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Abstract5

The digital revolution has fundamentally changed social information exchange and vastly increased6

exposure to the opinions of others. However, it is unclear whether exchanging such large amounts of7

information benefits decision making. Exchanging a moderate amount or aggregated forms of social8

information may indeed avoid information overload and foster better decisions. We performed experiments9

in which participants were asked to estimate quantities twice, before and after receiving either all of their10

peers’ estimates or the geometric mean thereof. We find that second estimates were more accurate when11

participants observed all estimates than when they saw their geometric mean. Using a model, we predict12

that accuracy improves most when about twelve estimates are exchanged, independent of group size.13

Taken together, our results thus suggest that to optimize collective decisions, individuals should receive14

all decisions from a moderate number of group members, rather than aggregated opinions of large crowds.15
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Introduction16

Social information is a decisive component of human decision making. Most of people’s everyday choices,17

whether picking a movie, finding the best school for one’s children, or gathering information before voting18

in an election, are influenced by the experiences and intuitions of others. On a broader perspective, social19

learning strategies, which consist in using social information selectively, continue to play a central role in the20

emergence and evolution of cultures and their startling diversity [1, 2]. Understanding the impact of social21

information on human decision making is thus crucial for comprehending human behaviour.22

Information technology has altered how people relate to information and how individuals interact with and23

influence each other. People are more connected to each other than ever before: social networks, blogs and24

websites, and the massive di↵usion of smartphones have made information and virtual others instantaneously25

available, anywhere and at any time [3]. Moreover, pervasive online recommender systems and social networks26

have considerably extended people’s exposure to others’ opinions and recommendations [4, 5, 6]. For instance,27

when selecting a restaurant, a travel destination, or a hotel, the first thing one often does is look at others’28

ratings and reviews. This permanent exchange of social information, generally mediated by digital interfaces,29

is likely to amplify in the coming years, with new generations being born and raised with smartphones and the30

Internet. This brings about new challenges, such as how to process so much information and make e�cient31

decisions, especially given people’s limited time and cognitive resources [7, 8, 9]. One issue of particular32

importance is how to best exchange social information in human groups in a way that improves individual33

and collective decisions. On the one hand, providing individuals access to all the available information gives34

them more ground to make proper judgments, but at the risk of cognitive overload [10, 11, 12]. On the other35

hand, aggregated information is easier to process, but lacks potentially important cues about the underlying36

distribution of information (e.g., the variance in a sample). Between these extremes, exchanging a moderate37

number of pieces of social information may be valuable for enhancing the quality of decisions.38

Here we address this important issue through the prism of estimation tasks, a highly suitable paradigm39

for quantitative studies on social influenceability [13, 14, 15, 16, 17, 18]. We performed experiments in which40

subjects were asked to estimate a series of quantities both before and after receiving social information from41

other group members. Social information consisted of a varying number of estimates ⌧ from other group42

members (⌧ = 1, 3, 5, 7, 9, or 11), and two main conditions were tested: either (i) all ⌧ estimates (“full43

information” condition), or (ii) their geometric mean (“aggregated information” condition) were presented44

to the subjects. Crucially, in the aggregated information condition, and contrary to previous studies [19, 20],45

subjects were aware of the number of estimates used to calculate the geometric mean.46

Previous studies have analyzed the patterns of social influenceability and the conditions under which47
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social information exchange can improve estimation accuracy [13, 14, 15, 16, 17, 19, 20, 21, 22]. However, to48

the best of our knowledge, a direct and systematic comparison of the e↵ects of full versus aggregated social49

information, in interaction with the number of estimates exchanged, on collective decisions in estimation50

tasks has been lacking.51

We proceed in four steps. First, we present the results of an experiment comparing the e↵ects of aggregated52

versus full information exchange on individual and collective accuracy in estimation tasks. We show that53

exchanging full information leads to improved collective accuracy, whereas exchanging aggregated information54

does not. We did not find a di↵erence in individual improvements between both conditions. Second, we55

investigate the mechanisms underlying these results. We show that the collective improvement in the full56

condition results from subjects’ tendency to favor estimates that are higher than their own over those that57

are lower, thus counteracting the well-known underestimation bias [19, 23, 24, 25]. This e↵ect is not observed58

in the aggregate condition, explaining the lack of collective improvement. Moreover, subjects relied more on59

social information in the aggregate condition than in the full condition, and increasingly so as they knew60

more estimates were involved in the computation of the aggregate (i.e., geometric mean). Third, we present61

a computational model that reproduces the empirical results well, showing that the mechanisms observed are62

key to explaining collective and individual improvements. Finally, we show the model’s predictions for larger63

groups. We find that improvements in collective and individual accuracy are predicted to be optimal when64

about 12 estimates are exchanged, independent of the actual group size.65

Experimental design66

A total of 216 subjects (sex: 138 females, 70 males, 8 unreported; mean age ± standard deviation: 26 ±67

4, 17 unreported), distributed over 18 groups of 12 individuals, took part in the experiment. They signed68

an informed consent form prior to participating. The experiment was approved by the Institutional Review69

Board of the Max Planck Institute for Human Development (ARC 2018/08). Each individual was confronted70

with 42 estimation questions (see the list in the Supplementary Information) on a tactile tablet. Each question71

was asked twice: First, subjects provided their personal estimate Ep. Next, they saw the estimate(s) of one72

or several group member(s) as social information and provided a second estimate Es (see Supplementary73

Figure S1). The social information never contained a participant’s own estimate.74

Social information was displayed to subjects in three conditions: (i) the “sorted full information condi-75

tion,” where ⌧ estimates (⌧ = 1, 3, 5, 7, 9, 11) were presented to the subjects, sorted by increasing values;76

(ii) the “unsorted full information condition,” where the ⌧ estimates were presented in unsorted order to the77

subjects; and (iii) the “aggregated information condition,” where the geometric mean of the ⌧ estimates was78
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presented. In all conditions the exchanged estimates were selected randomly, and in the aggregated informa-79

tion condition subjects were informed about the number of estimates used to compute the geometric mean.80

Participants in each group only experienced one of the three display conditions (i.e., between-subject design).81

This was done to avoid the “leakage” of strategies and/or information across treatments. For instance, being82

exposed to the dispersion of estimates in the full information condition may impact a person’s subsequent83

decisions on the integration of social information in the aggregated information condition. The number ⌧ of84

estimates exchanged did, however, vary within groups.85

The 42 questions were randomly assigned to seven blocks of six questions. Across groups, the order of the86

blocks and the questions within a block were randomized. A block always contained each number of estimates87

to be exchanged (1, 3, 5, 7, 9, and 11) once. All subjects thus experienced each level of ⌧ the same amount of88

times. The randomization was constrained so that across all of the 18 groups, each unique question was asked89

once at each unique combination of display (three levels) and number of estimates exchanged (six levels). All90

tablets were controlled by a central server, and participants could only proceed to the next question once all91

individuals had provided their second estimate. A 30-second countdown was shown on the screen to motivate92

subjects to answer within this time window, although they were allowed to take more time. Subjects received93

a flat fee of e15 for participation and a bonus payment of e1 to e5 depending on their performance (see94

Supplementary Information for detailed payment information).95

Since both full information conditions gave relatively similar results (see Figures S2 and S3), we focus96

here on comparing the sorted full information condition and the aggregated information condition. We refer97

to them as “full condition” and “aggregate condition” for simplicity.98

Experimental results99

Because of the human logarithmic internal representation of numbers [26], it is more appropriate to consider100

the logarithm of estimates than the estimates themselves in estimation tasks. Moreover, to make estimates101

of di↵erent quantities comparable, it is necessary to normalize them by the true value of their respective102

quantities. We therefore use the quantity X = log
�
E
T

�
as our variable of interest, where E is the actual103

estimate and T the corresponding true value. X represents a deviation from the truth in terms of orders of104

magnitude. For simplicity, we will refer to the log-normalized estimates X as “estimates”, with Xp being105

personal estimates and Xs being second estimates (i.e., after social information exchange). We compared106

the performance of groups when subjects received the full information (i.e., all pieces of social information)107

and when they received aggregated information (i.e., the geometric mean of the pieces of social information).108

Following [19], we define (i) collective accuracy as
��Mediani,q(Xi,q)

��, where i runs over individuals and q over109
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quantities, and (ii) individual accuracy as Mediani,q
�
|(Xi,q)|

�
. Collective accuracy measures how close the110

median estimate X of all group members is to the truth (the log-normalized transform of the truth is 0), and111

individual accuracy measures how close, on average, individual estimates are to the truth.112
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Figure 1: Relative improvement in (a) collective accuracy and (b) individual accuracy, against the number of esti-

mates exchanged, in the full (black) and aggregate (red) conditions. Positive/negative values indicate that accuracy

improved/declined. Dots and error bars (computed using a bootstrap procedure described in the Supplementary

Information) show empirical data. Dashed lines and empty dots are model simulations.

Figure 1 shows the relative improvements in collective and individual accuracy after social information113

exchange, as a function of the number of estimates exchanged, for the full and aggregate conditions. A value114

of 0 implies no improvement (i.e., collective and individual accuracy do not change) and 1 implies maxi-115

mum improvement (i.e., collective and individual accuracy correspond to the truth after social information116

exchange). An improvement in collective accuracy (Figure 1a) amounts to a shift of the median estimate117

toward the truth, which is perforce accompanied by an improvement in individual accuracy (Figure 1b), as118

individual estimates also get, on average, closer to the truth. However, there can be individual improvement119

without collective improvement if estimates converge after social information exchange, but without a shift120

of the median of the X (as shown in [19]). This is the case, for example, when a single estimate is exchanged121

in both conditions (see Figure 1). Figure S4 shows collective and individual accuracy both before and after122

social information exchange, to supplement the improvement thereof presented in Figure 1.123

In the full condition, increasing the number of estimates resulted in increased collective improvement124

(Figure 1a). In the aggregate condition, we did not observe such an increase. Moreover, in both conditions,125

increasing the number of estimates exchanged led to higher individual improvements (Figure 1b). Note126

that individual improvement in the aggregate condition at ⌧ = 11 was unexpectedly low, which is likely127

a statistical artefact due to limited samples (i.e., noise). Indeed, collective improvement at ⌧ = 11 in the128

aggregate condition was also lower than expected (it should be close to 0, as also predicted by the model),129

and thus negatively a↵ected individual accuracy at ⌧ = 11. Moreover, the error bar for individual accuracy130
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at ⌧ = 11 after social information exchange (Figure S4f) points strongly downwards (i.e., toward higher131

accuracy), suggesting that higher improvement could have been expected.132

We next investigated the mechanisms underlying these results by studying the level of social information133

use across conditions. We define the value assigned by subjects to the social information as the weight S they134

give to the (arithmetic) mean M of the social information. Note that the arithmetic mean of log-transformed135

estimates X is equivalent to the log of the geometric mean of the actual estimates E. We define a subject’s136

second estimate Xs as the weighted arithmetic mean of their personal estimate Xp and the social information137

M : Xs = (1 � S)Xp + SM . S can thus be expressed as S = Xs�Xp

M�Xp
. S = 0 implies that subjects keep138

their personal estimate (Xs = Xp)—that is, they disregard social information—and S = 1 implies that their139

second estimate equals the geometric mean (Xs = M)—that is, they adopt the central tendency of the social140

information. Figure 2 shows the average value of S across all conditions.141
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Figure 2: Average weight given to the social information, against the number of estimates exchanged, in the (a) full

and (b) aggregate conditions. Shown are the values when (i) all data are combined (dots), (ii) social information is

higher than the personal estimate (squares), and (iii) social information is lower than the personal estimate (triangles).

Filled symbols and error bars (computed using a bootstrap procedure described in the Supplementary Information)

show empirical data. Empty symbols and dashed lines indicate the values obtained from the model simulations.

Figure 2a shows that, in the full condition, subjects weighted social information more when it was higher142

(squares) than their personal estimate than when it was lower (triangles). This mechanism is known as the143

“asymmetry e↵ect” and has been observed before [21]. Because individuals favor values that are higher than144

their personal estimates over those that are lower, second estimates tended to shift toward higher values.145

Subjects thus partly compensated for the underestimation bias, thereby improving collective and individual146

accuracy. The asymmetry e↵ect increased with the number of estimates exchanged ⌧ , explaining the increase147

in collective and individual improvements with ⌧ in the full condition (Figure 1a).148

In the aggregate condition, subjects weighted social information more the higher the number of exchanged149

estimates (i.e., the number of estimates used to compute the geometric mean). We call this the average size150

e↵ect (Figure 2b). Prior research has shown that a partial weighting of social information on average (i.e.,151
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0 < hSi < 1) entails individual improvement, a mechanism known as the “herding e↵ect” [21]. Moreover,152

the authors showed that individual improvement increases as hSi increases, peaking at a value of 0.5, after153

which individual improvement decreases again. The increased weighting of the social information up to154

hSi ⇡ 0.5 in Figure 2b thus explains the increased individual improvement in Figure 1b. Subjects did,155

however, weigh social information that was higher or lower than their own estimate equally (no asymmetry156

e↵ect). The absence of the asymmetry e↵ect explains the lack of collective improvement in the aggregate157

condition (Figure 1a). Subjects, on average, followed social information more in the aggregate than in the158

full condition. One may thus expect individual improvement to be higher in the aggregate condition than in159

the full condition. However, this expected di↵erence was compensated by the asymmetry e↵ect, which was160

only present in the full condition.161

In the next section, we describe the agent-based model we built to test whether the proposed mechanisms162

of information integration can indeed explain the observed patterns of collective and individual improvement.163

Models of social information integration164

The models for the full and aggregate conditions are both adaptations of a model developed in [19], which165

explains how individuals integrate a single piece of social information (the average of an unknown number166

of estimates from other group members). It consists of three key components which are also at the heart167

of the models for full and aggregate conditions presented below. Figure 3 presents these three components,168

described in more detail below. Parameter values are provided at first mention of each parameter.169

First, personal estimates Xp are drawn from Laplace distributions (Figure 3a) for each question, the170

center and width of which are the median mp and dispersion �p = h|Xp �mp|i of the experimental personal171

estimates, respectively. Because they are made before social information is exchanged, personal estimates172

are by definition independent of the condition and value of ⌧ .173

Second, each agent receives, as social information, the average M of ⌧ personal estimates from other174

group members. Note that this happens naturally in the aggregate condition, while for the full condition, we175

assume that participants also adjust their estimates to the average social information M , following previous176

findings [21, 27]. S is thus defined in the exact same way in both models. After receiving the social177

information M , each agent then either keeps its personal estimate (S = 0) with probability P0 or draws178

an S in a Gaussian distribution of mean mg = 0.5 and standard deviation �g = 0.3 with probability Pg.179

The Gaussian distribution encompasses the probabilities to contradict the social information (S < 0), to180

compromise with it (0 < S < 1), to adopt it (S = 1), or to overreact to it (S > 1). The overall distribution of181

S is thus composed of a Gaussian distribution and a Dirac peak at S = 0 (Figure 3b). Since the distribution182

7



−8 −4 0 2 4 6 8

10−3

10−2

10−1

100

Xp

PD
F

a
All Data Model

−1 0 0.5 1 1.5 2−0.5
0

0.2

0.4

0.6

0.8

1

1.2
0.03 0.37 0.56 0.01 0.03
0.02 0.4 0.54 0.01 0.02

Weight on Social Info

PD
F

b

Data:
Aggregate
τ = 1

Model

−2 −1 0 1 2
0.2

0.3

0.4

●
●

●

●

●

●

D = M −Xp

W
ei

gh
t S

oc
ia

l I
nf

o

c
Data: Aggregate

τ = 1
Model

Figure 3: Main model components. (a) Probability density function (PDF) of personal estimates Xp = log
�Ep

T

�
,

where Ep is the actual estimates, and T is the true value of the corresponding quantities. The green line is the

distribution of experimental personal estimates, for all conditions and values of ⌧ combined. The purple dashed line

corresponds to model simulations, where the personal estimates Xp are drawn from Laplace distributions. (b) PDF of

weights S given to the social information. The numbers at the top of the panel give, from left to right, the probabilities

to (i) contradict the social information (S < 0), (ii) reject it (S = 0), (iii) compromise with it (0 < S < 1), (iv) adopt

it (S = 1), and (v) overreact to it (S > 1). The model distribution consists of two parts: a Gaussian distribution and

a Dirac peak at S = 0. (c) Average weight given to the social information, as a function of the distance D = M �Xp

between the personal estimate Xp and the social information M . Subjects give more weight to the social information

as the distance increases. In (b) and (c), the data for the aggregate condition and ⌧ = 1 are shown in red, and the

model predictions in purple. Di↵erent conditions and values of ⌧ are not mixed, because both have an impact on S.

of S depends on both the condition and value of ⌧ , data from di↵erent cases cannot be combined, contrary183

to the distribution of personal estimates. Figs. 3b and 3c each show one specific case: the distribution of the184

S in the aggregate condition for ⌧ = 1 (to remain close to [19]).185

Third, the average weight S given to social information increases linearly with the distance D = M �Xp186

between the personal estimate Xp and the average social information M : hSi = Pg mg = ↵+�|D| (Figure 3c),187

where ↵ is the intercept (↵ = 0.12 in the full condition, and 0.2 in the aggregate condition) and � the slope188

of the linear cusp relationship (� = 0.1 for both conditions). This is the distance e↵ect, described in [19].189

On top of these three common components, one additional e↵ect was included in each condition. In the190

full condition, we introduced the asymmetry e↵ect, built as a linear dependence of hSi on ⌧ , with a positive191

slope �+ = 0.03 when D > 0 and a negative slope �� = �0.01 when D < 0, as suggested by Figure 2a:192

hSi = Pg mg = ↵+ �|D|+ �± ⌧ . In the aggregate condition, we introduced the average size e↵ect as another193

linear dependence of hSi on ⌧ , as observed in Figure 2b: hSi = Pg mg = ↵+ �|D|+ � ⌧ , with � = 0.022.194

The probability Pg for an agent to draw an S in the Gaussian part of the distribution is given by195

Pg = hSi/mg. Then P0 is given by P0 = 1 � Pg. Finally, an agent’s second estimate Xs is defined as196

Xs = (1� S)Xp + SM .197

Each simulation of the model mimicked our experiment, and the model predictions (shown in all figures198

presented here) were averaged over 10,000 simulations.199
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As can be seen from the model simulation results in Figures. 1 and 2, both models quantitatively repro-200

duced the empirical results, suggesting that they capture the key mechanisms at play in the integration of201

social information in both conditions. In the next section, we use the models to make comparative predictions202

about the full and aggregate conditions for larger group sizes.203

Model predictions204

Figure 4 shows how the number of estimates exchanged shapes collective and individual improvements, for205

groups of 50 individuals in both conditions.206
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Figure 4: Predicted improvement in collective and individual accuracy for groups of 50 individuals. Model simulations

showing the predicted relative improvement in (a) collective accuracy and (b) individual accuracy, against the number

of estimates exchanged, in the full (black) and aggregate (red) conditions. In both conditions, collective and individual

improvements are predicted to saturate when approximately 12 estimates are exchanged.

The model predicts that collective and individual improvements saturate in both conditions when about207

12 estimates are exchanged. In the full condition, individual improvement is even predicted to slightly decline208

when more than 12 estimates are exchanged. The saturation follows from the constraint that probabilities (Pg209

and P0) must remain between 0 and 1, which imposes limits on the maximum and minimum average weight210

S given to the social information (see Figure 5), according to the equation hSi = Pg mg. The asymmetry211

(Figure 5a) and average size (Figure 5b) e↵ects are thus bounded, leading to the saturation in collective and212

individual accuracy, respectively. In the aggregate condition, the collective improvement slightly increases213

with the number of estimates exchanged, but remains negligible in comparison to the collective improvement214

in the full condition. However, when more than 12 estimates are exchanged, individual improvement is215

predicted to be slightly higher in the aggregate condition than in the full condition. Supplementary Figure S5216

and S6 show that we obtain qualitatively similar results for di↵erent group sizes.217
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Figure 5: Saturation of the weight given to the social information. Model simulations showing the average weight

given to the social information hSi, against the number of estimates exchanged, in the (a) full and (b) aggregate

conditions, for groups of 50 individuals. Shown are the values when (i) all data are combined (circles), (ii) social

information is higher than the personal estimate (squares), and (iii) social information is lower than the personal

estimate (triangles). hSi saturates in both conditions when more than approximately 12 estimates are exchanged.

Note that all symbols overlap in (b) because there is no asymmetry e↵ect in the aggregate condition.

Discussion218

The ever-increasing amount of information available online raises two questions: would exchanging aggregated219

forms of social information improve decision making, as compared to making the complete information220

available, and is there a limit to the number of exchanged estimates that improve the quality of decisions?221

We compared the performance of groups in estimation tasks, when subjects received either all the available222

social information or an aggregate version of it (the geometric mean of the estimates of other group members).223

Collective and individual improvements in the full condition were primarily driven by subjects’ tendency to224

favor estimates that were higher than their personal estimate over those that were lower (asymmetry e↵ect),225

which shifted second estimates towards higher values. Since humans have a tendency to underestimate226

quantities [28, 29, 30, 31], this shift towards higher values is a shift towards the truth. This e↵ect, originally227

unveiled and discussed in [21], has a valuable e↵ect on collective performance in human groups. The authors228

argued that because people have “di�culties to reason about magnitudes outside of human perception” [32],229

they may assess the reliability of relatively low numbers more easily than they would very high numbers,230

making them more likely to discard low estimates compared to high estimates. A concomitant explanation is231

that people usually know that the quantities they were asked to estimate are supposed to be large, even if they232

have a poor idea of the actual value. It is therefore conceivable that people are more likely to assume they233

have underestimated quantities than they are to assume they have overestimated them; as a consequence,234

they are more likely to follow high estimates than low estimates.235

Surprisingly, the asymmetry e↵ect was absent in the aggregate condition, which explains the lack of236

collective improvement in this condition. A possible explanation is that because averaging smooths out237
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extreme values, the aggregated social information would usually seem reasonable, independent of whether it238

was lower or higher than the personal estimates. Subjects thus could not di↵erentially assess the reliability239

of the social information they received.240

Moreover, subjects followed social information more (i.e., they “herded” more) when it was aggregated241

than when it was fully displayed, and increasingly so as more estimates were exchanged. Previous studies242

demonstrated that people are sensitive to the central tendency and dispersion of estimates, and weigh social243

information more when the dispersion is low; this mechanism is called the “similarity e↵ect” [21, 27]. Since244

in the aggregate condition the dispersion is zero, one may expect maximum herding. Note that subjects245

herded more in the aggregate condition even when a single estimate was exchanged, although in this case we246

expected both conditions to be equivalent. Since subjects experienced every level of ⌧ during an experimental247

session in the full condition, it is conceivable that the similarity e↵ect negatively a↵ected the overall weight248

subjects gave to the social information, including when a single estimate was exchanged. In other words,249

experiencing high levels of dispersion at higher values of ⌧ could, in turn, also reduce social information use250

when a single estimate was exchanged. Moreover, the higher weight given to the social information as more251

estimates underlie the aggregate reflects people’s statistical intuition that the reliability of averages generally252

increases with the number of samples they are computed from [33, 34]. The herding that increased with253

the number of estimates exchanged (in the aggregate condition) led to increased individual improvement (as254

discussed in [21]), but was not accompanied by collective improvement.255

To investigate the generalizability of our results to larger group sizes, we built and calibrated a model256

of social information integration based on the results presented in Figure 2. We found that, independent257

of group size, collective improvement in the full condition is predicted to improve sharply with the num-258

ber of estimates exchanged, up to about 12 estimates, after which it is predicted to quickly saturate. In259

the aggregate condition, however, there was barely any improvement in collective accuracy. Individual im-260

provement is predicted to saturate in both conditions when about 12 estimates are exchanged, with slightly261

higher improvements in the aggregate condition. These results combined suggest that about 12 estimates262

should be exchanged and presented to individuals in large groups in order to maximize both collective and263

individual improvements. Interestingly, this number, 12, is of the same order as the “magical number seven,264

plus or minus two,” a limit in people’s capacity to process information suggested by Miller in his seminal265

1956 paper [35]. Although these numbers should be taken with a grain of salt, it makes intuitive sense that266

processing more than a few pieces of social information is a di�cult task. It is important to understand that267

this limit (12) is related the way people use social information (distribution of S and strength of the e↵ects).268

One may thus reasonably wonder if the way social information use is distributed in human groups may have269

evolved in order to optimize collective decision making, given humans’ inherent cognitive limitations.270
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It is possible that the parameter values describing social information use in the model would be di↵erent271

at large group sizes when more than 12 estimates are exchanged, such that the observed saturation values272

may be di↵erent from what we observed for a group size of 12. Indeed, if subjects know that the aggregated273

social information they receive was computed from a large number of estimates, they might weigh the social274

information more on average, such that hSimight go beyond 0.5. However, even if this was the case, individual275

improvement would degrade, since it reaches its highest value for hSi = 0.5 (as discussed above), the value276

obtained when 12 estimates are exchanged. This argument, therefore, does not change our conclusion that277

about 12 estimates should be exchanged in groups for maximizing collective and individual accuracy. One may278

also argue that the model ignores potential cognitive overload phenomena [10, 11, 12] when a large number279

of estimates are exchanged, such that it may be inaccurate for large group sizes. However, the number of280

estimates does not matter in the aggregate condition. Moreover, in the full condition when estimates are281

sorted, people are expected to use the same strategy as when a few estimates are exchanged—that is, to282

focus mostly on the central tendency of the social information, as shown in previous studies [21, 27, 36]. The283

model predictions should therefore be quite similar to what would be observed in experimental conditions.284

The argument is more apt when the social information is not sorted, but in this case, collective and individual285

accuracy are expected to degrade rather than improve with increasing number of estimates exchanged, as286

people would be less and less able to process social information properly. Therefore, even when social287

information is not sorted, no more than about 12 estimates should be exchanged in order to maximize288

improvements in collective and individual accuracy. Finally, if one imagines a situation in which all available289

pieces of social information must be exchanged (and a substantial amount of them), then it is likely to290

be preferable to present them in an aggregated manner. Indeed, the main advantage of aggregates is that291

they free individuals from cognitive overload, independent of the number of estimates exchanged. One can292

also presume that a critical number of estimates exchanged exists, beyond which displaying aggregates yields293

higher collective and individual improvement than does displaying the full information. This could constitute294

an interesting direction for future research.295

Overall, we have demonstrated that to optimize collective decisions in human groups, providing individuals296

with all the decisions or opinions of a moderate number of peers is better than providing aggregates, as people297

are able to base their decision on more than a generalized tendency.298
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1 List of questions8

Below is the list of questions used in the experiment and the corresponding true values T . In the original9

experiment, the questions were asked in German. Questions were a mix of general knowledge questions and10

estimating the number of objects (e.g., marbles, matches, animals) in an image. Images were shown for 611

seconds.12

1. Marbles 1: How many marbles are in the jar in the following image? T = 10013

14

2. Marbles 2: How many marbles are in the jar in the following image? T = 45015

3. Matches 1: How many matches are in the following image? T = 24016

⇤Corresponding author – jayles@mpib-berlin.mpg.de
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17

4. Matches 2: How many matches are in the following image? T = 48018

5. Matches 3: How many matches are in the following image? T = 72019

6. How many gnus are in the following image? T = 48320

21

7. Ants 1: How many ants are in the following image? T = 58722

8. Ants 2: How many ants are in the following image? T = 67223

9. How many herrings are in the following image? T = 93924

10. How many ladybugs are in the following image? T = 81225

11. How many flamingos are in the following image? T = 52826

12. How many bees are in the following image? T = 97627

13. What is the population of Tokyo and its conurbation? T = 38, 000, 00028

14. What is the population of Shanghai and its conurbation? T = 25, 000, 00029

15. What is the population of Seoul and its conurbation? T = 26, 000, 00030

16. What is the population of New York City and its conurbation? T = 21, 000, 00031

17. What is the population of Madrid and its conurbation? T = 6, 500, 00032

18. What is the population of Melbourne and its conurbation? T = 4, 500, 00033

19. What is the population of Amsterdam and its conurbation? T = 1, 600, 00034

2



20. How many e-books were sold in Germany in 2016? T = 28, 100, 00035

21. How many books does the American Library of Congress hold? T = 16, 000, 00036

22. How many people died from cancer worldwide in 2015? T = 8, 800, 00037

23. How many smartphones were sold in Germany in 2017? T = 24, 100, 00038

24. What was the total distance of the 2016 Tour de France (in kilometers)? T = 3, 52939

25. How many insured cars were stolen in Germany in 2016? T = 18, 22740

26. How many cars were registered in Germany in 2016? T = 45, 071, 00041

27. What is the average annual salary of a player in the Bundesliga (in euros)? T = 1, 456, 56542

28. What is the average annual salary for players at Bayern Munich (in euros)? T = 5, 460, 00043

29. What is the distance from Berlin to New York (in kilometers)? T = 6, 18844

30. How many international tourists were recorded in France in 2016? T = 82, 600, 00045

31. How many bicycles are there in Germany? T = 62, 000, 00046

32. How many people identify as indigenous in Mexico? T = 6, 000, 00047

33. What is the total length of the metal threads used in the braided cables of the Golden Gate Bridge (in48

kilometers)? T = 129, 00049

34. What is the mass of the Pyramid of Cheops (in tons)? T = 5, 000, 00050

35. How much did the Burj Khalifa tower in Dubai cost to build (in dollars)? T = 1, 500, 000, 00051

36. How many UFO sightings have been reported to the National UFO Reporting Center since its inception?52

T = 90, 00053

37. What is the diameter of the Sun (in kilometers)? T = 1, 391, 40054

38. What is the distance from Mercury to the Sun (in kilometers)? T = 58, 000, 00055

39. What is the distance between Earth and the Moon (in kilometers)? T = 384, 40056

40. How many stars are in the Milky Way? T = 235, 000, 000, 00057

41. How many kilometers are in one light year (in billion kilometers)? T = 9, 46058

42. How many cells are there in the human body (in billion cells)? T = 100, 00059
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2 Computation of the error bars60

The error bars indicate the variability of our results depending on the NQ = 42 questions presented to the61

subjects. We call x0 the actual measurement of a quantity appearing in the figures by considering all NQ62

questions asked. We then generate the results of Nexp = 1, 000 new e↵ective experiments. For each e↵ective63

experiment indexed by n = 1, ..., Nexp, we randomly draw N 0
Q = NQ questions among the NQ questions asked64

(so that some questions can appear several times, and others may not appear) and recompute the quantity65

of interest which now takes the value xn. The upper error bar b+ for x0 is defined so that C = 68.3% (by66

analogy with the usual standard deviation for a normal distribution) of the xn greater than x0 are between67

x0 and x0 + b+. Similarly, the lower error bar b� is defined so that C = 68.3% of the xn lower than x0 are68

between x0 � b� and x0. The introduction of these upper and lower confidence intervals is adapted to the69

case that the distribution of the xn is unknown and potentially not symmetric.70

3 Incentive structure71

The performance P of an individual i was defined as:

Pi =
1

2

✓
Median q

����log
✓
Epi,q

Tq

◆����+ Median q

����log
✓
Esi,q

Tq

◆����

◆
,

where i and q are, respectively, indexes for individuals and questions; Ep and Es are, respectively, estimates72

before (personal) and after (second) social information exchange; and T is the correct answer to the question.73

This performance criterion measures the median distance to the correct answer—in terms of orders of74

magnitude—over all questions, averaged over the two estimates (before and after social information exchange).75

The payments were defined according to the following distribution of performances:76

• P < 0.3: e2077

• 0.3  P < 0.35: e1978

• 0.35  P < 0.4: e1879

• 0.4  P < 0.45: e1780

• 0.45  P : e1681
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4 Supplementary figures82

Figure S1: Experimental procedure for an example question. The left panel shows the first screen, where subjects
provided their personal estimate. The question was asked on the first line, and subjects could type their answer
on the second line, using a keyboard that appeared when they clicked on Ihre Antwort (Your answer in German).
Subjects submitted their estimates by pushing the OK button. A timer was displayed in the top right corner of the
screen to remind subjects to answer within 30 seconds. The right panel shows the second screen, where subjects could
revise their estimate after observing answers from other group members. In this example five answers were shown
(full information condition). As a reminder, the original question and the subject’s personal estimate were shown.
Subjects provided their second estimate in the same way as the first one, with the countdown again set to 30 seconds.
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Figure S2: Relative improvement in (a) collective accuracy and (b) individual accuracy, against the number of
estimates exchanged, in the sorted (black) and unsorted (blue) conditions. Positive/negative values indicate that
accuracy improved/declined.
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Figure S4: (a, b, c) Collective accuracy and (d, e, f) individual accuracy, against the number of estimates exchanged,
before and after social information exchange, in the sorted (a, d), unsorted (b, e), and aggregate (c, f) conditions.
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Figure S5: Model simulations of collective improvement for di↵erent group sizes. Relative improvement in collective
accuracy against the number of estimates exchanged ⌧ , in the sorted (black) and aggregate (red) conditions. Inde-
pendent of group size, collective improvement barely increases with ⌧ in the aggregate condition, and saturates when
more than about 12 estimates (blue dashed vertical line) are exchanged in the full condition.
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Figure S6: Model simulations of individual improvement for di↵erent group sizes. Relative improvement in individual
accuracy against the number of estimates exchanged, in the sorted (black) and aggregate (red) conditions. Independent
of group size, individual improvement saturates when more than about 12 estimates (blue dashed vertical line) are
exchanged in both conditions. Moreover, the saturation value is slightly higher in the aggregate condition.
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