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A collision of Bose-Einstein condensates is a useful source of single nonclassically correlated pairs
of atoms. Here, we consider elastic scattering of atoms from elongated clouds taking into account an
effective, finite duration of the collision due to the expansion of the condensates. Also, we include
the quasicondensate nature of the degenerate quantum gases, due to a finite temperature of the
system. We evaluate the pair correlation function measured experimentally in K. V. Kheruntsyan,
et. al. Phys. Rev. Lett. 108, 260401 (2012). We show that the finite duration of the collision is
an important factor determining the properties of the correlations. Our analytic calculations are in
agreement with the measurements. The analytical model we provide, useful for identifying physical
processes that influence the correlations, is relevant for experiments with nonclassical pairs of atoms.

I. INTRODUCTION

Ultracold atoms offer a promising platform that is rel-
evant for studies of the foundations of quantum mechan-
ics and also for applications that rely on quantum effects.
The controlled generation of correlated pairs of atoms is
an important method in this context, since such pairs
play a similar role in quantum atomic physics as pairs of
photons in quantum optics. The latter were employed in
demonstration of the violation of Bell’s inequalities for
photons [1], the photonic Hong-Ou-Mandel effect [2] or
the ghost-imaging [3]. In the atomic context, generation
of correlated pairs of atoms was reported [4–8], and it was
shown theoretically and experimentally that they can be
employed for demonstrating, for example, sub-Poissonian
statistics of atoms [9, 10], the violation of the atomic
Cauchy-Schwarz inequality [11–14], Hong-Ou-Mandel ef-
fect for atoms [15, 16], or atomic ghost-imaging [17, 18].
The nonclassicality of the spatially separated, correlated
atomic pairs has recently been employed for demonstra-
tion of Bell correlations [19], and for 3D magnetic gra-
diometry [20]. Furthermore, the entangled pairs could
find applications for the violation of Bell’s inequality
for massive particles [21, 22], atomic interferometry [23],
study of the quantum signatures of analog Hawking radi-
ation [24], or fundamental experimental tests of quantum
mechanics such as Einstein-Podolsky-Rosen gedanken ex-
periment [25].

In our work, we focus on a particular method of gen-
erating correlated pairs of atoms. In this scenario, the
pairs are emitted from collisions of counter-propagating
ultracold degenerate atomic Bose gases [7]. As a result
of binary collisions between the particles that constitute
the counter-propagating clouds, atomic pairs scatter out
from the clouds with opposite velocities. In the sponta-
neous regime, where bosonic enhancement does not in-
fluence single collision events, the direction of velocity
of outgoing particles is random. Due to the superposi-
tion principle, the quantum state of single atomic pair is
entangled in different momentum directions [25].

To further exploit the generated pairs of atoms, a de-
tailed control over the produced state of atomic pairs is
required. To certify this control, some preliminary mea-
surements are helpful. A particularly important example
is provided by the observation of the correlation func-
tions between pairs of atoms. Such properties of atoms
scattered from colliding ultracold clouds was considered
in the literature [10, 26–39]. In particular, in the pre-
vious paper [32], we described an analytic calculation of
pair correlation functions. Some of the results were in
insufficient agreement with experimental results.

Since this previous work [32], we have refined and im-
proved both the calculations and the experiment. From
the experimental point of view, we have improved the
signal to noise ratio, and simplified the collision geome-
try [11]. On the theory side, we are now able to take into
account the expansion of the condensate during the colli-
sion, and show that the condensate expansion reduces the
atom density and, therefore, also the collision rate. Thus,
this effect limits the duration of collision and emission of
pairs, and this finite time leads to an energy broadening
of the decay products. We show that this broadening
significantly improves the agreement between theory and
experiment. Also, we take into account the fact that in
reduced geometries, when the system is highly elongated,
the phase of a degenerate Bose gas fluctuates on a scale
shorter than the dimension of the cloud, resulting in a
quasi-Bose-Einstein condensate. Finally, we include into
the formalism the interaction of the scattered atoms with
the mean-field potential of the colliding clouds, a factor
that is often neglected. With our analytical treatment,
we can identify the physical processes which affect the
properties of the correlation functions.

The paper is organized as follows. In Sec. II, we
introduce the experimental context, see Sec. II A, and
the method used to describe the quasicondensate, see
Sec. II B, and calculate its most important properties. In
Sec. III, we introduce the theoretical description of the
quasicondensate collisions. Here, we introduce the varia-
tional ansatz that describes the evolution of the counter-
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propagating quasi-condensates. In Sec. IV, we present
the description of the scattered atoms based on the Bo-
goliubov method. There, we give analytical formulas for
the pair correlation function. The pair correlation func-
tion contains two types of correlations, which we shall
label as “local” and “opposite”. The local correlation
involves atoms with nearly parallel momenta and is di-
rectly related to the single particle correlation function.
The opposite correlation involves the creation of pairs
with nearly antiparallel momenta. In the previous pa-
pers [9, 11], we used the labels “collinear” and “back to
back” instead of “local” and “opposite”, respectively. In
Sec. V, performing a series of controlled approximations,
and using a Gaussian variational ansatz, we derive formu-
las for the single particle correlation function and local
part of the pair correlation function. In Sec. VI, pro-
ceeding in a similar way as in Sec. V, we derive formulas
for the opposite part of the pair correlation function. In
Sec. VII, we apply the formulas obtained in the previ-
ous sections, and provide theoretical calculations of the
normalized pair correlation function that is measured in
the experiment. We compare the theoretical and exper-
imental results. We close this paper in Sec. VIII with a
summary. The technical calculations are moved to ap-
pendices.

II. QUASICONDENSATE DESCRIPTION

A. Experimental setup

In the experiment [11], we had approximately N ≈ 105

metastable helium atoms at temperature Ts ≈ 200 nK
placed in a strongly elongated harmonic trapping poten-
tial

V (r) =
1

2
m
[
ω2
r(x2 + y2) + ω2

zz
2
]
, (1)

where ωr = 1500× 2πHz and ωz = 7.5× 2πHz.

After trap switch-off, the cloud is transferred into
mF = 0 hyperfine state, and divided equally into momen-
tum wave packets centered at velocities v0 = 9.2 cm/s
and −v0. As a result of binary collisions within the
counter-propagating cloud, the atoms are scattered out
and form a halo in momentum space. After 46 cm of free
fall, the atoms fall onto a micro-channel plate (MCP) de-
tector, which records two-dimensional positions and ar-
rival times of individual atoms. This information allows
us to determine the pair correlation function of the cloud
of scattered particles. The precision of the measurement
is limited by a finite resolution of the MCP. The resolu-
tion will be taken into account in our comparison between
the theoretical estimates and the experimental results.

B. Bogoliubov method

Since the system is elongated along the z-axis, we need
to include the description of the phase fluctuations of the
BEC. To this end, we divide the field operator into two

parts Ψ̂ = Ψ̂qc + δ̂ where Ψ̂qc describes the quasiconden-

sate and δ̂ the scattered atoms. We describe the qua-
sicondensate within Bogoliubov method in the density-
phase representation [40], where

Ψ̂qc = eiφ̂
√
n̂ = eiφ̂

√
n+ δn̂ (2)

where n(r) = 〈n̂(r)〉 is the mean density given by the
solution of the Gross-Pitaevskii (GP) equation

− ~2

2m

4
√
n(r)√
n(r)

+ V (r) + g′n(r) = µ, (3)

supplemented with the normalization condition∫
drn(r) = N . Here, the coupling strength g′ = 4π~2a′

m ,
where a′ denotes the s-wave scattering length, and

the potential V (r) is given by Eq. (1). In Eq. (2), δ̂n

and φ̂ are the density fluctuation and phase operators,
respectively, which in the Bogoliubov approximation
take the following forms

δn̂(r) =
√
n(r)

∑
ν

[
f−ν (r)âν + h.c.

]
, (4a)

φ̂(r) =
1√

4n(r)

∑
ν

[
− if+

ν (r)âν + h.c.

]
, (4b)

where “h.c.” stands for the hermitian conjugate. Here,
âν are quasiparticle annihilation operator and f±ν are
mode functions obtained via solution of Bogoliubov-de
Gennes equation. In the case of highly elongated con-
densates, it turns out that to a very good approximation

the phase operator φ̂(r) depends only on the longitudinal
z coordinate [41]. In the regime where the thermal fluctu-
ations dominate, the modes responsible for phase fluctu-
ation are highly populated, and we can approximate the
creation and annihilation operators by c-numbers [42],
i.e., âν → αν . This is done together with replacing the
quantum average over the thermal state by an average
over a thermal probability distribution, i.e.,

〈...〉 → 〈...〉cl =
∏
ν

∫
d2αν P (αν)....,

where

P (αν) =
εν

kBTsπ
exp

(
−εν |αν |

2

kBTs

)
. (5)

As a result, we can replace the operator Ψ̂qc with a func-
tion ψqc:

Ψ̂ = ψqc(r) + δ̂(r) (6)
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where

ψqc(r) =
√
n+ δn(r)eiφ(r). (7)

Here, the functions δn and φ are calculated from Eqs. (4),
with the operators replaced by c-numbers drawn from the
distribution given in Eq. (5).

We solve the GP equation (3) using the Gaussian vari-
ational ansatz of the form

n(r) =
N

π3/2σ2
rσz

exp

(
−x

2 + y2

σ2
r

− z2

σ2
z

)
. (8)

The solution, described in details in [39], is:

σr = ahor

(
1 +

√
2

π

Na′

σz

)1/4

,

(
σrσz
a2
hoz

)2

=

√
2

π

Na′

σz
,

where ahor =
√
~/mωr and ahoz =

√
~/mωz. Substitut-

ing the experimental values to the above equations we
obtain

σr ' 1.7 µm, σz ' 0.3 mm, σr/ahor ' 1.3.

Here we have also used the experimentally determined
value for the metastable helium s-wave scattering length,
i.e., a′ = 7.51 nm [43].

Due to the strong elongation of the cloud and the
low temperature only the longitudinal modes are ex-
cited. Therefore, we can approximately treat the system
as quasi-one-dimensional, and define the one-dimensional
density:

n1d(z) =

∫
dxdy n(r) (9)

and one dimensional interaction constant

g1d = g′
∫

drn2(r)(∫
drn(r)

)2 . (10)

Substituting n(r) given by Eq. (8) into Eqs. (9) and
(10), we obtain n1d ' 2× 108 atoms/m and g1dn1d/~ '
2π × 2500 Hz, where n1d(z) = n1d exp(−z2/σ2

z). Using
these values, we find the γ = mg1d/~2n1d, which is ap-
proximately equal to 2.5× 10−5, i.e., much smaller than
unity. This places us in the weakly interacting regime,
and justifies the use of the Bogoliubov method [40]. The
thermal density fluctuations and coherence length of a
uniform system take the form:√

〈δn2
1d〉

n1d
' γ1/4

√
kBTs
g1dn1d

, lφ =
~2n1d

mkBTs
. (11)

We estimate the density fluctuations and coherence
length of our system using the above formula, and ob-
tain

√
〈δn2

1d〉/n1d ' 0.09 and lφ ' 120 µm. Since the

ratio
√
〈δn2

1d〉/n1d is significantly smaller than unity, we
neglect the density fluctuations in the further analysis.
We emphasize that lφ is smaller than the longitudinal
size of the cloud but much larger than the transverse size
of the cloud 2σr.

III. QUASICONDENSATE COLLISION

We show below that the number of scattered atoms is
much smaller than the number of atoms in the counter-
propagating quasicondensates. This allows us to neglect
the impact of the scattered atoms on the quasiconden-
sate. In such a case the evolution of the classical field
ψqc(r, t) is given by the Gross-Pitaevskii equation

i~∂tψqc(r, t) =

(
− ~2

2m
4+ g|ψqc(r, t)|2

)
ψqc(r, t). (12)

Here, the interaction strength is given by g = 4π~2a/m
and a = 5.3 nm is the scattering length between two
atoms in the mF = 0 state. The initial state is:

ψqc(r, 0) ' 1√
2
ψqc(r)

(
eiQz + e−iQz

)
(13)

and describes a coherent splitting of a single cloud into
two components: the function ψqc(r) is given by Eq. (7)
and Q = mv0/~. It is convenient to factor out the rapidly
oscillating phases in time and position, and rewrite the
quasicondensate wave function in the following form:

ψqc(r, t) = ψ+Q(r, t) exp

(
iQz − i~Q

2

2m
t

)
+ ψ−Q(r, t) exp

(
−iQz − i~Q

2

2m
t

)
(14)

where ψ±Q are quasicondensate components moving with
mean velocities ±v0ez. In our situation, the momentum
width of each of the components is much smaller than
Q. Therefore, when determining the momentum density
with ψqc, we shall see two separated components. In such
a case, the slowly-varying-envelope approximation can be
used [44]. Then, the GP equation can be decomposed,
and takes the form

i∂tψ±Q =

(
∓~2

m
Q∂z −

~2

2m
4
)
ψ±Q

+g
(
|ψ±Q|2 + 2|ψ∓Q|2

)
ψ±Q.

As we shall see below the time on which the density drops
substantially is much smaller than the time needed for
the wave-packets to cross each other. Therefore during
the time important for the collision the motion along the
z direction is practically frozen. This allows us to neglect
the terms containing derivatives Q∂z. As the normaliza-
tion of each of the wave packet is the same and initially
ψ±Q(r, 0) = 1√

2
ψqc(r) the above equations turn into a

single one

i∂tψ(r, t) =

(
− ~2

2m
4+

3

2
g|ψ(r, t)|2

)
ψ(r, t), (15)

where the wave function

1√
2
ψ = ψ+Q = ψ−Q, (16)
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with the normalization condition
∫
dr |ψ(r, t)|2 = N and

initial condition ψ(r, 0) = ψqc(r).
We have found above that the quasicondensate coher-

ence length is much larger than the transverse size of
the cloud. Therefore, we expect that the expansion of
the cloud in the transverse directions is practically not
affected by its quasicondensate nature. Thus, it is in-
structive to consider expansion of the condensate, i.e., the
solution ψc(r, t) of the above Eq. (15) with the initial con-

dition ψc(r, 0) =
√
n(r). We approach the problem with

an approximate variational gaussian ansatz, described in
[39], and obtain:

ψc(r, t) '

√
N

π3/2σz(t)σ2
r(t)

exp

(
− z2

2σ2
z(t)
− ibz(t)z2

)
× exp

(
−x

2 + y2

2σ2
r(t)

(
1− iω̃t σ

2
r

ã2
hor

)
− iϕ(t)

)
, (17)

where

σ2
r(t) = σ2

r(1 + ω̃2t2),
ω̃2

ω2
r

=
1 +

√
2
π

3
2
Na
σz

1 +
√

2
π
Na′

σz

,

ϕ(t) =

(
7

4

σ2
r

ã2
hor

− 3

4

ã2
hor

σ2
r

)
arctan(ω̃t),

and ãhor =
√
~/mω̃. With the parameters of the exper-

iment, we obtain ω̃ ' 1.02ωr. This gives us the charac-
teristic time of expansion expansion τex = 1/ω̃ = 104 µs.
This time allows us to estimate the change of the phase
caused by thermal fluctuations. To this end, we con-
sider a one-dimensional uniform system and calculate
∆φ ≡

√
〈(φ(z = 0, τex)− φ(z = 0, 0))2〉; the details of

the evaluation are presented in Appendix A. There, we
find that ∆φ ' 0.14, and since it is significantly smaller
than unity, we expect that the change of phase during
the collision, caused by thermal fluctuations, is negligi-
ble. Thus, we assume that

ψ+Q(r, t) = ψ−Q(r, t) =
√

2ψc(r, t)e
iφ(z). (18)

Additionally we find the expansion time τex to be much
smaller than the time needed for the quasicondensates to
cross each other, 2σz/v0 ' 6 ms. This justifies the use of
the approximation which leads to Eq. (15).

We now make one more approximation. From the for-
mulas presented in [39], we find that the phase gradient
bz(τc)σz is much smaller than ∂zφ(z) and thus can be
neglected. Additionally, we find that σz(τex) ' σz. As a
result, in what follows, we use ψc(r, t) given by Eq. (17)
with σz(t) ' σz and bz(t) ' 0. For simplicity of the nota-
tion, we express the variational ansatz, given by Eq. (17),
decoupling its z dependence:

ψc(r, t) = ψρ(x, y, t) exp

(
− z2

2σ2
z

)
, (19)

ψρ(x, y, t) =
√
n0

σr
σr(t)

exp (−iϕ(t)) ,

× exp

(
−x

2 + y2

2σ2
r(t)

(
1− iω̃t σ

2
r

ã2
hor

))
,

where n0 = N/(π3/2σzσ
2
r).

IV. THE SCATTERED ATOMS

We now turn our attention to the description of the
scattering process. As in the experiment, we consider the
scattered atoms with velocities restricted to π

3 < θ < 2π
3 ,

where θ is the angle between velocity of the clouds and
the z axis. Thus, the average distance traveled by the
scattered atom within the cloud is approximately given
by 2σr ' 3.4 µm. This distance is much smaller than

the mean free path equal to 1/(8πa′
2
n0) ' 66 µm. As a

result, the system is in the collisionless regime and the use
of the Bogoliubov approximation to treat the scattered

atoms is adequate. The field operator δ̂, describing the
scattered atoms, undergoes the time evolution given by

i~∂tδ̂(r, t) = H0(r, t)δ̂(r, t) +B(r, t)δ̂†(r, t), (20)

where:

H0(r, t) = − ~2

2m
4+ 2g|ψqc(r, t)|2, (21)

B(r, t) = gψ2
qc(r, t). (22)

We assume that the initial state of the noncondensed
particles is vacuum [45], i.e.,

δ̂(r, 0)|0〉 = 0. (23)

Since the scattered atoms for chosen θ do not overlap
with the quasicondensates, the pair correlation function
is given by the formula

G(2) (r1, r2, T ) = 〈〈δ̂†(r1, T )δ̂†(r2, T )δ̂(r2, T )δ̂(r1, T )〉〉cl,
(24)

where we deal with quantum average over degrees of free-

dom described by the δ̂ operator and the classical average
over quasicondensate modes. In the above, T ' 0.3 s is
the time it takes the atoms to reach the MCP located
46 cm below the trapped cloud.

As the equation of motion for the field operator δ̂, given
by Eq. (20), is linear, and the quantum state is the vac-
uum, the Wick theorem can be applied. As a result, the
quantum average can be evaluated and it reads

〈δ̂†(r1, T )δ̂†(r2, T )δ̂(r2, T )δ̂(r1, T )〉

= G(1) (r1, r1, T )G(1) (r2, r2, T ) +
∣∣∣G(1) (r1, r2, T )

∣∣∣2
+ |M (r1, r2, T )|2 , (25)

where

M (r1, r2, T ) ≡ 〈δ̂(r1, T )δ̂(r2, T )〉 (26)

is called the anomalous density and

G(1) (r1, r2, T ) ≡ 〈δ̂†(r1, T )δ̂(r2, T )〉. (27)
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is a single particle correlation function of the scattered
atoms in a single realization of the quasicondensate field.

In Eq. (25), two terms are responsible for the correla-
tions: |M (r1, r2, T ) |2 and |G(1) (r1, r2, T ) |2. The term
G(1) (r1, r1, T )G(1) (r2, r2, T ) is a product of single par-
ticle densities and represents uncorrelated particles. In
the next sections, we show that the terms |M (r1, r2, T ) |2
and |G(1) (r1, r2, T ) |2 represent the correlation of parti-
cles with opposite and collinear velocities, respectively.
The appearance of correlations of particles with oppo-
site velocities (which we shall call the “opposite” corre-
lation) is due to the fact that particles are scattered in
pairs of opposite momenta. On the other hand, the cor-
relation of particles with collinear velocities (which we
shall call the “local” correlation) is a bosonic bunching

effect. Therefore, we introduce notation G
(2)
op = |M |2 and

G
(2)
loc = |G(1)|2.
To calculate the correlations, we solve the Heisenberg

equation of motion, Eq. (20), with the perturbation ap-
proach [39]. Then, the formula for the anomalous density
reads

M(r1, r2, T ) =
1

i~

∫ T

0

dt

∫
drK(r1, T ; r, t) (28)

×K(r2, T ; r, t)B(r, t),

where K(r1, t1; r2, t2) is a single body propagator of the
Hamiltonian from Eq. (21). Additionally, one obtains
a simple relation between one body correlation function
and the anomalous density

G(1) (r1, r2, T ) =

∫
drM∗ (r1, r, T )M (r, r2, T ) . (29)

In Ref. [39], we analyzed the case of two colliding con-
densates. There, we employed a semiclassical approxi-
mation for the propagator K that leads to the follow-
ing formula for the anomalous density in the momentum
space:

M(K,∆K) =
1

i~(2π)3

∫ ∞
0

dt

∫
dr

e
−i∆Kr+i ~

m

(
K2+ ∆K2

4

)
t
B̃(eK, r, t), (30)

where

B̃(eK, r, t) = B(r, t) exp (−iΦ(r, eK, t)) , (31a)

Φ(r, eK, t) =
m

~2Q

∫ ∞
−∞

ds Ven(r + seK, t), (31b)

Ven(r, t) = 2g
(
|ψ+Q(r, t)|2 + |ψ−Q(r, t)|2

)
, (31c)

and eK = K
K . Here, ψ±Q are the two counter propagating

components of the condensate. The mean-field interac-
tion 2g|ψ|2, present in the Hamiltonian H0 in Eq. (21), is
represented by the potential Ven and enters the formulas
through the phase Φ given by Eq. (31b). If we omitted
the mean-field interaction in the Hamiltonian H0, the
phase Φ would be zero.

The formulas (31) were derived for two counter prop-
agating condensates. In Appendix B, we show that they
also work in the case of quasicondensates. Inserting
Eqs. (16) and (18) into Eq. (31c), we arrive at

Ven(r, t) = 2g|ψc(r, t)|2. (32)

We now focus on the expression for B(r, t). According
to Eq. (22), we have B(r, t) = gψ2

qc(r, t). Inserting ψqc,
given by Eq. (14), we arrive at an expression with three
terms. However, among them there is only one responsi-
ble for the scattering of atoms from collision between ±Q
components. As we are interested only in this process,
we neglect the others arriving at

B(r, t) ' 2gψ+Qψ−Q(r, t) exp

(
−i~Q

2

m
t

)
= gψ2

c (r, t) exp

(
2iφ(z)− i~Q

2

m
t

)
, (33)

where we used Eqs. (16) and (18).
Finally, we note that the anomalous density in real

space is connected with the momentum space represen-
tation via the standard free propagator formula

M(R,∆R, T ) =
1

(2π)3

∫
dK d∆K ei2KR × (34)

×ei
∆K∆R

2 −i ~
m

(
K2+ ∆K2

4

)
T
M(K,∆K),

where R = (r1 − r2)/2 and ∆R = r1 + r2.

V. THE G(1) AND G
(2)
loc FUNCTIONS

We have

G
(2)
loc(r1, r2, T ) = 〈

∣∣∣G(1)(r1, r2, T )
∣∣∣2〉cl. (35)

In order to calculate G(1), it is convenient to use the
source function f description introduced in Ref. [39]. The
motivation of introducing such a function comes from
classical physics where the single particle phase-space
density W (r,k, T ) of the particles emitted from a source
takes the form:

W (r,k, T ) =

∫ T

0

dt f

(
r− ~k

m
(T − t),k, t

)
, (36)

where f(r,k, t) is the source function describing a den-
sity of particles emitted by the source in position r with
momentum ~k and in time t. Now, we use the above
equation to define f in a quantum system by assuming
that W is the Wigner distribution. Then, using the rela-
tion

G(1)

(
r +

∆r

2
, r− ∆r

2
, T

)
=

∫
dk e−ik∆rW (r,k;T ),
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we arrive at

G̃(1) (r,∆r, T ) =

∫ T

0

dt

∫
dk e−ik∆r

f

(
r− ~k

m
(T − t),k, t

)
,

where we denoted G(1)
(
r + ∆r

2 , r−
∆r
2 , T

)
by

G̃(1) (r,∆r, T ). Moreover, introducing new vari-
ables: r′ = r− ~

mk(T − t), k0 = mr
~T and ∆k0 = m∆r

~T , we
obtain

G̃(1) (r,∆r, T ) =

∫ T

0

dt

∫
dr′

(
m

~(T − t)

)3

e
−i 1

1− t
T

( ~
mk0T−r′)∆k0

f

(
r′,

k0 − mr′

~T
1− t

T

, t

)
. (37)

We now analyze the source function. In Ref. [39], we
showed that the source function is equal to:

f(r,k, t) =
2

(2π)3~2

∫ t

−t
d∆t e−i

2~k2

m ∆t ×

× B∗p(r,k, t,−∆t)Bp(r,k, t,∆t), (38)

where

Bp(r,k, t,∆t) =

∫
d∆rKf (∆r,∆t)×

×B̃
(
ek, r + ∆r +

~k∆t

m
, t−∆t

)
,(39)

and Kf denotes the free propagator. We now analyze
the above formulas in the way analogous to that pre-

sented in Ref. [39]. It is crucial to note that B̃ van-
ishes if |x + ∆x + ~kx∆t

m | is larger than σr. As k =

(k sin θ, 0, k cos θ) and k ' Q with sin θ >
√

3/2, we find
that |∆t| < ∆t0 = 2σr

v0

√
3
' 20 µs. We note that ∆t0 is the

time the scattered particle leaves the cloud. The char-
acteristic distance ∆0 =

√
~∆t0/m ' 0.56 µm present

in the free propagator Kf (x, t) ∝ exp
(

ix2

2∆2
0t/t0

)
is more

than three times smaller than σr. On the distance ∆0

and in time ∆t0, the change of the wave function ψc and
the phase Φ is not crucial and can be neglected. As a
result, from Eqs. (31a), (33) and (39), we obtain that

Bp(r,k, t,∆t) ' B̃
(
ek, r +

~k∆t

m
, t

)
exp

(
i
~Q2

m
∆t

)
.

(40)
In the formula describing the source function f , and

given by Eq. (38), we notice the presence of the term
B∗p(r,k, t,−∆t)Bp(r,k, t,∆t). According to the above
equation, it is now equal to

B̃∗
(
ek, r−

~k∆t

m
, t

)
B̃

(
ek, r +

~k∆t

m
, t

)
×

× exp

(
i
2~Q2

m
∆t

)
(41)

Substituting here B̃, given by Eqs. (31a) and (33), and
using the fact that the phase Φ is constant along ek direc-
tion, i.e., Φ(r− sek, ek, t) = Φ(r, ek, t), we find a cancel-
lation of the phase Φ in Eq. (41). Additionally, ~kz∆t

m is
maximally equal to σr. On that distance, we can neglect
the change of the phase φ(z) and, as a result, we obtain
a cancellation of the phase φ in Eq. (41). As a result, we
find that the quantity present in Eq. (41) is equal to

g2ψ2
c
∗
(
r− ~k∆t

m
, t

)
ψ2
c

(
r +

~k∆t

m
, t

)
. (42)

Consequently, we find that the source function f does
not depend on the phases Φ and φ. Due to the relation
given by Eqs. (37) and (35), the same applies to a single
particle correlation function G(1) and local part of pair

correlation function G
(2)
loc. It means that these functions

are not affected by the presence of the quasicondensate
nor by the interaction of the scattered atoms with the
atoms of the colliding clouds. Therefore, we can omit
the bracket 〈. . .〉cl present in Eq. (35), and arrive at

G
(2)
loc(r1, r2, T ) =

∣∣∣G(1)(r1, r2, T )
∣∣∣2 . (43)

We now continue with the analysis of the source func-
tion f . From Eqs. (38), (40) and (42), we find that

f(r,k, t) =
2

(2π)3~2

∫ t

−t
d∆t exp

(
−i2~(k2 −Q2)

m
∆t

)
×

g2ψ∗c
2

(
r− ~k∆t

m
, t

)
ψc

2

(
r +

~k∆t

m
, t

)
.

To proceed further, we make a series of approximations.
First, ~kz∆t

m is maximally equal to σr. As σr � σz, we
neglect the change of ψc on that distance. Second, ∆t0 is
significantly smaller than the collision time. Therefore,

we approximate
∫ t
−t ≈

∫∞
−∞. Third, as |k −Q| � Q, we

approximate k2 − Q2 ' 2Qδk, where δk = k − Q, and
additionally approximate ~k∆t

m ' ~Q∆t
m ek. As a result,

the above formula takes the form

f(r,k, t) =
mg′

2

4π3~3Q

∫
dδr exp (−i4δkδr)×

ψ∗c
2 (x− δr sin θ, y, z, t)ψc

2 (x+ δr sin θ, y, z, t) ,

where we introduced δr = ~Q∆t
m and used ek =

(sin θ, 0, cos θ). Inserting into the above ψc given by
Eq. (19) and performing the integral over δr, we obtain

f(r,k, t) =
D1

(1 + ω̃2t2)3/2 sin θ
e
−2 z

2

σ2
z
−2 x

2+y2

σ2
r(t) ×

× exp

[
−2

(
δkσr(t)

sin θ
− x

σr(t)
ω̃t

σ2
r

ã2
hor

)2
]
,(44)

where D1 =
√
πmg2n2

0σr
4
√

2π3~3Q
= 2

√
2√
π
n2

0a
2σrã

2
hor

ω̃
Q . This for-

mula gives an intuitive understanding of the source func-
tion. One might wonder if the above function can be
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derived within a classical model, where one considers a
collision of two clouds of atoms. It turns out that it is
indeed the case, when one takes the Wigner function as
the phase-space distribution of the colliding clouds [39].

We find that, if σr � σz,
mσz
~T �

1
σr

and ω̃T � 1, the

formula for the G̃(1) function, given by Eq. (37), can be
approximated as:

G̃(1)

(
~k0

m
T,

~∆k0

m
T, T

)
'
( m
~T

)3

exp

(
−i ~
m
k0∆k0T

)
∫ T

0

dt

∫
dr′ exp

(
i∆k0

(
r′ − ~

m
k0t

))
f (r′,k0, t) . (45)

With the experimental parameters, we verify that the
conditions given above are satisfied, and this formula can
be applied to our system.

Now, we proceed to the analysis of the density of scat-
tered particles. From Eq. (45), we obtain

%(k) = 〈G̃(1)

(
~k
m
T, 0, T

)
〉cl = G̃(1)

(
~k
m
T, 0, T

)
'
( m
~T

)3
∫ ∞

0

dt

∫
dr f (r,k, t) .

Inserting f from Eq. (44) into the above, we obtain

%(k) =
( m
~T

)3 1

sin θ
h

(
δk

sin θ

)
, (46)

where h is given by

h(δk) = D2

∫ ∞
0

dt̃√(
1 + t̃2

σ4
r

ã4
hor

) (
1 + t̃2

)
exp

−2
δk2σ2

r(1 + t̃2)(
1 + t̃2

σ4
r

ã4
hor

)
 , (47)

and the parameters D2 = D1

(
π
2

)3/2
σ2
rσz/ω̃ =

π
Qn

2
0a

2σ3
r ã

2
horσz and t̃ = ω̃t.

Now we turn our attention to the normalized two-body
correlation function measured in the experiment, and de-
fined as

g
(2)
loc(∆r,∆z)− 1 = (48)

=

∫
d∆̃r w(∆r− ∆̃r)

∫
V

drG
(2)
loc(r1, r2, T )∫

d∆̃r w(∆r− ∆̃r)
∫
V

drG(1)(r1, r1, T )G(1)(r2, r2, T )
,

where r1 = r + ∆̃r/2, r2 = r − ∆̃r/2 and V
denotes a volume where the spherical angles r =
r(sin θ cosφ, sin θ sinφ, cos θ) are bounded by π

3 < θ <
2π
3 . The function w(r) is given by

w(r) =
1

(2π)3/2σzdσ2
rd

e
− x

2+y2

2σ2
rd

− z2

2σ2
zr , (49)

and describes the detector resolution for two-particle de-
tection. The transverse resolution is known to be σrd =

350 µm [46]. The vertical resolution σzd has never been
precisely measured, but from Ref. [4], we can place an up-
per limit σzd < 60 µm. Due to the cylindrical symmetry

of the system, g
(2)
loc depends only on ∆r =

√
∆x2 + ∆y2

and ∆z. Therefore, we denote it as g
(2)
loc(∆r,∆z).

VI. THE G
(2)
op FUNCTION

In this section, we consider the object

G(2)
op (∆R, T ) =

∫
dRG(2)

op (R,∆R, T )

=

∫
dR 〈|M(R,∆R, T )|2〉cl, (50)

where

G(2)
op (R,∆R, T ) = 〈|M(R,∆R, T )|2〉cl, (51)

with M given by Eq. (34). The analysis of G
(2)
op is per-

formed in Appendix D. Below, we summarize the main
results of our analysis.

The crucial step made in the calculation of

G
(2)
op (∆R, T ) is the use of ψc given by the variational

approximation and presented in Eq. (19). Due to a
Gaussian form of the ansatz and the cylindrical sym-
metry of the system, B(r, t), given by Eq. (33), decom-

poses into B(r, t) = Bρ(
√
x2 + y2, t)Bz(z). Addition-

ally, the ansatz allows an analytical formula for the phase
Φ(r, eK, t) in Eq. (31b).

It turns out that the gradient of the quasicondensate
phase ∂zφ(z) is much larger than ∂zΦ. This leads to
an approximation where Φ(r, eK, t) is replaced by its

value averaged over z, denoted by Φ̃(x, y, eK, t). As a

result, B̃(eK, r, t), given by Eq. (31a), decomposes into

B̃(eK, r, t) = B̃ρ(eK,
√
x2 + y2, t)Bz(z). This again al-

lows a decomposition of the G
(2)
op (∆R, T ):

G(2)
op (∆R, T ) '

∫ ∞
0

dt

∫
dΩKG

(2)
z (∆Z, T )

×G(2)
ρ (∆R, eK, t),(52)

where ∆R =
√

∆X2 + ∆Y 2. Note, G
(2)
z does not depend

on eK or t, which follows directly from the lack of this
dependence in the Bz function.

For non-interacting particles and after sufficiently long
expansion time, the cloud has the shape given by its
velocity distribution. As a consequence, all the spatial
correlations will be given by their momentum counter-
parts. Due to a large free-fall time, we might expect
that this situation occurs also in our system, i.e., that

G
(2)
op (R,∆R, T ) in position space is proportional to G

(2)
op

in momentum space. Indeed, in Appendix C we show
that this is indeed the case for the ∆X, ∆Y and R vari-
ables. However, for the variable ∆Z, the time T is not
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sufficiently long to obtain the momentum space result.
Instead, we arrive at

G(2)
z (∆Z, T ) =

∫
dKz G

(2)
z

(
∆Z − ~T

m
Kz, 0

)
ρ(Kz),

where ρ(Kz) =
2πlφ

1+(Kzlφ/2)2 is the velocity distribution

directly related to the quasicondensate velocity distribu-

tion and G
(2)
z (∆Z, 0) = exp

(
−∆Z2

2σ2
z

)
is the initial corre-

lation function. Here, we clearly notice the classical for-
mula for the propagation of the initial correlation. For
very small T , the correlation function is simply given by

the spatial dependence of the cloud exp
(
−∆Z2

2σ2
z

)
. For

T → ∞, it will be given by the velocity distribution ρ.
For the experimental parameters, we have ~T

mlφσz
' 0.14,

which effectively leads to small broadening of the initial

spatial distribution. The gaussian function fitted to the
distribution takes the form

G(2)
z (∆Z, T ) ' (2π)2σz

σ̃z
exp

(
−∆Z2

2σ̃2
z

)
(53)

where σ̃z ' 1.17σz. Due to smallness of the parame-
ter ~T

mlφσz
, we notice practically negligible impact of the

presence of the quasicondensate on G
(2)
op (∆R, T ).

The ∆R correlations are related to the ψρ function [see
Eq. (19)], describing the expansion of the wave function

in transverse directions, and to the phase Φ̃. These cor-
relations are not affected by the presence of the quasicon-

densate. The formulas for G
(2)
ρ (∆R, eK, t) are presented

in Appendix D.
Finally, we note that the pair correlation function mea-

sured in the experiment takes the form

g(2)
op (∆R,∆Z) =

∫
d∆̃R w(∆R− ∆̃R)G

(2)
op (∆R, T )∫

d∆̃R w(∆R− ∆̃R)
∫
V

dRG(1)(r1, r1, T )G(1)(r2, r2, T )
(54)

where r1 = R + ∆̃R/2, r2 = −R + ∆̃R/2, ∆R =√
∆X2 + ∆Y 2, and V denotes a volume where the spher-

ical angles r = r(sin θ cosφ, sin θ sinφ, cos θ) are bounded
by π

3 < θ < 2π
3 . Therefore, we have all the ingredients to

calculate the local and oposite correlations.

VII. RESULTS

To make a comparison between theory and experiment,

we first examine g
(2)
op (0, 0), the amplitude of the opposite

correlation, given by Eq. (54), and using Eqs. (52), (53),
(D9) and (46).

In this case, the resolution, σzd has a negligible effect
on the width and will therefore be ignored. We obtain

g
(2)
op (0) − 1 ' 0.087. This is in poor agreement with the

experimental value, g
(2)
op (0)−1 = 0.16. However the value

of g
(2)
op (0, 0)− 1 depends crucially on the total number of

particles in the quasicondensate, and the experimental
value of the total number of particles has an uncertainty
of about a factor of 2. Therefore, we seek the value of N

which makes the theoretical and experimental g
(2)
op (0, 0)

agree. We find N ' 7 × 104, which is within the ex-
perimental uncertainty. From this value for N , we can
deduce σr/ahor ' 1.65 µm, σz ' 0.26 mm, ω̃ ' 1.02ωr,
lφ = 92 µm, σ̃z ' 1.23σz and Φ0 ' 0.85. We remind

the reader that ahor =
√

~/mωr is a harmonic oscillator
length.

With the found value of N , we now calculate the other
interesting characteristics. We start with the radial den-
sity profile, given by Eqs. (46) and (47). In Fig. 1, we

plot the function h(δk) normalized to unity. We find
h(δk) half-width of about 0.08Q. The radial profile was
not measured in Ref. [11], but similar experiment, de-
scribed in Ref. [37], has also found a value 0.08Q for this
width.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

δk/Q

h(
δ
k)
/h
(0
)

FIG. 1. The radial density profile h(δk)/h(0) of the collision
sphere as a function of the radial momentum in units of Q.
The half width roughly equals 0.08Q.

Next, we move to g
(2)
op (∆R,∆Z), the spatial depen-

dence of the opposite correlation function. In Fig. 2, we

plot g
(2)
op

(~T
m ∆KR, 0

)
and g

(2)
op (0, ~Tm ∆KZ) together with

the experimental points. While leaving the collision vol-
ume, the atoms interact with the quasicondensate atoms
via the mean-field potential 2g|ψqc(r, t)|2 [present in the
H0(r, t) given by Eq. (21)]. To see the influence of this
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-0.4 -0.2 0.0 0.2 0.4

1.00

1.05

1.10

1.15

1.20

ΔKR/Q

g o
p(2

) (
ℏ
T
Δ
K

R
/m

,0
)

-0.2 -0.1 0.0 0.1 0.2

1.00

1.05

1.10

1.15

ΔKZ/Q

g o
p(2

) (
0,
ℏ
T
Δ
K

Z
/m

)

FIG. 2. The function g
(2)
op

( ~T
m

∆KR, 0
)

(upper panel) and

g
(2)
op

(
0, ~T

m
∆KZ

)
(lower panel) together with the experimen-

tal points as a function of ∆KR/Q and ∆KZ/Q, respectively.

The red dashed line shows g
(2)
op with the interaction term

2g|ψqc(r, t)|2 present in Eq. (21) neglected.

interaction on the correlation function, we also plot g
(2)
op

with 2g|ψqc(r, t)|2 neglected [red dashed line in the upper
panel of Fig. (2)]. The correlation in the radial direction
(along ∆KR) measured in the experiment is quite close
to our calculation, and we obtain slightly better agree-
ment by including the mean-field. The width in the radial
direction is given by the width in velocity of the collid-
ing condensates in that direction, that is, proportional to
1/σr, the inverse of the radial condensate size.

In the case of the longitudinal (∆KZ) correlations, the
theoretical width is smaller than the experimental one
but not much. Unlike in the radial direction, the longi-
tudinal width is approximately proportional to the size of
the condensate in that direction. This is because for this
correlation function, the observation does not take place
in the far field (see Appendix C). The remaining discrep-
ancies may be due to the use of variational approach.
The ∆KZ correlations are mostly given by the spatial
size of the quasicondensate. The variational ansatz de-
creases the spatial width in the z-direction compared to
the true GP solution, and therefore overestimates the

∆KZ width. Thus, using the GP solution the discussed
difference would be smaller.

Finally, we examine the local correlation g
(2)
loc(∆r,∆z).

From Eqs. (44), (45), (46), (47) and (49) we numerically

calculate g
(2)
loc function. The local correlations are nar-

rower than the opposite ones, and, therefore, the detector
resolution is not negligible. The vertical resolution σzd is
not well known, but we can find its value by fitting the
data shown in Fig. 3(lower panel). We find σzd = 41 µm
or approximately 0.0015v0 consistent with the limit set

in Ref. [4]. In Fig. (3), we plot g
(2)
loc

(~T
m ∆kr, 0

)
and

g
(2)
loc

(
0, ~Tm ∆kz

)
together with the experimental measure-

ments.

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Δkr/Q

g lo
c(2

) (
ℏ
T
Δ
k r
/m

,0
)

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

0.9
1.0
1.1
1.2
1.3
1.4
1.5

Δkz/Q

g lo
c(2

) (
0,
ℏ
T
Δ
k z
/m

)

FIG. 3. The function g
(2)
loc

( ~T
m

∆kr, 0
)

(upper panel) and

g
(2)
loc

(
0, ~T

m
∆kz

)
(lower panel) together with the experimen-

tal points as a function of ∆kr/Q and ∆kz/Q, respectively.

The theoretical correlation function is in good agree-
ment with the experimental result in the longitudinal di-
rection while in the radial direction it is larger by a factor
of 1.5. This is a marked improvement over the work of
Ref. [32], in which we estimated much smaller radial and
longitudinal widths. This improvement is due to the in-
clusion of the condensate expansion in the problem. As
the condensate expands, the density declines to the point
where the collision rate becomes negligible. Therefore,
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the effective duration of the collision is shorter, and this
in turn increases the energy uncertainty of the collision
products. The energy uncertainty broadens the corre-
lation function relative to that calculated in Ref. [32],
and it is still this uncertainty that determines the ra-
dial size of the correlation, rather than the spatial width
of the source. In the case of the z-direction, and under
the experimental conditions, the correlation width is lim-
ited by the inverse of the size of the source, and in part
also by the detector resolution. The calculated amplitude

g
(2)
loc(0, 0) is somewhat smaller than the measured one. As

in the opposite correlation case, this may be due to the

use of the variational ansatz. The fact that g
(2)
loc(0, 0) < 2

comes from the finite detector resolution. In the case of
perfect detector resolution, i.e., σrd = σzd = 0, we have

g
(2)
loc(0, 0) = 2.

VIII. SUMMARY

We have provided an analytical treatment of the pro-
duction of atom pairs during the collision of two BEC’s
via four-wave mixing and compared the results to an ex-
periment. The calculation represents a significant im-
provement over our previous analytical calculation [32],
and the agreement with the experiment is as good as
an earlier numerical treatment [37]. Compared to the
numerical approach, the present calculation has the ad-
vantage that we can identify the physical processes which
affect the widths and amplitudes of the correlation func-
tions. Compared to the earlier analytic treatment, we are
now able to take into account the expansion of the con-
densate during the collision. The decrease in the density
caused by the expansion is the mechanism which gov-
erns the collision time. Therefore, the uncertainty in the
energy of the pairs is more accurately accounted for es-
pecially in the collinear correlation functions.

We are also able to clearly identify the role of the far-
field condition, i.e., the condition that the time of flight
be longer than 2ml2/~, where l is a characteristic size in
the collision volume. Using the correlation length in the
quasi-condensate as a characteristic size, the experiment
is not in the far field for observation is the longitudinal
z-direction. Thus, the correlation along z for opposite
pairs does not reflect the correlations in momentum, but
rather more nearly the spatial correlations. For collinear
pairs, the local correlation effect is simply a variant of
the Hanbury-Brown-Twiss correlation, and the far field
condition plays no role. For example, earth is not in the
optical far field of typical stars in our galaxy. We thus
find, as expected, that apart from broadening by the de-
tector resolution, the local, longitudinal correlation width
is a measure of the size of the source. The local correla-
tion result also allows us to infer the detector resolution,
which is in agreement with other upper limits we have
already set.

We also took into account the interaction of the scat-
tered atoms with the colliding clouds’ mean-field poten-

tial. However, this did not affect the results much.
Finally, our treatment has included the fact that, in

the experiments, the colliding clouds were quasiconden-
sates, having a correlation length in the longitudinal di-
rection smaller than the condensate itself. This feature,
however, has not proved crucial for understanding the
observations.
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Appendix A: Temporal phase diffusion of the
quasicondensate

It follows directly from Ref. [40] that

〈(φ(z = 0, t)− φ(z = 0, 0))2〉

caused by the thermal fluctuations read

〈(φ(z = 0, t)− φ(z = 0, 0))2〉

=
1

n1dπ

∫
dk nk

εk
Ek

sin2

(
εkt

~

)
where Ek = ~2k2/2m, εk =

√
Ek(Ek + 2g1dn1d) and

nk = (exp (εk/kBT )− 1)
−1

Calculating the above for
the parameters of the system considered in the paper
and taking the expansion time τex = 1/ω̃ we obtain√
〈(φ(z = 0, τex)− φ(z = 0, 0))2〉 ' 0.14.

Appendix B: Derivation of the anomalous density
formula

In this Appendix we show that the approximate treat-
ment introduced in [39] in the case of collision of con-
densates applies also for our system The crucial step of
the analysis presented in [39] lies in the approximate so-
lution to the single particle scattering problem presented
in Appendix C3 of [39]. There we deal with equation(

− ~2

2m
4+ Ven(r, t)− ~2k2

2m

)
ϕ(r, t) = 0

with the boundary condition given by plane wave eikr.
In the above Ven is given by Eq. (32). Following [39] we
introduce φ through relation ϕ = eikr+iφ(r). Substituting
this form into the above equation and expanding φ in
series φ = φ(0) + φ(1) + . . . we obtain

2k∇φ(0) = −2m

~2
Ven

2k∇φ(1) = −
(
∇φ(0)

)2

+ i4φ(0)
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with formal solution

φ(j)(r, t) = − 1

2k

∫ 0

−∞
dsWj (r + sek, t) (B1)

where W0 = 2m
~2 Ven and W1 =

(
∇φ(0)

)2 − i4φ(0). We

clearly see that φ(0) depends on the Ven potential given
by Eq. (32). We substitute to this equation ψc given by
variational ansatz and presented in Eq. (19). As a result
in the case ek = ex, t = 0 and z = 0 we obtain

φ(0)(x, y, 0) = −2mgn0σr
~2Q

exp

(
− y

2

σ2
r

)
×
√
π

2

(
1 + Erf

(
x

σr

))
where n0 = N/(π3/2σ2

rσz). Inserting experimental val-
ues we obtain φ(0)(∞, 0, 0) ' 1.5. We insert the above
solution into Eq. (B1) and obtain the analytic form of
φ(1)(x, y, 0). We find that φ(1)(x, y, 0) increases to infin-
ity with the increase of x. This is well known phenomena
in semiclassical approximation caused by the presence
of caustics. Anyway as stated in [39] we need the ap-
proximate solution only in the space where the cloud is
present. This gives us roughly x < 2σr. In this part of
space we find the maximal value of φ(1) equal to 0.15.
As this value is smaller than unity and also much smaller
than φ(0) we neglect it. Thus we have

ϕk ' exp
(
ikr + iφ(0)(r)

)
.

In [39] using the above formula we derived expression for
the anomalous density given by Eqs. (30) and (34).

Appendix C: Far field conditions

In this Appendix we discuss far field conditions for G
(2)
op

function. By far field we mean, that the correlation func-
tion in position space is given by the one in momentum
space, i.e.

G(2)
op (r1, r2, T ) ∝ G(2)

op (k1,k2, T )

with k1,2 = m
~T r1,2. This always happens for the freely

expanding gas (which is the case analyzed here) for suf-
ficiently long time T . Here we want to find how large T

has to be. First we analyze G
(2)
op = |M |2 function for the

condensate case. We have

M(r1, r2, T ) =
1

(2π)3

∫
dk1dk2 exp (ik1r1 + ik2r2)

exp

(
−i ~

2

2m
(k2

1 + k2
2)T

)
M(k1,k2, T )

It is convenient to change the variables R = r1−r2

2 ,

∆R = r1 + r2, K = k1−k2

2 , ∆K = k1 + k2. Notice
that |∆R| � |R| and |∆K| � |K| as we deal here with

opposite momentum correlations. Than the above takes
the form

M(R,∆R, T ) =
1

(2π)3

∫
dKd∆K exp (i2KR) (C1)

exp

(
i
∆K∆R

2
− i ~

m

(
K2 +

∆K2

4

)
T

)
M(K,∆K, T )

Following [39] we take the simple but realistic model of
anomalous density

M(K,∆K, T ) = M0(T ) exp

(
− (K −Q)2

2σ2
K

)
exp

(
−∆K2

r

2σ2
Kr

+
∆K2

z

2σ2
Kz

)
(C2)

where we take σKr ≈
√

2
σr

, σKz ≈
√

2
σz

, σK ≈ (Qa2
hor)

−1.

Inserting Eq. (C2) into Eq. (C1) we arrive at

M(R,∆R, T ) = M0M1(R, T )M2(∆R, T ) (C3)

M1(R, T ) =

∫
dK

(2π)3/2
exp

(
i2KR− i~K

2

m
T

)
× exp

(
− (K −Q)2

2σ2
K

)

M2(∆R, T ) =
1

(2π)3/2

∫
d∆K exp

(
i
∆K∆R

2

)
× exp

(
−i~∆K2

4m
T − ∆K2

r

2σ2
Kr

+
∆K2

z

2σ2
Kz

)
As the above integrals are of gaussian form they can be
integrated analytically to get

M1(R, T ) =
QσK
2iR

1√
1 + i

2~σ2
KT

m

exp

(
−i~Q

2

m
T

)

× exp

(
2iQR− 2(R− v0T )2σ2

K

1 + i
2~σ2

KT

m

)
and

M2(∆R, T ) =

(
1 + i

~σ2
KrT

2m

)−1(
1 + i

~σ2
KzT

2m

)−1/2

× exp

− (∆X2 + ∆Y 2)σ2
Kr

8
(

1 + i
~σ2
KrT

2m

) − ∆Z2σ2
Kz

8
(

1 + i
~σ2
KzT

2m

)
 .

In Eq. (C1) we notice two independent propagators for
∆R and R. The condition to be in the far field for ∆Kx,y

is
~σ2
KrT
2m � 1. For ∆Kz it is

~σ2
KzT
2m � 1 and for K is

2~σ2
KT
m � 1.
Analyzing the above derivation we may additionally

read the condition to be in the “near field,” i.e., when
~σ2
Kr,Kz,KT

2m � 1. Then the correlations are T indepen-
dent. We note that in the case σKr � σKz the ∆Kx,y

correlation may reach the far field, where as ∆Kz may
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be still in the near field. If we consider the condensate
regime of our system and substitute the approximate

values (see [39]) σKr ≈
√

2
σr

, σKz ≈
√

2
σz

, σK ≈ 1
Qa2

hor
,

T = 0.3s we find

2~σ2
KT

m
' 100

~σ2
KrT

2m
' 1.6× 103 ~σ2

KzT

2m
' 0.06

These results give the above described case.
The above was derived for the condensate collision

case. Still we can use it in the quasicondensate case. The
σKr and σKz present in Eq. (C2) are directly connected
to the momentum widths of the initial wave packets [39].

In the condensate case it was σKr ≈
√

2
σr

, σKz ≈
√

2
σz

. In

the quasicondensate case we can take σKz ≈ 1/lφ. As
lφ � ahor this does not change the value of σK [39].
Therefore in the quasicondensate as in the condensate
case the far field is reached for ∆Kx,y and K variables.

In the ∆Kz variable we obtain
~Tσ2

Kz

2m ' 0.16 which shows
that this correlation is not in the far field.

Appendix D: The calculation of G
(2)
op function.

In Appendix C we show that in the experiment the far
field is reached in the case of ∆X, ∆Y and R variables.
In such a case the anomalous density given by Eq. (34)
takes the form

M(R,∆R, T ) = exp

(
i

(
K2 +

∆K2
x + ∆K2

y

4

)
~T
m

)
( m

i~T

)5/2 1

2
√
π

∫
d∆Kz

exp

(
i∆Kz

∆Z

2
− i~∆K2

z

4m
T

)
M(K,∆K) (D1)

where ∆X = ~∆Kx
m T and ∆Y =

~∆Ky
m T , R = ~K

m T .
From Eqs. (30), (31a) and (33) we obtain

M(K,∆K) =
g

i~(2π)3

∫ ∞
0

dt

∫
drψ2

c (r, t) exp (−i∆Kr)

exp

(
i
~
m

(
K2 −Q2 +

∆K2

4

)
t+ 2iφ(z)− iΦ

)
. (D2)

As written in the main body of the paper in the experi-

ment the measured quantity is G
(2)
op (R,∆R, T ) averaged

over position R i.e.

G(2)
op (∆R, T ) =

∫
dRG(2)

op (R,∆R, T )

=

∫
dR 〈|M(R,∆R, T )|2〉cl.

Substituting Eqs. (D1) and (D2) into the above we obtain

G(2)
op (∆R, T ) '

( m
~T

)2 mQ

~3

1

4(2π)6

∫ ∞
0

dt

∫
dΩK

〈
∣∣∣∣∫ d∆Kz exp

(
i∆Kz

∆Z

2
− i~∆K2

z

4m
T

)∫
dr exp (−i∆Kr) gψ2

c (r, t) exp (2iφ(z)− iΦ)

∣∣∣∣2〉cl (D3)

where dR =
(~T
m

)3
dK and we used the Dirac delta ap-

proximation described in [39].

To continue with further calculation of the G
(2)
op func-

tion we now analyze the phase Φ. Due to the axial sym-
metry of the system we may take eK = (sin θ, 0, cos θ).

As σr � σz and sin θ >
√

3
2 we approximate

Φ(r, eK, t) '
1

sin θ
Φ(r, ex, t)

=
1

sin θ

m

~2Q

∫ ∞
−∞

ds 2g|ψc(x+ s, y, z, t)|2

where we used Eqs. (31b) and (32). Inserting into the

above the variational ansatz solution of ψc given by
Eq. (19) we obtain

Φ(y, z, θ) ' 1

sin θ

2gm

~2Q

n0σ
2
r

σr(t)

√
π exp

(
− y2

σ2
r(t)
− z2

σ2
z

)
(D4)

We find that the gradient of the phase φ(z) is much larger
than ∂zΦ. This makes us to approximate the integral
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present in Eq. (D3) as

∫
dz exp (−i∆Kzz) exp

(
− z

2

σ2
z

+ 2iφ(z)− iΦ(y, z, θ, t)

)
≈ exp

(
−iΦ̃(y, θ, t)

)∫
dz exp

(
−i∆Kzz −

z2

σ2
z

+ 2iφ(z)

)
.(D5)

In the above we used the variational ansatz wave-function
ψc given by Eq. (19). We also introduced Φ̃(y, θ, t) which
is Φ(y, z, θ, t) averaged over z with the condensate density

exp
(
− z2

σ2
z

)
:

Φ̃(y, θ, t) =

∫
dzΦ(y, z, θ, t) exp

(
− z2

σ2
z

)
∫

dz exp
(
− z2

σ2
z

) .

Substituting Φ given by Eq. (D4) we obtain:

Φ̃(θ, y, t) ' Φ0
1

sin θ
√

1 + ω̃2t2
exp

(
− y2

σ2
r(t)

)
(D6)

where Φ0 = 2gmn0σr
~2Q

√
π
2 ' 1.07.

Inserting the approximation given by Eq. (D5) into
Eq. (D3) we notice the presence of the function defined
as

Mz(∆Z, T ) =

∫
d∆Kz exp

(
i∆Kz

∆Z

2
− i~∆K2

z

4m
T

)
∫

dz exp

(
−i∆Kzz + 2iφ(z)− z2

σ2
z

)
.

We notice that the above can be rewritten as

〈|Mz(∆Z, T )|2〉cl =

∫
dKzW

(
∆Z − ~T

m
Kz,Kz

)
(D7)

where

W (∆Z,Kz) = 2π

∫
d∆z exp

(
−iKz∆z −

∆Z2 + ∆z2

2σ2
z

)

×〈exp

(
2iφ

(
∆Z + ∆z

2

)
− 2iφ

(
∆Z −∆z

2

))
〉cl

is a Wigner function. Using the local density approxima-
tion we have

W (∆Z,Kz) ' exp

(
−∆Z2

2σ2
z

)
ρ(Kz) (D8)

where

ρ(Kz) = 2π

∫
d∆z exp (−iKz∆z)

×〈exp

(
2iφ

(
∆z

2

)
− 2iφ

(
−∆z

2

))
〉cl.

The above can be calculated using the formulas for 1D
uniform system [47] arriving at

ρ(Kz) =
2πlφ

1 + (Kzlφ/2)2

where lφ is the thermal coherence length given by

Eq. (11). Introducing the function G
(2)
z (∆Z, T ) Eq. (D7)

can be rewritten as

G(2)
z (∆Z, T ) =

∫
dKz G

(2)
z

(
∆Z − ~T

m
Kz, 0

)
ρ(Kz)

where we used Eq. (D8) andG
(2)
z (∆Z, 0) = exp

(
−∆Z2

2σ2
z

)
.

From Eqs. (52), (D5), (19), (D3) and (53) we obtain

G(2)
ρ (∆R, eK, t) = C

π

(1 + t̃2)
√

1 + t̃2
σ4
r

ã4
hor

exp

−1

2
∆K2 cos2 φ

1 + t̃2

1 + t̃2
σ4
r

ã4
hor

 (D9)

∣∣∣∣∫ dỹ exp

(
−i∆K sinφỹ − iΦ(θ, σrỹ, t̃/ω̃)− ỹ2

1 + t̃2

(
1− it̃ σ

2
r

ã2
hor

))∣∣∣∣2

where ∆K = mσr∆R
~T , t̃ = ω̃t, ỹ = y/σr and

C =
( m
~T

)2 mQ

~3

1

4(2π)6
(gn0)

2
σ4
r .

=
( m
~T

)2 1

16π4

~Q
m
n2

0a
2σ4
r

In the above we used standard parametrization eK =
(sin θ cosφ, sin θ sinφ, cos θ). It is important to mention

that in the experiment the averaging over the solid angles
ΩK is performed only over part of the sphere i.e. for
π
3 < θ < 2π

3 [11].

We also calculate the above neglecting the phase Φ.
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Than it can be integrated arriving at

G(2)
ρ (∆R, eK, t) =

Cπ2(
1 + t̃2

σ4
r

ã4
hor

) exp

−1

2
∆K2 1 + t̃2

1 + t̃2
σ4
r

ã4
hor


(D10)
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[13] T. Wasak, P. Szańkowski, M. Trippenbach, and J.
Chwedeczuk, Quantum Information Processing 15, 269
(2015).

[14] Tomasz Wasak, Augusto Smerzi, and Jan Chwedeńczuk,
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