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Abstract. The properties and behaviour of a Ring Rydberg
Composite are explicated. This system consists of a ring
of ground state atoms centered on a Rydberg atom, whose
electron elastically scatters off the ground state atoms. We
transform the electronic Hamiltonian into a discrete tight-
binding representation in which the on-site energies and long-
range hopping between sites are controlled and mediated by the
Rydberg electron. From this new representation, which to a large
extent enables an analytic treatment, we derive scaling laws and
analytic expressions for the wave functions and eigenspectrum.
The interface between ring and Rydberg geometries leads to a
range of rich properties which can be tuned as a function of ring
size, number of scatterers, and principal quantum number.

1. Introduction

Since the early days of the quantum theory, the in-
teraction of excited Rydberg atoms with ground state
atoms has provided crucial insight into various are-
nas of atomic physics, including plasma formation,
collisional processes, and fundamental atomic proper-
ties [1–6]. With the advent of ultracold Rydberg ex-
citations in Bose-Einstein condensates, a subfield de-
voted to the study of long-range Rydberg molecules,
known colloquially as trilobite molecules, has devel-
oped [7–9]. Experiments have resolved the vibrational
spectra of Rydberg dimers, trimers, and so forth, and
have sparked significant theoretical interest from the
perspective of many-body physics [10–24]. At the same
time, attention has shifted towards experiments which
use the Rydberg atom to probe the surrounding con-
densate and establish a “microscopic laboratory” to
study electron-atom and ion-atom scattering [25–32].

Recently, we introduced the Rydberg Composite:
a Rydberg atom with principle quantum number
ν coupled to a large number of ground state
atoms (scatterers) a well-defined regular or irregular
arrangement, such as can be attained in a dense optical
lattice or in a typical ultracold gas, respectively. The
Rydberg Composite combines the high degeneracy,
characteristic eigenfunctions, and scaling behavior
of the Coulomb interaction with the engineered

or structured environments typical of the solid
state. Ref. [33] details the general structure of
Rydberg Composites involving a one, two, and three-
dimensional scatterer arrangements in a regular lattice.

Here, we formulate the Ring Rydberg Composite,
a ring of scatterers surrounding the Rydberg atom.
This system has many desirable features, e.g. rich
tunability and the possibility to address transport
processes. Most importantly, we show how it
can be described analytically to a large extent
after formulating it using a tight-binding lattice
Hamiltonian. This describes the hopping of a
“trilobite” excitation across the ring sites, with
on-site energies, dispersion relations, and inter-site
interactions mediated by the electron and tunable
by varying the ring size, number of scatterers, or
level of Rydberg excitation. We focus on the
characterization of the key features of this system and
the development of analytic scaling behavior in order to
build a foundation for future work utilizing the unique
possibilities of this system. An experimental signature
of immediate interest is the dependence of the ground
state energy as a function of M .

2. Rydberg Composites in the trilobite basis

In atomic units, the electronic dynamics of a Rydberg
Composite is governed by the Hamiltonian

H0 = −
∑
lm

|νlm〉〈νlm|
2(ν − µl)2

+ 2π

M∑
i=1

as(Ri)|~Ri〉〈~Ri|. (1)

The first term describes the bare Rydberg atom in

terms of its eigenstates 〈~r|νlm〉 = uνl(r)
r Ylm(r̂), where

m = −l, . . . , l and l = 0, . . . ν − 1 are the magnetic
and orbital angular momentum quantum numbers,
respectively. The Hamiltonian is truncated to a single
principal quantum number ν, and in the following
we neglect for simplicity the few non-zero quantum
defects µl of an alkali atom. The second term describes
the interaction between the Rydberg electron and M
scatterers placed at arbitrary positions ~Ri, i = 1, ...,M .
This interaction, following the seminal work of Fermi,
is approximated by a contact potential parametrized by
the s-wave scattering length as [5]. The Hamiltonian
of Eq. 1 neglects all other atom-atom and atom-ion
interactions, and furthermore we assume a frozen gas
scenario in which the scatterers do not move [33].

Eq. 1 takes on a more appealing form when
transformed into the so-called “trilobite” basis [12, 13,
16, 19, 20, 22], whose states are the individual trilobite
wave functions associated with each scatterer. The
trilobite state |J〉 for a scatterer at position ~Rj is
defined

|J〉 =

ν−1∑
l=0

m=l∑
m=−l

〈νlm|~Rj〉|νlm〉. (2)
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The basis is not orthonormal since the states have the
overlap

〈J |J ′〉 =
∑
lm

〈~Rj |νlm〉〈νlm|~Rj′〉 (3)

= 〈~Rj |J ′〉.

The matrix representation of H0 within this basis is

HJJ ′ = 2π

M∑
{K,L}=1

as(Ri)〈J |K〉−1〈K|L〉〈L|J ′〉

= 2πas(Rj)〈J |J ′〉, (4)

which accounts for the requisite overlap matrix. Since
we consider only a single ν-manifold, we set the
constant energy shift of the first term ofH0 to zero. For
the ring geometry we will employ below, the scattering
length scales out of the matrix elements since it does
not depend on any relative angles between scatterers.
However, to facilitate the development of Rydberg
scaling laws we ignore the non-trivial ν-dependence of
the scattering length and set a(Rj)→ 1.

3. Eigenspectrum of the Ring Rydberg
Composite

We now specialize to the geometry of a Ring
Composite having M coplanar scatterers equidistant
from the Rydberg core and arranged at the azimuthal
angles ϕj = 2πj

M , j = 1, 2, ...,M . The basis
transformation used above allows us to recast the
Rydberg Hamiltonian into an effective tight binding
Hamiltonian operating on the states |j〉 of a 1D chain
with periodic boundary conditions,

H =

M∑
j=1

Ej |j〉〈j|+
M∑
j=1

∑
j′ 6=j

Vjj′ |j〉〈j′|. (5)

We distinguish the trilobite state |J〉, associated with

a scatterer position ~Rj , from the tight-binding state
|j〉 at the same position by upper/lowercase font,
respectively. Crucially, the tight-binding states |j〉 are
orthogonal – 〈j|j′〉 = δjj′ – while the overlap matrix
between trilobite states, denoted Ojj′ = 〈J |J ′〉, is
non-zero. The tight-binding and trilobite states at
a given site are related by the transformation |J〉 =∑
j′ (Ojj′)

1/2 |j′〉. The non-orthogonality of trilobite
states leads to this non-unitary transformation matrix
and the “on-site” energies Ej and interactions Vjj′ ,
which are obtained directly from Eq. 3:

Ej =
1

4r20ν
4

∑
lm

Flmu
2
νl(2ν

2r0), (6)

Vjj′ =
1

4r20ν
4

∑
lm

Flmu
2
νl(2ν

2r0)e−
im2π
M (j−j′). (7)

  

Figure 1. A diagram of the setup. The scatterers (red spheres)
lie a distance R = 2r0ν2 from the Rydberg core (blue sphere);
their angular separation is 2π/M . The altitude of the black
spheres is given by Re(ckj), the on-site trilobite amplitudes,
defined in Eq. 9. For two different r0 values, the lower panels
depict characteristic trilobite wave functions associated with the
top site using a density plot. The on-site energy is fixed by the
amplitude of trilobite wave function at the top site, while the
intersite interactions are proportional to the amplitude of this
wave function at each site (blue disks).

Since the Rydberg radius scales with principal
quantum number as ν2 and the largest classical turning
point equals 2ν2, we map the ring radius onto the
scaled variable r0 ∈ [0, 1] following R = 2ν2r0. The
spherical harmonics evaluated in the z = 0 plane define
the factor Flm,

Flm =

{
(l+1/2)

22l
(l−m)!(l+m)!

[( l+m2 )!( l−m2 )!]
2 l +m even

0 l +m odd.
(8)

The Ej are independent of j because we have chosen an
identical scattering length for all scatterers and placed
them all at the same radial position; elimination of
either of these constraints can be used to vary the on-
site energies.

The kth eigenstate of the Ring Composite
Hamiltonian H is written in this site basis as

|Ψk〉 =
∑
j

ckj |j〉; ckj =
1√
M
e−

2πikj
M . (9)

The index k = −M/2, . . . ,M/2 − 1 if M is even and
is k = −(M − 1)/2, . . . , (M − 1)/2 if M is odd. Fig.
1 contains a schematic of the ring geometry, using red
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spheres to depict the scattering sites and black spheres
to illustrate the coefficients ckj . The lower panels
show how the on-site energy Ej is determined by the
amplitude of the trilobite wave function at that site,
〈~Rj |J〉, while the interaction between sites |j〉 and |j′〉,
Vjj′ , is determined by the off-site amplitude 〈~Rj′ |J〉.

Finally, the eigenenergies can be computed by
applying the Hamiltonian to these eigenstates, giving

Ek(r0) =
M

4r20ν
4

∑
lm

Flm[uνl(2ν
2r0)]2δmmodM,k. (10)

Since Flm depends only on |m|, the Kronecker delta
implies that Ek = E−k. The eigenenergy mean,
1
M

∑
k Ek, is equivalent to the eigenenergy for a single

scatterer E1, since

1

M

∑
k

Ek = M−1 TrH = E1, (11)

using the fact that the on-site energies Ej are
independent of j (see Eq. 6).

3.1. Hopping: long-range interactions Vjj′

The interactions Vjj′ determine the dispersion relation
of the eigenvalues Ek and can be tuned to realize
various paradigmatic interactions as a function of ring
size r0. In Fig. 2 we plot the potential Vjj′ for
several characteristic values of r0. At large r0 the
interaction is short-ranged, decaying rapidly to zero
after only three sites. As r0 decreases, the interaction
becomes longer-ranged, eventually spanning half of
the interaction sites by r0 ≈ 0.7, and oscillates with
a larger amplitude. The oscillations, damped by
the overall decay of the interaction potential, call to
mind the RKKY coupling [34]. By r0 ≈ 0.52, the
potential on the opposite side of the ring is non-
zero, and for smaller values, such as r0 ≈ 0.45 or
r0 ≈ 0.31, the largest interaction is actually between
sites on opposite sides of the ring. This system
therefore provides a physical realization of curious
“infinite”-range interactions. The spatial frequency of
sites is typically incommensurate with the oscillation
frequency of the continuum interaction, and hence the
sites pseudo-randomly sample the interaction. This
provides opportunities to study both uncorrelated and
correlated long-range interactions. Note that the
symmetry in ±m leads to real interactions despite the
explicit appearance of a complex exponential in Eq. 7.

4. Scaling laws: dependence on M , ν, and r0

We now derive the scaling behavior of the eigenvalues
Ek as a function of M , ν, and r0. Fig. 3 demonstrates
the utility of these scaling laws by comparing two
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0.8

1.0

r 0

0.2 0.4 0.6 0.8
φ/π

Figure 2. The dimensionless interaction potential, V1j′/E1, is
plotted as a function of ϕ. Only half of the possible range is
shown since the interaction is symmetric about ϕ = π. The
black curves show the continuum interaction (M → ∞) and
the alternating red circles / orange squares show the discrete
values at each site for M = 2ν − 1; we use ν = 30. Each curve
corresponds to a different r0 value. The blue lines give the zero-
interaction baseline for each r0.

principal quantum numbers, ν = 20 and ν = 40,
and two M values, M = 11 and M = 2ν − 1. The
eigenenergies have been scaled by a factor r0ν

4, and
have been plotted as negative values to call to mind the
original “trilobite” potential curves [7]. After scaling,
the overall amplitudes of the eigenenergy curves are
constant at a coarse level in r0, M , and ν.

To derive the linear scaling with r0, we note
that the uνl radial functions oscillate in r0 with an
amplitude that grows approximately as

√
r0. We

exploit this overall dependence to find that the
eigenenergies are proportional to r−10 . As a second
general principle, we note that for each l, uνl decreases
exponentially beyond the l-dependent classical turning
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(a)M=2ν-1
-0.3

-0.2

-0.1

-
r 0
E
k(
r 0
)ν
4

(b)M=11-0.2

-0.1

-
r 0
E
k(
r 0
)ν
4

0.3 0.5 0.7 0.9
r0

Figure 3. Scaled eigenenergy curves for two different principal
quantum numbers, ν = 40 (black, dashed) and ν = 20 (red), and
for two different M values, (a) M = 2ν − 1 and (b) M = 11.

point, which has a maximum value of 2ν2 (r0 = 1) for
l = 0 states and a minimum value of ν2 (r0 = 0.5)
for l = ν − 1 states. This implies two key results: the
contributions from various Rydberg states |νlm〉 can
effectively vanish as a function of r0 depending on the
radial extent of that basis state, and conversely, if a
given eigenstate is dominated by contributions from
states with high m and l, its eigenenergy will decrease
exponentially as a function of r0. The effects of these
results become apparent in the discussion of Fig. 5 in
Sec. 6.

The ν4 scaling is clear from inspection of Eq.
10: there is a ν−4 factor in front of Eq. 10 and
the uνl functions inside the summation contribute an
additional (ν−1)2. The double sum over l and m
contributes another factor ν2, and hence the total
scaling is ∝ ν−4. The eigenenergies are approximately
constant in magnitude between different M values,
since the factor MδmmodM,k is effectively unity. When
M > ν − 1, the Kronecker delta function can be
replaced by δmk; when M > 2ν − 1, and therefore
the range of allowed k values exceed |k| = ν − 1,
this Kronecker delta condition cannot be satisfied since
|m| ≤ ν − 1. It is therefore useful to explicitly define a
modified form of the spectrum in Eq. 10 which is valid
only for M ≥ ν,

EM>ν
k (r0) = Θ(ν − |k|) M

4r20ν
4

ν−1∑
l=|k|

Flk[uνl(2ν
2r0)]2,

(12)
where Θ(x) is the Heaviside step function. The
spectrum saturates whenM > 2ν−1: the eigenenergies

freeze as a function of r0 and simply scale by the factor
M

2ν−1 . The Ring Composite therefore has a maximum
of 2ν − 1 non-zero eigenenergies, twice the number
available for a linear 1D array of scatterers [33].

5. Energy dispersion at fixed r0

Before examining the variation of the eigenenergies
with r0, it is helpful to examine the dispersion
relation Ek at fixed r0, since this can be related to
known results from a tight-binding chain with nearest-
neighbour interactions [35, 36]. As r0 → 1 the Vjj′

of Eq. 7 become increasingly short-range, as seen in
Fig. 2. This is especially true for lower values of M ,
which have larger angular separations. We therefore
approximate the Vjj′ by a nearest neighbor interaction
of strength V and average on-site energy E ; this model
Hamiltonian has the dispersion relation Enn(k) = E −
2V cos

(
πk

M/2+1

)
. In Fig. 4(a) we plot Ek(r0 = 1) and

Enn(k) for M = ν − 1 and M = 2ν − 1. E is the
average of the exact eigenvalues, while V is fit to the
k = 0 energy. As surmised, the dispersion relation
for the lower M value is almost perfectly described by
Enn(k). The results for M = 2ν−1, while qualitatively
similar, differ because of the presence of next-nearest
neighbour terms in Vjj′ ; this is consistent with studies
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Figure 4. Dispersion curves −r0Ek(r0)ν4 for ν = 30 and three
different r0 values: (a) r0 = 1, (b) r0 = 0.8, and (c) r0 = 0.5.
The black dots are for M = 2ν − 1 and the red dots are for
M = ν− 1; the orange and grey curves are the dispersion curves
in the nearest-neighbor approximation Enn(k).
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(a)M=ν-1=29
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(d)M=2(ν-1)=58

0.3 0.5 0.7 0.9
r0

Figure 5. Scaled eigenenergies for ν = 30. Each panel corresponds to a different M . The dashed orange curve in panel (b) shows
the M = 2 result, and the dashed red curve in panel (d) shows the M = 1 result. Note the difference in energy axes between the top
and bottom panels. The inset in (d) shows the global maxima Emax as a function of M using red squares for even M values and
black dots for odd M values.

of 1D lattice systems with longer-ranged interactions
[35,36]. Another difference between these two different
M values is number of vanishing eigenvalues when k is
large. The allowed k values are higher for M = 2ν − 1
than for M = ν − 1, and following Eq. 12, these high
k states are superpositions of high-l radial Coulomb
functions which are exponentially small for r0 well
beyond the classical turning point.

At a smaller ring radius, as shown in Fig. 4(b), the
interaction is more long-ranged for both M values. The
nearest-neighbor dispersion is still accurate for low k
values, but the oscillatory long-range couplings lead to
additional features in the dispersion relation. Finally,
when r0 becomes even smaller (here in Fig. 4(c) it is
r0 = 0.5) and the interaction potential is very long-
range, the approximate dispersion Enn(k) is totally
invalid. Instead, we see that the dispersion curve for
M = 2ν − 1 splits into two bands, as also seen in Fig.
3, while the M = ν − 1 curve has a singularly deep
minimum at k = 0. Both of these features will be
discussed in more detail in the following section. As a
final comment, note that – in contrast to systems with
purely short-range interactions – the band edges do
not lie, in general, at k = 0 or at the largest k values,
but vary as a function of r0 due to the variation of
interactions and on-site energies

6. M-dependence of the eigenenergies

The scaling laws derived previously show that, on
a coarse scale, the properly scaled eigenenergies are
comparable across differing ν, r0, and M values. The
four panels in Fig. 5 confirm this: the eigenenergies

for the four M values shown all oscillate as a function
of r0, reflecting the radial oscillations of the Rydberg
wave function, and the majority of the scaled energies
lie in the interval [−0.2,−0.1]. The M = 1 eigenenergy,
shown with the red dashed curve in Fig. 5(d), is the
mean eigenenergy for all cases (see Eq. 11). The radial
envelopes of the large k eigenenergy curves, which
grow exponentially small at large r0 as mentioned
in the previous section, are apparent in panels (b),
(c), and (d). This phenomenon does not occur in
(a) since the allowed k values are not large enough.
An additional universality of these results is that, as
mentioned previously, the eigenenergies cease to vary
as M increases beyond M = 2ν− 1. Beyond this point
the curves in Fig. 5(d) are universal, only stretching
by an overall factor of M/(2ν − 1).

We now investigate the trends and unique features
at certain M values which are not scale-invariant.
The first key feature is the pronounced clustering of
eigenenergies around two bands oscillating out of phase
with one another, seen in panels (b), (c), and (d). In
fact, this clustering occurs for all even M values; the
simplest case is given by the M = 2 eigenenergies
shown as dashed orange curves in Fig. 5(c)). When
M is odd the situtation is more complex. For M < ν,
this clustering does not occur, as exemplified in panel
(a). Once M ≥ ν, the eigenenergies for both odd and
even M split into three main groupings, as in panel
(b). Two of these groupings resemble the alternating
bands of the M = 2 eigenenergies, regardless of the
parity of M . The third grouping is deeper in energy
and, for even M , splits again into two intertwined
clusters. This does not occur for odd M , as in panel
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(b). As M increases further the populations of the
groupings change and more states fall into the first two
groups, until all eigenenergies exhibit these mirroring
oscillations as seen in panels (c) and (d). These twin
bands are also visible in Fig. 4(c).

The second dominant feature is the existence of a
remarkably deep Ek(r0) curve at specific values of M ,
visible in panels (a) and (d) as well as for k = 0 in the
M = ν − 1 dispersion plot in Fig. 4(c). We label this
curve Ek′(r0), and its maximum value Emax. In Fig.
5(d) this curve is particularly pronounced, peaking
at almost three times the magnitude of any other
energies. The inset of 5(d) shows that Emax grows,
although not monotonically, as M increases from 1 to
ν − 1. The maxima for even M values are roughly
equal to or larger than the nearby odd M values. For
2(ν − 1) ≥ M > ν, Emax grows monotonically when
separated into distinct even or odd curves as a function
of M . The maxima for even M are much larger in
amplitude and deepen at a faster rate than maxima
for odd M . This progression is shown in greater detail
in Fig. 6, where we plot Ek′(r0) for many M values,
increasing from 1 at the bottom of the figure to 61 at
the top. The radius r0 ranges from 0.2 to 1 from left to
right. The amplitude of the low-M oscillations is much
larger when M is even than when it is odd, consistent
with the splitting of the two clusters discussed above.
Emax is, with a few exceptions, found at ring radii close
to r0 = 0.5.

This behaviour is explained by considering the
ability of the Rydberg wave function to adapt to
the scatterer geometry, as the deepest energy shift is
directly proportional to the overlap between the wave
function and scatterer positions. For M = 2(ν − 1),
where the maximum k value is |k| = ν − 1, Eq. 12
reveals that this state involves only a contribution
from the circular Rydberg state having l = m =
ν − 1. This state has exactly 2(ν − 1) lobes lying in
a plane and a radial wave function which is peaked
at r0 = 0.5, and it therefore perfectly matches the
scatterer geometry. If two scatterers are removed,
the ideal Rydberg basis function is the nearly circular
state with l = m = ν − 2, which has 2(ν − 2)
lobes around the circle and again matches the angular
frequency of the scatterers perfectly. The radial wave
function is not as well localized radially as before,
and hence there is a corresponding decrease in the
energy shift. This logic explains the steady growth
in Emax as M increases from ν to 2(ν − 1), as well
as the difference between odd and even M values, as
an odd M is incommensurate with the even number
of wave function lobes. However, this breaks down
for the addition of just one extra scatterer to reach
M ≥ 2ν − 1: the Rydberg state, having a maximum
of 2ν − 2 angular nodes, cannot simply add another

Figure 6. The curves Ek′ (r0) as a function of r0, which
increases from 0.2 to 1 along the horizontal axis, for each M ,
which increases from 1 to 62 along the vertical axis. We use
ν = 30. Local maxima, Emax, are marked by spheres.

angular node to match this scatterer geometry. The
much poorer overlap between the circular state and
the scatterer geometry leads to a sharp reduction
in the energy shift. In Fig. 5(c) we can see that
the deepest energy curve still has the characteristic
envelope of a circular state radial function, but due to
this poor overlap this energy is only slightly different
from the others rather than dramatically deeper. This
pronounced asymmetry in energy shift around the peak
value for M = 2(ν − 1) scatterers should be large
enough to observe experimentally [37].

7. Conclusions

We have formulated and characterized the Ring
Rydberg Composite, utilizing the transformation
from the usual basis of Rydberg states into the
trilobite site basis to link this system to a versatile
class of tight-binding lattice Hamiltonians. These
possess a diverse range of interactions and dispersion
relations, ranging from those described by the
well-known tight-binding Hamiltonian with nearest
neighbor hopping to less well-known cases involving
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long-range correlated or uncorrelated, RKKY-type,
and even infinite-range, are possible. The Ring
Composite could be coupled to an environment, driven
by external fields, or change dynamically by relaxing
the frozen gas assumption. The dispersion relations
could be modified by introducing static or motional
disorder into the scatterer locations, by coupling with
additional rings of scatterers, mixing more than one
atomic species together, or including spin-dependent
scattering channels.

We have focused on the theoretical promise of
such a system, and here only briefly comment on
its experimental realization. The recent progress in
trapped Rydberg atoms and spatially designed trap
arrays [38–41] suggest that construction of such a
composite in, for example, a tweezer array, is feasible
in the future. A two-dimensional optical lattice with
small lattice spacing and controllable filling could also
approximate a ring geometry. Alternatively, circular
neutral atom traps or lattice potentials, motivated
by other theoretical proposals (e.g. [42, 43]), have
been created, although currently at larger sizes than
desirable here [44–48].
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A S 2007 Opt. Express 15 8619–8625

[45] Sherlock B E, Gildemeister M, Owen E, Nugent E and Foot
C J 2011 Phys. Rev. A 83(4) 043408

[46] Zimmermann B, Mueller T, Meineke J, Esslinger T and
Moritz H 2011 New Journal of Physics 13 043007

[47] Morizot O, Colombe Y, Lorent V, Perrin H and Garraway
B M 2006 Phys. Rev. A 74(2) 023617

[48] Houston N, Riis E and Arnold A 2008 Journal of Physics
B: Atomic, Molecular and Optical Physics 41 211001


	1 Introduction
	2 Rydberg Composites in the trilobite basis 
	3 Eigenspectrum of the Ring Rydberg Composite
	3.1 Hopping: long-range interactions Vjj' 

	4 Scaling laws: dependence on M, , and r0
	5 Energy dispersion at fixed r0
	6 M-dependence of the eigenenergies
	7 Conclusions

