PHYSICAL REVIEW E 101, 043310 (2020)

Semiautomatic construction of lattice Boltzmann models

Dominic Spiller
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Burkhard Diinweg
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
and Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia

M (Received 25 March 2020; accepted 6 April 2020; published 27 April 2020)

A crucial step in constructing a lattice Boltzmann model is the definition of a suitable set of lattice velocities
and the correct assignment of the associated weights. For high-order models, the solution of this problem requires
anontrivial effort. This paper outlines the functioning of a publicly available Python script which has been written
to assist researchers in that task. The speed of sound c; is considered as a parameter, which can, within limits, be
chosen at will. Under this premise, the Maxwell-Boltzmann constraint equations are a system of linear equations
to determine the weights and hence amenable to numerical solution by standard linear algebra library routines.
By suitable contractions, the tensor equations are mapped to a set of equivalent scalar equations, which simplifies
the treatment significantly. For a user-supplied set of velocity shells, the software first checks if a solution
for the weights exists and returns it if it also happens to be unique. In such a case, the software also calculates
the range of ¢ values that yield positive weights. Standard models like D3Q19 with a well-defined special ¢
value then result as limiting cases where one of the weights vanishes. In the case of an infinite set of solutions,
the user may find one particular solution by supplying a ¢, value and then minimizing one or several weights
within the framework of standard linear programming. Some examples illustrate the feasibility and usefulness
of the approach. A number of models that have been discussed in the literature are nicely reproduced, while the

software has also been able to find some new models of even higher order.

DOI: 10.1103/PhysRevE.101.043310

I. INTRODUCTION: GENERAL BACKGROUND
AND DEFINITION OF THE PROBLEM

The lattice Boltzmann (LB) method [1-5] can nowadays
be viewed as a mature and well-established method to solve
the equations of motion of fluid dynamics. Briefly, the method
is based upon a regular lattice, each of whose sites 7 at
time ¢ contains a finite set of populations n;(7,). The index
i is associated with a corresponding finite set of velocities
(or lattice speeds) ¢;. This set is chosen commensurate with
the symmetry of the lattice. The velocities are used for the
streaming step of the algorithm, where n;(7, t) is, within one
time step h, moved to a new site ¥/ = ¥ + hé;:

ni(?—}—hE,-,t +l’l) S I’l,'(?,l‘). (1)

In other words, the velocities must be chosen in such a way
that they carry the populations from one site to another (and
not to some “interstitial site”). Interactions are modeled by

*duenweg @mpip-mainz.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

2470-0045/2020/101(4)/043310(15)

043310-1

an additional collision step, where A;(7,t) is the so—called
“collision operator,” such that the full update rule [the so-
called lattice Boltzmann equation (LBE)] is given by

ni(F +héi 1t +h) = mi(F, 1) + Ai(7, 1). 2

The populations are usually identified with the mass densities
associated with their corresponding velocities, such that the
total mass density p at the local site is given by

p(F, 1) =Y ni(F,1). 3)

Similarly, the momentum density j is given by

JE 0= m 08 = p(F, i(F, 1),)

where #(7,t) is the local streaming velocity. The collision
operator is then constructed in such a way that it locally
conserves the mass density,

Y o Ai=0, 5)

as well as the momentum density,

Z A = 0. (6)

Published by the American Physical Society

https://orcid.org/0000-0001-7769-5865
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.043310&domain=pdf&date_stamp=2020-04-27
https://doi.org/10.1103/PhysRevE.101.043310
https://creativecommons.org/licenses/by/4.0/

DOMINIC SPILLER AND BURKHARD DUNWEG

PHYSICAL REVIEW E 101, 043310 (2020)

An additional conservation law for the kinetic energy may
be added if the method is intended to not only simulate
isothermal hydrodynamics, but also heat transport.

In what follows, we will assume that the lattice is a simple
cubic lattice in d spatial dimensions. We will also use natural
units, where both the lattice spacing as well as the time step i
are set to unity.

The standard and most popular version of the LBE is based
upon a linearized Boltzmann equation [6,7]. In terms of a
“cookbook recipe” it may be described as follows: One first
obtains the local conserved quantities p and j (and @ = f/ 0),
which are then used to calculate a set of local equilibrium
populations:

4 2
2cy 2c?

ﬁ-Ei ﬁ-az M2
n?q(,o,ﬁ)zw,-,o(1+ > +()) (7)

N

Here ¢y denotes the (isothermal) speed of sound, while the
coefficients w; are a set of positive weights associated with
the velocities ¢;. For symmetry reasons, these weights must
take the same value within a velocity shell. Here a shell is
defined as the equivalence class of all lattice speeds that can
be mapped onto each other by one of the symmetry operations
of the lattice’s point group; see also Sec. II C. Furthermore, we
require the moment conditions

S w=1, ®)
Zi: w;& =0, 9)
> wi-c,-ac,»ﬂ = 284, (10)
i WiCiaCipciy = 0, (11)

Z WiCiaCigCiy Cis = Ce(8upbys + 8uySps + Susdpy), (12)

1

where Greek letters denote Cartesian indexes, for which the
Einstein summation convention is implied. It should be noted
that Eqgs. (9) and (11) are valid automatically for symmetry
reasons. Similarly, the only aspect of Eq. (10) that does
not follow automatically from symmetry is the value of the
prefactor of the unit tensor on the right-hand side (rhs). In
contrast, Eq. (12) is less trivial: Not only is there a need to
adjust the prefactor c¢? on the rhs, but we also need to ensure
that the fourth-rank tensor is isotropic: From cubic symmetry
alone, the form of the rhs is not guaranteed at all—rather one
expects an additional term k484p,5, Where 84p,5 is one for all
indexes being the same, and zero otherwise. Therefore, one
needs to adjust the coefficients in such a way that «4 vanishes.
The well-known D3Q19 model [7] is one possible solution
of this problem: Here the velocities on the three-dimensional
cubic lattice comprise the three shells with 5,-2 =0,1,2 (1
velocity + 6 velocities + 12 velocities = 19 velocities), and
the weights are given by w; = 1/3, 1/18, 1/36, respectively,
for the three shells. For this model, the speed of sound takes
the value ¢2 = 1/3.

Via straightforward calculation one then shows that the
equilibrium populations according to Eq. (7) satisfy analogous

moment conditions:

> = p, (13)
i
> e =, (14)

anqciaciﬁ = ,ocfzsaﬁ + puqug. (15)
It should be noted that the model implies the thermodynamics
of an ideal gas. If m denotes the mass of a gas particle, then
the equation of state is given by

p= LT, (16)
m

where p is the thermodynamic pressure, kg Boltzmann’s
constant, and 7' the absolute temperature. Since the speed of
sound is given by ¢ = dp/dp, itis clear that pc? in Eq. (15) is
indeed just the pressure, such that the whole rhs of Eq. (15) is
just the Euler stress occurring in the Navier-Stokes equation.
Furthermore, we note that, for an ideal gas which is globally
at rest, the kinetic energy of a gas particle, in units of kg7, can
be written as

= —, a7

where 0 is the particle velocity.
After obtaining the equilibrium populations as discussed,
one then constructs a linearized collision operator

Ai=—Y Ly(n;—n), (18)
j

where the coefficients L;; encode details about the dissipative
processes in the system (i.e., viscous damping in isothermal
hydrodynamics). Via a Chapman-Enskog expansion (see, e.g.,
Ref. [5] for details) one then shows that for small Mach
numbers (i.e., ignoring terms of order (u/ ¢s)?) Navier-Stokes
dynamics is recovered in the continuum limit.

Considering the continuum statistical mechanics of the gas
at rest (i = 0), the velocity distribution of the particles is
given by the Maxwell-Boltzmann distribution

=2
F@) = (2c2) ™ exp (-%) (19)

In analogy to Egs. (8) to (12) we can therefore similarly
consider the velocity moments

/d"ﬁf(ﬁ) =1, (20)
/ddﬁ f@)v =0, 21
/ d f(D)vavp = 28up, (22)
/d"?; f@)vavpv, =0, (23)

f A f(D)vavpv,vs = F(8updys + 8uySps + 8asbpy), (24)

which means that we can write the moment conditions
Egs. (8)—(12) for the coefficients w; in the compact form of

043310-2

SEMIAUTOMATIC CONSTRUCTION OF LATTICE ...

PHYSICAL REVIEW E 101, 043310 (2020)

so-called “Maxwell-Boltzmann constraints” (MBCs),
> wiciaCip .. iy = /a’dﬁf(i)')vavﬁ LUy, (25)

for all tensor ranks up to rank four.

If we ignore the details of the collision operator, and also
problems of stability, accuracy, staggered invariants, etc., then
we may therefore say that the construction of a standard LB
model is tantamount to the two steps:

LB1: Find a suitable set of velocities ¢;; and

LB2: calculate the weights w;, based upon satisfying
Eq. (25), which is therefore seen to lie at the heart of the
process.

Of course, it is possible to solve problems LB1 and LB2
merely with paper-and-pencil work. However, already for the
D3Q19 model this is a task that can no longer be viewed as
completely trivial. Furthermore, we should take into account
that there is a growing trend in the community [8-14] to
consider higher-order LB models, which means, in the present
context, the study of larger velocity sets with suitably adjusted
weights, such that Eq. (25) is satisfied for even higher-rank
tensors than just fourth order. Except for the goal to obtain
a better degree of isotropy, which is of course desirable as
such, there are also cases where the physics dictates such
higher-order models. One example is thermal transport, where
the hydrodynamic equation of motion for the energy density
contains a term o, such that the expansion of 7} in powers
of u needs to be carried to higher than second order, which in
turn means that also higher-order velocity moments appear in
the theory [15]. Even for isothermal flows, it has been demon-
strated that the improved isotropy properties, which result
from a larger velocity set, significantly help in the removal of
artifacts, in particular in problems where rotational symmetry
plays a crucial role [16,17]. Yet another example is the study
of isothermal gas-liquid systems within the framework of
a density-functional approach with a smeared-out interface.
Here the interface is modeled by a gradient-square term in
the free energy functional, such that a third-order gradient of
density occurs in the Navier-Stokes equations as an interfacial
driving force. Therefore, such a system requires a Chapman-
Enskog expansion up to third order [18] and, concomitantly,
correct MBCs up to sixth-rank tensors. These issues shall not
be further discussed here. We are rather concerned with the
solution of LB1 and LB2 as such, just as a mathematical
problem, which we wish to solve in a fairly general fashion
with maximum use of a computer and minimum paper-and-
pencil work, since the latter is both cumbersome and error-
prone, in particular, for high-order models.

It turns out that the problem is most suitable for solution
on the computer if we consider ¢? not as some “magic
number” (like ¢2 = 1/3) resulting from the analysis, but rather
as a parameter that can (within limits) be chosen freely at
will. This additional degree of freedom requires at least one
additional velocity shell, compared to models like D3Q19
with a fixed and prescribed value of ¢2. At first glance, this
might be viewed as an unnecessary complication; however,
the advantage of this treatment is that in this way the problem
becomes strictly linear, such that standard library routines of
linear algebra become applicable. Furthermore, there are cases

where the physics of the problem anyway makes it desirable
to have ¢? available as a free parameter: Since the equation
of state is given by p = pc?, one can implement a nontrivial
equation of state by making ¢? a parameter that depends on
the local density. Finally, it should be noted that models with
“magic” c; values like D3Q19 can be derived very easily from
the more general treatment: The “magic” cg is just the value
that causes the weight of the additional shell to vanish, which
means that this shell simply does not occur in the thus-reduced
model.

The purpose of the present paper is to derive an algorithm
to treat the solution of LB1 and LB2 numerically. We have
developed a script which implements these considerations
in Python [19] and which is publicly available [20]. It has
been written in such a way that it runs both under Python
2.7 as well as 3.5. The present paper may therefore also be
viewed as the documentation of the software. The nontrivial
aspects of linear algebra are taken care of by utilizing well-
established routines from the NumPy [21,22] package. As
far as we understand, and which seems to be consensus in
the community [9], there is no known method to find a
suitable (smallest) set of lattice velocities with simple a priori
criteria; rather one has to choose a set (essentially by trial and
error) and then check if this allows for a solution of LB2.
This is precisely what the script does: It asks the user for
defining a set of shells and then uses that set for analysis. We
mainly focus on the case where LB2 has one and only one
solution (“minimal” models). This is in spirit quite similar
to the work of Philippi er al. [9], and also of Shan [13,14],
however with significantly reduced mathematical complexity.
Those cases where the problem has no solution whatsoever
are obviously discarded. There are also cases where there
are infinitely many solutions. These cases are not analyzed
in a comprehensive fashion, but only by reduction to a
special case, where ¢ is given. From there, a unique set
of weights is determined by solving a linear programming
problem which aims at the minimization of some particular
weight, or even several of them. The script is able to treat
arbitrary spatial dimensions, and an arbitrary maximum tensor
rank.

At this point, we would like to emphasize that of course a
large fraction of what has been presented so far, and will be
presented in the following sections, is not new. The central
importance of Eq. (25) has been appreciated by numerous
authors, and a significant fraction of them refers to it not in
terms of MBCs but rather in terms of Gaussian integration—
while the mathematical problem as such is of course identical,
regardless of nomenclature. Second, the underlying linear
structure of the problem, and last not least its relation to linear
programming, is also well known, and has, most notably, been
exploited previously in the work by Shan [13,14]. As far as
we are aware, Ref. [14] is so far the most extensive study on
the problem, with models that are isotropic up to tensor rank
eight. What is new about our work is (i) the implementation
in terms of publicly available software, (ii) a novel approach
to recast the tensor equations in terms of scalar equations by
contraction with random tensors (see Sec. II), and (iii) the
systematic application of numerical linear algebra, without
any complicated group theory. Beyond a perfect reproduction
of the results of Ref. [14], see Appendix B, we are also able to

043310-3

DOMINIC SPILLER AND BURKHARD DUNWEG

PHYSICAL REVIEW E 101, 043310 (2020)

find models with a yet higher degree of isotropy up to tensor
rank ten.

The remainder of this paper is organized as follows: Sec-
tion II is devoted to a detailed derivation and description of
the algorithm that has been implemented. Section III then
demonstrates, via a few examples, what kind of results can
be obtained with the software very easily. After that, Sec. IV
provides a brief summary.

Appendix A briefly discusses how the obtained models can
be used to construct the equilibrium populations for nonva-
nishing flow velocities, using either the Hermite-polynomial
expansion or the entropic approach, which are demonstrated
to be asymptotically equivalent in the limit of full isotropy.
This part does not present new results but is rather intended as
background information to complete the picture; experienced
readers can probably skip that part. Appendix B provides
details on how we used our software to check the results of
Ref. [14], and Appendix C some numerical details about the
“test” mode of our script, where the set of weights is not
calculated but rather checked whether it indeed satisfies the
MBCs.

II. DERIVATION OF THE ALGORITHM

A. Linear algebra

Let us consider the central relation
d= 1=
Z W;CigCif - - - Ciy = /d Uf(V)vgvg ... vy. (26)
i

This is a tensor identity for tensors of rank m, where m is the
number of ¢; factors on the left-hand side (lhs), or the number
of ¥ factors on the rhs. For odd m, the relation is trivially satis-
fied for symmetry reasons. We wish to satisfy the relation for
all m with m < M, where M is a user-supplied even number.
The rank m = 0 is just the normalization condition for the
weights. The weight wy, corresponding to the velocity ¢; = 0,
occurs only in that condition but not the other equations. It is
therefore sufficient to first solve the problem for the weights
with nonzero ¢;, restricting attention to even m > 2, and then
adjust wy at the end to satisfy normalization.

If we denote the number of shells (excluding the zero
velocity shell) with Ng, enumerate these shells with an index
s=1,..., N, and take into account that the weights are
identical within a shell, then the MBCs can be written as

Ns
ZwSZcmc,ﬁ...ciV = /ddﬁf(ii)vavﬁ...vy, 27
s=1 ies

to be satisfied for tensor ranks m = 2,4, ..., M.

We note that on both sides the tensors are obviously
fully symmetric under arbitrary exchange of indexes. This
property alone reduces the complexity (or dimensionality) of
the problem enormously. However, a further reduction occurs
because of geometric symmetry. The rhs is clearly invariant
under reflection, and any rotation in continuous space, while
the lhs is invariant under the cubic group. For the time being,
we view c? as a fixed (“‘user-supplied”’) number, and therefore
we may consider the integrals on the rhs as evaluated, such
that the rhs is simply a known numerical tensor.

We now consider a tensor as a vector in tensor product
space. From symmetry (see also Ref. [10]), we know that
both sides can be expanded in terms of elementary tensors as
follows:

(1) m=2:
ths = - - - 8up, (28)
Ihs = - - - 8up: (29)
2) m=4:
ths = -+ (84p8y5 + 80y 05 + Susdpy)
= - (8apdys + perm.), (30)
Ihs = - -+ (8480ys + perm.) + - - - Sopys3 (€29)
3) m=6:
ths = - (8,48,58,¢ + perm.), (32)
lhs = --- (aaﬂ8y5801 + perm')
+ + - (Bapysor + perm.)
+ - SaﬂySUI; (33)

and so on. Here the § tensors are generalized Kronecker
symbols, which are one if all indexes are the same and zero
otherwise. The symbol “perm.” indicates a suitable set of
index permutations such that the expression under consider-
ation is properly symmetrized (like explicitly indicated for
m = 4). The prefactors “...” are the coefficients which may
in principle be calculated by evaluating Gaussian integrals for
the rhs, or lattice sums for the lhs. We may then consider
the tensors 844, 6488y5 + perm., 8upy s, €LC. as basis vectors in
tensor space and the coefficients “...” as vector components.
From this, we see that the rhs is always an element of a
one-dimensional space, while the dimensionality of the space
corresponding to the lhs depends on the tensor rank m: For
m =2, we get a one-dimensional space, for m =4 a two-
dimensional space, for m = 6 a three-dimensional space, and
SO on.

To discuss the “and so on” in more detail, let us first
introduce a short-hand notation and simply write (2) for
a second-rank Kronecker tensor, (2,2) for the symmetrized
product of two second-rank Kronecker tensors, (4) for a
fourth-rank Kronecker tensor, etc. We may then say that the
space for m = 2 has the basis (2), while m = 4 has the basis
4), (2,2), and m = 6 has the basis (6), (4, 2), (2,2,2). For
m = 8 we then get (8), (6,2), (4,4),(4,2,2),(2,2,2,2) or
a five-dimensional space. This process continues: For each
higher m, we get a new tensor (m), plus all possible products
of the lower-order tensors. In general, we thus get a tensor
space dimension D7 (m) for mth rank tensors, and this may
be calculated easily in Python by explicitly constructing the
patterns (m), (m, m — 2), ... from the lower-order patterns in
arecursive fashion. As far as we understand, there is no closed
formula for D7 (m); in number theory, Dy (m) is known as the
“partition function” (or “number of partitions”) of m/2 (see,
e.g., Ref. [23]). For given M, the script therefore calculates
(and stores) the dimensions Dy (m) for allm =2,4,... .M,
as well as the dimension of the total space (comprising tensors

043310-4

SEMIAUTOMATIC CONSTRUCTION OF LATTICE ...

PHYSICAL REVIEW E 101, 043310 (2020)

of all the ranks under consideration), which is

M

R = Z Dr(m).

m=2,4,...

(34)

It is also clear that, for each m, not only the lhs but also the
rhs of Eq. (27) must be an element of the Dy (m)-dimensional
symmetry-restricted subspace, since the cubic group is a sub-
group of the full rotation-and-reflection group of continuous
space.

The problem, however, is that this consideration yields
only the maximum dimension of the subspace of all the tensors
whose form is that of the lhs. The number Dy (m) is just a
consequence of symmetry, while the actual dimension is a
result of the supplied velocity set: The true subspace is the
span of the elementary tensors) ,_ CiaCig .. .Ciy, and this
may, for a poorly chosen (or simply too small) set, be smaller
than the space of tensors that are symmetric with respect to
the cubic group, and to the permutation group of the indexes.
In that situation it may actually occur that the rhs is not an
element of that smaller space, or, in other words, that there is
no set of weights that solves Eq. (27). Conversely, it may also
turn out that the velocity set is chosen rather large, such that
the equations have infinitely many solutions. An important
aspect of the software is therefore that it has to be able to
reliably detect such cases.

In the present paper, we propose to start from Eq. (27) and
to contract it with an elementary tensor of rank m,

NaNg ... Ny, 35)

where 7 is some unit vector (|7i| = 1), chosen with random ori-
entation, uniformly distributed on the d-dimensional sphere.
In this way, we project the tensor equation onto a scalar
equation. In this context, it should be recalled that contraction
over all indexes of two tensors of the same rank naturally
defines a scalar product in tensor product space, which then
immediately allows one to construct the geometric concept
of an orthogonal projection. It should also be noted that the
elementary tensors are invariant under index permutation but
not under any geometric symmetry transformation.

We do this contraction not only for one unit vector but
for Dy(m) unit vectors for the tensor equation of rank m,
and do this for all ranks m = 2,4, ..., M. We thus obtain R
scalar equations, and for each of these equations we generate
a new unit vector #,, r =1, ..., R. Let us denote the rank
corresponding to the rth equation with m,.

On the rhs we then obtain [24]

295 15 iy — (022 gy vp
V@)@ i)™ = (2ncl) v exp | =5
. 2

= (m, — D, (36)
where (m — D' =(m — 1)(m —3)(m —5)...3 x 1.
We therefore define
1 = = N\,
Ay = =Dl Z (€ -n)™, (37)

ies

which can be straightforwardly calculated as soon as the
velocity shells are specified and the random vectors are

generated. Then the resulting set can be written as

NS

m,
E A wg = ',
s=1

which is obviously a set of linear equations to determine the
weights w;. In matrix form this is written as

(38)

A = b, (39)
where A is the R x N; matrix formed by the elements A,;,
w the vector of weights, and b the ths vector according to
Eq. (38). Our strategy is thus to construct this set of equations
and to solve it numerically.

Let us now discuss why we believe that this procedure is
correct and useful. Within a given tensor rank m, we have
Dr(m) elementary tensors ngng . .. n,. It is then highly prob-
able that these tensors are all linearly independent. Actually,
in our opinion this is much more probable than linear inde-
pendence of a set of elementary tensors chosen by a guessing
and erring human. More importantly, though, it is highly
likely that the projections of the elementary tensors onto
the Dy (m)-dimensional subspace of invariant tensors are still
linearly independent. If that is the case, then the contractions,
i.e., the scalar products of the elementary tensors with the
lhs tensor, provide enough information to characterize the
latter uniquely. In other words: Our thus-generated R scalar
equations are equivalent to the original set of tensor equations.

The easiest case occurs obviously when A is quadratic
(Ns = R) and nondegenerate, because then Eq. (39) can be
solved by simple inversion. Therefore, the script first cal-
culates R and then suggests to pick precisely R shells—but
the user has the freedom to follow that suggestion or not;
i.e., both Ny > R as well as Ny < R are permitted. Typically,
one expects infinitely many solutions for Ny > R and no
solution whatsoever for Ny < R; however, due to degeneracies
this does not always have to be the case. Similarly, picking
N; = R does not guarantee at all that A is nondegenerate. A
significant part of the software therefore aims at treating these
less straightforward cases.

At this point, it is useful to consider ¢? no longer as a fixed
number but rather as a parameter that can be varied. Since the
rhs b consists of cz, c‘s‘, e cé” , it is clear that the weights must
be polynomials in ¢2. Therefore, we write

M
Wy = E qsu Cf,

(40)
n=24,...
resulting in
DAY A= =l (41)
u s u
Comparing coefficients, we find
ZArs qsu = Sm,.u = Dr//.v (42)
or, in matrix form,
AQ =D. (43)

043310-5

DOMINIC SPILLER AND BURKHARD DUNWEG

PHYSICAL REVIEW E 101, 043310 (2020)

Our aim is therefore to solve that system to calculate the
matrix Q, such that we find a solution that is valid for any
possible value of c;—note that Eq. (43) no longer contains c2.

The first step of the analysis is a standard singular-value
decomposition [25,26], which is possible for any matrix A in-
dependent of its shape or rank. The NumPy package provides
a routine to do this [27]. The decomposition reads

A=USVT, (44)

where S is a rectangular matrix of the same shape (R x N;) as
A, and U and V are quadratic orthogonal matrices of suitable
size (R x R and N, x N;), with UTU =1, VIV =1 (unit
matrices). Here the superscript 7 denotes transposition. S is a
matrix consisting of all zeros, except the entries S1; = o1 > 0,
S» =0,>0, ..., Szz =0z > 0 (the singular values). Here
of course it has to be checked if some “nonzero” singular
values have only been produced as a result of numerical
roundoff errors. Obviously, Z < min(Ng, R). Z is the rank of
S (or of A), and maximum rank occurs for Z = min(NVg, R),
while for Z < min(/N;, R) the problem is rank-deficient.

Inserting Eq. (44) into Eq. (43), one sees that the problem
is equivalent to

SQ =D, (45)
with the abbreviations

o =v'g, (46)

D =UTD. 47)

As Z < R, we can only have the cases Z =R or Z < R. Let
us first treat the latter case, for which there are R-Z equations
of the form

0O ... 0
0O ... 0
D’ D’ D’
r=Z+1,u=2 r=Z+1,u=4 r=Z+1,u=M
’ / /
Dr:R,u:2 Dr:R,M=4 Dr:R.pL:M

(43)

This can obviously only hold if the rhs vanishes, and this can
be easily checked by calculating the Frobenius norm of the
latter, using the standard NumPy routine “norm” [28]. This
is nothing but the criterion for the existence of a solution,
and if it fails, the script aborts, and informs the user. This
situation means that the set of shells is either too small or
chosen inappropriately, such that degeneracies occur. The user
is then encouraged to try again with a different set of shells.

Conversely, if the check succeeds, then the equations num-
ber Z + 1, Z 4+ 2, ..., R may simply be discarded. Doing this,
we arrive at a simplified matrix S of size Z x N, as well as a
simplified rhs D',

If Z = R, then no such “pruning” needs to be done, and we
simply have § = S, D’ = D'. We thus arrive at a simplified set,

S0 =D. (49)

As a next step, we scale the equations by 1/01, 1/03, ..., 1 /07,
resulting in

S0 =D". (50)
S’ is a trivial matrix whose nonzero entries are all one. Now,
since Ny > Z, the matrix S’ can either be quadratic (N, = Z)
or rectangular, with more columns than rows (Ny > Z). In the
former case, 8’ is simply the unit matrix, such that the solution
is unique and directly found via Q' = D" or Q = VD, from
which the weights are found as polynomials in ¢Z, returned,
and further processed according to Secs. II B and ITE.

For Ny > Z we have infinitely many solutions. To treat
this latter case, we also provide some numerical procedures,
however in a less comprehensive and ambitious fashion.
The matrices V and D” (from which §' can be easily re-
constructed), together with necessary information about the
shells, are stored in a file, which is then processed further
in a separate script “Continue.py.” This will be the topic of
Sec. ITF.

B. Range of validity

Assuming that the script has found a unique solution by
making use of linear algebra, we still have not yet satisfied
one important condition: For physical reasons, the populations
n; should be positive, which in turn means that the weights
w, must be positive as well. This is, however, typically only
true within one (or more) narrow interval(s) of cf values.
It may even turn out that there is no ¢y value whatsoever
that satisfies the condition. It is therefore desirable that the
script automatically finds this range of validity. This is facil-
itated by the NumPy routine “roots” [29], which returns all
complex roots of a polynomial given in terms of its coeffi-
cients. This procedure is applied to all the functions w;(c?)
that the linear algebra routines have found. Technically,
“roots” is a linear algebra routine as well, since it is based
upon mapping the root-finding problem onto an eigenvalue
problem.

The script then eliminates all roots with nonvanishing
imaginary part, as well as all roots with real part <0. The
remaining K roots zj, 2o, . . ., Zx are arranged in a sorted array,
making use of the NumPy routine “sort” [30]. This defines a
sequence of intervals (0, z1), (21, 22), - - - » (Zk—1, 2k), (2, 00),
in which no change of sign can occur. By evaluating all
functions w_y(cf) in the centers of these intervals (i.e., at the
points (z,+1 + 2,)/2), we can eliminate all the intervals that
violate the condition of positivity of weights. For the last
interval, the functions are evaluated at (3/2)zg. Typically—
but not always—this procedure finds one single interval of
validity.

The special ¢ values that form the limits of validity
(“magic” ¢ values) are characterized by the vanishing of at
least one weight wy. In this case, the corresponding shell(s)
can be discarded completely, which gives rise to a “reduced”
model, which is often useful in practice. For this reason, the
script evaluates all weights at the “magic” c; values, such that
the user receives quick information about the properties of the
resulting reduced models.

043310-6

SEMIAUTOMATIC CONSTRUCTION OF LATTICE ...

PHYSICAL REVIEW E 101, 043310 (2020)

C. Velocity shells

We recall that a shell is defined as an equivalence class
of lattice speeds that can be mapped onto each other by an
element of the cubic point group of the lattice. A less strict
concept is that of a “modulus shell” that comprises all lattice
speeds whose modulus is the same. In general, a modulus shell
can be decomposed into several subshells, each of which is an
equivalence class of its own. Therefore, the script proceeds
in several steps to define the shells: (i) Construction of the
cubic group in d dimensions, (ii) supply of modulus values
by the user, (iii) finding the corresponding modulus shells,
(iv) decomposing the modulus shells into subshells, and
(v) possible a posteriori elimination of some of the thus-found
shells by the user.

Let us first discuss the construction of the cubic group in
d dimensions. Denoting the Cartesian unit (column) vectors
with &y, é,, ..., é;, we see that the d x d unit matrix is written
as (€1, €, ..., é;). A transformation that is just tantamount to
a permutation 7 of the Cartesian axes therefore corresponds
to the matrix (é(1), €x(2), - - -, €x(q))- Combining this with
the possibility to flip the orientation of an axis, the most
general transformation matrix of the cubic group has the
form (€;(1), £€x(2), - - ., L€x(4)), Where each combination
of signs is possible. Based upon these observations, it is
very easy to construct the set of all transformation matrices,
whose number therefore turns out to be d!29 (i.e., eight in
two dimensions, 48 in three dimensions). We here make use
of the “permutations” routine of the “itertools” section of
the standard Python library, plus the observation that any
sign combination can be written as a string of pluses and
minuses. Such a string is straightforwardly mapped onto a
corresponding string of zeros and ones. Such a string, in turn,
is identified with the binary representation of an integer in
the range 0, 1, ..., 24 — 1, which therefore just needs to be
scanned to find all sign combinations.

In the next step, the user specifies the squared moduli of
the desired velocities. For one modulus shell, we thus have an
integer number L = ¢7. The corresponding vectors are then
being searched for by the script. Obviously, it is sufficient
to search a d-dimensional cubic grid, where each coordinate
varies from —L to +L. The total number of points to be
scanned is thus (2L + 1)¢. Introducing a trivial coordinate
shift, one may as well search a grid whose coordinates vary
from O to 2L. A corresponding one-dimensional index k that
scans all grid points then varies from 0 to (2L 4+ 1)¢ — 1.

This index is related to the shifted coordinates xi, x5, ..., X4
via
d
k= Z(zL + 1)y (51)

=1

Therefore, these coordinates can be retrieved from k recur-
sively by successive modulo operations. After having col-
lected and shifted the thus-found coordinates, the program cal-
culates the squared modulus and checks if that value coincides
with L. If yes, then the vector is added to a list.

The two final steps (iv) and (v) are then straightforward and
need not be explained in further detail.

D. Random vectors

Using a uniform random generator (the script uses the
built-in generator that is provided by Python via the “random”
package), it is very easy to generate d coordinates x; dis-
tributed uniformly in the interval (—1, 1). We then calculate
3. x? and check if this is smaller than one. If not, then the
procedure is repeated until the criterion is satisfied. The thus-
found vector X is then normalized to unity, yielding 71 = X/|X|.
It is clear that the thus-generated vector 7 is a unit vector that
is uniformly distributed on the unit sphere.

E. Rational numbers

Considering the expansion of w; in powers of ¢2 [Eq. (40)],
and the original equations in the form of Egs. (8)-(12), it
is quite clear that the coefficients gy, can be viewed as the
solution to a system of linear equations whose coefficients
are all integer. For this reason, they must be simple rational
numbers. Since, e.g., a fraction like 1/24 is more intuitive and
aesthetically more appealing than the corresponding floating-
point number 0.04166666, the script makes use of a routine
that converts the latter into the former. In principle, this is
done via a standard continued-fraction expansion [31], which
is however somewhat tricky to implement due to its high
sensitivity to roundoff errors. Fortunately, Python provides
the ready-made routine “Fraction” [32] which yields quite
satisfactory results if the size of the denominator is suitably
limited, and the model is of sufficiently low order, such that
the denominators are not too large.

This conversion is also applied to the “magic” ¢ values and
to the coefficients of the resulting reduced models. However,
these might be irrational, in which case the procedure provides
fractions with large numerators and denominators. If the user
is interested in exact algebraic numbers, then we recommend
to identify the algebraic equation whose solution provides the
magic c? value, and to attempt its exact solution with the help
of a computer algebra system such as Wolfram Alpha [33].
It should be stressed, though, that for practical purposes a
floating-point representation is absolutely sufficient.

F. The case of infinitely many solutions

For rank-deficient problems that have infinitely many solu-
tions, we do not attempt to find the weights as a function of cf,
but rather only for one particular ¢? value, for which the user is
explicitly asked. We do this in a separate script “Continue.py,”
which obtains its further input from a file written by the main
script.

Starting from Eq. (50), which we write in the form

Svig=D", (52)

and recalling that the sought-for matrix Q contains the coeffi-
cients of the polynomial expansions of the weights w;, we see
that we can, for a given (user-supplied) c? value, immediately
construct a set of linear equations that the weights have to
satisfy. We know that this set has infinitely many solutions.
Furthermore, we know that all weights have to satisfy the
conditions wy > 0. If we then combine this with some linear
optimization problem, then we see that this is identical to

043310-7

DOMINIC SPILLER AND BURKHARD DUNWEG

PHYSICAL REVIEW E 101, 043310 (2020)

a problem of standard linear programming [34]. The most
useful optimization problem that we can imagine in this
context is to minimize one of the weights, or perhaps even
several of them. The user is therefore asked which of the
weights is to be minimized; in case that several weights are
supplied, the script simply attempts to minimize the sum of
these weights.

For our purposes, we found the package “cvxpy” [35]
particularly useful in terms of (i) Python integration,
(ii) correctness of results, and (iii) numerical stability. The
script checks if the problem has a solution, and if yes, it re-
turns it, together with the cf value. Quite often, the minimized
weight turns out to be zero. To enhance the ease of use, the
user may supply a whole interval of ¢ values plus a step size,
such that the whole interval is being scanned.

In practical applications, it often turns out that it is useful
to first supply a fairly large set of shells, which then results
in a rank-deficient problem, and to then use “Continue.py” to
remove more and more shells until finally a minimal model is
found.

G. The “test” mode

Except for solving the problem of finding weights from
scratch, quite frequently the situation arises where one is
confronted with a given (or claimed) solution (e.g., from the
literature), and one would like to quickly check its correctness.
The script therefore provides a “test” mode, where the formal-
ism developed above is used for that purpose. Input data are
therefore not only spatial dimension, maximum tensor rank,
and the set of shells (as always), but additionally the value of
¢s, plus the set of weights that should be tested. Note that in
“test” mode the script assumes that a given solution has been
given for one special well-defined ¢ value, and also disregards
the problem of positivity of weights. Therefore, the task is
to simply check if the given vector of weights w satisfies
Eq. (39), which is easy, because the provided information
allows to calculate both the matrix A and the inhomogeneity
b. In case that the given solution is provided simply as a set of
numbers (a vector i), we therefore calculate the residual,

>

Ao = Aibg — b, (53)

and analyze whether it is zero within numerical accuracy. In
the more general case of a degenerate solution, we assume that
it is given in the form

B =i+) hiibi, (54)

i>1

where the X; form a set of parameters which may be varied
independently. Obviously, we again have to evaluate A, as
before, and check for its vanishing, but additionally we also
need to evaluate the additional residuals ﬁi =Aw;,i > 1,and
check for their vanishing as well.

Given the fact that literature values for weights are typi-
cally given with not more than six-digit accuracy, we need
to take care that the check for vanishing residuals is not
too stringent. How this is done in detail is explained in
Appendix C.

LBweights.py
read:
-spacial dimension d
LBweights.py -maximum tensor rank M
-random number seed
read velocity
modulus shells
. discard subshells
‘ generate cubic group }—){ scan for possible subshells }—)/ if desired /
the relevant equation is construct lhs matrix A generate random
AQ==D and rhs matrix D unit vectors

test user supplied
solution?
yes

read trial solution vector
W== Wy + AWy + AW, + ...
and speed of sound ¢?

print maximum number of calculate sum of tensor
velocity modulus shells needed space dimensions R

preparation

do singular value decomposition

processing

at this point
#(columns) >= #(rows)

calculate unique
solution

there are infinitely
many solutions

is there a valid
range of c2 ?

return unique solution,
valid interval(s) and
solutions at the borders

no physically
valid solution

FIG. 1. Flow diagram of the algorithm.

H. The algorithm as a whole

The considerations given above give rise to a procedure
which is summarized in the flow diagram Fig. 1. In general,
input data may be provided either by an interactive dialogue
or via command-line arguments.

III. EXAMPLES
A. Two-dimensional models

We start with maximum tensor rank M =4, i.e., R =3,
such that one expects that three nontrivial shells are neces-
sary. Indeed attempts to solve the problem with one or two
such shells turned out to be unsuccessful. Trying the three
shells cl? =1, 2, 4 [with typical vectors (1,0), (1,1), and (2,0),
respectively, such that in total one has 13 vectors], yields the
solution

woo) = 1 — %Cz + %C?, (55)

043310-8

SEMIAUTOMATIC CONSTRUCTION OF LATTICE ...

PHYSICAL REVIEW E 101, 043310 (2020)

W(i0) = %ci —cl, (56)
W) = %Cf, (57)
W) = —ﬁcf + %C?, (58)

which is valid in the interval 1/3 < ¢? <2/3. For ¢ =
1/3 one obtains a reduced model with nine velocities and
weights weo) = 4/9, waoy = 1/9, w1y = 1/36; this is noth-
ing but the well-known D2Q9 model [7]. Another nine-
velocity model is obtained for ¢2 = 2/3 with w) = 4/9,
wan = 1/9, weo) = 1/36.

We continue with M = 6, i.e., R = 6. Attempting a six-
shell model with c[2 =1,2,4,5,8,9 gives rise to a rank-
deficient problem with infinitely many solutions. Removing
the shell ci2 =5 (it is the most natural candidate since it
contains most velocities) yields indeed a unique solution given
by

weo) =1 — Bl + B — B8, (59)
wao) = 3¢ — 3¢t + 1ol (60)
we = %cg — %cf, (61)

w0y = —4%02 + %c;‘ — %cf, (62)
w2y = —ﬁcf + 6—1462, (63)
WE0) = g5€s — 35 T 35Ce- (64)

Here and in what follows the subscripts denote the typical
vectors corresponding to each shell. The model comprises in
total 21 velocities (four velocities in each nontrivial shell), and
its range of validity is 0.3702519 < cg < 1.148412 (irrational
numbers). The lower boundary is the root of w() and given

by the exact value 5/6 — +/193/30. The reduced model is
thus a 17-velocity model with (irrational) weights w o) =
04020051, w(10) = 01161549, Wl = 003300635, W22) =
7.907860 x 107>, and w30, = 2.584145 x 10~*. The upper
boundary, cf = 1.148412,is the root of wyp); this value
can still be given as an exact but unwieldy number. The
reduced model in this case comprises 20 velocities with
weights W(10) = 0.141 1090, W(i1) = 006097080, W0y =
0.02066598, w2y = 0.01679637, w(zp) = 0.01045786.

Another solution is obtained if the last shell (ci2 =9)is
replaced by ¢? = 16 (also four vectors):

woo = 1= Fel + 5l — Het, (65)
w10y = %C? — %‘cf + %cf (66)
w = %cf — %c?, 67)

W0y = —%Cf + l%cf — %cf, (68)
W2 = —ﬁc? + écf, (69)
W40) = ﬁcsz - ﬁcg + ﬁcf; (70)

this model is valid for 0.3510760 < cf < 4/3. The former
value is again an irrational number given by the root of w0);
its exact value is 9/8 — /115/192. The resulting reduced
17-speed model at ¢Z = 0.3510760 is given by the weights
w(ooy = 0.4220031, w10y = 0.1141627, w1y = 0.03026688,
W) = 3.416974 x 107>, wg) = 3.551447 x 1073, At the
upper limit ¢ = 4/3 the reduced model comprises only 16
speeds, since at ¢2 = 4/3 both wy and w(;) vanish. The
remaining weights in this case are wg) = 64/405, wo) =
5/81, W22) = 1/36, W40) = 1/405

We now turn to M =8, i.e., R = 11. We thus first at-
tempted the set ci2 =1,2,4,5,8,9,10, 13, 16, 18, 25. The
shell ci2 = 25 comprises two subshells (with vectors of types
(5,0) and (4,3), respectively), such that the set actually gives
rise to a 12-speed model. Not surprisingly, this results in a
rank-deficient problem with infinitely many solutions. How-
ever, the rank turns out to be merely eight, which indicates
that it might be possible to reduce the model to just eight
nontrivial shells. We therefore tried by removing the outer
shells cl.2 = 25, 18, 16; this however gives rise to a problem
with no solution whatsoever. Excluding ¢? = 13 instead of
c? =16 gives a set ¢ =1,2,4,5,8,9, 10, 16, which then
indeed provides a unique solution. Each nontrivial shell com-
prises four vectors except cl.2 =5, 10, which contain eight
vectors each. All in all, this is therefore a 41-speed model.
The weights are given by

woo = 1= 72¢] + 55l = Fgd + 5ges, (D)
wao) = 22— Wt 428 — B8, (72)
W(1) = %C‘S‘ — %C? +]—966'3, (73)

waoy = — 756 + 1568 — B+ 256 (74)
wern = — 356 + 55 — gl (75)

Wa2) = 55Cs — 960 + gChs (76)

wao) = %Csz — %C‘s‘ + %CS — 21—46'?, (77)
WG = 55Cs — 2e ¢S + &b, (78)

W40y = —ﬁcz + ﬁc? — lecg + %405 (79)

The range of validity is 0.6979533 < ¢? < 0.8704738;
these numbers are the irrational roots of wwpy and wg).
Removing the corresponding shells then gives rise to two
37-speed models. At the lower bound we thus obtain the
weights wo0) = 0.2331507, W(10) = 0.1073061, Wl =
0.05766786, w0y = 0.01420822, w2y = 0.005353049,
W22) = 0001011938, wa30) = 2.453010 x 10_4, w31y =
2.834143 x 107 Comparison with Ref. [9] shows that this
set of velocities and weights is identical to the model derived
by Philippi et al. under the name “D2V37” model.

The two-dimensional models that were investigated in a
recent paper by Shan [14] (going up to tensor order M =
8) could all be verified (except for one minor typo); see
Appendix B.

043310-9

DOMINIC SPILLER AND BURKHARD DUNWEG

PHYSICAL REVIEW E 101, 043310 (2020)

TABLE I. Properties of a 61-speed model in two dimensions that

is isotropic up to tensor rank 10.

Shell Typical

Weight at

Weight at

size vector ¢ =7.592510 x 107" ¢2 =9.054850 x 107!
1 (0, 0) 2.112895 x 107! 1.959760 x 107!
4 0, 1) 1.069112 x 107! 8.636013 x 1072
4 (1, 1) 5.762669 x 1072 6.908441 x 1072
4 0,2) 1.553262 x 102 2.475221 x 102
8 (1,2) 7.296648 x 1073 7.207641 x 1073
4 (2,2) 1.223360 x 1073 3.412996 x 1073
4 0, 3) 5.093571 x 107* 4.017308 x 10~*
8 (1,3) 3.635670 x 10~* 1.260298 x 1073
8 (2,3) 2.612793 x 1073 0

4 0, 4) 0 5.146050 x 1073
4 0, 5) 8.779627 x 1077 6.703596 x 1077
8 3,4) 4.044500 x 1077 3.253235 x 107°

Furthermore, it is also possible to study the case of
tenth-order isotropy, corresponding to R = 18. Starting from
the 18 velocities ¢? = 1,2,4,5,8,9, 10, 13, 16, 17, 18, 20,
25,32,36,37,40,52, one finds that this yields a rank-
deficient problem with infinitely many solutions, where the
rank of the problem is eleven. Removing outer shells, we
can reduce this to the set ci2 =1,2,4,5,8,9,10, 13, 16, 25,
which corresponds to eleven shells (the shell ¢? = 25 is de-
composed into two subshells, while all others are irreducible).
This is a 61-speed model with a unique solution and a range
of validity of 0.7592510 < ¢? < 0.9054850. We do not give
the expansion of the weights as polynomials in c? here; the
expressions are lengthy and the rational representations of the
floating-point numbers most probably affected by roundoff
errors. The other properties of the model are summarized in
Table I

One thus sees, from the reduced model at the upper limit,
that in two dimensions it is possible to construct a model that
is isotropic up to tenth order with as few as 53 velocities.

Let us now finally comment on the case of rank-deficient
problems with infinitely many solutions. The main virtue of
such models is that they are able to extend the admissible
range of ¢? values, however at the expense of more lattice
speeds. To illustrate this, let us again go back to the simple
case M = 4. As we have seen already, the set ci2 =1,2,4
yields a minimal model with range of validity 1/3 < ¢? <
2/3. We now add one further shell ci2 = 5 (i.e., we enhance the
model from 13 speeds to 21 speeds), which results in a rank-
deficient problem, which we analyze using “Continue.py” as
described, where we demand that the weight of the additional
shell should be as small as possible. Scanning for admissible
cf values, we find that the lower bound remains unchanged,
but the upper bound is increased to roughly cg = 1.185,
which is a significant increase. As expected, the weight of
the additional shell remains zero as long as ¢ remains in the
original interval 1/3 < ¢2 < 2/3. As soon as 2 exceeds 2/3,
the weight of the additional shell starts to increase, while at
the same time the weight of the shell ci2 = 1 drops to zero and
remains at that value. Therefore, we have essentially joined
two minimal models. Indeed, running the main script for the

set c? =2,4,5 results in a unique solution and a range of
validity 2/3 < ¢? < 32/27.

B. Three-dimensional models

For M =4, i.e., R = 3, we were unable to find a suitable
velocity set that would comprise only two nontrivial shells.
A straightforward and simple choice for three shells would
be c,.2 =1,2,3, corresponding to typical vectors (1,0, 0),
(1,1,0), and (1,1, 1). In this case the matrix turns out to
be rank-deficient, and there is no solution. Trying the three
shells ¢ = 1, 2, 4 (last value corresponding to a typical vector
(2,0, 0)) gives rise to a 25-speed model (6/12/6 vectors in the
nontrivial shells) with unique solution

w00y = 1 — %cf + %C? (80)

w00y = 3¢ — 3¢ 8D

w(i10) = 5C5 (82)

W(200) = —icsz + %cg. (83)
2

This is valid in the interval 1/3 < ¢2 < 4/9. At ¢2 =1/3,
the shell cl-2 = 4 may be discarded, such that we recover the
well-known D3Q19 model [7] with w00) = 1/3, w(100) =
1/18 and w110y = 1/36. At ¢? = 4/9 the shell ¢ =1 can
be discarded, giving rise to another 19-speed model with
wW(00) = 10/27, w10y = 4/81 and W200) = 1/162

Analyzing the set ¢? =1, 3,4 gives rise to a 21-speed
model. The three nontrivial shells comprise 6, 8, and 6 vec-
tors, respectively, with typical vectors (1,0, 0), (1,1, 1) and
(2,0, 0). This model has a unique solution

weooy = 1 — %cf + %cg (84)
Ww(100) = %cf - C? (85)
Wi = %C: (86)
We00) = —55C0 + 38 (87)

and a range of validity 1/3 < ¢? < 2/3. Atc? = 1/3 we may
discard the shell ci2 =4 and recover the standard D3Q15
model [7] with W00) = 2/9, W(100) = 1/9 and W(i11) = 1/72
At ¢Z = 2/3 the shell ¢} = 1 may be discarded, which gives
rise to another 15-speed model with weights woo) = 7/18,
W11y = 1/18 and W200) = 1/36

We now require that the model satisfies the MBCs up
to tensor rank M = 6, i.e., R = 6, such that up to six non-
trivial shells are required. A first attempt with the shells
ci2 =1,2,3,4,5, 6 results in a rank-deficient matrix with no
solution. Enhancing the model by the additional shells ¢ =
8,12, 16 then yields a solvable but rank-deficient problem
with rank six. We should therefore be able to again remove
up to three shells. We first remove ci2 =5, 6 since these
shells have as much as 24 speeds each. Indeed the solv-
ability remains. Finally we remove ¢? = 8, which contains
12 speeds, and then obtain a unique solution for a 47-speed
model comprising c[-2 =1,2,3,4,12, 16, i.e., six vectors of
type (1,0,0), 12 of type (1, 1,0), 8 of type (1,1, 1), 6 of

043310-10

SEMIAUTOMATIC CONSTRUCTION OF LATTICE ...

PHYSICAL REVIEW E 101, 043310 (2020)

TABLE II. Properties of a 113-speed model in three dimensions

that is isotropic up to tensor rank 8.

that is isotropic up to tensor rank 10.

TABLE III. Properties of a 221-speed model in three dimensions

Shell Typical Weight at Weight at Shell Typical Weight at Weight at
size vector ¢?=6.979533 x 107! 2 =9.470745 x 107! size vector 2 =1.033691 c? = 1.206545
1 (0,0, 0) 1.543187 x 107! 2.350425 x 1072 1 (0,0, 0) 1.125792 x 107! 5.101845 x 1072
0,0, 1) 2.651360 x 1072 7.092721 x 1072 0,0, 1) 1.444892 x 1072 3.953745 x 1072
12 O, 1,1) 4.083040 x 1072 1.015888 x 107# 12 ©,1,1) 2.781069 x 1072 4.937669 x 1073
8 (1,1, 1) 5.220616 x 103 3.488597 x 1072 8 (1,1, 1) 1.970138 x 102 3.536908 x 102
6 0,0,2) 1.201068 x 1072 2.144855 x 1072 6 0,0,2) 2.251462 x 1072 2.485832 x 1072
24 (1,1,2) 2.763355 x 1073 2.987112 x 1073 24 (1,1,2) 3.624508 x 103 3.216647 x 1073
12 (0,2,2) 9.685223 x 10~ 4.073125 x 1073 12 (0,2,2) 4387148 x 1073 7.022298 x 1073
6 0,0,3) 2.645967 x 107* 0 6 0,0, 3) 6.910281 x 107* 1.578096 x 1073
24 (1,1, 3) 1.362802 x 10~ 8.608570 x 10~ 24 (1, 1,3) 1.038248 x 1073 1.597874 x 1073
6 (0,0, 4) 0 9.526366 x 103 8 (2,2,2) 4381319 x 10~ 5.451840 x 10~
8 3,3,3) 6.029897 x 1077 1.674948 x 1073 24 ©0,1,4) 3.513518 x 1073 0
24 2,2,3) 4.350915 x 107 1.453046 x 10~
24 (1,1,4) 0 9.956211 x 10~°
—6 -5
type (2,0,0), 8 of type (2,2.2), and 6 of type (4.0,0). The . 28 (3): g; TSR o oo
solution reads 24 (0,3, 4) 7.194413 x 10-° 1.815117 x 10-5
woooy = 1 — B+ Bl — 28, (88)
W(100) = %cz — %cg — %cg, (89) 0.06508547, w(10) = 0.02482560, Wiy = 4.256684 x
1073, W300) = 2.512627 x 1074, Ww(333) = 2.674506 x 10~°.
W(110) = %cf (90) Comparison with Ref. [11] shows that these parameters are
identical to the numbers given there.
wain = ¢t — 38, 91) With some trial and error (along similar lines as de-
scribed in more detail for the two-dimensional case), we
W00y = _%cf 4 %c‘s‘ — %cf, (92) were also able to find minimal models for M = 8 (R = 11)
and M =10 (R = 18). For eighth-order isotropy, a model
W) = _ﬁc;‘ + ﬁcg, (93) of ten nontrivial shells turns out to be sufficient: ci2 =
1,2,3,4,6,8,9,11, 16, 27, where for ci2 =9 we take the
W00y = ﬁc? — ﬁc;‘ 4 ﬁcf; (94) subshell of type (3, 0, 0) and for ¢7 = 27 the subshell of type

this model has positive weights for 0.3510760 < ¢ < 4/9.
The former value is irrational and results from wg) = 0;
the exact number is c¢2=9/8 —/115/192. At this
cf value we may discard the shell ci2 =4, such that
we obtain a reduced 41-speed model with wgo) =
02801500, W(100) = 007089101, Ww(110) = 002163583,
wain = 4.315525 x 1073, wpa) = 1.708487 x 10~°, and
Wo0) = 3.551447 x 1073 Conversely, for ¢Z = 4/9 we may
discard the shell ci2 = 3, such that we obtain a 39-speed model
with weights w00) = 0.3010974, w(100) = 0.02341107,
w(110) = 0.04389575, W(200) = 5.029721 x 1073, W(222) =
1.714678 x 10~*, and wq0) = 2.286237 x 107>,

It is worth noting that the thus-derived 41-velocity
model is different from the 41-speed model discussed by
Chikatamarla and Karlin [11]. The latter comprises the five
nontrivial shells ci2 =1,2,3,9,27, where in the case of
¢} =9 only the six vectors of type (3,0, 0) are taken into
account, while the ¢? =27 shell contains only the eight
vectors of type (3,3,3). To analyze this case, we need to
add one more shell to allow for a varying ¢ value, for
which we take ¢7 = 16. Indeed we then find that the model
has a unique solution and a fairly narrow range of validity
of 0.3500280 < ¢? < 0.3675445. At the upper limit the
weight of ci2 = 16 vanishes, and thus we recover the model
of Ref. [11] Here we find W00) = 02759976, W(100) =

(3, 3,3) (all other shells are irreducible). We thus have a
113-speed model which is valid in the interval 0.6979533 <
¢ <£0.9470745 and which reduces to a 107-speed model at
both the upper and the lower end of the interval of validity.

Similarly, we also found a possible minimal model with
tenth-order isotropy. This is facilitated by the set ¢? =
1,2,3,4,6,8,9,11, 12, 17, 18, 25, where the shell cf =9is
restricted to vectors of type (3,0,0), while for all other
modulus shells we take all subshells. This set comprises
221 velocities in total and the model is valid in the interval
1.033691 < cf < 1.206545. The reduced models at the lower
and upper limit of validity are obtained by elimination of
shells which both contain 24 velocities. The reduced models
are therefore both 197-speed models.

For these two final models we do not present the expan-
sions of the weights in powers of ¢2, for similar reasons
as for the case d =2, M = 10. Other model properties are
summarized in Tables II and III.

The three-dimensional models that were investigated in a
recent paper by Shan [14] (going up to tensor order M = 8)
could all be verified; see Appendix B.

IV. SUMMARY

The present study has shown that it is possible to formulate
the problem of constructing weight coefficients in an LB

043310-11

DOMINIC SPILLER AND BURKHARD DUNWEG

PHYSICAL REVIEW E 101, 043310 (2020)

model as one of numerical linear algebra. Crucial for this
to work was (i) the notion of cs2 as a free parameter; (ii) a
detailed understanding of the symmetry restrictions on the
dimensionality of the underlying tensor spaces; (iii) a map-
ping of the tensor equations to scalar equations by contraction
with tensors of the form ngng . . . n, constructed from random
unit vectors; and (iv) analysis of the linear-algebra problem
in terms of the singular-value decomposition. Putting these
observations into software, it is possible to write a program
that (i) checks for the validity of a given set of shells, and
(ii) calculates the corresponding weights. We found it encour-
aging to see with what ease the automatic script does all the
algebra to derive standard LB models and even new ones—to
the best of our knowledge, so far no LB model has been
discussed in the literature that is isotropic up to tensor rank
ten. The successful examples of Sec. III show clearly that this
is a fairly useful tool for the LB community.

ACKNOWLEDGMENTS

Stimulating discussions with J. Zelko, P. Lehnung, U.
Schiller, A. J. C. Ladd, and N. Tretyakov are gratefully
acknowledged. We also thank the latter for a critical reading of
the manuscript. We are particularly grateful to Mischa Dom-
browski, who contributed to the development of the software.
Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation), Project No. 233630050-TRR 146.

APPENDIX A: EQUILIBRIUM POPULATIONS
AT NONZERO FLOW VELOCITY

1. Polynomials in the flow velocity

We recall that the original problem of constructing an LB
model is not the fulfillment of MBCs in the absence of flow,
as specified in Eq. (25), but rather the more general problem
of finding equilibrium populations n;" that satisfy an analo-
gous relation based upon a Maxwell-Boltzmann distribution
centered around the local flow velocity #:

p’IZn?qcmciﬂ...cw =fdd§f(ﬁ—ﬁ)vavﬂ...vy
i

(AD)
and we require that this holds for all tensors up to a certain
rank K. For example, the populations according to Eq. (7)
satisfy Eq. (A1) up to tensor rank K = 2 [cf. Egs. (13)—-(15)].
However, it turns out that this problem can be solved fairly
easily as soon as the set of velocities ¢;, along with the
corresponding set of weights w;, has been found. The MBC
problem according to Eq. (25) must be solved up to tensor
rank M = 2K, and then a straightforward solution of Eq. (A1)
is found in terms of a tensorial polynomial of order K in
i, where the expansion coefficients are essentially the tensor
Hermite polynomials in ¢;, which were introduced into LB
theory by He and Luo [36]. How this is done will be detailed
below. It thus turns out that the most difficult aspect of the
problem is the identification of a proper set of velocities and
the determination of the weights (as should have become quite
clear from the main text).

To simplify the problem of Eq. (Al) we first introduce
suitably scaled variables: v; = nj1/(w;p), d;=¢/cs, €=

v/cs, 1 = Ui/ cs, as well as a normalized Maxwell-Boltzmann
distribution,

£2
$(E) = Q2m) " exp (- %) (A2)

In terms of these variables, Eq. (A1) is written as
Z wividiadip . . . diy = / d"E GE — et ... E,. (A3)

At this point, it is useful to introduce tensor Hermite
polynomials [8,37] via their definition

HY (&) = (=1Y'$E) 90y ... 0,$(F),

where 9, denotes a derivative in velocity space, d, = 9/0&,.
It should be noted that n denotes both the rank of the tensor
as well as the degree of the polynomial in £. It can be shown
[37] that the polynomials are mutually orthogonal with respect
to the weight function #(£). The definition implies that the
Taylor expansion of ¢(& — 7) with respect to 7j reads

5?;:2

Now, instead of requiring the identity of tensor moments
up to rank K [Eq. (A3)], we may equivalently require the
identity of the corresponding expressions, where the products
diudig ... d;, and &,&p ... &, are replaced by the correspond-
ing Hermite polynomials up to order K:

(A4)

SEOHL Emng - ne. (AS)

S|_

Zwv, HY (d) = / d'E pE —mH, (). (A6)

We now insert the Taylor expansion, Eq. (AS). Making use of
orthogonality, one sees that only the term m = n survives:

Z wiviHyy | (d;)

= [@ @y OnE e @)
For our purposes, it is not necessary to evaluate the rhs further.
Rather we note that Eq. (A7) needs to be satisfied for all n with
0 < n <K, and we now wish to show that the polynomial
ansatz

K
1
Vi = va H™ (d)nuno ..., (A8)
m=0

which is, in essence, a polynomial in the flow velocity i, does
indeed solve the problem. Inserting the ansatz into the lhs of
Eq. (A7), one sees that there polynomials in d; occur, whose
order does not exceed 2K. However, the coefficients w; have
already been adjusted such that the 7 = 0 MBCs are satisfied
up to order 2K. It is therefore justified to replace), w; ... on
the Ths with [d‘E¢(E).. .,
replaced by § . Again, orthogonality tells us that only the term
m = n survives. After these operations, it becomes obvious
that rhs and lhs are identical, which completes the proof.

where simultaneously d; is being

043310-12

SEMIAUTOMATIC CONSTRUCTION OF LATTICE ...

PHYSICAL REVIEW E 101, 043310 (2020)

2. The entropic approach

An alternative approach is to find the equilibrium popu-
lations by maximizing a suitably constructed entropy. This
has been popularized by the so-called “entropic” LB method
[38,39]. The entropy can be derived by elementary statistical
considerations, as outlined in Ref. [40]. Here one assumes a
lattice gas with many particles on each lattice site, such that
the notion of a single-site entropy makes sense. Each particle
has a mass m, and we define u as the associated mass density,
w =m/a®, where a is the lattice spacing. The model then
yields for the entropy

s=-y 2%

(ilniH_L)_ (A9)
~ u

pw; PW; PW;

Defining a scaled entropy as § = uS/p, this can be written in
terms of the reduced variables of the previous subsection:

§=-— Z wi(vi Inv; + 1 — ;). (A10)

The equilibrium populations are then found by maximizing S
under the constraints of given mass and momentum,

> n=p, (A11)
Zin,-a- = pil, (A12)
N i
Y wi =1, (A13)
iwiv,ﬁi = 7. (Al4)

Introducing Lagrange multipliers A, and X, we consider

S’ ZS—Apr,‘U,‘ —X,;~Zwiv,~c?i. (AIS)
i i
The solution of the maximum-entropy problem is then
Vi = exp(—A, — Aq - d;), (A16)

where the Lagrange multipliers must be determined via the
constraint equations, Egs. (A13) and (A14):

exp(—1,) Y wiexp(—iz - dy) = 1, (A17)

exp(—k,) Y _widiexp(—ia-d) =7, (Al8)

or
exp(—Az - dy)

Y wjexp(—iz - d;)
> w;d; exp(—Az - d;)
Zj wjexp(—X;, jj) |
where Eq. (A20) must typically be solved numerically to
determine A7, e. g., by Newton iteration.

We now wish to show that the solution derived in the

previous subsection, i.e., a Kth-order polynomial in the flow
velocity i [see Eq. (A8)], is an approximate solution of the

(A19)

i

(A20)

=

maximum-entropy problem for small ii, correct up to error
terms of order uX*!. Equivalently, we may also show that
Eq. (AS8), evaluated for K = oo, is the exact solution of
the maximum-entropy problem, and we will take that latter
approach. The proof is complete as soon as it is clear that
the Lagrange multipliers A, and Xz can be adjusted in such a
way that Eqs. (A17) and (A18) hold. Since we assume that the
MBC s are satisfied up to infinite order in i, we may however
replace the terms), w; ... on the lhs by the corresponding

integrals [diE ¢(:§) We therefore obtain

/ dE p(€)exp(—Lz - E) = exp(r,), (A21)

[d"E p(E)E exp(—1z - &) = fexp(hy). (A22)
The Gaussian integrals on the lhs are trivial to evaluate; this
yields

exp (122) = exp(2,), (A23)

—Xzexp (342) = Hexp(h,). (A24)
Therefore, a solution for the Lagrange multipliers can indeed

be found; it is simply given by A; = —7 and Ay = 1%/2.

APPENDIX B: COMPARISON WITH REF. [14]

We have used the present Python script to verify the
results reported in Ref. [14], in which the author studies the
MBCs within the framework of Gauss-Hermite quadratures.
The quadratures are labeled as Egﬁ’n where d is the spatial
dimension, n is the number of velocities and M is the high-
est tensor order satisfied. For the comparison, note that the
parameter ¢ of Ref. [14] must be identified with 1/c¢g in the
notation of the present paper. Furthermore, it should be noted
that in the present paper “maximum tensor order” refers to
the largest nontrivial (i.e., even) order, while the notation of
Ref. [14] includes the next tensor order as well (which is
trivially satisfied because it is odd). In other words the notion
of, e.g., “maximum tensor order 7” in Ref. [14] corresponds to
“maximum tensor order 6” in the context of the present work.

The “test” mode described in Sec. II G was written pre-
cisely for such purposes. We used it to check the quoted
weights for one-dimensional (Table 2 of Ref. [14]), two-
dimensional (Tables 3 and 4 of Ref. [14]), and three-
dimensional (Tables 5 and 6 of Ref. [14]) models. All numbers
given in the paper turned out to be correct, except for two
minor typos, which the script detected by being unable to ver-
ify the weights. The first typo occurs in Table 2 of Ref. [14],
quadrature E 19.7, where a direct calculation with one additional
(auxiliary) shell ¢? = 16 shows that the weight wy for the
shell with ¢? = 9 should read 812.129 instead of 8121.29. The
other typo occurs in Table 4 of Ref. [14], third model, listed in
column six. This model was checked further by a direct cal-
culation using the velocity shells c,-2 =1,2,4,5,9,13, 18, 16.
Here again ¢ = 16 serves as an auxiliary shell. We then found
that the solution from our script coincides with the solution
from the table, except for the weight for the typical velocity
(0,2) which should read 862.347 instead of 8623.47.

043310-13

DOMINIC SPILLER AND BURKHARD DUNWEG

PHYSICAL REVIEW E 101, 043310 (2020)

TABLE IV. Properties of a three-dimensional model that is isotropic up to tensor rank 8. There are four distinct speeds of sound at which
a particular weight vanishes. Depending on which speed of sound is chosen this results in either a 103-speed model (model 1 and 4) or a
119-speed model (models 2 and 3).

Weight at ¢ =
7.67858981 x 107!

Weight at ¢ =
8.52308171 x 107!

Weight at ¢ =
1.01213280

Shell Typical Weight at ¢ =
size vector 6.97953322 x 107!
1 0,0,0) 3.26333518 x 1072
6 0,0,1) 9.76568336 x 1072
8 (1,1,1) 2.80977503 x 102
6 0,0,2) 1.04525956 x 103
24 ©,1,2) 5.70532902 x 1073
12 ©0,2,2) 6.11939270 x 10~
8 2,2,2) 1.55964159 x 10~
6 0,0, 3) 2.84443252 x 10~
24 1,1,3) 1.30698376 x 10~*
24 (1,1,5) 0

8 @3,3,3) 1.22319450 x 10~¢

3.62888307 x 1072
8.72702806 x 1072
3.12518906 x 1072
4.03636444 x 1073
5.88714307 x 1073
1.16896856 x 1073
2.85244411 x 1074
3.28336044 x 1074
2.61597860 x 1074
2.83245470 x 1077
0

4.97214340 x 1072
7.28640303 x 1072
3.58424179 x 1072
9.45156051 x 1073
5.23786666 x 1073
2.18293717 x 1073
4.37068358 x 1074
3.69212708 x 10~*
5.00317765 x 10~*
9.24300377 x 1077
0

1.03758046 x 107!
3.78004007 x 1072
4.92746605 x 1072
2.87561664 x 1072
0
5.49849730 x 1073
6.14662612 x 1074
2.16391171 x 1074
1.26405975 x 1073
4.09498434 x 10~¢
8.99234508 x 10~°

We also scrutinized further the quadrature E3 ,y; in Table 5
of Ref. [14], last column, by adding the auxiliar)} shell (1,1,5).
This is a particularly interesting case, since it gives rise to two
disjoint intervals of valid ¢ values, and thus to four distinct
models at the boundaries. We have listed these in Table IV;
the first coincides with the results given in Ref. [14].

APPENDIX C: ACCURACY CRITERION
FOR THE “TEST” MODE

We are interested in the ith component of the residual,

A= ZAijwj — b;, (C1)
J

and wish to check for its vanishing. The matrix A is calculated
with high numerical accuracy, essentially up to machine pre-
cision. However, the weights are input parameters, which are
typically given only with moderate accuracy. We here assume
a relative accuracy of & = 107>, such that the (maximum)
roundoff error in the weights is given by

Sw; = sw;. (C2)

Furthermore, the inhomogeneity b; is subject to a similar
lack of input precision. Recalling that the inhomogeneities are
given as certain powers of ¢2,

bi _ (cz)nli/z, (C3)

we find that the inaccuracy of b; is due to the inaccuracy of ¢Z:

mi m; 2—1
86 = (c2) 7152 (C4)

or

8b[m; 56‘3

— = —=——. (CS5)

b,’ 2 Cg
Again, the relative accuracy of ¢? is given by &; hence,

b = e='b. (C6)

Note that this latter formula is also applicable in the case
b; = 0; this situation occurs if the script needs to check the
correctness of a solution that is not given in terms of a single
vector @ but rather in terms of a whole subspace. From
Gaussian error propagation we then estimate the accuracy of

the residual as
1/2

SA; = | Y (Ayjdw;)* + (8b;)

J
1/2

) 2
= > (Ajuw)’ + (%bl) . @)
J

Whenever |A;| is smaller than this value, it should be consid-
ered to be numerically indistinguishable from zero.

[1] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics
and Beyond (Oxford University Press, Oxford, 2001).

[2] S. Succi, The Lattice Boltzmann Equation: For Complex
States of Flowing Matter (Oxford University Press, Oxford,
2018).

[3] T. Kriiger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva,
and E. M. Viggen, The Lattice Boltzmann Method: Principles
and Practice (Springer, Berlin, 2016).

[4] R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145
(1992).

[5] B. Diinweg and A. J. C. Ladd, in Advanced Computer Simu-
lation Approaches for Soft Matter Sciences III, Advances in
Polymer Science No. 221, edited by C. Holm and K. Kremer
(Springer, Berlin/Heidelberg, 2009), pp. 89-166.

[6] F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett. 9, 345
(1989).

[7]1 Y. H. Qian, D. D’Humieres, and P. Lallemand, Europhys. Lett.
17, 479 (1992).

[8] X. Shan, X.-F. Yuan, and H. Chen, J. Fluid Mech. 550, 413
(20006).

043310-14

https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1017/S0022112005008153
https://doi.org/10.1017/S0022112005008153
https://doi.org/10.1017/S0022112005008153
https://doi.org/10.1017/S0022112005008153

SEMIAUTOMATIC CONSTRUCTION OF LATTICE ...

PHYSICAL REVIEW E 101, 043310 (2020)

[9] P. C. Philippi, L. A. Hegele, L. O. E. dos Santos, and R. Surmas,

Phys. Rev. E 73, 056702 (2006).

[10] H. Chen, I. Goldhirsch, and S. A. Orszag, J. Sci. Comput. 34,
87 (2008).

[11] S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E 79, 046701
(2009).

[12] 1. Karlin and P. Asinari, Physica A: Stat. Mech. Appl. 389, 1530
(2010).

[13] X. Shan, Phys. Rev. E 81, 036702 (2010).

[14] X. Shan, J. Comput. Sci. Discrete. Fluid Dynam. 2015, 17, 475
(2016).

[15] X. Shan, Phys. Rev. E 100, 043308 (2019).

[16] A. T. White and C. K. Chong, J. Comput. Phys. 230, 6367
(2011).

[17] G. Silva and V. Semiao, J. Comput. Phys. 269, 259
(2014).

[18] A.J. Wagner, Phys. Rev. E 74, 056703 (2006).

[19] Welcome to Python.org, https://www.python.org/ (2019).

[20] Lattice-Boltzmann-weights, https://github.com/BDuenweg/
Lattice- Boltzmann-weights (2019).

[21] Numpy, http://www.numpy.org/ (2019).

[22] Linear algebra (numpy.linalg), https://docs.scipy.org/doc/
numpy/reference/routines.linalg.html (2019).

[23] Partition (number theory), https://en.wikipedia.org/wiki/
Partition_(number_theory) (2019).

[24] Gaussian integral, https://en.wikipedia.org/wiki/
Gaussian_integral (2019).

[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing,

3rd ed. (Cambridge University Press, Cambridge/New York,
2007).

[26] Singular value decomposition, https://en.wikipedia.org/wiki/
Singular_value_decomposition (2019).

[27] numpy.linalg.svd, https://docs.scipy.org/doc/numpy/reference/
generated/numpy.linalg.svd.html (2019).

[28] numpy.linalg.norm, https://docs.scipy.org/doc/numpy/
reference/generated/numpy.linalg.norm.html (2019).

[29] numpy.roots, https://docs.scipy.org/doc/numpy/reference/
generated/numpy.roots.html (2019).

[30] numpy.sort, https://docs.scipy.org/doc/numpy/reference/
generated/numpy.sort.html (2019).

[31] Continued fraction, https://en.wikipedia.org/wiki/Continued_
fraction (2019).

[32] 9.5. fractions-rational numbers,
library/fractions.html (2019).

[33] Wolfram Alpha: Computational Knowledge Engine, https:/
www.wolframalpha.com/ (2019).

[34] A. Schrijver, Theory of Linear and Integer Programming (John
Wiley & Sons, New York, 1998).

[35] Welcome to CVXPY 1.0, http://www.cvxpy.org/ (2019).

[36] X. He and L.-S. Luo, Phys. Rev. E 56, 6811 (1997).

[37] H. Grad, Commun. Pure Appl. Math. 2, 325 (1949).

[38] I. V. Karlin, A. Ferrante, and H. C. Ottinger, Europhys. Lett. 47,
182 (1999).

[39] B. M. Boghosian, P. J. Love, P. V. Coveney, 1. V. Karlin, S.
Succi, and J. Yepez, Phys. Rev. E 68, 025103(R) (2003).

[40] B. Diinweg, U. D. Schiller, and A. J. C. Ladd, Phys. Rev. E 76,
036704 (2007).

https://docs.python.org/2/

043310-15

https://doi.org/10.1103/PhysRevE.73.056702
https://doi.org/10.1103/PhysRevE.73.056702
https://doi.org/10.1103/PhysRevE.73.056702
https://doi.org/10.1103/PhysRevE.73.056702
https://doi.org/10.1007/s10915-007-9159-3
https://doi.org/10.1007/s10915-007-9159-3
https://doi.org/10.1007/s10915-007-9159-3
https://doi.org/10.1007/s10915-007-9159-3
https://doi.org/10.1103/PhysRevE.79.046701
https://doi.org/10.1103/PhysRevE.79.046701
https://doi.org/10.1103/PhysRevE.79.046701
https://doi.org/10.1103/PhysRevE.79.046701
https://doi.org/10.1016/j.physa.2009.12.032
https://doi.org/10.1016/j.physa.2009.12.032
https://doi.org/10.1016/j.physa.2009.12.032
https://doi.org/10.1016/j.physa.2009.12.032
https://doi.org/10.1103/PhysRevE.81.036702
https://doi.org/10.1103/PhysRevE.81.036702
https://doi.org/10.1103/PhysRevE.81.036702
https://doi.org/10.1103/PhysRevE.81.036702
https://doi.org/10.1016/j.jocs.2016.03.002
https://doi.org/10.1016/j.jocs.2016.03.002
https://doi.org/10.1016/j.jocs.2016.03.002
https://doi.org/10.1016/j.jocs.2016.03.002
https://doi.org/10.1103/PhysRevE.100.043308
https://doi.org/10.1103/PhysRevE.100.043308
https://doi.org/10.1103/PhysRevE.100.043308
https://doi.org/10.1103/PhysRevE.100.043308
https://doi.org/10.1016/j.jcp.2011.04.031
https://doi.org/10.1016/j.jcp.2011.04.031
https://doi.org/10.1016/j.jcp.2011.04.031
https://doi.org/10.1016/j.jcp.2011.04.031
https://doi.org/10.1016/j.jcp.2014.03.027
https://doi.org/10.1016/j.jcp.2014.03.027
https://doi.org/10.1016/j.jcp.2014.03.027
https://doi.org/10.1016/j.jcp.2014.03.027
https://doi.org/10.1103/PhysRevE.74.056703
https://doi.org/10.1103/PhysRevE.74.056703
https://doi.org/10.1103/PhysRevE.74.056703
https://doi.org/10.1103/PhysRevE.74.056703
https://www.python.org/
https://github.com/BDuenweg/Lattice-Boltzmann-weights
http://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://en.wikipedia.org/wiki/Partition_(number_theory)
https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.roots.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
https://en.wikipedia.org/wiki/Continued_fraction
https://docs.python.org/2/library/fractions.html
https://www.wolframalpha.com/
http://www.cvxpy.org/
https://doi.org/10.1103/PhysRevE.56.6811
https://doi.org/10.1103/PhysRevE.56.6811
https://doi.org/10.1103/PhysRevE.56.6811
https://doi.org/10.1103/PhysRevE.56.6811
https://doi.org/10.1002/cpa.3160020402
https://doi.org/10.1002/cpa.3160020402
https://doi.org/10.1002/cpa.3160020402
https://doi.org/10.1002/cpa.3160020402
https://doi.org/10.1209/epl/i1999-00370-1
https://doi.org/10.1209/epl/i1999-00370-1
https://doi.org/10.1209/epl/i1999-00370-1
https://doi.org/10.1209/epl/i1999-00370-1
https://doi.org/10.1103/PhysRevE.68.025103
https://doi.org/10.1103/PhysRevE.68.025103
https://doi.org/10.1103/PhysRevE.68.025103
https://doi.org/10.1103/PhysRevE.68.025103
https://doi.org/10.1103/PhysRevE.76.036704
https://doi.org/10.1103/PhysRevE.76.036704
https://doi.org/10.1103/PhysRevE.76.036704
https://doi.org/10.1103/PhysRevE.76.036704

