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ABSTRACT

The NICER collaboration recently published a joint estimate of the mass and the radius of PSR

J0030+0451, derived via X-ray pulse-profile modeling. Raaijmakers et al. (2019) explored the implica-

tions of this measurement for the dense matter equation of state (EOS) using two parameterizations

of the high-density EOS: a piecewise-polytropic model, and a model based on the speed of sound in

neutron stars. In this work we obtain further constraints on the EOS following this approach, but

we also include information about the tidal deformability of neutron stars from the gravitational wave

signal of the compact binary merger GW170817. We compare the constraints on the EOS to those set

by the recent measurement of a 2.14 M� pulsar, included as a likelihood function approximated by

a Gaussian, and find a small increase in information gain. To show the flexibility of our method, we

also explore the possibility that GW170817 was a neutron star-black hole merger, which yields weaker

constraints on the EOS.

Keywords: dense matter — equation of state — gravitational waves — pulsars: individual

(PSR J0030+0451) — stars: neutron — X-rays: stars

1. INTRODUCTION

Determining the behavior of matter at supranuclear

densities is one of the major challenges of modern as-

trophysics and nuclear physics. Astronomical multi-

messenger observations yield statistical measurements

of neutron star (NS) properties such as gravitational

mass, radius, and tidal deformability, providing a way

to study matter under extreme conditions. Theoretical

Corresponding author: G. Raaijmakers

G.Raaijmakers@uva.nl

predictions for the phases of matter in NS cores span a

wide range, from neutron-rich nucleonic matter to hy-

peron or deconfined quark formation or the emergence of

a Bose-Einstein condensate or a color superconducting

phase (see Hebeler et al. 2015; Lattimer & Prakash 2016;

Oertel et al. 2017; Baym et al. 2018, for recent reviews

on this topic). In practice, our uncertainty about dense

matter is usually expressed in terms of a space of viable

equation of state (EOS) models (see, e.g., Abbott et al.

2018; Raaijmakers et al. 2019, and references therein).

Recently NASA’s Neutron Star Interior Composi-

tion Explorer (NICER), an X-ray telescope on board

the International Space Station, has delivered a joint

ar
X

iv
:1

91
2.

11
03

1v
3 

 [
as

tr
o-

ph
.H

E
] 

 1
7 

A
pr

 2
02

0

http://orcid.org/0000-0002-9397-786X
http://orcid.org/0000-0001-9313-0493
http://orcid.org/0000-0002-3394-6105
http://orcid.org/0000-0002-1009-2354
http://orcid.org/0000-0001-6573-7773
http://orcid.org/0000-0002-6449-106X
http://orcid.org/0000-0002-8961-939X
mailto: G.Raaijmakers@uva.nl


2 Raaijmakers et al.

mass-radius measurement for the millisecond pulsar

(MSP) PSR J0030+0451 using pulse-profile modeling

(see Watts 2019, and references therein for a description

of the technique). Two independent analyses were con-

ducted within the collaboration, each making slightly

different assumptions about the modeling (including

priors; Miller et al. 2019; Riley et al. 2019). The re-

sults depended strongly on the assumed geometry for

the X-ray-emitting surface hot regions, but it was pos-

sible to identify a superior configuration based princi-

pally on the likelihood. The results of the two anal-

yses were, however, deemed consistent: Riley et al.

(2019) reported an inferred mass and equatorial ra-

dius of M = 1.34+0.15
−0.16 M� and Req = 12.71+1.14

−1.19 km

(for the 68% credible interval); Miller et al. (2019),

on the other hand, found M = 1.44+0.15
−0.14 M� and

Req = 13.02+1.24
−1.06 km.

Constraints on the mass and radius have recently also

been obtained from the gravitational wave (GW) obser-

vations of the binary NS merger event GW170817 (Ab-

bott et al. 2017). The LIGO Scientific and Virgo Col-

laborations (LVC) reported measurements of the masses

and EOS-dependent tidal deformability parameters of

the NSs under different prior assumptions on the spins

and using various waveform models (Abbott et al. 2017,

2019a,b); see Kastaun & Ohme (2019) for a critical re-

examination of the results. The corresponding radii and

EOS constraints were inferred in two ways, by using

a parameterized spectral EOS (Lindblom 2010) and by

employing EOS-insensitive relations, both using the low-

spin priors (cS/GM2 < 0.05 where S is the spin angular

momentum) and hence non-rotating stellar models. The

results were consistent, leading to R = 11.9+1.4
−1.4 km from

the spectral EOS analysis and R = 10.8+2.0
−1.7 km for the

more massive NS at the 90% credible interval (Abbott

et al. 2018); see also De et al. (2018); Annala et al.

(2018); Tews et al. (2018) for independent related work.

A number of studies have further included additional

constraints from the electromagnetic counterparts as-

suming a NS-NS progenitor (Bauswein et al. 2017; Gao

et al. 2017; Coughlin et al. 2018; Most et al. 2018; Ca-

pano et al. 2020; Margalit & Metzger 2019; Radice &

Dai 2019; Shibata et al. 2019). In this work, we remain

cautious of the large uncertainties in modeling the elec-

tromagnetic counterparts and only use the fact that the

observed kilonova, an ultraviolet-optical-infrared tran-

sient powered by rapid neutron-capture nucleosynthesis

(see, e.g., Lattimer & Schramm 1976; Li & Paczyński

1998; Rosswog et al. 1999; Kulkarni 2005; Metzger et al.

2010; Metzger 2017) indicated that the progenitor bi-

nary involved at least one NS. We consider two possibil-

ities, a double NS system as assumed in most analyses

and a NS-black hole binary. The mass of the black hole

(BH) in the latter scenario would be very low and could

have originated from an earlier merger of two NSs or be

of primordial origin (see, e.g., Yang et al. 2018; Coughlin

& Dietrich 2019; Hinderer et al. 2019).

In this Letter, we perform a joint analysis of the EOS

constraints from NICER and GW170817, following the

method for connecting global NS parameters to the EOS

used in Raaijmakers et al. (2019). We focus on the mass-

radius measurement from Riley et al. (2019)1, as the

measurement of Miller et al. (2019) has already been

used to jointly constrain the EOS with GW and radio

pulsar measurements. We will compare our findings to

those of Miller et al. (2019) in Section 4.

We use EOS models that incorporate prior infor-

mation from nuclear physics up to around saturation

density, and two different parameterized extensions at

high density; one using piecewise-polytropes, and one

based on physically motivated assumptions about the

speed of sound. We develop the methodology for the

combined interpretation of these measurements in a

Bayesian framework that also takes into account the

measurements of massive pulsars. Our method can read-

ily include a larger number of NSs from anticipated fu-

ture multi-messenger observations. Next, we analyze the

impact of systematic uncertainties arising from different

priors for the EOS. We show that the priors used for the

spectral EOS inference from GWs (Abbott et al. 2018)

allow for much stiffer EOSs than the priors in Raaij-

makers et al. (2019) and explain the reasons for these

differences. Nevertheless, we find that the resulting EOS

constraints are broadly consistent. We quantify explic-

itly that the fact that GW measurements determine the

chirp mass to high accuracy can be utilized to accelerate

the parameter inference by treating it as fixed.

2. INFERENCE FRAMEWORK

We adopt the framework outlined previously in Raaij-

makers et al. (2019) and Greif et al. (2019), which we will

briefly summarize here, including details of some adjust-

ments made to incorporate information from the GW

data of GW170817. Note that the Bayesian methodol-

ogy is very similar to that outlined in Miller et al. (2020),

although there are differences in the prior assumptions

(see Section 4).

1 The posterior samples from that analysis are available in a
Zenodo repository Riley et al. (2019). We have now updated the
repository from the version published alongside Riley et al. (2019)
to include the following additional material: files containing only
the mass-radius samples, contour files for the credible regions in
mass-radius space, and simplified coordinate files for the bound-
aries of the hot regions on the stellar surface.
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Figure 1. Comparison of the prior on EOS parame-
ters, transformed to the space of mass and radius, as it
would be updated after performing parameter estimation
on GW170817 with (green contours) and without (blue
contours) fixing the chirp mass to the median, Mchirp =
1.186 M�, of its marginal posterior distribution. The two
distributions show some small-scale differences in the 1σ con-
tour but are globally consistent. For comparison we also
show the prior distribution before including information from
GW170817, but with the 2.14 M� pulsar information, in
black contours. For all contours the dotted and dashed lines
indicate the 68% and 95% credible regions, respectively.

2.1. Parameterizations

Two distinct parameterizations are considered: a

three-piece polytropic (PP) model with varying tran-

sition densities between the polytropes (Hebeler et al.

2013), and a speed of sound (CS) model based on phys-

ical considerations both at nuclear and high densities

(Greif et al. 2019). Both models are matched to an ad-

ditional polytrope below 1.1n0 (with saturation density

n0 = 0.16 fm−3) with varying normalization that cap-

tures the range of allowed EOS calculated from chiral

effective field theory (chiral EFT) interactions (Hebeler

& Schwenk 2010; Hebeler et al. 2013). At densities be-

low 0.5n0 this polytrope is matched to the BPS crust

EOS (Baym et al. 1971).

2.2. Bayesian Parameter Estimation

We use Bayesian methodology to estimate parameters

in our EOS model. A more in-depth discussion on pa-

rameter estimation frameworks in the context of dense

matter inference can be found in Riley et al. (2018),

which we will very briefly describe here. Let us write,

using Bayes’ theorem, the posterior distributions of the

EOS parameters θ and central energy densities ε (to-

gether the interior parameters) as

p(θ, ε |d,M) ∝ p(θ |M) p(ε |θ,M) p(d |θ,M) , (1)

whereM is the model that includes all assumed physics,

and d is the data set from both NICER observations

and strain data of GW170817 from the GW detectors

LIGO/Virgo. Note that the prior on the central en-

ergy densities ε is dependent on the EOS parameters θ,

because the maximum stable central energy density is

different for each set of θ. Given that the two obser-

vations are independent, we can separate the likelihood

function as2

p(θ, ε |d,M) ∝ p(θ |M) p(ε |θ,M)

× p(Λ1,Λ2,M1,M2 |dGW)

× p(M3, R3 |dNICER)

(2)

where the nuisance-marginalized likelihood functions of

(i)M3 andR3, and (ii) Λ1,Λ2,M1, andM2, are equated3

to the nuisance-marginalized joint posterior density dis-

tributions inferred by Riley et al. (2019) and Abbott

et al. (2019b), respectively. The marginal GW likeli-

hood function is degenerate under exchange of binary

components, but we adopt the same convention as in

Abbott et al. (2019a) and define M1 ≥ M2. The inte-

rior parameters θ and ε (now containing three central

energy densities, corresponding to one observed star by

NICER and two by the LVC) map deterministically to

the parameters M , R, and Λ (where we have assumed

the rotation of the star, Ω, to be zero4), allowing us

to sample from the prior distribution of θ and ε and

then numerically evaluate the likelihood functions using

kernel density estimation (KDE) on the posterior sam-

ples. We then draw from the joint posterior distribution

p(θ, ε |d,M) of all interior parameters.

However, one complication that arises when perform-

ing KDE on samples from the joint posterior distribu-

tion of the two masses associated with GW170817, is

that, due to the extreme accuracy to which the chirp
mass Mchirp = (M1M2)3/5/(M1 + M2)1/5 is known rel-

ative to the uncertainty in the individual masses, the

2 Note that for notational simplicity, we omit conditional argu-
ments that would denote the model used by a collaboration. The
global model M can be considered as a proper superset of the
union of these models.

3 For NICER, the nuisance-marginalized likelihood function
p(dNICER |M,R) ∝ p(M,R |dNICER) because the joint prior
p(M,R) was flat (Riley et al. 2019). For GW170817 the nuisance-
marginalized likelihood function p(dGW |M1,M2,Λ1,Λ2) ∝
p(M1,M2,Λ1,Λ2, |dGW) because the priors used in Abbott et al.
(2019a) are flat in both masses and tidal deformabilities.

4 See Raaijmakers et al. (2019) for a discussion on the spin
of PSR J0030+0451. We assume that the spins of the two com-
ponents in GW170817 are consistent with the spins of observed
Galactic binary NS systems that will merge within a Hubble time.
Therefore we use the posterior distribution of GW170817 in the
case of a low-spin prior, i.e., χ < 0.05, which corresponds to slower
rotation than PSR J0030+0451.
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Figure 2. Left panel: comparison between the full prior distribution (black shaded region, 95% credible region bounded by
the dark green contour) for the PP model with a 1.97 M� cutoff (light green contour, as used in Raaijmakers et al. 2019) and
when updated by parameter estimation using the 2.14 M� pulsar likelihood function (black dashed contour) from Cromartie
et al. (2020). Using a cutoff in the prior allows for slightly smaller radii than using the likelihood function: this is due to both
the higher mass of the center of the pulsar likelihood function and the fact that the likelihood function gives more weight to an
EOS with a maximum mass of 2.14 M� than, e.g., 2.05 M�. Right panel: comparison between the 95% credible regions of the
prior distributions of the PP model (black, dashed contour) and the CS model (dark green contour), when updated with the
2.14 M� pulsar likelihood function. We also show the 95% credible region (black shaded region with blue contours) of the prior
distribution using the spectral model (Lindblom 2018) that was used in Abbott et al. (2018). From the comparison it is clear
that the prior with the spectral model allows for much stiffer EOS but has a similar bound at low radii.

choice of bandwidth is difficult to make (for GW170817,

Mchirp = 1.186 ± 0.001 M�; Abbott et al. 2019a). A

small bandwidth is necessary to accurately describe the

chirp mass, while a larger bandwidth is necessary to

smooth out finite sampling noise in the distribution of

masses. Another complication is that when the two sam-

pled central densities are uncorrelated—except for the

assumption of a shared EOS—it is computationally ex-

pensive for samplers to find the region in the space of

masses where all of the probability density is concen-

trated.

To avoid these complications, and at the same time

utilize the small chirp mass uncertainty, we fix it to its

median value of Mchirp = 1.186 M�. Consequently, the

mass of the secondary object is a deterministic func-

tion of the mass of the primary object, and there is one

fewer free central density parameter in the vector ε. For

details on the approximation invoked here, we refer to

Appendix A, up to Equation (A12). For likelihood eval-

uation we use the mass ratio q = M2/M1 instead of the

individual masses, transforming Equation (2) to 5

p(θ, ε |d,M) ∝ p(θ |M) p(ε |θ,M)

× p(Λ1,Λ2, q |dGW)

× p(M3, R3 |dNICER).

(3)

Moreover, the deformability Λ2 = Λ2(θ; q).

In Figure 1 6we compare the updated prior distri-

bution after including information from GW170817

with and without fixing the chirp mass. When the

chirp mass is considered as a free parameter we include

5 Note that, by transforming the parameters M1 and M2 to
the mass ratio q and Mchirp, the LVC prior p(q,Mchirp) is no
longer flat. The likelihood function we approximated as pro-
portional to the posterior density p(Λ1,Λ2, q |dGW) is therefore
contaminated. We have checked, however, that reweighting the
GW170817 posteriors such that the prior p(q,Mchirp) is flat has
an unimportant effect on the likelihood function used for EOS
inference. Moreover, note that approximating the conditional dis-
tribution p(Λ1,Λ2, q |dGW,Mchirp) by the marginal distribution
p(Λ1,Λ2, q |dGW) has a similarly unimportant effect.

6 See the Zenodo repository Raaijmakers et al. (2020) for the
data and code to recreate all plots in this Letter.
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it as an element of θ,7 sample from a uniform prior

Mchirp ∼ U(1.180, 1.192), and define the likelihood

function as p(Λ1,Λ2, q,Mchirp |dGW), thus requiring

four-dimensional KDE. The two distributions are, due

to the small uncertainty in the chirp mass, almost equal,

apart from some finite sampling noise. In the following,

we fix the chirp mass to Mchirp = 1.186 M� in order to

reduce the dimensionality of the parameter vector θ.

We use the nested sampling software MultiNest to

draw weighted samples from the posterior distribution

of θ (Feroz & Hobson 2008; Feroz et al. 2009, 2013;

Buchner et al. 2014).

2.3. Priors

The bounds of the prior ranges of parameters used

in this analysis are identical to those discussed in Sec-

tion 2.1.1 of Raaijmakers et al. (2019) and Section 3.1.1

of Greif et al. (2019). Within these bounds all EOS pa-

rameters are sampled uniformly, while the central den-

sity of a star, εc, is uniformly sampled in logarithmic

space between log(εc) = 14.6 and an upper bound that

is determined by the maximum central density of each

particular EOS. We consider an EOS in the PP model

up until the highest density that corresponds to a stable

NS or to the point where causality is no longer satis-

fied, i.e., where the speed of sound exceeds the speed of

light, cs > c. The CS model has slightly more restrictive

requirements:

(i) The speed of sound for all densities should be lower

than the speed of light.

(ii) At asymptotic densities (∼ 50n0) the speed of

sound should converge to cs =
√

1/3c from below,

based on theoretical calculations of cs in the frame-

work of perturbative quantum chromodynamics

(Fraga et al. 2014).

(iii) At low densities the speed of sound can be de-

scribed by that of a normal Fermi liquid such that

we require cs ≤
√

0.163 c at densities below 1.5n0

(for more details, see Greif et al. 2019).

A notable change from the prior used in Raaijmakers

et al. (2019) is how we implement information from pul-

sar mass measurements in our analysis.8 These high-

precision measurements obtained from the timing of

radio pulsars restrict softer EOSs by requiring each

7 Thus now mixing interior parameters and exterior spacetime
parameters.

8 We refer the reader to the discussion in section 4.2 of Raaij-
makers et al. (2019), and to the arguments in section 4.1 of Miller
et al. (2020).

EOS to be able to support the heaviest NSs. There

have been several massive NS detected, with the most

stringent constraints coming from PSR J0348+0432

with a mass of 2.01+0.04
−0.04 M� (Antoniadis et al. 2013)

and more recently PSR J0740+6620 with a mass of

2.14+0.10
−0.09 M� (Cromartie et al. 2020). In many previous

analyses the lower 1σ limit of such a mass measurement

was taken as the minimum mass that an EOS has to

support a priori. However, Miller et al. (2020, 2019) do

not make such an assumption and emphasize that like-

lihood information about high-mass pulsars be treated

accurately (see also Alvarez-Castillo et al. 2016). Here

we approximate the highest pulsar mass measurement

as a Gaussian likelihood function,9 such that Equation

(3) reads

p(θ, ε |d,M) ∝ p(θ |M) p(ε |θ,M)

× p(Λ1,Λ2, q |dGW)

× p(M3, R3 |dNICER)

× p(M4 |dradio).

(4)

The vector ε now contains a fourth central energy den-

sity (drawn from the same prior as described at the

beginning of this section) for which the corresponding

mass, M4 is used to evaluate the Gaussian likelihood

function. We compare the effect of a cutoff in the prior

with the implementation of the new likelihood function

for the PP model in the left panel of Figure 2. The

solid lines indicating the 95% credible region show that

the prior distribution between the two methods is very

similar, although the likelihood implementation of the

2.14 M� pulsar is slightly more constraining at lower

radii due to the higher mass. In the right panel of Fig-

ure 2 we compare the prior distributions for the two

parameterizations used in this Letter with the prior dis-

tribution of the spectral parameterization used in Ab-
bott et al. (2018). The spectral parameterization allows

for much larger radii than we consider here, due to using

only a crust EOS without implementing nuclear physics

constraints around nuclear saturation density. This is

taken into account in this work (see also Hebeler et al.

2013) by adopting the EOS band based on chiral EFT

up to 1.1n0. The exact breakdown density of chiral EFT

is not fully known, but many calculated and also pre-

dicted nuclear properties are consistent with experiment

(Hebeler et al. 2015), including the symmetry energy

and other matter properties at saturation density, sug-

9 A value of 0.09 M� was chosen for σ in the Gaussian likelihood
function, which is not representative for the upper tail of the pulsar
mass distribution. We believe, however, that the effect on the
posterior distributions of the EOS parameters is small enough to
justify this approximation.
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Figure 3. Posterior distributions conditional on the PP model and given: (i) the 2.14 M� pulsar alone (left panels), (ii) inclusion
of the GW170817 measurements (middle panels), and (iii) inclusion of the mass and radius of PSR J0030+0451 inferred by
Riley et al. (2019) given NICER data (right panels). In the top row we show how the posterior distributions update the prior
distributions, by drawing a new central density given the inferred distribution on EOS parameters, p(εc |EOS). This is then
transformed to the space of masses and radii, with the contours indicating the 68% and 95% credible intervals. In the bottom
row we show the marginal posterior distributions of the pressure P conditional on energy density ε, i.e., p(P | ε,d,M). The
bands show the connected 68% and 95% credible intervals at each energy density ε. The grey lines in the left panels show the
95% credible interval of the full prior, while the black dotted and dashed lines in all panels show the 68% and 95% credible
regions of the updated prior when including information from the 2.14 M� pulsar. The green contours show the same credible
regions, but for posterior distributions that are inferred from multiple measurements of neutron star observables. In the lower
right inset panels we illustrate the evolution of the Kullback-Leibler divergence as a function of energy density. We conclude
that most information is gained from including the 2.14 M� pulsar. The binary merger GW170817 favours softer EOSs than
the prior, but the measured radius from PSR J0030+0451 favors stiffer EOSs, resulting in a final posterior distribution very
similar to the prior.

gesting that the range of possible EOSs predicted by chi-

ral EFT is valid up to around nuclear saturation density

(see also Section 4.2 of Raaijmakers et al. 2019).

2.4. Generalization to a Large Number of Stars

The separation of the likelihood function based on dif-

ferent observables in Equation (4) is a useful way of

analysing multiple sources at the same time. In the

future, however, when a population of neutron stars

is observable, this can quickly become computation-

ally intractable—depending on the sampling algorithm

applied—as the number of densities constituting the pa-

rameter vector ε grows linearly with the number of ob-

served stars. One can perform the parameter estimation

sequentially in this case, where the prior p(θ |M) is up-

dated after each iteration and sampled from in the next

(see also Figure 2.1 in Riley et al. 2018).10

3. EOS CONSTRAINTS GIVEN

MULTI-MESSENGER OBSERVATIONS

For both parameterizations discussed in Section 2.1

we draw weighted samples from the posterior distribu-

10 Although natural, sequential updating does not come without
its own technical challenges. Moreover, in a rigorous population-
level context, one should consider the role of hyperparameters.
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Figure 4. Same as in Figure 3 but for the CS model. Again we conclude that constraints from GW170817 point to softer EOSs
with lower radii, but the results from NICER point to stiffer EOS with higher radii. The final posterior distribution, conditional
on the three different measurements combined, is then very similar to the distribution with only information from the 2.14 M�
pulsar included.

tion p(θ | d,M) using nested sampling. In order to

explore the effect of different measurements on this pos-

terior distribution, we start by only considering informa-

tion from the 2.14 M� pulsar; we then include informa-

tion from the binary merger GW170817, and finally we

include the more recent NICER measurements of PSR

J0030+0451. The GW data we use here are the pub-

licly available posterior samples LIGO-Virgo collabora-

tion (2018) which assume certain priors on the GW pa-

rameters as described in Abbott et al. (2019b); a study

of the impact of changing these priors is outside the

scope of this work but see Zhao & others (2020).

3.1. EOS Constraints Assuming GW170817 Was a

NS-NS

We illustrate the posterior distribution in two differ-

ent ways in Figures 3 and 4. The lower panels show the

68% and 95% credible intervals on the pressure at each

energy density given the inferred distribution on EOS

parameters, i.e., p(P | ε,d,M). The upper panels show

the updated prior distribution for a new star given the

inferred distribution on EOS parameters, transformed

to the space of mass and radii. More practically, this

means that for each EOS in the posterior distribution

p(θ |d,M) we draw a new central density from the prior

p(ε |θ), where we use again a uniform prior in log space

with the upper bound determined by the maximum sta-

ble neutron star of that EOS. From this central energy

density we then compute the corresponding mass and

radius pair. By combining all pairs for each EOS sam-

ple in the posterior we obtain a distribution of masses

and radii. The contours again indicate the 68% and 95%

credible regions. Visually inspecting the posterior dis-

tributions for both the PP model (Figure 3) and the CS

model (Figure 4) indicates that the inferred masses and

tidal deformabilities for GW170817 favor softer EOSs

than our prior. Folding in information about the radius

of PSR J0030+0451, however, with a peak value around

12.7 km, favors stiffer EOS. As a result the final poste-

rior distribution is only slightly shifted toward smaller

radii but otherwise closely follows the distribution when

only the highest-mass pulsar is included. We also note

that one should be careful when inferring the maximum

mass allowed for a NS from Figures 3 and 4 because
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Posterior log(Z) K

PP model CS model

+ 2.14 M� pulsar −1.69 ± 0.03 −2.22 ± 0.02 0.70

+ GW170817 −15.44 ± 0.02 −15.08 ± 0.02 1.70

+ NICER −17.05 ± 0.03 −17.10 ± 0.03 1.05

Table 1. Log-evidences (Z) for the three posterior distribu-
tions and two parameterizations. Also quoted are the Bayes’
factors (K), computed as the ratio of the evidence for the PP
model over the evidence for the CS model. Following the in-
terpretation of Kass & Raftery (1995) there is no significant
support for one parameterization over the other.

the high-mass end of these distributions depends sensi-

tively on the prior on central energy densities. See also

Section 4.2 and Figure 6 where we explicitly show the

distribution of the maximum mass by taking the highest

allowed central energy density from each EOS instead of

sampling from the prior on ε.

In order to quantify this we compute the Kullback-

Leibler (KL) divergence (Kullback & Leibler 1951) be-

tween the two distributions shown in the lower panels of

Figure 3 and 4 at a given energy density ε (see lower

right inset panels). The KL divergence is an asym-

metric measure of how one probability distribution dif-

fers from another; when computed using a logarithm

of base two, the divergence has units of bits. As ex-

pected, most of the information is gained from folding

in the 2.14 M� pulsar constraint. The posterior distribu-

tion given GW170817 alone exhibits greater divergence

from the prior than does the posterior distribution given

GW170817 and NICER information; that said, both di-

vergences are small at all densities.

Finally, we compute the Bayes’ factors to investigate

whether one parameterization is favored over the other

by the data. Assuming the two discrete models to have

equal probability a priori, the Bayes’ factor reduces to

the ratio of the evidences of the two posteriors. We

quote the values for the three different posterior dis-

tributions in Table (3.1), where the Bayes’ factor K is

the ratio of the PP model over the CS model. To in-

terpret the values of K we follow the table of Kass &

Raftery (1995) and conclude that none of the Bayes’

factors shows substantial support for one of the models

over the other.

3.2. EOS Constraints Assuming GW170817 Was a

NS-BH

Based on the gravitational wave signal and observed

electromagnetic counterpart from GW170817 there is a

non-negligible chance that one of the compact objects

involved in the merger was a light BH (Yang et al. 2018;

Ascenzi et al. 2019; Coughlin & Dietrich 2019; Hinderer

et al. 2019), provided that the objects had an unequal

mass ratio. Such a light BH could for example be formed

during an earlier merger of two NSs, or originate from

density fluctuations in the early universe (Garćıa-Bellido

et al. 1996).

We show that making different assumptions related

to the nature of the merger can affect the inferred

EOS. More specifically we investigate the impact of

GW170817 being a NS-BH by fixing the tidal deforma-

bility of the heavier object Λ1 to zero. One complication,

however, is that the posterior samples provided in Ab-

bott et al. (2019a) do not contain enough samples when

we restrict Λ1 = 0. Instead, we perform a coordinate

transformation on the posterior samples to the effective

tidal deformability Λ̃, a combination of the two indepen-

dent tidal deformabilities and masses. To incorporate

the constraints on the NS-BH scenario from electromag-

netic (EM) observations of the associated kilonova we

follow the approach outlined in Hinderer et al. (2019).

We use the model of Foucart et al. (2018) to compute

the remnant mass outside the BH after the merger Mrem

from the progenitor NS compactness, which is related to

its tidal deformability Λ2, the dimensionless spin of the

BH χ1, and the mass ratio. For the spin we only consider

aligned or anti-aligned spins with the orbital angular

momentum. We obtain these inputs from the GW data

by transforming the posterior samples of GW170817 to

Λ̃ and χeff , the effective dimensionless spin, setting the

BH tidal deformability Λ1 = 0 and the NS spin χ2 = 0.

We apply a conservative cut to the GW170817 poste-

rior by only considering samples that have Mrem > 0.1

M� , which can produce the observed bolometric light

curve of GW170817 (Kasliwal et al. 2017) within some

error margins based on semi-analytic light curve mod-

eling. Effectively this is a crude approximation to the

likelihood function that is zero if Mrem is below this

threshold and uniform if above. The posterior distribu-

tion of the EOS parameters is then given by

p(θ, ε |d,M) ∝ p(θ |M) p(ε |θ,M)

× p(Λ̃(Λ2,M1,M2), q |dGW,EM)

× p(M3, R3 |dNICER)

× p(M4 |dradio) ,

(5)

in which the tidal deformability of the heavier object

is fixed to zero and the chirp mass is again fixed to

Mchirp = 1.186 M�. Equation (5) requires that the

joint prior density of Λ̃ and q is flat. However, the

prior density is not flat. In particular, the prior dis-

tribution of Λ̃ exhibits undesirable behavior near zero,
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Figure 5. Comparison between the posterior distributions obtained for the assumption that GW170817 is a NS-NS or a NS-BH
merger, without (left panel) and with (right panel) the NICER measurements of PSR J0030+0451. Here we only show results
for the PP model. The lines show the connected 95% credible regions at a given energy density ε. The black lines show the
same credible regions when the posterior distribution is only informed by the 2.14 M� pulsar. The lower right inset illustrates
the evolution of the KL divergence with energy density ε and indicates that GW170817 is slightly more constraining for the
EOS when assumed to be a NS-NS merger.

where prior support drops to zero. To minimize the in-

duced bias we reweight the posterior samples to a flat

prior in Λ̃ using the method described in The LIGO

Scientific Collaboration et al. (2020). The difference

is, however, small since the EM information already

excludes values of Λ̃ close to zero. Finally we note

that the term p(Λ̃(Λ2,M1,M2), q |dGW,EM) is marginal-

ized over Λ1 and therefore the BH-NS likelihood func-

tion is contaminated with the likelihood of a system

with two deformable objects. However, comparing the

marginalized distribution with the conditional distri-

bution p(Λ̃(Λ2,M1,M2), q |dGW,EM,Λ1) shows that the

approximation is valid here in the context of illustrat-

ing the impact of different assumptions about the binary

(see Appendix (B)).

In Figure 5 we compare the posterior distribution for

the EOS for the assumption that GW170817 is a NS-

NS or NS-BH merger, with the prior distribution ob-

tained from only the 2.14 M� pulsar measurement. In

the left panel we only consider GW170817 and the pulsar

mass, while in the right panel we also include the NICER

measurement. Based on the KL divergence as a func-

tion of energy density, we conclude that in both cases

GW170817 has more support for softer EOSs when as-

sumed to be a double NS merger. This can be explained

by the fact that the relatively low inferred value of Λ̃

in Abbott et al. (2019a) can be achieved with a higher

value of Λ2 (i.e., stiffer EOS) when Λ1 = 0 and the fact

that the NS-BH scenario is only consistent with the EM

counterpart for unequal mass ratios and larger NSs.

4. DISCUSSION

In this work we have analyzed the combined con-

straints on the dense matter EOS given the recent in-

ferred mass and radius of PSR J0030+0451 by Riley

et al. (2019) using NICER data, and the measurement of

the gravitational wave signal from GW170817, in combi-

nation with the radio measurement of a 2.14 M� pulsar.

4.1. Multi-messenger Contributions

The posterior distributions show that the most infor-

mation is gained from the most massive pulsar mass

measurement. In combination with the restricted range

of possible EOS at lower densities described by the chiral

EFT band and, for the CS model, by the approximation

of NS matter as a Fermi liquid, the pulsar mass already

puts stringent constraints on the EOS. When including

information from GW170817, softer EOSs are yielded a

posteriori, but this is only a small effect because EOSs

consistent with the 2.14 M� pulsar mass measurement

are restricted by causality to higher radii. Finally, the

recent NICER measurement shows more support for

stiffer EOS, causing the posterior distribution to have

a narrow peak where the likelihood functions of NICER

and GW170817 overlap with the information from the

2.14 M� pulsar and the chiral EFT band.

In order to quantitatively assess the prior-to-posterior

information gain through sequential multi-messenger

updates, we have computed KL divergences as a func-

tion of energy density. The divergences indicate that

most information is gained from the radio pulsar mass

measurement. The information gain from GW170817,

given prior radio information, is small. Further, includ-

ing the NICER likelihood yields a smaller information
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gain because the radio and X-ray modeling constrain a

similar part of the EOS parameter space, i.e., provide

less support for softer EOSs.

Note that these divergences all depend on which dis-

tribution is compared with which. For example, com-

paring the constraints from NICER or GW170817 with

the original, more diffuse prior distribution would yield

a higher KL divergence. We argue, however, that a logi-

cal, unique order of precedence would be ideal. An obvi-

ous option is to chronologically incorporate the various

(astronomical) measurements that constrain the EOS.

It is however difficult to design an update order that is

truly chronological, given that (i) not all constraints are

compiled in any one analysis, and (ii) multi-messenger

constraints are being derived contemporaneously, both

given newly acquired data, and given archival data when

the modeling procedure is revolutionized. Typically

there will not be a clear chronology, and even if there

were, we might try to account for the number of phys-

ical assumptions a constraint is conditional on. If we

assume that the number of assumptions anti-correlates

with robustness to systematic error in our models of real-

ity, we can attempt to compile information—and archive

constraints—in loose order of robustness.11

We therefore opt to start with information contributed

from radio timing of pulsars in relativistic binaries.

There are multiple constraints to consider: constraints

for two systems were reported before GWs were first de-

tected (Demorest et al. 2010; Antoniadis et al. 2013),

with measurements for the very first being updated in

recent years with continued timing (Fonseca et al. 2016;

Arzoumanian et al. 2018; Cromartie et al. 2020; Miller

et al. 2020). It is believed that radio measurements re-

lying solely on the relativistic Shapiro delay are robust

to systematic error. However, the first report of a pul-

sar with a mass above 2 M� is dependent on theoret-

ical models of white dwarf evolution (Antoniadis et al.

2013). The issue of choice can of course be straightfor-

wardly nullified by incorporating all of the radio pulsar

mass measurements, each of which encodes orthogonal

information in a population-level context. In this work

we chose to use a single astronomical source for each

class of astronomical messenger. Of the two highly in-

11 In principle, if a chronologically earlier constraint is biased,
future unbiased, informative constraints should offer a strong opin-
ion. Thus bias should resolve in time, provided that computation
can be performed accurately (Raaijmakers et al. 2019). This is
especially true if models are revolutionized and used to reanalyze
data, at the expense of a clear chronology. In practice, however,
it is not always straightforward to accurately update knowledge
with future information when resolution would be required in the
tail of a prior distribution.

formative measurements relying solely on the relativistic

Shapiro delay, derived by Arzoumanian et al. (2018) and

Cromartie et al. (2020), we chose to use the constraint

reported by the latter.

4.2. Implications for the Maximum Mass of NSs

The maximum mass of NSs places important con-

straints on the EOS and can aid in determining the

nature of a compact binary merger and the following

merger remnant. In Fig. 6 we show the posterior distri-

butions for Mmax for the PP and CS parameterizations

considered in this Letter. These distributions are ob-

tained by calculating for each EOS sample in the pos-

terior distribution p(θ |d,M) the maximum mass for

that EOS. The gray dashed lines indicate the prior sup-

port on Mmax, which drops down rapidly above ∼ 2.5

M� for both parameterizations. The bump around 2.3

M� for the PP model is a consequence of EOS that

terminate at lower maximum masses when their sound

speed reaches the speed of light before reaching a max-

imally stable NS. This leads to a higher value for the

PP model of Mmax = 2.26+0.16
−0.24 M� compared to the

CS model, Mmax = 2.13+0.26
−0.22 M� , when including in-

formation from pulsar mass measurements, GW170817,

and NICER. Here we quote median values and upper

and lower limits that bound the 95% credible region.

We find that the maximum mass distribution presented

here is broadly consistent with values found in other

works (see, e.g., Margalit & Metzger 2017; Shibata et al.

2017; Alsing et al. 2018; Rezzolla et al. 2018; Ruiz et al.

2018; Tews & Schwenk 2020). We find, however, a lower

upper-limit since some of these analyses also include in-

formation from the kilonova light curves that suggest the

formation of a metastable NS and disfavor the prompt

formation of a BH.

4.3. Comparison to Other Work

We first compare our results with the analysis of Miller

et al. (2019), who use a similar Bayesian approach to

combine results from NICER, GW170817, and radio pul-

sar measurements to constrain the EOS. The parame-

terization of the EOS used in this work differs, how-

ever, in several aspects from the two parameterizations

used by Miller et al. (2019). For the latter the crust

EOS of Douchin & Haensel (2001) is considered up to

0.5 ρs. Beyond 0.5 ρs, two different extrapolations to

higher densities are used. One approach used by Miller

et al. (2019) is to implement the spectral parameteriza-

tion by Lindblom (2010, 2018). The second parameteri-

zation is a piecewise polytropic expansion with two more

polytropic segments than used in this work, totalling up

to five segments. The range of the first polytropic index
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Figure 6. Posterior distributions of the maximum mass of a non-spinning NS Mmax that is supported by the inferred EOS after
including the pulsar mass measurement, GW170817 and the results from NICER. For the PP model we find a median value of
Mmax = 2.26+0.16

−0.24 M� while for the CS model we find Mmax = 2.13+0.26
−0.22 M� , where the upper and lower limit bound the 95%

credible region.

of Miller et al. (2019) is chosen to be rather restric-

tive in the context of chiral EFT (Hebeler et al. 2013).

Moreover, Miller et al. (2019) note that first-order phase

transitions are not allowed in the case of the spectral pa-

rameterization, but they are permitted non-exhaustively

in the case of the piecewise polytropic expansion (as in

the present work). Overall the priors on their param-

eterizations, in particular the spectral model (see also

Figure 1) allow for a larger range of possible EOS func-

tions. Visually comparing our inferences with Figure 14

in Miller et al. (2019), however, we deem the posterior

distributions to be consistent.

Next, we compare to previous analyses of EOS con-
straints conditional on GW170817. The results of the

LVC (Abbott et al. 2018) are broadly consistent with

our analysis here, yet there are noticeable differences

in the lower bound of the 90% confidence interval in ra-

dius (comparing Figures 3 and 4 with Figure 3 in Abbott

et al. 2018). We attribute this discrepancy primarily to

the different assumptions on the speed of sound: the

spectral EOSs in Abbott et al. (2018) allowed models

with up to 10% violation of causality, while both param-

eterized EOSs used in our analysis were strictly causal

with cs ≤ c. Additional differences are that Abbott

et al. (2018) use as the crust EOS a SLy model up to

∼ 0.5, ρs while we use the BPS model, and we incorpo-

rate nuclear physics constraints based on chiral EFT up

to around saturation density (Hebeler et al. 2013). The

latter affects mainly the prior at the large radius end.

A number of independent analyses of the GW data

also found broadly consistent results. De et al. (2018)

analyzed the GW data with the source location and dis-

tance fixed to those determined from the electromag-

netic observations, identified scaling relations between

tidal parameters and mass ratio using piecewise poly-

tropic models, and determined EOS and radius con-

straints for a 1.4 M� star to 8.9 < R1.4 < 13.2 km consis-

tent with our results here. Most et al. (2018) computed

a large catalog of piecewise polytropic EOSs, parameter-

izing both hadronic models and those with phase tran-

sitions. They analyzed the subset of these consistent

with high-mass NSs and constraints on tidal deforma-

bility parameter Λ̃, both of which were imposed as hard

cutoffs. Their results for the case Mmax > 2.01 M�
and Λ̃1.4 < 800 (e.g., their Figure 1, top left panel) are

consistent with our findings here. Capano et al. (2020)

used a different speed of sound parameterization based

on similar chiral EFT constraints, as well as different

priors, in particular a uniform distribution in radius.

Thus, their results using the GW data alone are skewed

more toward smaller radii 9.2 . R1.4 . 12.3 km when

imposing the chiral EFT limits up to ρs. Essick et al.

(2020) used a nonparametric EOS inference under dif-

ferent priors, also finding broadly consistent results.

In conclusion, the large statistical uncertainties in the

available NICER and LIGO/Virgo likelihood functions

lead to broad agreements on the EOS and radius con-

straints across different analyses. However, the impact
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of priors, assumptions, and parameterizations is start-

ing to become discernible, as we have shown. Highly

anticipated upcoming observations with LIGO/Virgo,

NICER, and radio pulsars will constrain the EOS for

populations of NSs, and yield unique insights into the

properties of cold, dense matter. Our method can

readily ingest the additional information from multiple

sources, as well as incorporate new constraints from sub-

atomic experiments and theory.
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Garćıa-Bellido, J., Linde, A., & Wands, D. 1996, PhRvD,

54, 6040

Gough, B. 2009, GNU Scientific Library Reference Manual

- Third Edition, 3rd edn. (Network Theory Ltd.)

Greif, S. K., Raaijmakers, G., Hebeler, K., Schwenk, A., &

Watts, A. L. 2019, MNRAS, 485, 5363

Hebeler, K., Holt, J. D., Menéndez, J., & Schwenk, A. 2015,

Annu. Rev. Nucl. Part. Sci., 65, 457

Hebeler, K., Lattimer, J. M., Pethick, C. J., & Schwenk, A.

2013, ApJ, 773, 11

Hebeler, K., & Schwenk, A. 2010, PhRvC, 82, 014314

Hinderer, T., Nissanke, S., Foucart, F., et al. 2019, PhRvD,

100, 063021

Hunter, J. D. 2007, Computing in Science & Engineering, 9,

90. http://dx.doi.org/10.1109/MCSE.2007.55

Jones, E., Oliphant, T., Peterson, P., et al. 2001–, SciPy:

Open source scientific tools for Python, , , [Online;

accessed 21.06.2019]. http://www.scipy.org/

Kasliwal, M. M., Nakar, E., Singer, L. P., et al. 2017,

Science, 358, 1559

Kass, R. E., & Raftery, A. E. 1995, Journal of the

American Statistical Association, 90, 773

Kastaun, W., & Ohme, F. 2019, PhRvD, 100, 103023

Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in
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APPENDIX

A. GW LIKELIHOOD AND PRIOR IMPLEMENTATION

The posterior distribution derived by the LVC, assuming both binary components are NSs, is

p (M ,Λ |d) ∝ p (d |M ,Λ) (A1)

where M = [M1,M2]>, Λ = [Λ1,Λ2]>, d is the strain data vector, and we omit the conditional argument representing

the model. The joint prior density p(M ,Λ) is flat on compact support, such that the posterior density is proportional

to the nuisance-marginalized likelihood function p (d |M ,Λ). This function is symmetric under exchange of the binary

components—i.e., M1 ↔M2 and Λ1 ↔ Λ2. We are therefore free to define one mass as being associated with the most

massive component: Mi ≥Mj for i 6= j. If we opt not to, a numeric label is always associated with the same physical

object. We are free to transform spaces, such that the likelihood function is p (d | q,Mchirp,Λ), where q := M2/M1,

and Mchirp is a symmetric combination of M1 and M2. Here, q ∈ R+ if no ordering of masses is enforced, in which

case the nuisance-marginalized likelihood for q = Q is equal to that for q = 1/Q under exchange of properties. On the

other hand, 0 < q ≤ 1 if M1 is associated with the more massive component, which is the definition we choose.

The joint posterior distribution of interior parameters (omitting the global model as a conditional argument) is

p(θ, ε |d) ∝ p(d |θ, ε)p(ε |θ)p(θ), (A2)

where θ are EOS parameters, and ε are central (energy) densities, such that (θ, εi) 7→ (Mi,Λi). The EOS parameters

also operate as hyperparameters, in the simplest mode as an upper bound on the prior support of ε ∈ [a, b(θ)]. The

population-level prior density of binaries p(ε |θ) is assumed to be separable when one density is associated with a

particular physical component:

p(ε |θ) =
∏
i

p(εi |θ), (A3)

where p(εi |θ) is identical ∀i. Let us assume f(εi) ∼ U(a, b) for b = b(θ), where f(εi) is a monotone transformation

such as a logarithm, which is our choice in the main text.

We decided to define one density parameter as that of the binary component with the highest central density (and

thus total mass), and therefore f(ε1) ≥ f(ε2). Transforming the joint prior density function above, assuming f(εi) = εi
for notational simplicity, yields

p(ε1, ε2 |θ) = p(ε2 | ε1,θ)p(ε1 |θ) (A4)

where

p(ε1 |θ) =
2(ε1 − a)

(b− a)2
and p(ε2 | ε1) =

1

(ε1 − a)
, (A5)

for support ε1 ∈ [a, b] and ε2 ∈ [a, ε1]. We then require (according to standard prior implementation for nested

sampling)

x1(ε1;θ) =

ε1∫
a

2(t− a)

(b− a)2
dt =

(ε1 − a)2

(b− a)2
; (A6)

inverting yields

ε1(x1;θ) = a+ (b− a)
√
x1. (A7)

Further,

x2(ε2; ε1) =
1

(ε1 − a)

t∫
a

dt =
ε2 − a

(ε1 − a)
=⇒ ε2(x2;x1) = a+ (ε1 − a)x2. (A8)

Returning to the likelihood function p (d |M ,Λ), the function is almost degenerate, with support (defined in terms

of some small threshold value of the likelihood normalized to the global maximum) only for |g(M)| ≤ ε, where g(M)

is the chirp combination minus some (now) constant Mchirp and ε ∈ R+ is small. In the limit ε → 0, the likelihood

function is degenerate in the M -subspace. Generally, the marginal posterior density is then

p(θ, ε1 |d) ∝ p(ε1 |θ)p(θ)

∫
p(d |M ,Λ)p(ε2 |θ)dε2. (A9)
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If ε→ 0, then

p(θ, ε1 |d) ∝ p(ε1 |θ)p(θ)p(d |M1,Λ)

∫
δ(ε2 − h(ε1,θ;Mchirp))p(ε2 |θ)dε2

= p(ε1 |θ)p(θ)p(d |M1,Λ) p(h(ε1,θ;Mchirp) |θ)︸ ︷︷ ︸
support ε2∈[a,b]

,
(A10)

where M2 is the total mass yielded via inversion of the chirp combination of M , and h(ε1,θ;Mchirp) is the associated

value of ε1 for the EOS specified by θ. Further, Λ2 = Λ2(ε1,θ;Mchirp). The last factor implies that we need to take

the prior support of ε2 into account given hyperparameters θ; note that if h(ε1,θ;Mchirp) has no solution, it will by

definition not be within the prior support, and note also that the set of solutions to the inversion problem is generally

a proper superset of the prior support.

However, because we enforced an order on the total masses, such that M1 ≥M2, then

p(θ, ε1 |d) ∝ p(ε1 |θ)p(θ)

∫
p(d |M ,Λ)p(ε2 | ε1,θ)dε2. (A11)

If ε→ 0, then

p(θ, ε1 |d) ∝ p(ε1 |θ)p(θ)p(d |M1,Λ)

∫
δ(ε2 − h(ε1,θ;Mchirp))p(ε2 | ε1,θ)dε2

= p(ε1 |θ)p(θ)p(d |M1,Λ) p(h(ε1,θ;Mchirp) | ε1,θ)︸ ︷︷ ︸
support ε2∈[a,ε1]

.
(A12)

This means that if the most massive binary component is such that h(ε1,θ;Mchirp) ≥ ε1, then the last factor imposes

zero (approximate) posterior density at point [θ, h(ε1,θ;Mchirp)]>. Note that if the hyperparameters θ merely delimit

stability against radial perturbations, then p(h(ε1,θ;Mchirp) | ε1,θ) loses dependence, becoming p(h(ε1,θ;Mchirp) | ε1).

When transforming M1 in Equation A12 to the mass ratio q we obtain the GW-related part of Equation 3 in the main

text.

In reality the likelihood function is finite for |g(M)| ≤ ε with ε finite, with the marginal posterior distribution of the

chirp combination having 90% credible interval about the median of Mchirp = 1.186+0.001
−0.001 M�. If we are to account for

this likelihood information accurately, but avoid sampling from a relatively very diffuse prior in the central densities

and thus in the chirp mass, then we need to perform fast marginalization over the central density ε2 to decrement the

dimensionality of the sampling space. To proceed, we need to examine the conditional likelihood function

L(ε2; ε1,θ) = p(d |M ,Λ). (A13)

Given M1, there is one maximum in the conditional likelihood function when slicing through the chirp-sensitive

likelihood function. Further, M2 = M2(ε2;θ), whilst not a monotone transformation in the presence of unstable

branches, is ordered, meaning there should exist one maximum with respect to ε2. In order to marginalize we

therefore aim to first approximate the central density ε2 that maximizes the conditional likelihood function. We

thus approximate—via inversion—h(ε1,θ;M ′chirp), as above, where M ′chirp is now the median chirp mass in the

marginal posterior distribution of Mchirp. Given this estimator of the maximum, we can generate bounds for nu-

merical integration. For instance, we can integrate on the interval ε2 ∈ [α, β], where α := h(ε1,θ;M ′chirp − nCl)
and β := h(ε1,θ;M ′chirp + nCu) where n is some integer and the X% marginal credible interval on the chirp mass is

CIX% = {Mchirp : Mchirp ∈ [M ′chirp−Cl,M ′chirp +Cu]}. We can then perform numerical quadrature where the integrand

requires numerical integration to transform (ε2,θ) 7→ (M2,Λ2). If an order is imposed on the central densities, then

the upper-bound for quadrature is min[h(ε1,θ;M ′chirp + nCu), ε1].

Another approach would be to inject likelihood information into the prior density function of the mass M2 (and thus

of the central density ε2). The prior support of M2 (and thus ε2) is restricted to some narrow interval corresponding

to a narrow interval in chirp mass about the marginal median value. This is uncomfortable to have to rely on, one

reason being that prior predictive probabilities may be compromised for model comparison; another is that a prior

may be defined on the space of M2 that is inconsistent with the prior density p(ε1 |θ), or a prior is defined directly on

the space of the chirp mass, leading to a similar inconsistency. Given this modification of the prior support relative

to the protocol outlined above, (nested) sampling proceeds without decrementing the dimensionality, but at far lower

cost and effectively without risk of error due to insufficient resolution.
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Figure 7. Left panel: comparison of the distribution of the mass ratio q when we use the posterior distribution marginalized
over the chirp mass (green) or the posterior distribution conditional on a given chirp mass (blue). Both distributions are very
similar, which is why we argue that the usage of the marginalized distribution throughout the Letter is justified. Right panel:
prior distribution on the mass ratio q in the black dashed lines, the posterior distribution on q in green, and the reweighted
posterior that corresponds to a flat prior in q in blue. Note that the prior distribution on q is only for a small interval in chirp
mass where there is posterior support, which is why there is more support toward lower-than higher-mass ratios. We conclude
that there is slightly more posterior support for equal mass ratios when reweighting but this is negligible compared to the
statistical uncertainty in GW170817.

In this work we compared two approaches quantitatively: (i) the delta-function approximation—specifically Equa-

tion (A12); and (ii) the approach wherein likelihood information is injected into the prior via modification of the

support, in the form of a narrow prior on the chirp mass about the median in marginal posterior mass; see the text

following Equation (3). The joint posterior distribution of the EOS parameters is consistent for both approaches.

B. APPROXIMATIONS TO THE LIKELIHOOD FUNCTION

B.1. The NS-NS Scenario

The posterior distribution on the two binary components from GW170817 derived by the LVC (see Abbott et al.

2019a) is related to the nuisance-marginalized likelihood function through

p(Λ1,Λ2,M1,M2 | dGW) ∝ p(Λ1,Λ2,M1,M2) p(dGW | Λ1,Λ2,M1,M2), (B14)

where we have only shown the four parameters of interest here. In this work we have equated the two by arguing that
the prior distribution p(Λ1,Λ2,M1,M2) is jointly flat. Furthermore we have performed a coordinate transformation

from the two component masses to the mass ratio q and the chirp mass Mchirp to get

p(Λ1,Λ2, q,Mchirp | dGW). (B15)

As the chirp mass is constrained to a very small range we fix its value to Mchirp = 1.186 M� such that we can write a

conditional distribution

p(Λ1,Λ2, q | dGW,Mchirp), (B16)

which is a slice through the posterior distribution. We use, however, the marginalized posterior distribution

p(Λ1,Λ2, q | dGW) in this Letter, which we compare to the conditional distribution in the left panel of Figure 7.

We furthermore note that when transforming from component masses to mass ratio and chirp mass the prior on

these quantities is no longer jointly flat. We therefore check that the posterior distribution on q does not change

significantly when applying a weighting to the distribution to ensure a jointly flat prior. We show the difference

between the distributions in the right panel of Fig. 7.

B.2. The NS-BH Scenario

Finally we have approximated the likelihood function for the NS-BH case by transforming Λ1 and Λ2 to the parameter

Λ̃ and marginalizing over Λ1, which is different from taking a slice through the posterior at Λ1 = 0. However, to
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Figure 8. Comparison between the posterior distribution on Λ̃ when marginalizing over Λ1 and when only considering values
of Λ1 < 30. The range Λ1 < 30 is chosen in order to well-approximate the conditional distribution at Λ1 = 0 whilst reducing
noise in the histogram. The distributions shown here have already implemented zero support on parameter sets that result in
Mrem < 0.1 M� and uniform support where Mrem > 0.1 based on the electromagnetic analysis in Section 3.2 and Hinderer et al.
(2019). The difference between the two distributions is small enough to justify the approximation made in this Letter.

compute the constraints from the EM counterpart the latter is not possible since there are not enough samples in the

posterior that have Λ1 = 0. As an alternative we approximate Λ1 = 0 by taking the samples in the distribution where

Λ1 < 30, such that we are not dominated by stochastic noise of having too few samples. In Fig. 8 we compare the two

approaches when we set the posterior support for parameter sets that result in Mrem < 0.1 M� to zero, while setting

uniform support everywhere else. Including these constraints from the EM counterpart, we conclude that there is a

negligible change in the posterior distribution of Λ̃.


