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Time- and angular- resolved photoelectron spectroscopy is a powerful technique to measure electron
dynamics in solids. Recent advances in this technique have facilitated band and energy resolved
observations of the effect that excited phonons, have on the electronic structure. Here, we show with
the help of ab initio simulations that the Fourier analysis of the time-resolved measurements of solids with
excited phonon modes enables the determination of the band- and mode-resolved electron-phonon
coupling directly from the experimental data without any additional input from theory. Such an observation
is not restricted to regions of strong electron-phonon coupling and does not require strongly excited or hot
phonons, but can be employed to monitor the dynamical renormalization of phonons in driven phases of
matter.
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Electron-phonon coupling is one of the fundamental
interactions in solids that determines a vast range of
material phenomena, ranging from thermal properties like
specific heat over carrier mobility in charge transport to the
critical temperature of conventional superconductivity.
Several theoretical concepts have been defined in order
to quantify this interaction, such as the mass enhancement
factor in metals to describe band velocity renormalization.
It is however not unambiguously observable [1,2] so that
electron-phonon coupling remains a largely theoretical
concept that is invoked to explain phenomena rather than
being a direct measurable quantity, despite some success in
quantifying it with inelastic scattering experiments [3–6].
Some spectroscopic signatures in solids have been directly
linked to strong electron-phonon coupling. Most promi-
nently in photoelectron spectra electron-phonon coupling
can lead to satellites [7,8] and the mentioned kinks [9,10]
that result from (collective) excitation of phonon modes in
the photoemission process. But also optical properties are
determined by electron phonon coupling through the
temperature dependent renormalization of the band
gap [11,12] and phonon assisted absorption [13], as well
as excited state lifetimes and carrier relaxation [14–17],
which can also be used to extract electron-phonon matrix
elements if the scattering path is well defined [18].

Recent experimental advances in time- and angular-
resolved photoelectron spectroscopy (TR-ARPES),
however, have shown that a more direct observation of
electron phonon coupling is possible [19,20]. These works
show that with sufficiently clean data it is possible to
extract some electron-phonon coupling properties by
Fourier analysis of TR-ARPES data, in a method called
frequency-domain ARPES (FD-ARPES) by some authors
[20]. While these works are pioneering the use of
TR-ARPES to observe the effect of phonons on the
electronic structure in solids the underlying details of
electron-phonon coupling remain unknown.
The effect of lattice distortions on the electronic band

structure is often described in terms of so-called frozen
phonon bands, the instantaneous electronic structure for a
given lattice configuration. The assumption is that this
reflects the dynamics of the band structure and hence can be
used to interpret TR-ARPES measurements. However, its
observation requires spectrally sharp probe pulses with
durations well below the phonon cycle, a bandwidth
smaller than the phonon-induced change in energy and
for sufficiently sharp intrinsic line shapes. These conditions
can be met for slow phonons and with accurate equipment
[21,22], but even then the results are confined to those
regions in the Brillouin zone (BZ) where the phonon
induced change in band energy is large, in other words
where the electron-phonon coupling is high.
In this Letter we show that FD-ARPES is an experi-

mental technique that can directly observe the electron-
phonon coupling matrix elements [23] of single electronic
bands with momentum space and mode resolution, thus
elevating electron-phonon coupling to an observable of
photoelectron spectroscopy. It has far reaching potential for
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the investigation of fundamental processes in solids
including excited state dynamics, phase transitions, and
the characterization of novel nonequilibrium phases.
FD-ARPES requires TR-ARPES probes that are fast
enough to resolve the phonon dynamics, i.e., have a time
resolution that is at least of the same order of magnitude as
the phonon frequency. However, the faster a probe pulse is,
the broader is its resulting ARPES spectrum. Therefore, it
will be helpful for the following discussion to consider the
ratio between the pulse dependent spectral linewidth σ and
the phonon-induced variation in band energy Δ (defined
below). When this probe-phonon spectral resolution is
Δ ≪ σ a time-resolved observation of Δ is not possible
and one has to consider FD-ARPES. We will see that, even
if Δ > σ, a careful analysis of FD-ARPES is required. We
therefore consider these two regimes in this Letter, where
first the phonon induced variation in band energy is small
compared with the spectral resolution and second where
both are comparable or larger. FD-ARPES requires coher-
ent phonon excitation, but does not rely on carrier relax-
ation, which makes it well suited to probe the coupling of a
wide range of electronic bands to the same phonon mode.
Our results are based on first-principles time-dependent
density functional theory (TDDFT) calculations, however,
the discussed method of analysis of photoelectron spectra
can be directly applied to experimental data, without input
from calculations. We demonstrate this method by using
the example of graphene and a single phonon mode, but it is
general and can be applied to any material.
The main findings of this Letter can be summarized as

follows: (i) FD-ARPES is a technique to observe electron-
phonon coupling with momentum and energy resolution.
(ii) The line shape of the FD-ARPES signal contains
information about interband electron-phonon coupling.
(iii) Also for the case where Δ ≫ σ, i.e., well-resolvable
band changes in TR-ARPES, the FD-ARPES provides
appropriate tool to interpret time-dependent band structures.
To analyze the dynamics underlying the FD-ARPES

measurement we consider a Fermi’s golden rule expression
for the detected ARPES intensity originating from a single
band as the product of a photoelectron matrix element and a
spectral line shape F

IikðEkinÞ ¼ jhfpjA · p̂jψ ikij2FðΩþ ϵik − EkinÞ; ð1Þ

where Ekin ¼ p2=2 is the kinetic energy of the photo-
electron, fp is a final state with momentum p, ψ ik and ϵik
are the (initial) band orbitals and energies and Ω is the
energy of the probe laser. The spectral line shape F is
determined by the power spectrum of the probe pulse. We
stress that the above expression is not used here to compute
the ARPES spectra, but it is considered to understand the
FD-ARPES concept. For the same reason, we also consider
only a single coherent phonon mode, while in actual pump-
probe experiments whole range of phonons can be excited

simultaneously with, for instance, impulsive Raman tech-
niques, and analyzed with FD-ARPES. A coherent phonon
mode with the frequency ω0 induces a variation in the band
energy and orbital that can be parametrized by the
instantaneous lattice distortion uðτÞ ¼ u0 sinðω0τÞ if the
electron-phonon coupling is adiabatic. The band properties
then read to linear order in the displacement; i.e., if u0 is
sufficiently small,

ϵik½uðτÞ� ¼ ϵik þ Δik sin ðω0τÞ; ð2Þ

jψ ik½uðτÞ�i ¼ jψ iki þ jδψ iki sin ðω0τÞ; ð3Þ

where Δik ¼ u0hψ ikjδVjψ iki ¼ u0giiðkÞ depends on the
diagonal electron-phonon coupling matrix element, i.e., the
matrix element of the deformation potential δV that results
from the change in the lattice configuration [23]. The term
jδψ iki ¼ u0

P
i≠j½gijðkÞ=ðϵik − ϵjkÞ�jψ jki depends on the

interband electron-phonon coupling. These time-dependent
band parameters confer their time dependence to the
ARPES spectrum via Eq. (1) giving the time-dependent
adiabatic ARPES signal as

IikðEkin; τÞ ¼ jhfpjA · p̂jψ ik½uðτÞ�ij2
× FðΩþ ϵik½uðτÞ� − EkinÞ: ð4Þ

FD-ARPES is obtained from such a time-dependent signal
as the Fourier transform at a fixed frequency for each Ekin
and k.
To demonstrate this technique and its analysis, we

consider computed TR-ARPES spectra of graphene with
a single coherent E2g phonon mode using TDDFT [24]
together with Ehrenfest molecular dynamics. This technique
describes both adiabatic and nonadiabatic electron-phonon
couplings so that this computational example is not based on
the assumption of adiabaticity made in Eq. (4); however, the
following results show that the observed couplings are well
described within this approximation. The E2g optical mode
of graphene is one of the fastest phonon modes in materials
with a frequency of ∼48 THz, corresponding to a cycle time
of ∼20 fs, and therefore presents a challenge to directly
resolve the phonon induced dynamics with TR-ARPES,
which makes it a good candidate to showcase this method.
The electron-phonon coupling for this mode is most pro-
nounced for the σ bands near the Γ point of the electronic BZ
and comparatively weak for other other bands [25]. The DFT
electronic ground state, time propagation and photoelectron
spectra were obtained with the octopus code [26] using a
12 × 12 × 1 sampling of the BZ, a real space sampling with
a spacing of 0.36 Bohr atomic units and the (adiabatic) local
density approximation. The time-resolved photoelectron
spectra for pulses with FWHM of 10 fs and carrier energy
of 80 eV were computed using the T-SURFF technique [27]
implemented in octopus [28–30], where the energy and
momentum distribution of photoelectrons are obtained
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through a continuity equation for the electronic flux through
a theoretical “analyzer” surface in the vacuum. Here, this
flux surface is located at 30 Bohr atomic units above the
graphene sheet and the resulting equilibrium ARPES spec-
trum is shown in Fig. 1(a). The E2g phonon mode can be
included by setting an initial velocity on the ions along the
eigenmode displacement direction and by then copropagat-
ing the Ehrenfest dynamics together with the TDDFT
[31,32]. Here, we simplified this approach by computing
the trajectories for the ions only once with the TDDFTþ
Ehrenfest and used it for all TR-ARPES calculations,
without any loss in numerical accuracy, because the
ARPES probe intensity is weak enough to not affect the
phonon behavior.
The TR-ARPES spectra IkðEkin; τÞ were computed

for Nτ ¼ 9 time delays τi during the phonon cycle and
subsequently the Fourier transform for the phonon
frequency ω0 was obtained as ĨkðEkin;ω0Þ ¼ ð1=NτÞP

j exp ð−iω0τjÞIkðEkin; τjÞ, for each k point along a
Γ −M − K path in the second BZ and for each point
sampling the spectral energy E, shown in Fig. 1(b). An
experimental FD-ARPES measurement could of course take
more time samples and over a longer time to compute the
Fourier transform at all frequencies, but the basic data
processing is the same as in this illustration. Such treatment
would yield information on all phonon modes and without
bias of a given frequency. The choice of a path in the second
BZ was taken, because here the σ bands at the Γ point have
larger photoelectron matrix elements, leading to better
resolved spectra [25,33]. In the resulting FD-ARPES spec-
trum, shown in Fig. 1(b), one can already qualitatively

observe from the intensity which bands are strongly coupled
to the phonon mode across the BZ and, for instance, by
analyzing the phonon-pump fluence dependence of these
signals one can obtain a qualitative measure of electron-
phonon coupling. In the remainder of this Letter, however,
we will analyse how detailed quantitative information can be
obtained from the line shape of the FD-ARPES signal.
TheΔ ≪ σ regime.—The dependence of the FD-ARPES

on the phonon displacement u is highly nonlinear so even a
small variation in the band properties can result in strong
changes in the ARPES spectrum. We therefore first con-
sider those cases where the lattice distortion of the phonon
induces only small changes in the spectrum. We simplify
the notation by dropping the ik index in the right hand side
of the following equations. To linear order in the displace-
ment we then have for a single band the ARPES intensity

IikðEkin; τÞ ≈ Ið0Þik ðEkinÞ þ Ið1Þik ðEkin; τÞ with

Ið1Þik ðEkin; τÞ ¼ MF0ðEÞΔ sin ðω0τÞ

þ ∂M½uðτÞ�
∂uðτÞ

����
u¼0

u0 sin ðω0τÞFðEÞ; ð5Þ

where we defined E ¼ Ωþ ϵik − Ekin, M ¼ jhfpjA ·
p̂jψ ikij2 and F0ðEÞ ¼ ð∂F=∂EÞ is the derivative of the
spectral line shape. The Fourier series expansion over τ of
the time-resolved ARPES signal at the frequency ω0 reads
under this condition

Ĩð1Þik ðEkin;ω0Þ ¼
i
2
MΔF0ðEÞþ i

2

∂M½uðτÞ�
∂uðτÞ

����
u¼0

u0FðEÞ: ð6Þ

This illustrates important properties of the FD-ARPES
signal. The first term is directly proportional to the diagonal
electron-phonon coupling and appears with the derivative
of the equilibrium line shape, while the second term,
depending on off-diagonal electron phonon coupling,
contributes with the same line shape as the equilibrium.
Since, here we made no further assumption on the line
shape, this means FD-ARPES spectra can be analyzed by
comparison with the equilibrium line shape and yield
information on different electron-phonon coupling matrix
elements with momentum and band resolution, even in
regions where the FD-ARPES signal depends only weakly
on the electron-phonon coupling.
To demonstrate how this information is directly obtained

from experimental data we computed the FD-ARPES
spectrum for graphene with the E2g mode with amplitude
u0 ¼ 0.001 aC−C, where aC−C is the carbon bond length
in graphene. The resulting Ĩ scales linearly with small
lattice displacements, so that Eq. (6) can be applied. The
first term in Eq. (6) is directly proportional to the energy
derivative of the equilibrium ARPES spectrum Ið0Þ, assum-
ing that the matrix element does not depend on energy
within the range of F, and can be readily computed by finite
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FIG. 1. (a) Equilibrium ARPES spectrum of graphene com-
puted with TDDFT (see text) along a path of high symmetry
points in the second BZ. (b) FD-ARPES at the frequency of the
E2g mode, showing quantitatively which bands couple strongly to
this mode. The phase of the complex FD-APRES, which is
determined by the phase of the coherent phonon mode, leads to
purely imaginary signal in this example calculation.
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differences from such data, while the second term
contains directly the equilibrium line shape. By fitting
the sum Im½Ĩð1Þik ðω0Þ� ¼ α∂Ið0Þik =∂Eþ βIð0Þik around each
equilibrium band one directly obtains α ¼ giiðkÞu0=2
and β ¼ ∂M=∂uðτÞu0=2. The result of such fitting is
shown in Fig. 2(b) and the β term did not contribute above
numerical accuracy, so that the fitting directly gives the
electron-phonon coupling of each band in units u0.
However, in situations where the β term is significant it
contains information of the interband electron-phonon
coupling via Eq. (3), albeit in a mixture with the photo-
electron matrix element M that can only be disentangled
with further assumptions or knowledge about M. The
present computational demonstration of the FD-ARPES
technique allows us to independently compute the electron-
phonon coupling matrix element gii, and the comparison
shown in Fig. 2 reveals the high fidelity of this method
throughout the BZ. Missing points in the results only occur
when either the equilibrium ARPES signal is too weak or
the underlying Δ is too small.
The Δ > σ regime.—When the effect of the electron-

phonon coupling on the TR-ARPES spectrum leads to a
nonlinear change in the FD-ARPES one has to consider the
Fourier transform of Eq. (4) instead of the expansion. For
the phonon frequency ω0 this reads

ĨikðEkin;ω0Þ ¼
1

2Δ
MJ̃1

�
E
Δ

�
� FðEÞ

þ i
2Δ

δM

�
J̃0

�
E
Δ

�
þ 3

2
J̃2

�
E
Δ

��
� FðEÞ;

ð7Þ

where δM ¼ Re½hψ ikjA · p̂jfpihfpjA · p̂jδψ iki�, J̃i are
Fourier transforms of Bessel functions of the first kind,
and � indicates the convolution product. This expression
again allows us to disentangle contributions of different
electron-phonon couplings, because the first term
again only depends on the diagonal electron-phonon
coupling matrix element via Δ, while the second term
depends on the interband coupling via δM. Assuming that
the equilibrium spectral line shape F has an even symmetry,
the first term gives an odd FD-ARPES line shape and the
second term a purely even contribution. This symmetry
property presents another straightforward opportunity to
process the FD-ARPES data: by taking the Fourier trans-
form of the FD-ARPES at an isolated band the even and
odd contributions to the line shape become real and
imaginary components in the time domain and the
convolutions in Eq. (7) become direct products. Then,
the first term of Eq. (7) is particularly simple, because it is a
product of the first Bessel function and the inverse
Fourier transform of the equilibrium ARPES signal
Ið0Þ ¼ MF, Eq. (1), and we can fit ImfF−1½Ĩik�ðtÞg ¼
αtRefF−1½Ið0Þik �ðtÞg around each isolated band. Here, we
have expanded the Bessel function around small time
arguments J1ðΔtÞ ≈ ðΔ=2Þt so that giiðkÞ ¼ 2α=u0 and
the fitting has to match only for a small interval in the time
domain. By processing TR-ARPES data of graphene
obtained with TDDFT and a lattice displacement of u0 ¼
0.01 aC−C in this way, we obtain the result shown in Fig. 3.
This method only applies if bands are sufficiently
isolated to obtain a well-defined signal for the inverse
Fourier transform. It does, however, allow us to quantify the
interband contribution, via the second term, which
contributes to RefF−1½Ĩik�ðtÞg which is proportional to
δM. We stress that Eq. (7), being the full expression for
FD-ARPES, also applies to the small Δ ≪ σ regime.
The expression for the full FD-ARPES signal, Eq. (7)

also gives relevant information for the case where the
electron-phonon induced variation is large compared to the
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FIG. 2. (a) The theoretical electron phonon-coupling matrix
element giiðkÞ (see text) obtained from static density functional
calculations. (b) The same quantity obtained by analyzing
computed FD-ARPES spectrum in the linear (small displace-
ment) regime, cf. Eq. (6). Missing points have been excluded
because of too weak equilibrium ARPES intensity (cf. Fig. 1).
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FIG. 3. Electron phonon matrix element giiðkÞ (see text)
obtained from static density functional calculations (solid lines),
same as in Fig. 2(a), and from analyzing FD-ARPES data with
u0 ¼ 0.01 aC−C (circles). Points close to band crossings have
been excluded, because the method requires isolated bands. Color
coding is the same as for the band structure in the inset.
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width of the TR-ARPES spectral function, i.e., when the
phonon-probe spectral resolution Δ ≫ σ. In this case only
the Fourier transforms of the Bessel functions in Eq. (7)
contribute to the FD-ARPES signal and they provide sharp
signals spaced by Δ. This reflects the intuitive picture of a
band oscillating in real time, where FD-ARPES resolves
the frequency and amplitude of this oscillation. Such an
oscillation that is large enough to be resolved by ARPES
linewidth can be observed directly by the TR-ARPES
signal [22], however here we argue that the analysis
of the time-resolved signal amounts to performing
FD-ARPES and represents just one limiting case of this
technique that can be applied across all ranges of phonon
induced variations in the spectrum.
We have demonstrated how FD-ARPES gives direct

access to the band resolved electron-phonon coupling
matrix element even for small coupling and fast phonons
by analyzing the experimental data without requiring
further input from theory. The three regimes of different
phonon induced changes in the TR-ARPES spectrum that
we considered above do not necessarily occur in separate
experiments, but all three might be observed across the BZ
in the same FD-ARPES spectrum, because Δ can vary
considerably for different bands and different k points. For
this reason we chose to present these three cases, as they
most likely have to be considered all at once when
interpreting experimental data.
In this Letter we considered the linear expansion of the

electronic band energy and orbitals with lattice pertur-
bation; however, FD-ARPES also accesses higher order
effects that would oscillate at other frequencies. Finally
we stress again that the analysis presented here can be
applied over a wide frequency range at once, giving
access to the effect of all excited phonons. Especially, it
allows us to track the dynamical renormalization
of phonon frequencies that might occur across phase
transitions or as the result of driven, nonequilibrium
phases.
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