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It is well known that spin angular momentum of light, and therefore that of photons, 
is directly related to their circular polarization. Naturally, for totally unpolarized 
light, polarization is undefined and the spin vanishes. However, for nonparaxial light, 
the recently discovered transverse spin component, orthogonal to the main 
propagation direction, is largely independent of the polarization state of the wave. 
Here we demonstrate, both theoretically and experimentally, that this transverse spin 
survives even in nonparaxial fields (e.g., tightly focused or evanescent) generated 
from a totally unpolarized light source. This counterintuitive phenomenon is closely 
related to the fundamental difference between the degrees of polarization for 2D 
paraxial and 3D nonparaxial fields. Our results open an avenue for studies of spin-
related phenomena and optical manipulation using unpolarized light. 

1. Introduction 

Classical polarization optics usually regards paraxial light and its 2D polarization states 
[1]. Similarly, the spin of photons in quantum electrodynamics textbooks is also described by 2D 
circular polarizations of plane electromagnetic waves [2]. However, modern nano-optics is based 
on the use of structured nonparaxial fields, where all three spatial components of the field vector 
generically play a role [3]. This required extending the existing polarization theory to the 3D 
case [4–8]. This extension is by no means trivial: the four Stokes parameters describing generic 
2D polarization are now substituted by nine polarization parameters characterizing generic 3D 
polarization. 

Simultaneously, the notion of spin has to be augmented to 3D structured fields [9–13], 
where the local spin density is well-defined for monochromatic waves and can be associated 
with the radiation torque on small dipole particles [13]. This resulted in the discovery of the 
unusual transverse spin in inhomogeneous fields with several remarkable properties [14–28] (for 
review, see [13,29–31]). This spin, orthogonal to the main propagation direction and 
wavevectors, is a very robust phenomenon that has found applications for highly efficient spin-
direction coupling using evanescent waves, largely independently of the details of the system 
[18–21,23–25,29–31]. Moreover, it was recently found that the transverse spin is equally present 
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in inhomogeneous sound waves [32–34], which are traditionally considered as scalar (i.e., 
spinless), quantum electron waves [25], and even gravitational waves [35]. 

In this work, we demonstrate, both theoretically and experimentally, that the transverse 
spin is essentially a polarization-independent phenomenon, which survives even in fields 
generated by totally unpolarized sources, Fig. 1. This is in sharp contrast to the usual 
longitudinal spin, which is directly related to the 2D polarization and vanishes in unpolarized 
fields. We show that this phenomenon is intimately related to the difference between the 2D and 
3D polarization descriptions. Namely, the totally depolarized 2D field is at the same time half-
polarized in the 3D sense [5]. Indeed, 2D depolarization implies a single random phase between 
the two orthogonal field components (with equal amplitudes), while complete 3D depolarization 
requires two random phases between the three mutually-orthogonal field components. Therefore, 
any regular optical transformation producing a nonparaxial 3D field from an unpolarized far-
field source will have partial 3D polarization, with the degree of polarization not less than 1/2. In 
particular, the local increase of the degree of polarization up to almost 1 was demonstrated for 
the tight focusing of an unpolarized paraxial beam [36,37]. Below we show that the transverse 
spin appears in any paraxial-to-nonparaxial transformation (see Fig. 1), even without a change in 
the degree of polarization; the minimal value of 1/2 provides sufficient room for this. The origin 
of this phenomenon lies in intrinsic spin-orbit interaction of light [30], where any transformation 
in the wavevector direction produces spin-related phenomena, even for unpolarized light. 

Since spin is a fundamental dynamical property of light, which is very important in both 
quantum and classical, theoretical and applied optics (e.g., for optical manipulation of micro- and 
nano-particles), our findings provide a novel opportunity to use polarization-independent spin 
from unpolarized sources. 

2. Theoretical background 

Nonparaxial optical fields are usually generated from far-field sources of paraxial light via 
some optical transformations (see Fig. 1): focusing, diffraction, scattering, etc. In this work, we 
consider two of the most common examples of nonparaxial fields: (i) tightly focused Gaussian-
like beams and (ii) evanescent waves. These are generated via high-NA focusing and total 
internal reflection of the incident paraxial light, respectively. 

The incident paraxial light can be approximated by a plane wave, so its 2D polarization 
state can be described by the 2×2 polarization (density) matrix or, equivalently, by 4 real Stokes 
parameters    

!s = s0 ,s1,s2 ,s3( )  [1]. Here, the normalized parameter   s3  corresponds to the normalized 
spin angular momentum density of the wave (  z -directed along the wave propagation): 

  Sz / I = s3 / s0 ∈ −1,1⎡⎣ ⎤⎦  [13], where   I =W /ω  is the wave intensity expressed via the energy 
density  W  and frequency ω . The degree of paraxial 2D polarization is defined as 

  
P2D = si

2
i=1

3∑ s0 ∈ 0,1⎡⎣ ⎤⎦ . For totally unpolarized light,    
!s ∝ 1,0,0,0( ) ,   P2D = 0 , and the spin 

vanishes:   Sz = 0  (see Fig. 1). 
For the generated nonparaxial field, all three components are significant, and its 

polarization state at a point is described by a 3×3 Hermitian polarization (density) matrix, or 
equivalently by 9 real parameters   

!
Λ = Λ0 ,Λ1,...,Λ8( )  [4–8] [see Supplementary Information 

(SI)]. In such fields, the polarization ellipsoid can have an arbitrary orientation, and the spin 
angular momentum density (orthogonal to it) involves all three components [10,13]. Its 
normalized value can be expressed via the properly normalized parameters  Λ2 ,  Λ5 , and  Λ7  (see 
SI): 
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S
I
≡ 1

I
Sx ,Sy ,Sz( ) = 2

3Λ0

−Λ7 ,Λ5,−Λ2( ) . (1) 

The most common definition of the degree of nonparaxial 3D polarization is 

  
P3D = Λ i

2
i=1

8∑ 3Λ0 ∈ 0,1⎡⎣ ⎤⎦  [4–8]. For totally unpolarized 3D light, one should expect 

  
!
Λ ∝ 1,0,0,...,0( ) ,   P3D = 0 , and the corresponding vanishing spin:  S = 0 . 

One remarkable feature of the above definitions of the degree of polarization is that totally 
unpolarized paraxial light,   P2D = 0 , is partially polarized in the 3D sense:   P

3D = 1/ 2  [5] (see 
SI). This is because total 3D depolarization requires total mutual decoherence of all of the three 
field components with equal amplitudes, while in paraxial light the longitudinal  z  component 
vanishes, and in fact remains “coherent” with the mutually decoherent transverse   x, y( )  

components. As a result,  Λ8 = 3 / 2Λ0 ≠ 0  even for a totally unpolarized paraxial field. This 
“discrepancy” between the 2D and 3D polarization degrees naturally manifests itself as a 
nonzero transverse spin in a nonparaxial field generated from an unpolarized paraxial source, 
Fig. 1. 

 

 
Figure 1. Schematic illustration of the longitudinal and transverse spin for the 
paraxial and nonparaxial regimes for both polarized and unpolarized (in the 2D 
sense) fields. Transverse spin  S⊥  appears in nonparaxial fields, while the 
depolarization of the paraxial source eliminates only the longitudinal spin   

S! . 
 
We first consider the case of a tightly focused polarized field. Both the incident paraxial 

and focused nonparaxial fields can be modeled by the post-paraxial description of a Gaussian 
beam [13] with the infinite and finite Rayleigh range  zR , respectively. Using the natural 
cylindrical coordinates   r,ϕ , z( ) , the normalized spin density in a polarized Gaussian beam can be 
written as (see SI):  
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Here    S0 / I0 = s3 / s0( ) z  is the spin density in the plane-wave limit, 
   
I ∝ 1+ !r 2 / 2( )e−kr2 /zR  is the 

intensity distribution,    !r = r / zR , and the overbars indicate the unit vectors of the corresponding 
axes. Equation (2) exhibits the usual polarization-dependent longitudinal spin, as well as the 
transverse spin component [13,22,28,29] which is totally independent of the polarization (Stokes 
parameters) of the incident plane wave.  

The totally unpolarized Gaussian beam can be considered as an incoherent superposition 
of two Gaussian beams with mutually orthogonal polarization states (e.g., with    

!s ∝ 1,1,0,0( )  and 

   
!s ∝ 1,−1,0,0( ) ). The corresponding 3×3 polarization matrix and parameters  

!
Λ  for such 

unpolarized Gaussian field become (see SI):  Λ1 = Λ2 = Λ3 = Λ4 = Λ6 = 0 , 

 
   

Λ8

Λ0

= 3
2

1− !r 2

1+ !r 2 / 2
,    

   

Λ5

Λ0

= 3
2

!x
1+ !r 2 / 2

,    
   

Λ7

Λ0

= 3
2

!y
1+ !r 2 / 2

, (3) 

where    !x = x / zR  and    !y = y / zR . In the paraxial limit  zR →∞ , only the  Λ8 / Λ0  ratio survives, 

providing the 3D degree of polarization   P
3D = 1/ 2  [5]. In the nonparaxial case, the nonzero 

parameters  Λ5  and  Λ7  appear. These parameters exactly describe the transverse part of spin (2) 

in agreement with Eq. (1): 
   

S⊥

I
= 2

3Λ0

−Λ7 ,Λ5,−Λ2( ) , while the longitudinal spin naturally 

vanishes:   
S! = 0  (see Fig. 1). 

Second, we consider an evanescent wave, which can be generated via total internal 
reflection of a paraxial incident field (plane wave). Such z-propagating and x-decaying wave is 
characterized by the propagation constant   kz > k ≡ω / c  and the decay constant   κ = kz

2 − k 2 . 
Assuming, for simplicity, that the transmission coefficients of the total internal reflection are 
polarization-independent, the generation of the evanescent field can be regarded as a transition 
from the plane-wave limit  κ = 0 ,  kz = k , to the given finite  κ > 0 . The normalized spin density 
of the polarized evanescent wave is [13,16]: 

 
    

S
I
= k

kz

S0

I0

+ κ
kz

y ≡
S!
I
+

S⊥

I
. (4) 

Here, as before,    S0 / I0 = s3 / s0( ) z  is the spin density in the plane-wave limit, and the intensity 

distribution is   I ∝ e−2κ x . As for the focused field, the spin (4) consists of the longitudinal 
polarization-dependent component and transverse ( y -directed) polarization-independent term 
[13,16,25,29,30]. 

The totally unpolarized evanescent field is obtained as an incoherent superposition of 
evanescent waves with orthogonal polarization states. The corresponding parameters  

!
Λ  for such 

unpolarized evanescent field are (see SI):  Λ1 = Λ2 = Λ4 = Λ6 = Λ7 = 0 , 
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2

k 2 −κ 2 / 2
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4
κ 2
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2
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In the plane-wave limit  κ = 0 , only the ratio  Λ8 / Λ0  survives, yielding   P
3D = 1/ 2 . In the 

evanescent-wave case, both  Λ3  and  Λ5  are different from zero, the latter corresponding 

precisely to the transverse part of spin (4) in agreement with Eq. (1): 
   

S⊥

I
= 2

3Λ0

−Λ7 ,Λ5,−Λ2( ) , 

whereas the longitudinal spin vanishes:   
S! = 0  (see Fig. 1). 

Importantly, considering   r / zR  and   κ / k  as a small parameter ε  in the above two 
problems, the 3D degree of polarization of the unpolarized focused and evanescent fields has the 

form 
  
P3D = 1

2
+O ε 2( )  (see SI), while the transverse spin has the order of ε . This means that, to 

first order, focusing or total-reflection processes (with polarization-independent transmission 
amplitudes) do not change the 3D degree of polarization of the incident unpolarized light 
[36,37], while the spin changes from zero in the incident wave to the nonzero transverse spin in 
the nonparaxial field. This appearance of spin without polarization originates from the intrinsic 
spin-orbit interaction of light [30]. The plane-wave transversality condition   k ⋅E = k ⋅H = 0  
imposes constraints on the relations between longitudinal and transverse field components, 
which therefore have some intrinsic mutual coherence even for fields generated from 
unpolarized sources. Transformations from paraxial to nonparaxial field can be approximated by 
 k -vector transformations (re-directions), which do not affect the polarization degree but 
inevitably generate the transverse spin, as schematized in Fig. 1. 

Another important point is that in our calculations we considered both electric and 
magnetic field contributions to all quadratic quantities (see SI): spin, intensity, polarization 
parameters  

!
Λ , etc. For polarized fields, the electric and magnetic contributions are not equal to 

each other, and additional terms generally appear when considering only the electric or the 
magnetic fields [13,16,22,28]. In contrast, for unpolarized fields, these contributions are always 
equal to each other. One can say that unpolarized light and its transverse spin have dual-
symmetric nature [12,38], similarly to circularly-polarized fields with well-defined helicity [11]. 

In what follows, we present experimental measurements of the nonzero transverse spin 
from Eqs. (2) and (4) in tightly focused and evanescent fields generated from unpolarized 
sources. The two experiments use different types of unpolarized sources and measure both the 
electric and magnetic contributions to the spin. 

3. Focused-beam experiment 

In order to measure the transverse spin of an unpolarized tightly focused beam, we first 
prepared a suitable input field. We sent a Gaussian beam (wavelength   λ = 2π / k = 620nm , 
linewidth   ΔλFWHM! 5nm ) through a linear polarizer and two liquid-crystal variable retarders 
(LCs) oriented at 45° and 90° with respect to the axis of the linear polarizer, respectively. The 
experimental setup is schematically shown in Fig. 2a [28,39]. With this arrangement, the 

polarization state of the generated beam can span the whole Poincaré sphere (  
si

2
i=1

3∑ = s0
2 ) with 

the position on the sphere depending on the settings of the LCs. These LCs were controlled via a 
voltage applied to the corresponding devices to induce a voltage-dependent birefringence. For 
the applied voltage, we used two random numbers in a range spanning multiple wavelengths of 
retardance, updated 10 times per second. This produced a beam that is fully and homogeneously 
polarized over its cross-section for a fixed instance in time. However, the beam appears totally 

unpolarized (  
P2D = si

2
i=1

3∑ = 0 ) when averaged over a certain time frame.  
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For tight focusing and subsequent collimation of the light beam, we used two confocally 
aligned microscope objectives (MOs) with numerical apertures  NA1 = 0.9  and  NA2 = 1.3 , 
respectively (see Fig. 2a). Following a scheme developed recently [28] for the reconstruction of 
the electric and magnetic parts of the transverse spin, we used a spherical silicon nanoparticle of 
diameter   d = 168nm  as a local probe in the focal volume. The NA of the collection  MO2  was 
considerably larger than 1 in order to access the angular range above the critical angle, which is 
required for the applied reconstruction technique. Then, we performed a polarization analysis in 
the back focal plane (BFP) of  MO2  imaged onto a camera, which allowed us to access the far 
field of the scattered light. This polarization analysis involved a LC, a linear polarizer and an 
imaging lens (see Fig. 2a). At this stage of the setup, a single LC was sufficient because for the 
reconstruction of the transverse spin we only need to distinguish between the x- and y-
polarizations. According to the method in Ref. [28], intensities of the x- and y-components of the 
scattered field, dependent on the transverse wavevectors, 

   
Ix ,y

sc k⊥( ) , allowed unambiguous 
reconstruction of both the electric and magnetic field contributions to the transverse spin density, 

  S⊥
(e)  and   S⊥

(m) , in the focused field at the location of the particle.  
 

 
Figure 2. a, Experimental setup for the reconstruction of the transverse spin in a 
tightly focused unpolarized field. A linear polarizer and two liquid crystal variables 
retarders (LCs) are used to prepare a beam with randomly varied polarization. 
Subsequently, two confocally aligned microscope objectives (MOs) focus and 
collimate the beam. A spherical silicon nanoparticle is placed on a coverslip in the 
focal plane. It produces scattered light with wavevectors outside of the aperture of 
the transmitted beam, which carries information about the local transverse spin 
density in the beam [22,28]. Polarization-resolved back focal plane images using the 
scattered light are recorded by using another LC, a linear polarizer and a lens. b, 
Experimental results of the reconstructed electric and magnetic transverse spin,   S⊥

(e)  

and   S⊥
(m)  (normalized to the maximum absolute value), which equal each other in the 

unpolarized field (see SI). The results of numerical calculations are shown as insets. 
 

In order to provide a full map of the transverse electric and magnetic spin densities,   S⊥
(e)  

and   S⊥
(m) , shown in Fig. 2b, we raster scan the nanoparticle across the focal plane (over the 
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square area of  1.5×1.5 µm2  with a step size of  30nm ) and record the polarization-resolved BFP 
images for each particle position. For each position and polarization, the data is averaged over a 
time frame of  40s . The distributions of the transverse spin obtained experimentally are in good 
agreement with simple theoretical expression (2) with the fitted Rayleigh range    zR ! 527 nm . 
We also performed more accurate numerical calculations of the transverse spin densities using 
vectorial diffraction theory [40] (which takes into account the finite aperture of the focused 
beam) and plotted these as insets in Fig. 2b. In doing so, we adjusted all parameters of the 
focusing system and the incoming beam to the experimental case. One can see that the 
experimental results are in excellent agreement with the numerical data. 

Importantly, the electric and magnetic spin densities in Fig. 2b exhibit very similar spatial 
distributions, in agreement with the dual-symmetric nature of the transverse spin for unpolarized 
light:   S⊥

(e) = S⊥
(m) = S⊥ / 2  (see SI). The same feature is present in nonparaxial fields with well-

defined helicity [11], such as fields obtained by focusing circularly polarized input light [41]. 
However, in our case of an unpolarized source, the helicity and longitudinal spin vanish. 

4. Evanescent-wave experiment 

In order to measure the transverse spin of an unpolarized evanescent wave, the total 
internal reflection of light coming from an unpolarized tungsten lamp was employed. To 
generate the evanescent wave, a BK7 glass prism (Thorlabs, refractive index   n = 1.51  at the 
wavelength  λ = 600nm ) was illuminated by an unpolarized tungsten lamp of wavelength 500–
800 nm. The angle of incidence was measured to be 49°, which changes to 47° upon refraction 
entering the right-angle prism. This is above the critical angle of 41°, which is required for total 
internal reflection generating an evanescent wave above the glass. Akin to the focused-beam 
experiment, a small nanoparticle acting as a probe for the local field polarization – in this case 
gold nanoparticle (diameter   d = 150nm , Sigma Aldrich) – was placed in the evanescent field 
above the prism and the far-field scattered radiation was analyzed (see Fig. 3a). 

The scattered signal from the gold nanoparticle was collected by a 100× microscope 
objective with a numerical aperture  NA = 0.9 , allowing us to analyze the scattered light within a 
very large solid angle. The BFP of the detection objective (Fourier plane) was then imaged onto 
an imaging spectrometer using a set of relay lenses. The scattered signal was analyzed using a 
linear polarizer and a quarter wave plate in order to reconstruct the full Stokes parameters of the 
light scattered from the particle in all directions in the upper half-space (see SI). Figure 3b shows 
the results of these measurements, i.e., angular dependences of the normalized Stokes parameters 

  
s1,2,3 / s0 , as well as the 2D degree of polarization,   P2D , for the far-field scattering from the 
nanoparticle.  

Note that the gold nanoparticle in this experiment behaves as an electric dipole, i.e., it is 
sensitive to the electric rather than magnetic field properties. However, we have already shown 
that the magnetic field shares the same features in unpolarized light, so we omit the superscript 
“(e)”. 

The degree of polarization   P2D  and third Stokes parameter   s3 / s0  in the scattered radiation 
show that the scattered light becomes partially polarized and acquires opposite-sign spins in the 
 ± y  directions. This is in perfect agreement with the y-directed transverse spin in Eq. (4) and the 
well-established fact that this transverse spin in an evanescent field is converted to the usual far-
field spin (i.e., the third Stokes parameter) upon transverse scattering by a dipole particle [19–
21,23–25,29–31]. The insets in Fig. 3b show the analytically calculated Stokes parameters of the 
scattered light for an unpolarized  λ = 600nm  source. (The patterns depend very weakly on 
wavelength so that they are almost constant within the whole 500–800 nm range.) The analytical 
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calculation was performed by matching the experimental parameters (angle of incidence, type of 
glass, particle diameter and material), including the total internal reflection of the incident beam, 
the particle modeled as a point dipole, and the subsequent scattering of the particle (taking into 
account the effects of the surface reflections; see SI). One can see a very good agreement 
between the theory and the experiment. 
 

 
Figure 3. a, Experimental setup used to detect the non-zero transverse spin in an 
evanescent wave from an unpolarized source. Light from an unpolarised source 
undergoes total internal reflection, generating an evanescent wave, which is then 
scattered by a nanoparticle. The scattering from this nanoparticle is collected via a 
microscope objective. The radiation diagram above the nanoparticle represents the 
measured   P2D  (i.e. the degree of polarization in different directions), whereas the 
color represents the spin of the far-field radiation given by   s3 / s0 . b, Experimentally 

retrieved and analytically calculated (inset) maps of   P2D  and normalized Stokes 
parameters   

s1,2,3 / s0  of the scattered light in every direction of the upper half-space. 
 

5. Conclusions 

We have shown that pure redirection of wavevectors can generate nonzero spin angular 
momentum in initially completely unpolarized paraxial light. This surprising result establishes an 
important link between two areas of research: (i) 3D polarization in nonparaxial fields [4–
8,36,37] and (ii) transverse spin [13–35]. The direct relation between the redirection of 
wavevectors and the appearance of spin points to the fundamental spin-orbit interaction origin of 
this phenomenon [30]. We have provided theoretical calculations and two sets of experimental 
measurements for the transverse spin generated upon tight focusing and total internal reflection 
(i.e., generation of an evanescent wave) of an unpolarized paraxial light. All these results use 
well-established methods for spin calculations and measurements, and are in perfect mutrual 
agreement.  
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Thus, our work has revealed one more exceptional feature of transverse spin. Together 
with other properties found previously, we can conclude that transverse spin is not just “one of 
the components of spin angular momentum density”, but rather a separate physical entity whose 
main features are completely different from those of the usual polarization-controlled 
longitudinal spin of paraxial light or photons. As such, the transverse spin can offer novel 
phenomena and applications in angular-momentum and polarization optics. The remarkable 
“spin-momentum locking” associated with the transverse spin has already found promising 
applications for highly efficient spin-direction couplers [18–21,23–25,29–32]. The present study 
opens an avenue for the use of spin from unpolarized and incoherent sources. It also sheds light 
onto the appearance of nonzero local spin in nonparaxial sound waves [32–34], which do not 
feature a polarization degree of freedom in the paraxial regime and correspond to spin-0 
quantum particles (phonons). 
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