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How experts’ own inconsistency 
relates to their confidence 
and between‑expert disagreement
Aleksandra Litvinova1,2, Ralf H. J. M. Kurvers1, Ralph Hertwig1 & Stefan M. Herzog1,2*

People routinely rely on experts’ advice to guide their decisions. However, experts are known to make 
inconsistent judgments when judging the same case twice. Previous research on expert inconsistency 
has largely focused on individual or situational factors; here we focus directly on the cases themselves. 
First, using a theoretical model, we study how within-expert inconsistency and confidence are related 
to how strongly experts agree on a case. Second, we empirically test the model’s predictions in two 
real-world datasets with a diagnostic ground truth from follow-up research: diagnosticians rating 
the same mammograms or images of the lower spine twice. Our modeling and empirical analyses 
converge on the same novel results: The more experts disagree in their initial decisions about a case 
(i.e., as consensus decreases), the less confident individual experts are in their initial decision—despite 
not knowing the level of consensus—and the more likely they are to judge that same case differently 
when facing it again months later, regardless of whether the expert consensus is correct. Our results 
suggest the following advice when faced with two conflicting decisions from a single expert: In the 
absence of more predictive cues, choose the more confident decision.

Experts often change their minds, sometimes with profound consequences. For example, a physician might 
initially classify a mass in a mammogram image as cancerous, but later—when re-inspecting the image—change 
their mind and classify it as benign. Which diagnosis should the patient rely on? Within-person inconsist-
ency in expert judgments has been observed across many domains, including medicine1–3, clinical psychology4, 
neuropsychology5, forensics6, finance and management7, agriculture8, and weather forecasting9. Understand-
ing the roots of within-expert inconsistency is crucial, as such inconsistency not only creates uncertainty for 
advice seekers about the right course of action, but may also erode societal trust in experts. Here we address two 
research questions: When do experts—in the absence of any new information—change their decisions? And, 
in the absence of more predictive cues, on which of the two decisions should experts or advice seekers rely on?

Most studies investigating within-person inconsistency in judgment and decision making have focused either 
on processes within the individual, such as probabilistic sampling of information10,11, a change of mind as 
revealed by post-decisional confidence pointing to the opposite decision12,13, and hierarchical hypothesis testing14, 
or on situational factors such as time pressure15. These and most previous studies have focused primarily on 
non-experts. Furthermore, how the cases themselves affect inconsistency in a person’s judgments has received 
comparatively little attention4,16.

To the best of our knowledge, we here present the first comprehensive investigation of the interplay between 
an expert’s confidence, consistency, and how clearly the information in a case points to one or the other decision 
(as indicated by how strongly experts agree on the case). We proceed in two steps: We start by using a theoretical 
model17 to investigate how within-person inconsistency and confidence in two-alternative forced-choice tasks 
are related to how clearly the information in a case points to either the correct or the incorrect decision (Study 
1). We do this by relating an expert’s within-person consistency (also known as “intrarater agreement”) to the 
agreement among a population of experts (also known as “interrater agreement”). Next, we empirically test the 
model’s predictions in two real-world datasets with a diagnostic ground truth from follow-up research (Study 
2): diagnosticians rating the same mammograms18 or images of the lower spine19 twice.

Results
Study 1: a theoretical model linking experts’ inconsistency, experts’ confidence, the agree‑
ment among cues in a case, and the agreement among experts for that case.  A fundamental 
process assumed by many—but not all—models of cognition, judgment, and decision making is that individuals 
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sample evidence from their environment or memory when making a decision10,11,17,20. This sampled evidence 
determines both the decision and the confidence in that decision17,20,21. A common assumption in such models 
is that an individual samples several pieces of evidence (“cues”) and selects the option for which there is stronger 
evidence. The more clearly the evidence points to that option, the more confident the individual will be in the 
accuracy of their decision. In this view, making a second decision about the same case at a later time point is 
equivalent to drawing a second sample of evidence—assuming that the individual does not know that they are 
judging the same case again or forgot their first decision. Because the sampling process is probabilistic, the evi-
dence in the second sample may differ from that in the first sample and hence may lead to a different decision 
(e.g., “cancer” vs. “no cancer”) and associated level of confidence.

But how does inconsistency in repeated judgments relate to confidence and, in turn, how does confidence 
relate to how clearly the cues point to one or the other option (i.e., agreement among cues)? To investigate this 
question conceptually, we used the self-consistency model (SCM)17. It embodies the assumptions outlined above 
and allows us to derive qualitative predictions about the relationship between an expert’s inconsistency, confi-
dence, and a case’s agreement among cues. We used the SCM because it permits for a straightforward illustration 
of the important concepts common to many models of judgment and decision making. Importantly, as we show 
later in this section, relaxing several of the assumptions of this basic model would not change the qualitative 
nature of the predictions. That is, the insights we present, based on the assumptions of the SCM, are representative 
of a much wider and empirically more realistic set of assumptions. Furthermore, in the “Discussion” section we 
argue that qualitatively similar predictions are also expected to emerge from other, more fine-grained models of 
judgment and decision making, such as evidence accumulation models20,22.

The SCM assumes that a decision maker facing a two-alternative choice task samples a fixed, odd number n of 
pieces of evidence (“cues”) from memory or the environment and chooses the option favored by more cues (i.e., 
decides between two options using majority voting among cues). Given a probability p of sampling a cue that 
indicates the correct option (say, “cancer”) and assuming that cues are sampled independently, the probability 
P of making a correct decision thus follows from the binomial distribution

where m = n+1
2

 (i.e., the minimum number of cues necessary to decide in favor of the correct option). Note 
that this model permits for so-called “wicked” cases, that is, cases in which the cues tend to point to the wrong 
option ( p < 0.5)23,24. In various domains, including the two datasets analyzed in this study, a considerable subset 
of cases belong to this class. In contrast, in “kind” cases the cues tend to point, on average, to the correct option 
( p > 0.5 ) and thus the majority opinion tends to be correct23,24. Importantly, for most—if not all—domains one 
would typically expect more kind than wicked cases (“kind environments”), reflecting the assumption that the 
population of decision makers possesses at least some skill (i.e., their decision strategies show at least a minimal 
fit with the statistical structure of the cues in the environment). Situations in which there are more wicked than 
kind cases (“wicked environments”) are unrealistic because they imply that decision makers perform worse than 
chance (i.e., exhibit negative skill).

This basic decision model makes two assumptions that are unlikely to hold in practice. First, it assumes 
that all cues are equally informative (i.e., pi = p for all cues i), and, second, that the cues are independent (or 
more specifically, that the binomial sampling process is independent and identically distributed). For example, 
in medical diagnostics, some diagnostic cues will be more informative than others, and certain cues will tend 
to co-occur for a particular disease. Relaxing these two assumptions would change the exact functional form 
between the probability of making a correct decision, P, and the two other variables defined below (confidence 
and inconsistency). However, as we also show below, the qualitative predictions  we derive remain intact for a 
broad range of alternative assumptions.

The SCM further stipulates that confidence Ĉ in a decision increases with the proportion of cues pointing to 
the chosen option ( ̂p for correct decisions and 1− p̂ for incorrect decisions). In particular, the SCM postulates 
that confidence Ĉ is the complement of the sample standard deviation of p̂:

SCM’s definition of confidence17 assumes that people’s confidence increases faster than linearly with the 
proportion of cues pointing to the chosen option. However, the qualitative predictions we derive below depend 
only on the assumption that confidence is monotonically increasing with the proportion of cues pointing to the 
chosen option. That is, Ĉ ∝ max

(
1− p̂, p̂

)
 . Therefore, other possible and justifiable definitions of confidence 

would result in the same qualitative predictions (e.g., using precision: 1

var(p̂)
= 1

p̂(1−p̂)
).

Next, we analytically derive the relations between inconsistency, confidence, and the proportion of cues 
pointing to the chosen option. The probability I of making two decisions that are inconsistent is

which is maximal ( I = 0.5 ) for choices at chance level ( P = 0.5 ) and, by extension, for cases that are maximally 
ambiguous ( p = 0.5)—that is, when every sampled cue is equally likely to either point to the correct or the incor-
rect option (Fig. 1a). Conversely, inconsistency is minimal ( I = 0 ) for perfectly correct ( P = 1 ) and “perfectly” 
incorrect ( P = 0 ) decisions—that is, when every sampled cue points either to the correct option ( p = 1 ; perfectly 
“kind” cases) or to the incorrect option ( p = 0 ; perfectly “wicked” cases23,24). Thus, in the SCM, within-expert 

(1)P(p, n) =

n∑

h=m

(
n
h

)
· ph(1− p)n−h

,

(2)Ĉ = 1−

√
p̂
(
1− p̂

)
.

(3)I = P(1− P)+ (1− P)P = 2P(1− P),
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inconsistency increases the closer a case’s p is to a fair coin flip (i.e., a inconsistency is a monotonically decreas-
ing function of |p− 0.5|).

The SCM provides a simple, elegant link between the consistency of a single person’s repeated decisions for a 
case and between-person agreement on that same case. For simplicity, let us assume that all experts sample the 
same number of cues (i.e., share a common n) and that for any particular case all experts have the same prob-
ability p of sampling a cue that points to the correct option. Although p is not directly observable, according 
to the SCM, the expected proportion of correct decisions E[Pi(pi)] for case i among a population of identical 
experts is monotonically related to pi . Empirically, the sample proportion of correct decisions among experts 
for case i, P̂i , can be used as a proxy for ordering cases according to their pi . Because Eq. (1) applies to majority 
voting over either cues or individuals, we can use Condorcet’s jury theorem25,26 to gain insights into how Pi and 
pi relate for n ≥ 3 . For example, for pi > 0.5 → Pi > pi ; conversely, for pi < 0.5 → Pi < pi . Thus, if we assume 
that experts sample three or more cues, Pi will be a more extreme version of pi . Particularly, for any n ≥ 3 , Pi 
and pi are identically ordered across a set of cases. Furthermore, research on majority voting26–28 has shown 
that the gist of Condorcet’s jury theorem holds even when the standard assumptions are violated. For example, 
pi > 0.5 → Pi > pi and pi < 0.5 → Pi < pi hold even if the cues differ in their probability of pointing to the 
correct option as long as their pi are symmetrically distributed around p̂i26 or if the cues are interdependent, as 
long as their intercorrelations are not extreme27. In sum, we can use the disagreement among experts (i.e., how 
close P̂i is to 0.5) as an indicator of the disagreement among the cues for the case at hand (i.e., how close pi is to 
0.5, that is, |p− 0.5|).

Because the sample proportion of cues pointing to the correct option, p̂ , equals E(p), confidence is highest 
for p = 1 and p = 0 ( ̂C = 1 ) and lowest for p = 0.5 ( ̂C = 0.5 ; see Eq. (2), Fig. 1b)—mirroring the results for an 
individual expert’s inconsistency (see Eq. (3), Fig. 1a). Given that inconsistency I increases and confidence Ĉ 
decreases with increasing case ambiguity (i.e., as p gets closer to 0.5), it follows that confidence and inconsistency 
are negatively related (Fig. 1c). Note that these relations hold for any definition of confidence in which confidence 
monotonically increases with the proportion of cues pointing to the same decision.

But which decision should a person confronted with two inconsistent, conflicting decisions rely on? Accord-
ing to the maximum-confidence slating (MCS) algorithm24 (henceforth “confidence rule”), they should adopt the 
more confident decision29,30. The SCM predicts that confidence will be positively correlated with the probability 
of making a correct decision for p > 0.5 , but negatively correlated for p < 0.5 (Fig. 1b). More specifically, Eqs. 
(1) and (2) show that, for p > 0.5 , any level of confidence is more likely to be observed under the correct than 
the incorrect decision (and vice versa for p < 0.5 ). To see why, consider that in Eq. (1), p̂ = h

n . When p > 0.5 , it 
follows that ph > (1− p)n−h and thus the event that a majority of cues point to the correct decision (h) is more 
likely than the event that the same-sized majority of cues point to the incorrect decision ( n− h ). The opposite is 
the case when p < 0.5 . Adding the assumption that there are more kind than wicked cases in a domain (i.e., the 
environment is overall kind) implies that, everything else being equal, confidence positively predicts accurate 
decisions. Thus, confidence’s predictive ability depends on the distribution of the cases’ pi in a domain.

In sum, the SCM predicts: 

1.	 The more experts disagree in their initial decisions about a case (i.e., as case consensus decreases), the more 
likely it is that an individual expert will judge the case differently upon seeing it again—despite their lack of 
knowledge about the level of agreement or disagreement among all experts (Fig. 1a).
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Figure 1.   Predictions of the self-consistency model on the relations between the proportion of individuals who 
make a correct diagnosis (P), inconsistency (I; probability of making two inconsistent decisions), and confidence 
(C) for three values of n (number of sampled cues; color coded in (b,c)). (a) Inconsistency as a function of the 
proportion of individuals making a correct decision. Note that this relationship does not covary with n (see Eq. 
(3)). (b) Confidence as a function of the proportion of individuals making a correct decision. (c) Inconsistency 
as a function of confidence. Note that the probability p with which a cue points to the correct option does not 
appear because, given any fixed number n of sampled cues, p and P are monotonically related (see Eq. (1)); thus 
the curves in (a,b) would not yield qualitatively different insights if p (instead of P) were shown on the x-axes.
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2.	 The more experts disagree in their initial decisions about a case (i.e., as case consensus decreases), the less 
confident an individual expert will be in their initial decision—despite their lack of knowledge about the 
level of agreement or disagreement among all experts (Fig. 1b).

3.	 The less confident an individual expert is in their initial decision about a case, the more likely it is that they 
will judge the case differently when facing it again (Fig. 1c).

4.	 If an expert makes two conflicting decisions, using the confidence rule (i.e., selecting the more confident 
decision) improves accuracy for kind cases but worsens it for wicked cases when compared to first and second 
decisions.

Note that predictions 1–3 do not depend on whether the experts’ consensus opinion is correct or not.

Study 2: empirical test.  The theoretical predictions derived in Study 1 depend on the SCM’s assumptions 
about an expert’s decision process and our additional assumption that all experts are identical in terms of SCM’s 
parameters. Specifically, the model assumes that all experts sample the same number n of cues and have, for a 
given case, the same probability p of independently sampling a cue that points to the correct option. As discussed 
in Study 1, these assumptions are unlikely to hold for actual expert decisions; Study 2 therefore tests the model’s 
qualitative predictions by re-analysing two real-world expert datasets: diagnosticians rating mammograms18 and 
X-rays of the lower spine19 twice (see “Methods” section for details on these two datasets).

In the first dataset, 102 radiologists rated up to 109 mammograms twice, with an interval ranging between 
3 and 9 months18. On average, the experts changed their diagnoses in about one in five cases (median propor-
tion: 21%, interquartile range, IQR: 0.14–0.28). In the second dataset, 13 physicians rated 300 images of the 
lumbosacral spine twice, with a delay of 3 months19. The experts changed their diagnoses in about one in eight 
cases (13%, IQR: 0.09–0.15).

In both datasets, practitioners indicated their confidence in the given diagnosis. Importantly, in both datasets 
there is a diagnostic ground truth based on follow-up research (see “Methods” section for details), which we 
use to score the accuracy of a diagnosis. Experts’ average performance was better than chance in both datasets, 
but substantially better in the spine dataset (see Supplementary Fig. S1). Furthermore, the proportion of wicked 
cases (i.e., the proportion of cases where the majority of experts gave the incorrect diagnosis) was lower in the 
spine dataset. As a consequence, predictions 1, 2, and 4 can be assessed with higher precision for kind than for 
wicked cases—especially in the spine dataset.

For statistical inference, we ran a series of Bayesian mixed-level regression models, which included group-
level intercepts for individuals and cases (“random intercepts”; see Supplementary Table S1 and Supplementary 
Method for details).

Prediction 1	� The more experts disagree in their initial decisions about a case (i.e., as case consensus decreases), 
the more likely it is that an individual expert will judge the case differently upon seeing it again—
despite their lack of knowledge about the level of agreement or disagreement among all experts.

Figure 2a,b shows that, as predicted, the more disagreement there was in experts’ initial diagnoses, the more 
likely it was that an individual expert gave the opposite diagnosis when judging the same case again months 
later—irrespective of whether the between-expert majority opinion was correct and despite not knowing the 
level of agreement or disagreement among all experts. These results were particularly clear in the mammography 
dataset (Fig. 2a). In the spine dataset, the predicted pattern clearly emerged for kind cases (Fig. 2b); the results 
for the wicked items are also consistent with the prediction, but less conclusive (Fig. 2b). Regression model M2 
(Supplementary Table S1) shows clear evidence for a negative quadratic term in both datasets, supporting the 
visual impression from Fig. 2a,b. Moreover, the regression model M1 (Supplementary Table S1) shows that—
prior to accounting for a case’s level of agreement or disagreement among all experts—the cases differed much 
more strongly in how inconsistently they were diagnosed than the experts differed in how inconsistently they 
diagnosed those same cases. This finding further strengthens the relevance of a case’s ambiguity in explaining 
variation in within-expert inconsistency.

Prediction 2	� The more experts disagree in their initial decisions about a case (i.e., as case consensus decreases), 
the less confident an individual expert will be in their initial decision—despite their lack of 
knowledge about the level of agreement or disagreement among all experts.

Figure 2c,d shows that, as predicted, the more experts disagreed in their initial diagnoses, the less confident 
they were in their initial diagnoses—irrespective of whether the between-expert majority opinion was correct 
and despite not knowing the level of agreement or disagreement among all experts. Regression model M4 (Sup-
plementary Table S1) shows a clearly positive quadratic term in both datasets, supporting the visual impression 
from Figure 2c,d.

Prediction 3	� The less confident an individual expert is in their initial decision about a case, the more likely it 
is that they will judge the case differently when facing it again.

Figure 2e,f shows that, again as predicted, the less confident an expert was when judging a case, the more 
likely they were to arrive at the opposite diagnosis when judging that same case again months later. Regression 
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Figure 2.   Empirical results on the relationship between the proportion of experts who made a correct diagnosis 
( ̂P ), inconsistency ( ̂I  ; probability of making an inconsistent diagnosis), and mean confidence ( ̂C ) in the two 
datasets. (a,b) Inconsistency per case (i.e., proportion of experts who gave two different diagnoses) as a function 
of the proportion of experts who made a correct initial diagnosis for that case. (c,d) Mean confidence in the 
initial diagnosis per case as a function of the proportion of experts who made a correct diagnosis for that case. 
In the mammography dataset (c), confidence was elicited on a 5-point rating scale (1: “not at all confident”, 2: 
“not very confident”, 3: “neutral”, 4: “confident”, 5: “very confident”). In the spine dataset (d), confidence was 
elicited on a 2-point scale (1: low confidence, 2: high confidence). (e,f) Inconsistency per case as a function of its 
mean confidence. Each dot represents one case and its coordinates represent P̂ and Ĉ from initial diagnoses (i.e., 
from the first rating session in the respective dataset); the solid curves are LOESS smooths across those points. 
The dashed curves show the smooths when using P̂ and Ĉ from the second diagnoses (i.e., from the second 
rating session in the respective dataset); to avoid overplotting, the corresponding dots for the individual cases 
are not shown. (b,d,f) Employ jittering to avoid overplotting.
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model M5 (Supplementary Table S1) shows a clearly negative linear term in both datasets, substantiating the 
visual impression from Fig. 2e,f.

Prediction 4	� If an expert makes two conflicting decisions, using the confidence rule (i.e., selecting the more 
confident decision) improves accuracy for kind cases but worsens it for wicked cases when com-
pared to first and second decisions.

Focusing only on the cases where an expert provided opposing diagnoses, we found that, relative to the initial 
diagnosis, using the confidence rule (i.e., selecting the more confident diagnosis) improved accuracy for kind 
items (Fig. 3, upper panels). For wicked items (i.e., cases where the majority of initial diagnoses were incorrect), 
the confidence rule performed at par with the initial diagnosis and thus our prediction was not corroborated.

Comparing the confidence rule to the experts’ second judgement yielded largely similar results. In the mam-
mography dataset, the confidence rule increased performance for kind cases, and performed at par for wicked 
cases (Fig. 3, lower-left panel). In the spine dataset, however, the confidence rule performed at par with the second 
diagnosis for both kind and wicked cases (Fig. 3, lower-right panel); this presumably happened because second 
diagnoses in the spine dataset were substantially more accurate than first diagnoses (see Supplementary Fig. S1b). 
In contrast, in the mammography dataset, the accuracy level was comparable across first and second diagno-
ses (S1a). Regression model M7 supports these observations (see Supplementary Table S1). Importantly, sum-
marizing across all cases, the confidence rule clearly outperformed the strategy of randomly choosing between 
the first and second diagnosis (Fig. 4).

Discussion
When do experts change their mind? Previous research on within-person inconsistency has focused largely on 
individual10,11 or situational factors15. In contrast, factors that relate to the task in question and that may contrib-
ute to experts’ consistency or lack thereof have rarely been studied (e.g., consistency decreases as a task becomes 
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Figure 3.   Empirical results comparing the accuracy of the confidence rule to the accuracy of first (upper panel) 
and second (lower panel) diagnoses for cases where experts were inconsistent, separately for wicked and kind 
cases and the two datasets (mammography and lumbosacral spine). Positive (negative) decimals on the y-axes 
show the extent to which the confidence rule increased (decreased) performance compared to the respective 
other strategy. Cases are shown as horizontally jittered dots; the size of a dot indicates the number of experts 
who provided different diagnoses for that case (see the legend labelled “Observations”). The distributions are 
summarized by boxplots (to the right of the dots); the boxplots consider the number of observations per case 
(weighted boxplots) and their width is proportional to the square root of the number of cases in the respective 
distribution. The point and line range to the left of the dots indicates the median and 95% credible interval of 
the posterior distribution of the expected average improvement (according to model M7; see Supplementary 
Table S1).
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less predictable16,32). We therefore focused directly on the cases themselves. First, using the Self-consistency 
model (SCM)17, we studied how inconsistency and confidence in two-alternative forced-choice tasks are related 
to how clearly the information in a case points to either the correct or the incorrect option (agreement among 
the cues for a case, proxied by the level of agreement among the population of experts’ initial diagnoses). Next, 
we found support for three of the model’s four key predictions in two real-world datasets—diagnosticians rating 
the same mammograms or images of the lower spine twice. We found that the more experts’ initial diagnoses 
of a case differed, the more likely individual experts were to change their diagnosis months later (prediction 
1), and the less confident they were in their initial diagnosis (prediction 2)—irrespective of whether the expert 
consensus (i.e., majority diagnosis) for that case was correct and despite experts being unaware of the level of 
agreement or disagreement among all experts. Consequently, the more confident an expert was in their initial 
diagnosis, the less likely they were to change their diagnosis when judging the same case again months later 
(prediction 3). This held irrespective of whether the consensus diagnosis for that case was correct and despite 
experts not knowing the level of agreement or disagreement. Taken together, these first three results imply that 
a highly confident or consistent diagnosis is, first and foremost, an indicator for the level of agreement among 
experts. It can only be an indicator of accuracy when most cases in the domain of interest are kind (i.e., for the 
majority of cases, the experts tend to give the correct response).

When an expert’s two diagnoses were inconsistent, the confidence rule (i.e., selecting the more confident 
diagnosis) improved accuracy relative to keeping the initial diagnosis for kind cases; however, the opposite 
result predicted for wicked cases (prediction 4) was only partially corroborated. These mixed findings might 
result from systematic differences in accuracy and confidence judgments between first and second diagnoses, 
especially for the spine dataset (e.g., second spine diagnoses were more accurate and more confident than first 
diagnoses; see Supplementary Figs. S1, S2). Importantly, however, summarizing across all cases the confidence 
rule outperformed both first and second diagnoses in the mammography dataset and first, but not second, 
diagnoses in the spine dataset (see model M6 in Supplementary Table S1). Furthermore, the confidence rule 
clearly outperformed the strategy of randomly choosing between the first and second diagnosis (Fig. 4). This 
finding agrees with another study showing that applying the confidence rule to pathologists’ and laboratory 
professionals’ diagnoses of white blood cells improved accuracy, relative to randomly choosing between the two 
diagnoses33. Because decision makers cannot tell in advance whether a particular case is kind or wicked34, using 
the confidence rule has clear practical merit35. Our results suggest the following advice: In the absence of more 
predictive cues (and unless one suspects that experts perform below chance), rely on the more confident of an 
expert’s two conflicting decisions.

Our implementation of the SCM assumes that all experts sample the same number n of cues and have the 
same probability p of independently sampling a cue that points to the correct answer. As discussed earlier, these 
assumptions are unlikely to hold in practice. Yet, relaxing them does not qualitatively change any of the four 
predictions. It will affect the functional form with which the probability of a correct decision, P, depends on p 
(the probability of sampling a cue that points to the correct option) and n (the number of cues sampled) or how 
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Figure 4.   Empirical results comparing the accuracy of the confidence rule to the accuracy of choosing 
randomly between first and second diagnoses for cases where experts were inconsistent, separately for the two 
datasets (mammography and lumbosacral spine). The y-axis shows by how much the confidence rule increased 
accuracy compared to randomly choosing; negative values indicate by how much the confidence rule decreased 
performance. Experts are shown as horizontally jittered dots; the size of a dot indicates the number of cases for 
which that expert provided conflicting diagnoses (see the legend labelled “Observations”). The distributions are 
summarized by boxplots (to the right of the dots); the boxplots consider the number of observations per case 
(weighted boxplots) and their width is proportional to the square root of the number of experts in the respective 
distribution. The point and line range to the left of the dots indicate the point estimate of a Bayesian one-sample 
t-test (median of the posterior distribution of the distribution’s mean, as well as the corresponding 95% credible 
interval; using the standard “ultrawide” prior scale)31. Using the effect size δ (the difference of the mean to zero, 
divided by the standard deviation)31, the increase amounts to 0.76 (median of the posterior distribution of δ ; 
95% credible interval, CI 0.55–0.98) in the mammography dataset and to 0.81 (CI 0.19–1.46) in the lumbosacral 
spine dataset.
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p influences confidence Ĉ , but the qualitative implications of the distinction between kind cases ( p > 0.5 ) and 
wicked cases ( p < 0.5 ) is expected to remain unchanged. Because SCM’s decision process amounts to majority 
voting among cues we can draw on insights from research on majority voting. For example, predictions 1–4 
hold even if, within an expert, the cues differ in their probability of pointing to the correct option as long as 
either their pi are symmetrically distributed or the cues are interdependent and their intercorrelations are not 
extreme27. As another example, under very general conditions, as the number of cues retrieved, n, increases, the 
probability of a correct decision, P, will increase for kind cases ( p > 0.5 ) and decrease for wicked cases ( p < 0.5

)26–28. As a consequence, all else being equal, consistency should increase as more cues are retrieved; variations 
in how strongly the cues within a case agree with each other will be most pronounced for small ns, whereas for 
large ns all cases will be clearly diagnosed either correctly or incorrectly (except for cases with p close to 0.5). 
Furthermore, assuming that experts sample different numbers of cues implies that, for the same case, experts 
with larger ns will be more consistent than experts with smaller ns. Importantly, experts with larger ns will only 
be more accurate for kind cases; they will be less accurate for wicked cases because they are less likely to arrive 
at the correct decision by random chance (i.e., sampling error leading to a sample of cues pointing to the correct 
option despite p < 0.5 ). The SCM stipulates that confidence in a decision increases with the proportion of cues 
pointing to that option (see Eq. (2)). Any definition of confidence in which confidence increases monotonically 
with |p̂− 0.5| will yield the same qualitative conclusions as the definition we relied on (see Eq. (2)).

Here we used the SCM as a basic model linking accuracy, confidence, consistency, and consensus because it 
allows for a straightforward illustration of those interrelations. However, we argue that a broad family of models 
make qualitatively similar predictions to those of the SCM. For example, in the diffusion decision model22, a 
prominent example from the family of evidence accumulation models, the agreement among cues within a case 
is reflected in the drift rate, which represents the average speed with which an expert accumulates evidence that 
stochastically drifts toward one of two decision boundaries (e.g., choice A vs. choice B, or cancer vs. no cancer). 
Everything else kept constant, a lower drift rate  implies more ambiguous cases, which are predicted to be associ-
ated with lower accuracy, longer response times, and lower confidence within experts20,22, as well as increasing 
disagreement among experts. Wicked cases correspond to situations where the mean drift rate points to the 
boundary representing the incorrect response. Notably, an increasingly wrong drift rate corresponds to increas-
ingly less ambiguous and more wicked cases. These cases are predicted to be associated with even lower accuracy, 
but also with shorter response times and higher confidence within experts, as well as increasing agreement among 
experts on the incorrect decision—thus qualitatively mirroring the predictions from the SCM. More generally, 
any model that assumes or implies the following should make predictions qualitatively similar to those of the 
SCM: The more clearly the relevant information points to an option, the more likely a particular decision becomes 
and the more confidently it will be rendered. Arguably, these two relations are fundamental to many psychological 
and normative models of decision making; the key question is how a given model operationalizes the notion of 
how definitely information points to the chosen decision. However, certain decision strategies might not yield 
the same relationship between confidence, inconsistency, and case ambiguity (e.g., lexicographic rules, tallying 
strategies36, or exemplar-based strategies37,38). Furthermore, our empirical analyses are based on expert diagnoses 
of mammograms and X-rays of the lumbosacral spine and thus may not generalize to other expert domains (e.g., 
forensics or clinical psychology). The generality of our results should therefore be the subject of future research.

In the following, we discuss three contributions the present approach makes to research on within-expert 
inconsistency. First, in order to reduce inconsistency and thus improve accuracy, previous perspectives sug-
gest using interventions that increase the reliability of information processing, such as reducing the amount of 
information presented39, decomposing a complex task into smaller ones40, or combining an individual’s repeated 
judgments41–43 or judgments from different individuals44. Our work suggests a complementary approach to 
improving accuracy in the face of unreliability—namely, encouraging experts to make a second assessment 
whenever they are not confident in their initial decision and to then apply the confidence rule across the two 
decisions. The rationale is twofold. One can expect that experts will perform better than chance and that the 
confidence rule will, therefore, improve accuracy relative to simply sticking to the initial decision. Also, there is 
little benefit in judging cases again that were initially diagnosed with high confidence; such decisions are unlikely 
to change and the confidence rule will therefore not change the final decision.

Second, previous accounts of expert inconsistency explicitly or implicitly assume that accuracy increases as 
the consistency of decisions increases45. In stark contrast to this assumption, our results show that this relation-
ship is mirrored at chance level: For cases that experts tend to judge incorrectly, individual expert consistency 
increases the more experts agree on the incorrect diagnosis—despite the individual expert not knowing the level 
of agreement among all experts. Furthermore, our results show that confidence tracks consistency, but because 
confidence tracks the ambiguity of a case (or, equivalently, experts’ disagreement) and not accuracy per se17, the 
ability of confidence to predict accuracy and consistency strongly depends on the distribution of ambiguity across 
cases29,43,46. If there are only kind cases (i.e., cues tend to point to the correction option), confidence strongly 
predicts that a diagnosis is accurate and will not be changed. The more wicked cases there are, the more these 
relations dilute. In the extreme—and hopefully only hypothetical—case of a domain where experts, on average, 
tend to make wrong decisions, the relations reverse: Experts’ confidence is negatively related to accuracy, but 
still positively related to consistency—and being consistent in a wicked environment means confidently sticking 
to the wrong decision.

Third, previous accounts have focused on differences in consistency among experts or in different task con-
ditions (e.g., time pressure). Our approach predicts that the cases themselves can differ markedly in terms of 
how consistently they are diagnosed by any expert. As our results have shown, these differences in consistency 
among cases can be even larger than those observed among experts and can be explained to a large degree by 
the extent to which experts disagree on a case.
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Methods
Study 1.  To facilitate the explanation of the Self-consistency model (SCM)17 we present its equations in the 
“Results” section. The code for Fig. 1 is available at https://​osf.​io/​e7nk6/.

Study 2.  The code to analyze both datasets can be found at https://​osf.​io/​e7nk6/. See the Data availability 
statement for information on how to obtain the two datasets.

Dataset 1: radiologists diagnosing mammograms.  Dataset 1 consists of repeated judgments of the same mam-
mograms. Here we re-analyze the data from a previous study that investigated the effect of time spent viewing 
and confidence on diagnostic accuracy in mammography screening18. On the topic of ethics approval the origi-
nal paper18 noted:

This study was conducted with mammography registries (Carolina Mammography Registry, New Hamp-
shire Mammography Network, New Mexico Mammography Project, Vermont Breast Cancer Surveillance 
System, and Group Health Cooperative in western Washington) associated with the National Cancer 
Institute-funded Breast Cancer Surveillance Consortium (BCSC). Data collected as part of this study were 
pooled at the BCSC Statistical Coordinating Center (SCC) in Seattle, WA, for analysis. Each registry and 
the SCC received institutional review board (IRB) approval for either active or passive consenting processes 
or a waiver of consent to enroll participants, link data, and perform analytic studies. All procedures are 
HIPAA compliant and all registries and the SCC have received a Federal Certificate of Confidentiality 
and other protection for the identities of the women, physicians, and facilities that are the subjects of this 
research. In addition, each registry and the SCC received IRB approval for all test set study activities.

Of the 469 radiologists invited to participate, 102 completed both phases of the study. The mammograms used 
were randomly selected from screening examinations of women aged 40–69 years. The correct diagnosis (cancer-
ous or non-cancerous) for each mammogram was available from follow-up research. In phase 1, each radiologist 
was randomly assigned to one of four test sets of 109 mammograms. The radiologists were instructed to interpret 
the cases as they would in clinical practice. They were informed that the overall cancer rate in their test set was 
higher than that found in a screened population, but they were not informed of the specific prevalence of cancer 
cases. When viewing each case, radiologists were prompted to identify the most significant breast abnormality 
and to decide whether the patient should be recalled for additional workup. The decision to recall constituted a 
positive test result. Additionally, radiologists provided a confidence judgment for each assessment on a 5-point 
scale (1: “not at all confident”, 2: “not very confident”,  3: “neutral”, 4: “confident”, 5: “very confident”). Radiolo-
gists used a home or work computer or a laptop provided by the study to complete the task. After an interval 
ranging between 3 and 9 months, the same radiologists were invited to rate a second set of 110 mammograms, 
following an identical procedure. Unknown to the participants, a subset of the cases presented in this phase 2 
were the same as in phase 1. Overall, 58 cases were rated twice by 55 radiologists; of those 58 cases, 46 were rated 
twice by another 47 radiologists, resulting in 5352 repeated ratings. All repeated mammograms were non-cancer 
cases (i.e., from women who were cancer-free for at least 2 years after the mammography). See18 for more details.

Across all repeated cases, the median accuracy (proportion correct) was 0.72 in the first phase and 0.68 in 
the second phase (see also Supplementary Fig. S1a). Experts’ first and second diagnoses were similarly confident 
(median within-expert mean confidence was 3.8 for first diagnoses and 3.7 for second diagnoses; see Supple-
mentary Fig. S2a).

Dataset 2: physicians diagnosing X‑rays of the lumbosacral spine.  Dataset 2 consists of repeated judgments of 
X-rays of the lumbosacral spine. Here we re-analyze the data from a previous study that investigated the diag-
nostic accuracy of radiologists and chiropractors (total N = 13 ) reading lumbosacral radiographs19. The medical 
ethical committee of the Alkmaar hospital approved the study.

Five chiropractors, three chiropractic radiologists, and five medical radiologists participated in the study. 
Their professional experience ranged from 3 to 21 years. For the study, 300 X-rays of the lumbosacral spine of 
adult patients were selected from a hospital database. These consisted of 50 X-rays containing a “significant 
abnormality” (in which case immediate referral to a hospital is required) and 250 “normal” ones. X-rays with 
abnormalities were selected retrospectively based on an initial radiologic report. These radiographic findings 
were confirmed by a combination of other diagnostic imaging methods including magnetic resonance imaging 
(MRI) and computed tomography (CT). The selected X-rays overrepresented “significant abnormalities” (17 % 
of cases), including infections (n = 7), malignancies (n = 15), fractures (n = 8), inflammatory spondylitis (n = 
6), and spondylolysis (n = 14). The set of X-rays was presented in a random order. For each X-ray, the physician 
evaluated whether a significant abnormality was present (yes vs. no) and gave a confidence rating on a 2-point 
scale (1: low confidence, 2: high confidence). Three months later, all participants assessed all 300 X-rays again, 
resulting in 3900 repeated assessments. See19 for more details.

Across all cases, the median accuracy (proportion correct) was 0.86 in the first session and 0.91 in the sec-
ond session (see also Supplementary Fig. S1b). For six out of the 13 experts, their second diagnoses were more 
confident than their first ones; for two experts, their second diagnoses were less confident, and for five experts 
there was no reliable difference (see Supplementary Fig. S2b).

Statistical analyses.  We ran a series of Bayesian mixed-level regression models47, which included group-level 
intercepts for individuals and cases (“random intercepts”; see Supplementary Information for detailed model 
descriptions and results). Note that each of the 300 X-rays in the spine dataset was rated by just 13 experts. Con-

https://osf.io/e7nk6/
https://osf.io/e7nk6/
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sequently, the estimates for both proportion correct P̂i and inconsistency Îi are more noisy. In the mammography 
dataset, in contrast, up to 102 radiologists rated 58 distinct mammograms, allowing the characteristics of the 
cases to be estimated more reliably. To render our classification of cases as kind versus wicked more reliable, we 
defined—in both datasets—kind cases as P̂i > 0.6 and wicked cases as P̂i < 0.4 . We thus excluded cases where 
0.4 ≤ P̂i ≥ 0.6 in model M7 (Supplementary Table S1); those cases were retained in all other analyses and figures 
(except Fig. 3).

Data availability
The spine dataset analyzed in this study is available on OSF (https://​osf.​io/​e7nk6/). The mammography data that 
support the findings of this study are available from https://​www.​bcsc-​resea​rch.​org/​conta​ct. However, restric-
tions apply to the availability of these data, which were used under license for the current study, and so are not 
publicly available.
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