k−1
2k

]
= − [(k−1)!]2

(2k−1)!

k−1∑
p=0

(π∇)pEk
p! yp

, (D.3)

Esv
[
k−1−m

2k

]
= −(k−1)!(k−1+m)!

(−4)m(2k−1)!

{m−1∑
p=0

(k−1−m+p)! (π∇)m−pEk
(k−1+m−p)! p! y2m−p +

k−1+m∑
p=m

(π∇)p−mEk
p! yp

}
.

At depth two, the expressions (4.5c) for βsv
[
j1 j2
4 4

]
for j1 > j2 are equivalent to following

formulae for the Esv

Esv[ 1 0
4 4 ] =

E2,2

72y
+
π∇E2,2

144y2
+
π∇E2,2

144y2
− E2

2

144y
− (π∇E2)2

288y3
− E2π∇E2

144y2
− ζ3

2160
,

Esv[ 2 0
4 4 ] = −E2,2

18
− π∇E2,2

18y
+

(π∇E2)2

72y2
+
ζ3π∇E2

36y2
+
ζ3π∇E2

36y2
+
ζ3E2

18y
, (D.4)

Esv[ 2 1
4 4 ] =

π∇E2,2

9
− (π∇E2)2

18y
− ζ3π∇E2

9y
− ζ3E2

9
+

5ζ5

108
,

while the analogous expressions for Esv
[
j1 j2
4 4

]
with j1 ≤ j2 follow from the shuffle relations

(3.35) and the depth-one results.
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The expressions in the G4G6 sector for the Esv in terms of MGFs are much longer com-

pared to the βsv, showing the advantage of working with the βsv. At depth two we find for

Esv
[
j1 j2
6 4

]
the expressions

Esv[ 0 0
6 4 ] = −E2(π∇)2E3

11520y5
+
π∇B2,3

11520y4
−
π∇B

′
2,3

11520y4
− π∇B2,3

11520y4
+
π∇B′2,3
11520y4

− (π∇)2E2,3

15360y5

+
(π∇)2E2,3

15360y5
− E2E3

1920y3
− (π∇)2E3π∇E2

23040y6
− (π∇E2)π∇E3

23040y5
− ζ3π∇E2

23040y4

− (π∇)2E3π∇E2

23040y6
+
ζ3π∇E2

23040y4
− E3π∇E2

2560y4
− B2,3

2880y3
+

B′2,3
2880y3

− E2π∇E3

4608y4
−

(π∇)3B
′
2,3

483840y6
+

(π∇)3B′2,3
483840y6

+
ζ3E2

5760y3
− (π∇E3)π∇E2

5760y5

− E2π∇E3

7680y4
− E3π∇E2

7680y4
− (π∇E2)π∇E3

7680y5
−

(π∇)2B
′
2,3

80640y5
+

(π∇)2B′2,3
80640y5

− 7π∇E2,3

15360y4
+

7π∇E2,3

15360y4
+

7E2,3

3840y3
,

Esv[ 0 1
6 4 ] =

11π∇E2,3

11520y3
+

(π∇E2)π∇E3

11520y4
− π∇E2,3

1152y3
+

(π∇)2B
′
2,3

120960y4
−

(π∇)3B′2,3
120960y5

+
B2,3

1440y2
−

B′2,3
1440y2

+
(π∇E3)π∇E2

1440y4
+
ζ3π∇E2

17280y3
+

E2π∇E3

1920y3
− ζ3

226800

−
(π∇)2B′2,3
24192y4

+
E2π∇E3

2880y3
− ζ3E2

2880y2
− E2,3

384y2
+
π∇B2,3

4320y3
−
π∇B′2,3
4320y3

+
ζ5

57600y2
+

E2(π∇)2E3

5760y4
+

E3π∇E2

5760y3
+

(π∇)2E3π∇E2

5760y5
+

(π∇)2E3π∇E2

5760y5

+
E3π∇E2

576y3
+

(π∇)2E2,3

7680y4
− (π∇)2E2,3

7680y4
− π∇B2,3

8640y3
+
π∇B

′
2,3

8640y3
+

E2E3

960y2

− ζ3π∇E2

8640y3
+

7(π∇E2)π∇E3

11520y4
,

Esv[ 0 2
6 4 ] = −E3π∇E2

120y2
+

B′2,3
1260y

− ζ5

14400y
− E2π∇E3

1440y2
+

E3π∇E2

1440y2
− (π∇)2E3π∇E2

1440y4

− (π∇)2E3π∇E2

1440y4
+
π∇B

′
2,3

15120y2
− π∇B2,3

2160y2
+
π∇B′2,3
2520y2

− π∇E2,3

2880y2
+

(π∇)3B′2,3
30240y4

− (π∇E3)π∇E2

360y3
− (π∇E2)π∇E3

360y3
− ζ3π∇E2

6048y2
+

(π∇)2B′2,3
7560y3

,
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Esv[ 1 0
6 4 ] = − ζ4

115200y2
+

(π∇)2B
′
2,3

120960y4
−

(π∇)3B′2,3
120960y5

+
B2,3

1440y2
−

B′2,3
1440y2

+
E3π∇E2

1440y3

+
ζ3π∇E2

17280y3
+
π∇E2,3

2304y3
− E2,3

240y2
−

(π∇)2B′2,3
24192y4

+
E2π∇E3

2880y3
− ζ3E2

2880y2

+
(π∇E2)π∇E3

2880y4
− (π∇)2E2,3

3840y4
+

(π∇)B2,3

4320y3
−
π∇B′2,3
4320y3

+
E2π∇E3

5760y3

+
E3π∇E2

5760y3
+

(π∇E3)π∇E2

5760y4
+

(π∇)2E3π∇E2

5760y5
− π∇E2,3

720y3
− π∇B2,3

8640y3

+
π∇B

′
2,3

8640y3
− ζ3π∇E2

8640y3
+

ζ3

907200
+

E2E3

960y2
,

Esv[ 1 1
6 4 ] = −π∇E2,3

1152y2
+

ζ3E2

1440y
− (π∇E3)π∇E2

1440y3
− (π∇)2E3π∇E2

1440y4
− π∇B2,3

1440y2
+
π∇B′2,3
1680y2

+
(π∇)2E2,3

1920y3
+

E2,3

192y
− E2π∇E3

2880y2
− E3π∇E2

2880y2
+
ζ3π∇E2

2880y2
+

(π∇)3B′2,3
30240y4

− E3π∇E2

320y2
+
π∇E2,3

384y2
+
π∇B2,3

4320y2
− E2E3

480y
− ζ5

57600y
− (π∇E2)π∇E3

576y3

− ζ3π∇E2

60480y2
− B2,3

720y
−
π∇B

′
2,3

7560y2
+

(π∇)2B′2,3
7560y3

+
B′2,3
840y

− E2π∇E3

960y2
,

Esv[ 1 2
6 4 ] =

(π∇E2)π∇E3

120y2
−

B′2,3
1260

−
π∇B′2,3
1260y

−
(π∇)2B′2,3

2520y2
+

(π∇E3)π∇E2

360y2

+
(π∇)2E3π∇E2

360y3
+

ζ5

43200
+

E3π∇E2

60y
−

(π∇)3B′2,3
7560y3

, (D.5)

Esv[ 2 0
6 4 ] = − B2,3

1080y
+

11E2,3

1440y
+

11π∇E2,3

2880y2
− E2π∇E3

1440y2
− E3π∇E2

1440y2
− (π∇)2E3π∇E2

1440y4

− (π∇E2)π∇E3

1440y3
− ζ3π∇E2

15120y2
−
π∇B

′
2,3

15120y2
+
π∇B′2,3
1890y2

+
ζ3E2

2160y
+

(π∇)2E2,3

960y3

+
B′2,3
945y

− π∇B2,3

2160y2
+

ζ5

28800y
+

(π∇)3B′2,3
30240y4

+
ζ3π∇E2

4320y2
− E2E3

720y
+

(π∇)2B′2,3
7560y3

,

Esv[ 2 1
6 4 ] = −ζ3E2

1080
− ζ3π∇E2

1080y
− E2,3

144
− π∇E2,3

144y
+

ζ5

21600
+

(π∇E2)π∇E3

240y2
+

E2E3

360

−
(π∇)2B′2,3

2520y2
+

E2π∇E3

360y
+

E3π∇E2

360y
+

(π∇)2E3π∇E2

360y3
− (π∇)2E2,3

480y2
+

B2,3

540

+
π∇B2,3

540y
−

(π∇)3B′2,3
7560y3

−
B′2,3
756
−
π∇B′2,3

756y
,

Esv[ 2 2
6 4 ] =

(π∇)3B′2,3
1890y2

− ζ2
3

1890
− E3π∇E2

45
− (π∇E2)π∇E3

45y
− (π∇)2E3π∇E2

90y2

+
(π∇)2B′2,3

945y
+
π∇B′2,3

945
,
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Esv[ 3 0
6 4 ] = −E2,3

120
− π∇E2,3

120y
−

B′2,3
1260

−
π∇B′2,3
1260y

− (π∇)2E2,3

240y2
+

(π∇)2E3π∇E2

360y3
− ζ5

4800

−
(π∇)2B′2,3

2520y2
−

(π∇)3B′2,3
7560y3

,

Esv[ 3 1
6 4 ] =

(π∇)2E2,3

120y
+

ζ2
3

1260
− E2π∇E3

180
+

E3π∇E2

180
− (π∇E2)π∇E3

180y
+

(π∇)3B′2,3
1890y2

− π∇B2,3

270
+
ζ3π∇E2

540
+
π∇E2,3

72
− (π∇)2E3π∇E2

90y2
+

(π∇)2B′2,3
945y

+
2π∇B′2,3

945
,

Esv[ 3 2
6 4 ] =

2(π∇)2E3π∇E2

45y
+

2(π∇E2)π∇E3

45
−

2(π∇)2B′2,3
945

−
2(π∇)3B′2,3

945y
− 7ζ7

720
,

Esv[ 4 0
6 4 ] =

π∇B2,3

135
+
π∇E2,3

180
+

(π∇)3B′2,3
1890y2

− ζ3π∇E2

270
+
ζ5E2

30y
− ζ2

3

315
+
ζ5π∇E2

60y2

+
(π∇)2E2,3

60y
+
ζ5π∇E2

60
+

E2π∇E3

90
− E3π∇E2

90
− (π∇)2E3π∇E2

90y2

+
(π∇E2)π∇E3

90y
+

(π∇)2B′2,3
945y

−
π∇B′2,3

945
,

Esv[ 4 1
6 4 ] = −ζ5E2

15
− ζ5π∇E2

15y
− (π∇)2E2,3

30
− (π∇E2)π∇E3

45
+

2(π∇)2E3π∇E2

45y

−
2(π∇)2B′2,3

945
−

2(π∇)3B′2,3
945y

+
7ζ7

360
,

Esv[ 4 2
6 4 ] =

2ζ3ζ5

15
+

4ζ5π∇E2

15
− 8(π∇)2E3π∇E2

45
+

8(π∇)3B′2,3
945

.

The results for Esv
[
j1 j2
4 6

]
follow by shuffle relations and the depth-one results.

E S-modular transformations of the βsv

In this appendix, we display various modular S transformations of the βsv that follow from

(6.1) and (6.3). The βsv
[
j
4
;− 1

τ

]
have already been displayed in (6.4), the next case is

βsv
[

0
6 ;− 1

τ

]
= τ̄4

{
βsv[ 0

6 ; τ ] +
ζ5(τ4−1)

640y4

}
,

βsv
[

1
6 ;− 1

τ

]
= τ̄2

{
βsv[ 1

6 ; τ ] +
ζ5(τ3τ̄−1)

160y3

}
,

βsv
[

2
6 ;− 1

τ

]
= βsv[ 2

6 ; τ ] +
ζ5(|τ |4−1)

40y2
, (E.1)

βsv
[

3
6 ;− 1

τ

]
=

1

τ̄2

{
βsv[ 3

6 ; τ ] +
ζ5(τ τ̄3−1)

10y

}
,

βsv
[

4
6 ;− 1

τ

]
=

1

τ̄4

{
βsv[ 4

6 ; τ ] +
2ζ5(τ̄4−1)

5

}
,
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and βsv
[
j
k

;− 1
τ

]
with k ≥ 8 follow from the closed formula (6.5).

For depth two in the (4, 4) sector, the complete set of shuffle irreducibles is

βsv
[

1 0
4 4 ;− 1

τ

]
= τ̄2

{
βsv[ 1 0

4 4 ; τ ] +
ζ3(|τ |2−1)

6y
βsv[ 0

4 ; τ ] +
ζ3(1−τ̄−2)

2160

+
5ζ5(τ2−1)

1728y2
+
ζ2

3 (τ3τ̄−2|τ |2+1)

288y3

}
, (E.2)

βsv
[

2 0
4 4 ;− 1

τ

]
= βsv[ 2 0

4 4 ; τ ] +
2ζ3

3
(τ̄2−1)βsv[ 0

4 ; τ ] +
5ζ5

216y

(
|τ |2−1

)
+

ζ2
3

72y2

(
1−2τ̄2+|τ |4

)
,

βsv
[

2 1
4 4 ;− 1

τ

]
=

1

τ̄2

{
βsv[ 2 1

4 4 ; τ ] +
2ζ3(τ̄2−1)

3
βsv[ 1

4 ; τ ] +
5ζ5(τ̄2−1)

108
+
ζ2

3 (1− 2τ̄2 + τ τ̄3)

18y

}
,

while the expressions for βsv
[
j j
4 4

;− 1
τ

]
as well as βsv

[
0 1
4 4 ;− 1

τ

]
, βsv

[
0 2
4 4 ;− 1

τ

]
, βsv

[
1 2
4 4 ;− 1

τ

]
fol-

low from shuffle relations (3.35).

In the (6, 4) sector we have

βsv
[

0 0
6 4 ;− 1

τ

]
= τ̄6

{
βsv[ 0 0

6 4 ; τ ] +
ζ5(τ4−1)

640y4
βsv[ 0

4 ; τ ] +
ζ3(τ̄5−τ)

907200τ̄5y

− ζ5(τ3−τ̄3)

345600τ̄3y3
+
ζ3ζ5(τ6−2τ4+1)

30720

}
,

βsv
[

0 1
6 4 ;− 1

τ

]
= τ̄4

{
βsv[ 0 1

6 4 ; τ ] +
ζ5(τ4−1)

640y4
βsv[ 1

4 ; τ ] +
ζ3(τ̄4−1)

226800τ̄4
+

ζ5(τ2−τ̄2)

172800τ̄2y2

− ζ7(τ4−1)

92160y4
+
ζ3ζ5(τ5τ̄−2τ4+1)

7680y5

}
,

βsv
[

0 2
6 4 ;− 1

τ

]
= τ̄2

{
βsv[ 0 2

6 4 ; τ ] +
ζ5(τ4−1)

640y4
βsv[ 2

4 ; τ ]− ζ5(τ−τ̄)

21600τ̄ y
− ζ2

3 (τ2−1)

5040y2

− 7ζ7(τ3τ̄−1)

11520y3
+
ζ3ζ5(τ4τ̄2−2τ4+1)

1920y4

}
,

βsv
[

1 0
6 4 ;− 1

τ

]
= τ̄4

{
βsv[ 1 0

6 4 ; τ ] +
ζ5(τ3τ̄−1)

160y3
βsv[ 0

4 ; τ ]− ζ3(τ̄4−1)

907200τ̄4
− ζ5(τ2−τ̄2)

86400τ̄2y2

+
7ζ7(τ4−1)

184320y4
+
ζ3ζ5(τ5τ̄−2τ3τ̄+1)

7680y5

}
,

βsv
[

1 1
6 4 ;− 1

τ

]
= τ̄2

{
βsv[ 1 1

6 4 ; τ ] +
ζ5(τ3τ̄−1)

160y3
βsv[ 1

4 ; τ ] +
ζ5(τ−τ̄)

43200τ̄ y
+
ζ2

3 (τ2−1)

20160y2

− 7ζ7(τ3τ̄−1)

46080y3
+
ζ3ζ5(τ4τ̄2−2τ3τ̄+1)

1920y4

}
,

βsv
[

1 2
6 4 ;− 1

τ

]
= βsv[ 1 2

6 4 ; τ ] +
ζ5(τ3τ̄−1)

160y3
βsv[ 2

4 ; τ ]− ζ2
3 (τ τ̄−1)

2520y

− 7ζ7(τ2τ̄2−1)

3840y2
+
ζ3ζ5(τ3τ̄3−2τ3τ̄+1)

480y3
, (E.3)
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βsv
[

2 0
6 4 ;− 1

τ

]
= τ̄2

{
βsv[ 2 0

6 4 ; τ ] +
ζ5(τ2τ̄2−1)

40y2
βsv[ 0

4 ; τ ]− ζ5(τ−τ̄)

21600τ̄ y
− ζ2

3 (τ2−1)

30240y2

+
7ζ7(τ3τ̄−1)

23040y3
+
ζ3ζ5(τ4τ̄2−2τ2τ̄2+1)

1920y4

}
,

βsv
[

2 1
6 4 ;− 1

τ

]
= βsv[ 2 1

6 4 ; τ ] +
ζ5(τ2τ̄2−1)

40y2
βsv[ 1

4 ; τ ] +
ζ2

3 (τ τ̄−1)

3780y
+
ζ3ζ5(τ3τ̄3−2τ2τ̄2+1)

480y3
,

βsv
[

2 2
6 4 ;− 1

τ

]
=

1

τ̄2

{
βsv[ 2 2

6 4 ; τ ] +
ζ5(τ2τ̄2−1)

40y2
βsv[ 2

4 ; τ ]− ζ2
3 (τ̄2−1)

1890

− 7ζ7(τ τ̄3−1)

1440y
+
ζ3ζ5(τ2τ̄4−2τ2τ̄2+1)

120y2

}
,

βsv
[

3 0
6 4 ;− 1

τ

]
= βsv[ 3 0

6 4 ; τ ] +
ζ5(τ τ̄3−1)

10y
βsv[ 0

4 ; τ ]− ζ2
3 (τ τ̄−1)

2520y

+
7ζ7(τ2τ̄2−1)

3840y2
+
ζ3ζ5(τ3τ̄3−2τ τ̄3+1)

480y3
,

βsv
[

3 1
6 4 ;− 1

τ

]
=

1

τ̄2

{
βsv[ 3 1

6 4 ; τ ] +
ζ5(τ τ̄3−1)

10y
βsv[ 1

4 ; τ ] +
ζ2

3 (τ̄2−1)

1260

+
7ζ7(τ τ̄3−1)

2880y
+
ζ3ζ5(τ2τ̄4−2τ τ̄3+1)

120y2

}
,

βsv
[

3 2
6 4 ;− 1

τ

]
=

1

τ̄4

{
βsv[ 3 2

6 4 ; τ ] +
ζ5(τ τ̄3−1)

10y
βsv[ 2

4 ; τ ]− 7ζ7(τ̄4−1)

720
+
ζ3ζ5(τ τ̄5−2τ τ̄3+1)

30y

}
,

βsv
[

4 0
6 4 ;− 1

τ

]
=

1

τ̄2

{
βsv[ 4 0

6 4 ; τ ] +
2ζ5(τ̄4−1)

5
βsv[ 0

4 ; τ ]− ζ2
3 (τ̄2−1)

315

+
7ζ7(τ τ̄3−1)

720y
+
ζ3ζ5(τ2τ̄4−2τ̄4+1)

120y2

}
,

βsv
[

4 1
6 4 ;− 1

τ

]
=

1

τ̄4

{
βsv[ 4 1

6 4 ; τ ] +
2ζ5(τ̄4−1)

5
βsv[ 1

4 ; τ ] +
7ζ7(τ̄4−1)

360
+
ζ3ζ5(τ τ̄5−2τ̄4+1)

30y

}
,

βsv
[

4 2
6 4 ;− 1

τ

]
=

1

τ̄6

{
βsv[ 4 2

6 4 ; τ ] +
2ζ5(τ̄4−1)

5
βsv[ 2

4 ; τ ] +
2ζ3ζ5(τ̄6−2τ̄4+1)

15

}
,

and similar expressions for the βsv
[
j1 j2
4 6

;− 1
τ

]
follow from shuffle relations. Expressions for all

βsv
[
j
k

;− 1
τ

]
and βsv

[
j1 j2
k1 k2

;− 1
τ

]
with k ≤ 10 and k1+k2 ≤ 10 in machine-readable form can

be found in the ancillary file within the arXiv submission of this paper.

F T -invariance and convergent iterated Eisenstein integrals E0

In this appendix, we will rewrite various expressions from the main text in terms of convergent

versions E0(. . .) of iterated Eisenstein integrals employed in [17, 43]. Since the E0(k1, . . .) with

k1 6= 0 are invariant under the modular T -transformation τ → τ+1, the rewritings in this

appendix will manifest the T -invariance of certain antiholomorphic integration constants and

imaginary cusp forms.
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F.1 Definitions and q-expansions

Once we subtract the zero-mode of the holomorphic Eisenstein series

G0
k(τ) = Gk(τ)− 2ζk , k 6= 0 , G0(τ) = G0

0(τ) = −1 , (F.1)

one can obtain convergent and T -invariant iterated Eisenstein integrals from E0(; τ) = 1

and [41]

E0(k1, k2, . . . , kr; τ) := 2πi

∫ i∞

τ
dτr

G0
kr

(τr)

(2πi)kr
E0(k1, k2, . . . , kr−1; τr) , (F.2)

provided that k1 6= 0. Their q-expansions straightforwardly follow from those of Gk and were

given in [41]

E0(k1, 0
p1−1, k2, 0

p2−1, . . . , kr, 0
pr−1; τ) = (−2)r

( r∏
j=1

1

(kj − 1)!

)
(F.3)

×
∞∑

mi,ni=1

mk1−1
1 mk2−1

2 . . .mkr−1
r qm1n1+m2n2+...+mrnr

(m1n1)p1(m1n1 +m2n2)p2 . . . (m1n1 +m2n2 + . . .+mrnr)pr
,

where ki 6= 0 and 0p = 0, 0, . . . , 0 denotes a sequence of p zeros. The number r of non-zero

entries ki 6= 0 is referred to as the depth of the E0 in (F.3). Divergent instances of (F.2) with

k1 = 0 can be shuffle-regularised based on E0(0; τ) = 2πiτ . The dictionary between Brown’s

iterated Eisenstein integrals (3.22) and (F.2) has been discussed in section 3.3 of [17], and it

specialises as follows at depth ≤ 2

E
[
j1
k1

; τ
]

= j1! E0(0j1 , k1; τ) +
Bk1

k1!

(2πiτ)j1+1

j1 + 1
,

E
[
j1 j2
k1 k2

; τ
]

= j2!

j2∑
a=0

(j1+a)!

a!

{
E0(0j1+a, k1, 0

j2−a, k2; τ) +
Bk2

k2!
E0(0j1+a, k1, 0

j2−a+1; τ)
}

+
Bk1

k1!

(j1+j2+1)!

j1+1
E0(0j1+j2+1, k2; τ) +

Bk1Bk2

k1!k2!

(2πiτ)j1+j2+2

(j1+1)(j1+j2+2)
, (F.4)

see (3.36) for the power-behaved terms ∼ τ j1+1 and ∼ τ j1+j2+2. The q-expansion of (F.4) is

available from (F.3) once we enforce a non-zero entry via shuffle-relations, for instance [17]

E0(0p0 , k1; τ) =

p0∑
r=0

(−1)p0−r

r!
(2πiτ)rE0(k1, 0

p0−r; τ) , (F.5)

E0(0p0 , k1, 0
p1 , k2; τ) =

p0∑
r=0

(−1)p0−r

r!
(2πiτ)r

p0−r∑
s=0

(
p1+s

s

)
E0(k1, 0

p1+s, k2, 0
p0−r−s; τ) ,
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where k1, k2 6= 0. As before, we will drop the reference to the argument τ of E [. . .] and E0(. . .)

in the rest of this appendix.

F.2 Integration constants at depth two

We will now rewrite the expressions for α
[
j1 j2
4 4

]
and α

[
j1 j2
6 4

]
in (4.31) and (5.16) in terms of

convergent iterated Eisenstein integrals (F.2) at depth ` = 1. In this way, the power-behaved

term ∼ τm conspire with the E
[
j
k

]
to yield manifestly T -invariant combinations such as

E [ 0
4 ] +

iπτ

360
= E0(4) , 2πiτE [ 0

4 ]− E [ 1
4 ]− π2τ2

360
= E0(4, 0) . (F.6)

We have used the depth-one instances of (F.4) and (F.5) to derive (F.6) and the expressions

(recall that α[ 1 0
4 4 ] = α[ 0 1

4 4 ] = 0)

α[ 2 0
4 4 ] =

2ζ3

3
E0(4) = −α[ 0 2

4 4 ] , α[ 2 1
4 4 ] =

2ζ3

3
E0(4, 0) = −α[ 1 2

4 4 ] (F.7)

as well as (α[ 0 0
6 4 ] = α[ 1 0

6 4 ] = α[ 0 1
6 4 ] = 0)

α[ 2 0
6 4 ] = − ζ3

630
E0(4) , α[ 0 2

6 4 ] = − ζ3

105
E0(4)− 2ζ3

3
E0(6) ,

α[ 1 1
6 4 ] =

ζ3

420
E0(4) , α[ 1 2

6 4 ] = − ζ3

210
E0(4, 0)− 2ζ3

3
E0(6, 0) ,

α[ 3 0
6 4 ] = − ζ3

210
E0(4, 0) , α[ 4 0

6 4 ] = − 2ζ3

105
E0(4, 0, 0) +

2ζ5

5
E0(4) , (F.8)

α[ 2 1
6 4 ] =

ζ3

315
E0(4, 0) , α[ 2 2

6 4 ] = − ζ3

315
E0(4, 0, 0)− 4ζ3

3
E0(6, 0, 0) ,

α[ 3 1
6 4 ] =

ζ3

210
E0(4, 0, 0) , α[ 3 2

6 4 ] = −4ζ3E0(6, 0, 0, 0) ,

α[ 4 1
6 4 ] =

2ζ5

5
E0(4, 0) , α[ 4 2

6 4 ] = −16ζ3E0(6, 0, 0, 0, 0) +
4ζ5

5
E0(4, 0, 0) .

F.3 Cusp forms in terms of E0

The imaginary cusp forms at weight five can be easily expanded in terms of E0 by combining

their βsv-representations in (5.10) and (5.11) with the rearrangements (F.4) and (F.5) of

iterated Eisenstein integrals. We arrive at the following new expressions that manifest their

q-expansion and T -invariance (see (5.6) for A1,2;5 =
(

Im τ
π

)5 A[ 0 2 3
3 0 2 ]):

iA1,2;5 =
(8y2

3
+

120ζ3
y

)
Im[E0(6, 02)] +

(4y

3
+

240ζ3
y2

)
Im[E0(6, 03)]−

(70

3
− 150ζ3

) Im[E0(6, 04)]

y3

−
(8y3

315
+ 9ζ5

) Im[E0(4, 0)]

y2
− 15ζ5 Im[E0(4, 02)]

2y3
+ 1920 Im[E0(6, 0, 4, 02)] + 3600 Im[E0(6, 4, 03)]

+ 720 Im[E0(6, 02, 4, 0)]− 720 Im[E0(4, 0, 6, 02)]− 3600 Im[E0(4, 6, 03)]− Im[E0(4, 04)]

3
− Im[E0(4, 05)]

y
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− 360 Im[E0(4, 02, 6, 02)]

y
− 2880 Im[E0(4, 0, 6, 03)]

y
− 10800 Im[E0(4, 6, 04)]

y
− 70 Im[E0(6, 05)]

y

+
1080 Im[E0(6, 03, 4, 0)]

y
+

3240 Im[E0(6, 02, 4, 02)]

y
+

6480 Im[E0(6, 0, 4, 03)]

y
+

10800 Im[E0(6, 4, 04)]

y

− 5 Im[E0(4, 06)]

4y2
− 720 Im[E0(4, 02, 6, 03)]

y2
− 4140 Im[E0(4, 0, 6, 04)]

y2
− 13500 Im[E0(4, 6, 05)]

y2

− 175 Im[E0(6, 06)]

2y2
+

540 Im[E0(6, 04, 4, 0)]

y2
+

2160 Im[E0(6, 03, 4, 02)]

y2
+

4860 Im[E0(6, 02, 4, 03)]

y2

+
8640 Im[E0(6, 0, 4, 04)]

y2
+

13500 Im[E0(6, 4, 05)]

y2
− 5 Im[E0(4, 07)]

8y3
− 450 Im[E0(4, 02, 6, 04)]

y3

− 2250 Im[E0(4, 0, 6, 05)]

y3
− 6750 Im[E0(4, 6, 06)]

y3
− 175 Im[E0(6, 07)]

4y3
+

450 Im[E0(6, 04, 4, 02)]

y3

+
1350 Im[E0(6, 03, 4, 03)]

y3
+

2700 Im[E0(6, 02, 4, 04)]

y3
+

4500 Im[E0(6, 0, 4, 05)]

y3
+

6750 Im[E0(6, 4, 06)]

y3

− 720 Im[E0(6, 02)] Re[E0(4, 0)]− 1080 Im[E0(6, 03)] Re[E0(4, 0)]

y
− 540 Im[E0(6, 04)] Re[E0(4, 0)]

y2

− 360 Im[E0(6, 02)] Re[E0(4, 02)]

y
− 720 Im[E0(6, 03)] Re[E0(4, 02)]

y2
− 450 Im[E0(6, 04)] Re[E0(4, 02)]

y3

+ 720 Im[E0(4, 0)] Re[E0(6, 02)] +
360 Im[E0(4, 02)] Re[E0(6, 02)]

y
+

1080 Im[E0(4, 0)] Re[E0(6, 03)]

y

+
720 Im[E0(4, 02)] Re[E0(6, 03)]

y2
+

540 Im[E0(4, 0)] Re[E0(6, 04)]

y2
+

450 Im[E0(4, 02)] Re[E0(6, 04)]

y3

iB2,3 =
(4y3

105
+ 6ζ3 +

27ζ5
2y2

)
Im[E0(4, 0)] +

(y2
15

+
3ζ3
y
− 9ζ5

2y3

)
Im[E0(4, 02)] (F.9)

−
(

4y2 +
180ζ3
y

)
Im[E0(6, 02)]−

(
16y +

45ζ3
y2

)
Im[E0(6, 03)]−

(
35− 90ζ3

y3

)
Im[E0(6, 04)] ,

+ 1080 Im[E0(4, 0, 6, 02)]− 2160 Im[E0(4, 6, 03)]− 1080 Im[E0(6, 02, 4, 0)]− 360 Im[E0(6, 0, 4, 02)]

+ 2160 Im[E0(6, 4, 03)]− 1

4
Im[E0(4, 04)] +

540 Im[E0(4, 02, 6, 02)]

y
+

540 Im[E0(4, 0, 6, 03)]

y

− 6480 Im[E0(4, 6, 04)]

y
− 105 Im[E0(6, 05)]

2y
− 1620 Im[E0(6, 03, 4, 0)]

y
− 1080 Im[E0(6, 02, 4, 02)]

y

+
1620 Im[E0(6, 0, 4, 03)]

y
+

6480 Im[E0(6, 4, 04)]

y
− 5 Im[E0(4, 05)]

8y
+

135 Im[E0(4, 02, 6, 03)]

y2

− 1350 Im[E0(4, 0, 6, 04)]

y2
− 8100 Im[E0(4, 6, 05)]

y2
− 105 Im[E0(6, 06)]

2y2
− 810 Im[E0(6, 04, 4, 0)]

y2

− 405 Im[E0(6, 03, 4, 02)]

y2
+

1215 Im[E0(6, 02, 4, 03)]

y2
+

4050 Im[E0(6, 0, 4, 04)]

y2
+

8100 Im[E0(6, 4, 05)]

y2

− 3 Im[E0(4, 06)]

4y2
− 3 Im[E0(4, 07)]

8y3
− 270 Im[E0(4, 02, 6, 04)]

y3
− 1350 Im[E0(4, 0, 6, 05)]

y3

− 4050 Im[E0(4, 6, 06)]

y3
− 105 Im[E0(6, 07)]

4y3
+

270 Im[E0(6, 04, 4, 02)]

y3
+

810 Im[E0(6, 03, 4, 03)]

y3

+
1620 Im[E0(6, 02, 4, 04)]

y3
+

2700 Im[E0(6, 0, 4, 05)]

y3
+

4050 Im[E0(6, 4, 06)]

y3
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+ 1080 Im[E0(6, 02)] Re[E0(4, 0)] +
1620 Im[E0(6, 03)] Re[E0(4, 0)]

y
+

810 Im[E0(6, 04)] Re[E0(4, 0)]

y2

+
540 Im[E0(6, 02)] Re[E0(4, 02)]

y
+

135 Im[E0(6, 03)] Re[E0(4, 02)]

y2
− 270 Im[E0(6, 04)] Re[E0(4, 02)]

y3

− 1080 Im[E0(4, 0)] Re[E0(6, 02)]− 540 Im[E0(4, 02)] Re[E0(6, 02)]

y
− 1620 Im[E0(4, 0)] Re[E0(6, 03)]

y

− 135 Im[E0(4, 02)] Re[E0(6, 03)]

y2
− 810 Im[E0(4, 0)] Re[E0(6, 04)]

y2
+

270 Im[E0(4, 02)] Re[E0(6, 04)]

y3
.

The leading orders of the q, q̄-expansion of A1,2;5 have been checked33 to line up with the

all-order results of [22] on the Fourier-expansion of two-loop MGFs.
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