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Abstract
The supply of soil respiration with recent photoassimilates is an important and fast 
pathway for respiratory loss of carbon (C). To date it is unknown how drought and 
land-use change interactively influence the dynamics of recent C in soil-respired 
CO2. In an in situ common-garden experiment, we exposed soil-vegetation monoliths 
from a managed and a nearby abandoned mountain grassland to an experimental 
drought. Based on two 13CO2 pulse-labelling campaigns, we traced recently assimi-
lated C in soil respiration during drought, rewetting and early recovery. Independent 
of grassland management, drought reduced the absolute allocation of recent C to 
soil respiration. Rewetting triggered a respiration pulse, which was strongly fuelled 
by C assimilated during drought. In comparison to the managed grassland, the aban-
doned grassland partitioned more recent C to belowground respiration than to root 
C storage under ample water supply. Interestingly, this pattern was reversed under 
drought. We suggest that these different response patterns reflect strategies of the 
managed and the abandoned grassland to enhance their respective resilience to 
drought, by fostering their resistance and recovery respectively. We conclude that 
while severe drought can override the effects of abandonment of grassland man-
agement on the respiratory dynamics of recent C, abandonment alters strategies of 
belowground assimilate investment, with consequences for soil-CO2 fluxes during 
drought and drought-recovery.
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1  | INTRODUC TION

Drought exerts strong effects on the terrestrial carbon (C) cycle 
(Frank et  al.,  2015; Reichstein et  al.,  2013; Sippel et  al.,  2018). 
It impairs the two largest fluxes of C between ecosystems and 

the atmosphere, i.e. photosynthesis and soil respiration. These 
fluxes are not independent, because rhizosphere respiration, i.e. 
respiration by roots and root-associated microorganisms, relies 
closely on the supply of recent photoassimilates (Bahn et al., 2010; 
Trumbore, 2006). This link of assimilation and respiration represents 
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a rapid pathway in short stature ecosystems, such as grasslands 
(Bahn, Schmitt, Siegwolf, Richter, & Brüggemann, 2009; Kuzyakov 
& Gavrichkova, 2010) where c. 12%–15% of assimilated C is respired 
belowground within days (Pausch & Kuzyakov, 2018).

Drought not only reduces the amounts of C taken up by plants, 
but can also alter belowground C allocation (Barthel et al., 2011; Burri, 
Sturm, Prechsl, Knohl, & Buchmann, 2014; Hagedorn et al., 2016; 
Hasibeder, Fuchslueger, Richter, & Bahn, 2015; Rühr et al., 2009), and 
can lead to a preferential allocation of newly assimilated C to root car-
bohydrate pools involved in osmotic adjustment and storage (Chaves, 
Maroco, & Pereira, 2003; Dietze et al., 2014; Hasibeder et al., 2015; 
Karlowsky, Augusti, Ingrisch, Hasibeder, et al., 2018; Volaire 
et al., 2020). While the concurrent effects of drought on the fate of 
recent C have been comparatively well studied, there is only very lim-
ited understanding of the postdrought dynamics of recent C during 
the recovery period. After rewetting, photosynthesis and soil respira-
tion have been suggested to recover within days to weeks (Blessing, 
Barthel, Gentsch, & Buchmann, 2016; Ingrisch et al., 2018; Niboyet, 
Bardoux, Barot, & Bloor, 2017; Vicca et al., 2014; Zang et al., 2014). 
However, rewetting dynamics differ between these two processes, 
and dynamic shifts between C supply (photosynthesis) and demand 
(repair and regrowth; Karlowsky, Augusti, Ingrisch, Hasibeder, et al., 
2018; Volaire et al., 2020; Zang et al., 2014) may change the fate of C 
from photosynthetic assimilation to soil respiration.

Soil respiration results from both root and microbial activity, the 
latter being supported by soil organic matter (SOM) and the sup-
ply of recent C from roots to the rhizosphere (e.g. Bahn et al., 2010). 
Rhizodeposition under drought is highly variable (Preece & 
Peñuelas,  2016), but in dry soils the plant–microbial C transfer 
is reduced (Fuchslueger, Bahn, Fritz, Hasibeder, & Richter,  2014; 
Karlowsky, Augusti, Ingrisch, Akanda, et al., 2018; Naylor & Coleman-
Derr, 2017) and recent plant-derived C accumulates (Canarini, Kiær, 
& Dijkstra, 2017; Fuchslueger, Kastl, et al., 2014; Karlowsky, Augusti, 
Ingrisch, Akanda, et al., 2018; Manzoni, Schimel, & Porporato, 2012). 
Rewetting rapidly changes the physical conditions in the soil, thereby 
imposing stress on living organisms (Schimel, 2018) and increasing 
the accessibility and availability of C. This causes a transient pulse 
of soil respiration, the so-called Birch effect, which can lead to dis-
tinct C losses from soil (Borken & Matzner, 2009; Kim, Vargas, Bond-
Lamberty, & Turetsky, 2012; Lopez-Sangil, Hartley, Rovira, Casals, 
& Sayer, 2018; Vicca et al., 2014). To what degree such C losses af-
fect the ecosystem C balance of the system in response to drought 
(Jarvis et al., 2007; Unger, Máguas, Pereira, David, & Werner, 2010), 
depends critically on the sources of C, i.e. whether it is derived from 
an active C fraction with rapid turnover or from old stable organic C 
pools. This is, however, still a subject of debate (Canarini et al., 2017; 
Lopez-Sangil et al., 2018; Schimel, 2018), and highlights the need to 
understand the fate of recent C during rewetting.

European marginal grasslands, like mountain grasslands, shaped 
by socio-ecological interactions and providing a variety of critical 
ecosystem services, are affected by recent and future socioeco-
nomic as well as climatic changes (Egarter-Vigl, Schirpke, Tasser, & 
Tappeiner, 2016; Lavorel et al., 2017; Schirpke et al., 2017). Reduced 

management intensity and abandonment, typical trends of land-
use change in marginal grasslands (Tasser, Leitinger, & Tappeiner, 
2017), have been shown to alter grassland responses to drought 
(Stampfli, Bloor, Fischer, & Zeiter, 2018) by increasing the resistance 
and reducing recovery rates of productivity and respiration (Grime 
et  al.,  2000; Ingrisch et  al.,  2018; Lepš, Osbornová-Kosinová, & 
Rejmánek, 1982). It has been suggested that such altered drought 
responses with abandonment could be due to shifts in plant-com-
munity composition and plant–soil interactions. Abandonment fa-
vours slow-growing plant species, which are often considered more 
stress-tolerant, while fast-growing species, typical of managed 
grasslands, are able to recover faster (deBoeck et al., 2018; Garnier 
et  al.,  2007; Mackie, Zeiter, Bloor, & Stampfli, 2018; Reich,  2014). 
Abandonment also favours fungal communities over bacterial ones; 
fungal communities and their networks are more stable under 
drought (de Vries et al., 2018), while bacterial communities turn over 
faster and release N upon rewetting, which can promote the recov-
ery of fast-growing plant species (Fuchslueger et al., 2019; Grigulis 
et al., 2013; Karlowsky, Augusti, Ingrisch, Hasibeder, et al., 2018). To 
date it is unclear how such changes in plant and microbial community 
structure triggered by abandonment affect belowground C alloca-
tion and the respiratory demand for recent assimilates. Even less is 
known on whether and how drought alters the effects of land-use 
change on the utilization of recent C in soil respiration.

Here, we studied the dynamics of belowground respiration and 
the fate of recently assimilated C during and after a severe summer 
drought in a managed and an abandoned mountain grassland. We 
performed two 13CO2 pulse-labelling campaigns during peak drought 
(i.e. the last week of the drought treatment) and the recovery phase 
and chased the tracer in soil respiration using isotope laser spectros-
copy. We furthermore investigated how rewetting affected the fate 
of C, which had been photosynthetically taken up by plants and trans-
ferred to the soil during drought. We tested the hypotheses that: (a) 
drought reduces the temporal dynamics and the contribution of re-
cently assimilated C in soil respiration during drought; (b) C assimi-
lated during drought contributes significantly to C loss (Birch effect) 
upon rewetting; (c) due to the enhanced resistance of C dynamics 
in the abandoned grassland community, grassland abandonment re-
duces drought effects on C allocation to belowground respiration. 
Finally, we synthesized our findings on respiratory fluxes with pre-
viously published complementary data on C allocation to root carbo-
hydrates obtained within the same experiment (Karlowsky, Augusti, 
Ingrisch, Hasibeder, et al., 2018) to obtain an integrated perspective 
and discussion on the effects of drought and abandonment on the 
belowground partitioning of recent C into respiration and storage.

2  | MATERIAL AND METHODS

2.1 | Study site

The study site is located near Neustift in the Austrian Central Alps 
(47°07′45″N, 11°18′20″E) and is part of LTER master site Stubai. It 
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is composed of differently managed subalpine grasslands (Schmitt, 
Bahn, Wohlfahrt, Tappeiner, & Cernusca, 2010). Here, we study a man-
aged hay meadow and an abandoned grassland, described in detail in 
Ingrisch et al.  (2018). Briefly, the grasslands are situated on a south-
east exposed hillside (c. 20°) with an average annual temperature of 
3°C, an annual precipitation of 1,097  mm and soils are classified as 
dystric cambisol. The managed meadow (1,820 m a.s.l.) is lightly grazed 
in spring and autumn, mowed yearly in early August for hay harvest 
and periodically fertilized with manure. The vegetation is classified as 
Trisetetum flavescentis, consisting of perennial grasses and forbs. The 
abandoned grassland (1,970–2,000 m a.s.l., 47°07′31″N, 11°17′24″E) 
was abandoned in 1983. The vegetation is classified as Seslerio-
Caricetum with some dwarf shrubs (Grigulis et  al.,  2013; Schmitt 
et al., 2010). The abandoned grassland has generally a lower gross pri-
mary productivity (GPP) and aboveground net productivity (Ingrisch 
et al., 2018; Schmitt et al., 2010), holds a higher root biomass (Bahn, 
Knapp, Garajova, Pfahringer, & Cernusca, 2006; Karlowsky, Augusti, 
Ingrisch, Hasibeder, et al., 2018) and has higher SOM and lower nitro-
gen contents compared to the managed grassland (Fuchslueger, Bahn, 
et al., 2014; Meyer, Leifeld, Bahn, & Fuhrer, 2012).

2.2 | Experimental set-up and drought simulation

The study was conducted in a common garden at the managed 
grassland site. It is part of the larger experiment, the setting of 
which is described in detail in Ingrisch et al. (2018) and Karlowsky, 
Augusti, Ingrisch, Hasibeder, et al. (2018). Briefly, we extracted 
intact soil-vegetation monoliths at both grassland sites 1 year be-
fore the experiment. The monoliths were fit into stainless steel 
cylinders (diameter 25  cm, height 28  cm), which had a reservoir 
for leachates at the bottom (Figure S2a, and detailed description 
in Obojes et al., 2015) and were buried in the soil at the managed 
grassland site. To avoid inflow of surface runoff, the cylinders 
were elevated 2  cm from the surrounding soil. The experiment 
was carried out in a full-factorial design, crossing land-use type 
(managed, abandoned) and treatment (control, drought) in a ran-
domized block design (Figure S1). For this study, we used a sub-
set of 24 monoliths to perform two pulse-labelling campaigns 
(peak drought, recovery) with three replicates of each land use 
and treatment combination (2 campaigns × 3 reps × 2 land use × 2 
treatment).

The drought simulation took place from 21 May 2014 to 28 
June 2014. During this time, each block of monoliths was covered 
with rain-out shelters. The tunnel-shaped shelters had a base area 
of 3 × 3.5 m2 and a height of 2.5 m and were covered with light- 
and UV-B permeable plastic foil (Lumisol clear AF; Folictec, light 
transmittance c. 90%). To enable air circulation inside the shelters, 
they were open at the bottom (up to 0.5 m) and at the top of the 
faces. Drought-treated monoliths did not receive any water during 
the time of rain exclusion, while the control-treated monoliths 
were watered manually with previously collected rainwater every 
2–4 days. To avoid water limitation in the control treatment, soil 

moisture was monitored continuously (see Ingrisch et al., 2018) and 
the amounts of water added to controls were adjusted accordingly 
to maintain a soil moisture of c. 40 vol.-%, the minimum during 
this period was 25 vol.-%, which corresponds to a water-filled 
pore space of c. 50%. During the first half of the rain exclusion, 
soil-water content in the drought treatment declined to less than 
20 vol.-% in both grasslands and remained almost constant at this 
level in the following weeks (Ingrisch et  al.,  2018). To terminate 
the drought period (DOY 179), 50 mm of previously collected rain-
water were added to each of the monoliths (drought and control 
treatments), to simulate a heavy rain event and achieve well-de-
fined rewetting. Irrigation water was always added slowly to the 
soil surface to ensure even percolation into the soil and to avoid 
runoff along the cylinder walls.

2.3 | Pulse labelling

We performed two 13CO2 pulse-labelling campaigns, the first dur-
ing the last week of the drought treatment (‘peak drought’) and the 
second c. 2.5 weeks after end of the drought (‘recovery’). During 
each campaign, we labelled 12 monoliths, representing three rep-
licates of each land use and treatment combination. Within each 
campaign, the labellings took place on 3 days, whereby on each day 
4 monoliths representing each land-use type and drought treat-
ment were labelled (Figure  S1). The ‘peak drought’ labelling took 
place on DOY 172–174 and the ‘recovery’ labelling and DOY 197, 
199 and 200.

The labelling experiment and the procedure is described in detail 
in Karlowsky, Augusti, Ingrisch, Hasibeder, et al. (2018). Transparent 
acrylic glass chambers (diameter 25 cm, height 50 cm) were placed air-
tight on each monolith. The air inside the chambers was ventilated with 
fans and was temperature-stabilized by pumping cold water through 
cooling tubes. Temperature inside the chambers was in the range of 
25 ± 5°C. During labelling, we monitored air temperature, CO2 concen-
tration and the 13CO2 isotope ratio (G2101i Analyzer; Picarro Inc.) and 
PAR (PQS 1; Kipp & Zonen). Pulse labelling was done on days with clear 
sky between 9:45 and 14:45 CET. Once the CO2 concentration in the 
closed chambers had dropped to c. 250 ppm, we added pulses of highly 
enriched 13CO2 (99 atom-% 13C; CortecNet) with syringes, resulting in 
CO2 concentrations in the range of 400–800 ppm with approximately 
50 atom-% 13C. Each labelling lasted for 75 min.

2.4 | Soil respiration and isotopic composition

We continuously measured soil respiration and its isotopic composi-
tion on the monoliths subject to pulse labelling in order to trace the 
belowground respiration of 13C tracer. Measurements on the ‘peak-
drought’ monoliths took place during the last week of the drought 
treatment until 3 days after the rewetting. Soil respiration chambers 
where then moved to the second set of monoliths (Figure S1), where 
they were employed from DOY 192 to 205.



     |  4369INGRISCH et al.

We used a custom-made automated set-up that coupled 12 
soil respiration chambers to an isotope analyser. Chambers were 
designed as steady-state flow-through chambers and were made 
from white PVC-tubes with a diameter of 4.5 cm. They were open 
on the bottom, closed on the top and attached to a large inlet tube 
(diameter 3 cm) and an outlet tube (diameter 4 mm). The chambers 
were placed on bare soil at the centre of the monoliths, extending 
2 cm into the soil (Figure S2a). The inlet was connected to a 50 L 
buffer volume to reduce fluctuations of CO2 concentrations in the 
air entering the chamber. Chambers were continuously flushed by 
drawing air via the outlet line at a constant flowrate of 170  ml/
min to guarantee steady-state conditions. The chamber design 
was tested for potential under-pressure inside the chambers 
using a differential pressure transducer (MKS Baratron Type 226A 
Differential Pressure Transducer; MKS Instruments Ind.). Pressure 
effects were below the instrument resolution (<0.2 Pa) for flow-
rates up to 2 L/min.

All 12 chambers and their corresponding buffer volumes were 
connected to an automated multiplexer (Figure S2b), which switched 
one line towards the isotope analyser while flushing all other lines 
with the identical constant flowrate using an additional purge pump. 
Flowrate of the sample stream was logged every second with a mass 
flow meter.

The isotope analyser (G2101-i Analyzer; Picarro Inc.) was op-
erated in an air-conditioned instrument shed next to the experi-
mental plots. It continuously measured the concentrations of the 
isotopologues 12CO2 and 13CO2 with a precision of 200 and 10 ppb 
(30  s averaging), respectively, at a temporal resolution of c. 2  s 
(Picarro Inc., 2010). Each individual soil respiration measurement 
consisted of measuring isotopologue concentrations at the cham-
ber outlet for 250 s, framed by measuring inlet air (from the buffer 
volume) for 100  s before and after. After each sequence of soil 
respiration measurements on all monoliths (c. 2 hr) three calibra-
tions gases (400, 1,500 and 5,000 ppm CO2 in synthetic air) with 
known isotopic composition were measured. This allowed individ-
ual span-offset calibrations for the isotopologues 12CO2 (range 
400–5,000  ppm) and 13CO2 (range 4–50  ppm; Bowling, Sargent, 
Tanner, & Ehleringer, 2003).

2.5 | Leachates

Leachates were sampled by completely emptying the water res-
ervoirs of the monoliths before the drought treatment started, at 
peak drought (DOY 177), immediately after rewetting and 3 days 
after rewetting. Water volume was recorded and leachate sam-
ples were stored at −18°C prior to further analysis. For the anal-
ysis, ~ 1  ml of sample was filtered through prewashed (~0.5  ml 
of extract) 0.45  µm cellulose membrane filters (MULTOCLEAR 
0.45 µm RC 13 mm; CS-Chromatographie Service GmbH). To de-
gas the samples of inorganic C, filtered extracts were acidified 
with phosphoric acid to approx. pH 2 and gas-flushed with N2 for 
15 min. The degassed samples were then analysed as bulk fraction 

(no column) on high-performance liquid chromatography (HPLC)—
isotope ratio mass spectrometry (IRMS; Dionex UltiMate 3000 
UHPLC coupled via a LC-IsoLink system to a Delta V Advantage 
IRMS, Thermo Fisher Scientific). Each sample was measured in 
triplicate. Quality was controlled by repeated measurements of 
citric acid standards (δ13C  =  −18.58‰ vs. VPDB, Fluka Chemie 
AG; SD  =  0.28‰, n  =  48). Quantification was performed using 
a concentration row of the citric acid standard to calibrate the 
HPLC-IRMS based on CO2 peak areas. Samples from unlabelled 
monoliths were used to obtain the natural abundance isotope 
composition of leached C.

2.6 | Data analysis

Soil respiration rate (in µmol m−2 s−1) of each individual measurement 
was calculated as

where f is the flow rate through the chamber, CO2out is the mean con-
centration measured at the chamber outlet, CO2in is the mean concen-
tration at the chamber inlet (in µmol/mol) and A is the area of the soil 
respiration chamber (m2).

The atom fraction of 13CO2 was calculated as:

The isotopic composition of soil respiration χ(13C)SR:

where χ(13C)in and χ(13C)out denote the atom fraction of 13CO2 in the 
chamber inlet and outlet respectively. The fraction of 13C label in soil 
respiration was calculated as:

where χ(13C)SR(NA) refers to the atom fraction of 13C in soil respiration 
before the labelling, corresponding to the natural abundance isotope 
composition of soil respiration.

The absolute rate of 13C label efflux in soil respiration (mg 
13C m−2 hr−1) is calculated as:

In order to estimate the error of soil CO2 efflux (SR), its isoto-
pic composition (χ(13C)SR) and the amount of label recovered in soil 
respiration (abs13C), the standard deviation of each of the measured 
variables in Equations (1)–(5) was propagated using first-order Taylor 
expansion (Spiess, 2014; Ucar, Pebesma, & Azcorra, 2018). The co-
efficient of variation was calculated for SR and χE(13C)SR as ratio 
of propagated error and value. Measurements of SR and χE(13C)SR 
smaller than zero or with a coefficient of variation larger than 1 were 
excluded.

(1)SR=
f ⋅ (CO2out−CO2in)

A
,

(2)� (13C)=
13CO2

13CO2+
12 CO2

.

(3)� (13C)SR=
� (13C)out ⋅CO2out−� (13C)in ⋅CO2in

CO2out−CO2in

,

(4)�E(13C)SR=�(13C)SR−�(13C)SR(NA),

(5)abs13C=�E(13C)SR ⋅SR.
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The fraction of incorporated tracer (rel13C) in different compart-
ments (carbohydrates, soil respiration) was calculated as the ratio 
of the absolute amount or rate of tracer efflux in this compartment 
(abs13C) relative to total uptake of 13C label. The latter was calculated 
for each monolith as the sum of 13C incorporated in shoots and roots 
immediately after pulse labelling was ended (Karlowsky, Augusti, 
Ingrisch, Hasibeder, et al., 2018).

To enable grouping among replicates of the sequentially mea-
sured monoliths, we used spline functions to obtain timeseries of 
all monoliths with equal timestamps. Therefore, a spline function (R 
function ‘smooth.spline’, spar = 0.05) was fitted to each timeseries 
of CO2 and 13C-tracer efflux rates. Based on these individual splines, 
efflux rates were predicted at a 2 hr interval. To avoid potential er-
rors resulting from extrapolating splines over large data gaps and to 
keep this approach data-driven, splines only filled data gaps with a 
maximum length of 6 hr.

We calculated the cumulative efflux of CO2 and 13C-label for 
each monolith by integrating respiration rates and tracer efflux 
rates (abs.13C, rel.13C), respectively, following the trapezoid rule 
(Jurasinski, Koebsch, Guenther, & Beetz, 2014), i.e. by interpolat-
ing linearly between adjacent data points. For the cumulation, gaps 
within the time series were filled linearly, with exception of a single 
data gap of 24 hr within a subset of four monoliths that was filled 
with the mean cumulative efflux of the corresponding other repli-
cates during this period. Cumulative effluxes were calculated for the 
120 hr chase period after each pulse labelling and for the first 72 hr 
after end of the drought (rewetting). We estimated the accuracy of 
these cumulative fluxes for each chamber using a Monte-Carlo anal-
ysis. Therefore, we generated 1,000 samples of each individual time 
series, by drawing samples for each individual measurement, based 
on its value and propagated error using the R function ‘rnorm’ and 
integrated each of the simulated time series as described above. In 
most cases, the variability between replicates was larger than the 
estimated uncertainty of individual monoliths, indicating that the 
biological variability exceeded the variability derived from method-
ological uncertainties.

To identify the potential effect of physical back-diffusion of 
13CO2 tracer on soil CO2 efflux dynamics after the pulse labelling 
(Burri, Sturm, Baur, et al., 2014; Subke et al., 2009), we performed 
a ‘dark pulse labelling’ on two additional grassland monoliths. It fol-
lowed the same pulse-labelling protocol, but the labelling chamber 
was darkened to exclude any photosynthetic uptake of 13C tracer. 
Immediately after the ‘dark labelling’, we placed soil respiration 
chambers on the monoliths and continuously measured soil-CO2 
and 13CO2 efflux, thereby quantifying the back-diffusion of 13CO2 
tracer from the soil. The efflux of tracer declined exponentially over 
time (Figure S3). We fitted an exponential model to this tracer ef-
flux, which yielded a mean residence time of the tracer of 21–25 min 
(Table S1), which matches earlier estimates from the same grassland 
(Bahn et al., 2009). Thus, the effect of physical back-diffusion on the 
shown soil 13CO2 dynamics was negligible.

The effects of drought, land use and their interaction on the cu-
mulated respired CO2 and 13CO2 120 hr after labelling were tested 

for each pulse-labelling campaign separately using ANOVA (R base 
package, R Core Team, 2018) to report effect size F-values and per-
mutational ANOVA (package ‘lmPerm’; Wheeler & Torchiano, 2016) 
to obtain exact p-values.

Effects of drought on the concentrations and amounts of organic 
C and 13C in leachates were tested with linear mixed-effect models. 
We treated drought treatment, time (the leachate-samplings right 
after rewetting and 3 days after rewetting), land use and the inter-
actions of drought and land use and drought and time as fixed ef-
fects. Monolith identity was treated as random intercept to account 
for the replicated measurements on each monolith. All models were 
assessed for violations of homoscedasticity and normality. Models 
were fit using the lmer function from the package ‘lme4’ version 
1.1-18-1 (Bates, Mächler, Bolker, & Walker, 2015). p-values were 
obtained by Satterthwaite's method using the ANOVA-function in 
the R package ‘lmerTest’ version 3.01 (Kuznetsova, Brockhoff, & 
Christensen, 2017).

3  | RESULTS

3.1 | 13CO2 emission dynamics during drought

During drought, the uptake of C was reduced in both grasslands, re-
flected by a lower assimilation of 13C during labelling. This drought 
effect was more pronounced in the managed (−30%) compared to 
the abandoned grassland (−15%). Drought reduced soil respiration 
by 50% in both grasslands (Figures 1 and 3a,b; Table 1). Under both 
ambient and drought conditions 13C assimilated during labelling was 
rapidly (i.e. within 1.5  hr after start of the labelling) recovered in 
soil CO2 efflux and the rate of 13C efflux from soil declined in the 
following days (Figure 2). In the control treatments, the rate of 13C 
efflux showed diel patterns, with higher rates during noon, particu-
larly on the first and second day after the labelling (Figure  2a,c). 
Under drought, the 13C efflux rate did not show any distinct diel 
fluctuations.

Under ambient rainfall conditions, a significantly higher frac-
tion of assimilated 13C was partitioned to belowground respiratory 
processes within the first 5 days after labelling in the abandoned 
(18.4 ± 4.15%) compared to the managed grassland (7.4 ± 0.85%, 
Figure 3e). Drought had contrasting effects on the fraction of re-
spired 13C in the two grasslands: the fraction of tracer respired 
belowground increased in the managed (9.8  ±  2.2%), but not in 
the abandoned grassland (14.9  ±  3.4%; Figure  3e), which is also 
reflected in a weak statistical interaction of drought and land use 
(Table 1).

3.2 | Effects of rewetting on fate of recent C

Upon rewetting of drought-exposed monoliths, soil respiration rates 
increased rapidly, exceeding rates in control monoliths by up to a 
factor of three within 3 hr after rewetting and declining to control 
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level within 2 days (Figure 1). Within 3 days after rewetting, a sig-
nificantly larger fraction of 13C tracer assimilated during labelling 
was respired in drought-exposed monoliths compared to controls 
(Figure 4e; Table 1).

Drought-treated monoliths leached less water, dissolved organic 
C (DOC) and labelled C (DO13C) in the days after rewetting than the 
controls (Figure 5). However, concentrations of DOC and DO13C re-
covered in leachates after the rewetting were significantly increased 
in the drought treatment, and quickly declined after rewetting (in-
teraction of drought and time). Rewetting effects on soil respiration, 
DOC and DO13C in leachates were higher in the managed grassland 
than in the abandoned grassland (Figures 4 and 5; Table 2).

3.3 | 13CO2 emission dynamics during recovery

During the recovery labelling, c. 2.5 weeks after end of the drought, 
plants of drought-exposed monoliths assimilated a higher amount 
of 13C compared to controls (managed grassland +40%, abandoned 
grassland +5%). Diel dynamics in soil respiration quickly recovered 
after drought (Figure 1) and no drought effects on the amount of 
CO2-efflux prevailed during the chase period of the recovery cam-
paign (Figure 3b; Table 1). The dynamics of tracer efflux from soil 
were not affected by the previous drought treatment in both grass-
lands and showed diurnal patterns of 13C efflux in the days after the 
labelling (Figure 2b,d). There were no statistically significant effects 

F I G U R E  1   Time series of soil respiration in (a) the managed and (b) the abandoned grassland in the control (blue) and the drought (orange) 
treatment during the last week of the rain exclusion (grey shaded area) and the early recovery period. Arrows indicate the last days of each 
pulse-labelling campaign. Blue and orange shaded areas indicate ±SD

(a) Managed

(b) Abandoned

TA B L E  1   Effects of drought, land use and the interaction on the cumulated amounts of respired CO2 and 13CO2, 120 hr after the peak 
drought and the recovery labelling, respectively, and in the first 70 hr after the rewetting

Campaign Cumulation period

Amount Respired 13C (absolute) Respired 13C (relative)

Fa  pF
a  pexact

b  Fa  pF
a  pexact

b  Fa  pF
a  pexact

b 

Peak 
drought + rewetting

Peak 
drought 
120 hr

Drought 35.494 <.001 <.001 2.833 .131 .040 0.047 .834 .807

Land use 14.362 .006 .001 4.930 .057 .010 21.286 .002 <.001

Drought:Land use 1.412 .289 .240 0.501 .499 .335 3.306 .107 .061

Rewetting 
70 hr

Drought 0.881 .375 .242 0.599 .461 .307 7.161 .028 <.001

Land use 0.069 .799 .774 0.571 .471 .320 1.842 .212 .110

Drought:Land use 2.827 .131 .002 0.653 .442 .281 0.576 .470 .329

Recovery Recovery 
120 hr

Drought 0.419 .536 .382 0.722 .420 .233 2.148 .181 .055

Land use 1.962 .199 .063 2.460 .155 .046 1.417 .268 .115

Drought:Land use 0.836 .387 .226 0.157 .702 .586 0.002 .962 .946

aF-values and approximate p-values from ordinary ANOVA. 
bExact p-values from the permutational ANOVA (function ‘aovp’, R package ‘lmPerm’), bold values pexact < .05, italic values pexact < .1. 
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of the previous drought treatment on the cumulated amount of re-
spired 13C (Figure 3d,f; Table 1).

4  | DISCUSSION

4.1 | Metabolic utilization of recent assimilates 
during drought and recovery

Drought has been suggested to reduce GPP more strongly than soil 
respiration (Schwalm et al., 2010; Sippel et al., 2018), which raises the 
question whether and how drought affects the metabolic utilization 
of recently assimilated C belowground. In both the managed and the 
abandoned grassland, drought reduced C uptake (Figure  6) as well 
as soil respiration and the respiratory usage of recent C (Figure 3a,c) 
and dampened the diel dynamics in CO2-efflux (Figure 1) and 13CO2-
efflux (Figure  2). Drought effects on belowground respiration can 
be attributed to reduced metabolic activity of both roots (Hasibeder 
et  al.,  2015; Lambers, Robinson, & Ribas-Carbo, 2005; Sanaullah, 
Chabbi, Rumpel, & Kuzyakov, 2012) and microbes (Fuchslueger, Bahn, 
et al., 2014; Karlowsky, Augusti, Ingrisch, Hasibeder, et al., 2018). 
Drought effects on rhizosphere respiration can also be affected by 
the dynamics of assimilate supply to respiration (Barthel et al., 2011; 
Burri, Sturm, Baur, et al., 2014; Rühr et al., 2009), which was reflected 
by dampened diel cycles in 13CO2 efflux from soil (Figures 2 and 3). 
Similar patterns were reported from a grassland shading experiment, 
where interrupted C uptake altered the metabolic use of fresh and 

transitory carbohydrate pools, causing a cessation of diel fluctuations 
of respired tracer (Bahn et al., 2009). Similarly, it is likely that damp-
ened tracer dynamics under drought were related to altered carbohy-
drate pool dynamics (Karlowsky, Augusti, Ingrisch, Hasibeder, et al., 
2018). One indication of such drought-induced changes in below-
ground carbohydrate dynamics is the preferential allocation of re-
cent C to root sucrose (Hasibeder et al., 2015; Karlowsky, Augusti, 
Ingrisch, Hasibeder, et al., 2018, Figure S4; Figure 6), which is a pri-
mary precursor for root metabolism (Ghashghaie et  al.,  2003), but 
could also play an important role in osmoregulation during drought 
(Chaves et al., 2003; Hasibeder et al., 2015).

During recovery plants restored the assimilate supply to below-
ground respiratory utilization quickly. Two weeks after the drought 
had ended, the temporal dynamics as well as the cumulative amount 
of soil-respired 13CO2 did not show any drought legacy (Figures 2 
and 3). Interestingly, drought effects on the partitioning of assim-
ilates into aboveground compartments or to the rhizosphere pre-
vailed during this period of recovery (Karlowsky, Augusti, Ingrisch, 
Hasibeder, et al., 2018). This is in accordance with studies on short-
term postdrought recovery of young beech, reporting a rapid resto-
ration (Blessing et al., 2016) and overcompensation of belowground 
C fluxes (Hagedorn et al., 2016), prior to a recovery of the C alloca-
tion into other plant compartments (Zang et al., 2014). Overall, these 
results demonstrate a high resilience of belowground metabolic 
functioning of grasslands even in the face of distinct direct effects 
of drought, driven through a rapid postdrought restoration of met-
abolic activity.

F I G U R E  2   Time series of soil-respired 
13CO2 after pulse labelling during 
(a,c) peak drought and (b,d) recovery in 
the managed and abandoned grassland. 
Colours represent drought treatment. 
Blue and orange shaded areas indicate 
±SD

P R
R

M
A

(a) (b)

(d)(c)



     |  4373INGRISCH et al.

4.2 | Rewetting triggers rapid metabolization of C 
assimilated during drought

Rewetting drastically alters the biophysical conditions in soils and 
forces plants and microorganisms to rapidly adjust C pools and cy-
cling (Schimel,  2018), with distinct consequences for soil C losses 
(Borken & Matzner, 2009). Despite their importance for the overall 
C balance of drought events and the associated consequences for 
the global C cycle (Reichstein et al., 2013), the sources and drivers of 
these C losses are yet subject of debate (Canarini et al., 2017; Lopez-
Sangil et al., 2018). In our study we found that rewetting led to dis-
tinct respiratory losses of recent C from the ecosystem, since upon 
rewetting a significantly increased fraction of 13C taken up during 
peak drought was respired (Figure 4e,f; Table 1).

This recent C was derived from C pools that were built-up 
during drought and became metabolically available for roots and 
microbes upon rewetting through different mechanisms. First, re-
wetting triggers a degradation of osmotic compounds in roots and 
microbes: Here, the high root sucrose concentrations maintained 
during drought for osmotic adjustment (see above) declined rapidly 

in the days following the rewetting (Figure S4; Table S3), presumably 
through metabolic utilization and/or root exudation. Similarly, as 
shown by earlier studies, microbes can rapidly adjust their osmotic 
potential upon rewetting (Borken & Matzner, 2009; Schimel, Balser, 
& Wallenstein, 2007; Warren,  2014). Second, soil microbes have 
been hypothesized to utilize rhizodeposits, which are either released 
by roots upon rewetting or which have accumulated during drought 
due to disrupted root-microbial C transfer in dry soils (Canarini 
et  al.,  2017; Fuchslueger, Bahn, et al., 2014; Karlowsky, Augusti, 
Ingrisch, Akanda, et al., 2018). Here, the latter is evident from the 
increased concentrations of DOC and DO13C in soil leachates di-
rectly after rewetting (Figure 5), which demonstrates the existence 
of C pools in formerly dry soils that quickly get dissolved in soil solu-
tion. Overall, these results demonstrate that in addition to C derived 
from various SOM pools and plant and microbial litter (Borken & 
Matzner,  2009; Canarini et  al.,  2017; Lopez-Sangil et  al.,  2018), in 
intact plant-soil systems a significant fraction of the Birch effect is 
directly derived from plant-C input during drought conditions and is 
thereby constituted of C with a short residence time in the system.

4.3 | Abandonment alters assimilate partitioning 
under drought

The belowground allocation of recent assimilates differed between 
the two grasslands both under moist and drought conditions. 
Compared to the managed grassland, in the abandoned grassland a 
significantly larger fraction of recently assimilated C was respired be-
lowground (Figure 3). This could be due to the larger root biomass and 
more pronounced plant–fungal interactions on the abandoned site 
(Bahn et al., 2006; Karlowsky, Augusti, Ingrisch, Hasibeder, et al., 2018) 
reflecting a response to reduced nutrient availability and a shift in 
plant functional composition (Grigulis et  al.,  2013; Zeller, Bahn, 
Aichner, & Tappeiner, 2000). In contrast, the managed grassland, 
composed of predominantly faster-growing plant species (Grigulis 
et  al.,  2013; Ingrisch et  al.,  2018), holds larger root carbohydrate 
stocks and invests a larger fraction of assimilated C into root stor-
age carbohydrates (Karlowsky, Augusti, Ingrisch, Hasibeder, et al.,  
2018), whereas belowground respiratory activity by roots and mi-
crobes is smaller.

These diverging belowground attributes of the two grasslands 
can also affect their drought resistance and recovery: A large be-
lowground root and fungal network can improve water access and 
thereby support drought resistance of the abandoned grassland (de 
Vries et  al.,  2012; Karlowsky, Augusti, Ingrisch, Hasibeder, et al., 
2018), whereas large root carbohydrate pools can potentially fos-
ter postdrought recovery (Hasibeder et  al.,  2015; Zwicke, Picon-
Cochard, Morvan-Bertrand, Prud'homme, & Volaire, 2015). This is 
in line with the observed differences in resistance and recovery be-
tween the two grasslands.

In order to explore the overall effects of drought and grassland 
abandonment on the belowground partitioning of recently assimi-
lated C between respiratory processes and carbohydrate storage, 

F I G U R E  3   Soil-respired CO2 and 13CO2 cumulated over the 
first 120 hr after the (a,c,e) peak drought and (b,d,f) recovery 
13CO2-labellings in both treatments. Points and error bars indicate 
mean ± SD across replicates. Asterisks indicate significant 
difference between drought and control treatment within land use 
(**p < .01, permutational one-way ANOVA)

(a)

(c)

(e) (f)

(d)

(b)
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we integrated our findings with complementary data on 13C allo-
cation to root carbohydrates obtained in the same pulse-labelling 
experiment (Karlowsky, Augusti, Ingrisch, Hasibeder, et al. (2018); 

for methods and data expressed in units comparable to the current 
study see Supporting Information S1; Figure S4). We used the in-
tegrated dataset to test the hypothesis that under drought assim-
ilates would be preferentially allocated to storage at the cost of 
metabolic utilization. Surprisingly, we found that under drought the 
grasslands showed diverging patterns of assimilate investment into 
belowground respiration versus storage. Under drought the man-
aged meadow invested a larger portion of recent assimilates into be-
lowground respiration, whereas the abandoned grassland invested 
less (Figure  6). Although we cannot distinguish between root and 
rhizomicrobial respiration here, the contrasting effects of drought 
on belowground metabolism are in line with other studies reporting 
variable effects of drought on rhizodeposition (Baptist et al., 2015; 
Preece & Peñuelas, 2016; Williams & de Vries, 2019). Noteworthy, 
these effects seem to be traded-off against investment of resources 
into belowground storage, resulting in less allocation to storage 
in the managed and more allocation to storage in the abandoned 
grassland (Figure  6). Both of these contrasting assimilate-invest-
ment strategies can contribute to enhancing the resilience (sensu 
Ingrisch & Bahn, 2018). To survive drought, plants need to balance 
resource allocation between reducing the immediate risk of mor-
tality and maintaining or enhancing the ability for postdrought 
recovery. In this context, the per se more resistant community 
(abandoned grassland) increased its recovery capacity by investing 
into storage and the more rapidly recovering community (managed 
grassland) enhanced its resistance by investing into belowground 
metabolic activity. Therefore, these contrasting responses reflect 
strategies of optimal resource allocation to cope with limiting envi-
ronmental conditions and are therefore in line with other trade-offs 
reported from ecological systems, e.g. investments into growth ver-
sus defense (Herms & Mattson, 1992) or animal strategies for short- 
and long-term survival in the presence of predators (McNamara & 
Buchanan, 2005).

While it can be assumed that the observed C allocation dynam-
ics and their drought and recovery responses were shaped by the 
specific environmental conditions prevailing during the experiment, 
there is evidence that our findings can be generalized beyond our 
specific study. Previous experiments on the managed grassland 
under study indicated overall consistent dynamics of belowground 
C allocation across several years, both under control and under 
drought conditions (Bahn et  al.,  2009, 2013; Fuchslueger, Bahn, 
et al., 2014; Fuchslueger et al., 2016; Hasibeder et al., 2015). Also 
drought responses observed in other managed temperate grassland 
sites are consistent with our findings (Burri, Sturm, Prechsl, et al., 
2014; Mackie et al.,  2018) and suggest that our observations can 
be generalized beyond the weather- or site-specific conditions. 
However, it should be acknowledged that drought timing, sever-
ity and post-drought conditions are important and to date under-
studied constituents of drought- and drought recovery-responses 
(Felton, Slette, Smith, & Knapp, 2020; Schwalm et al., 2017; Sippel 
et al., 2018; Song et al., 2019). Further studies are needed to eluci-
date their implications for carbon allocation and the carbon cycle 
in general.

F I G U R E  4   Cumulated efflux of soil-respired CO2 and 13CO2 
during the first 3 days after the rewetting in the (a,c,e) managed and 
(b,d,f) abandoned grasslands. Colours indicate drought treatment. 
Lines and shaded area indicate mean and SD across replicates. 
Asterisks indicate drought effect within land use (*p < .05, **p < .01, 
permutational one-way ANOVA)

(a) (b)

(d)(c)

(e) (f)

F I G U R E  5   (a,b) Amounts and (c,d) concentrations of total 
dissolved organic C (DOC) and dissolved organic 13C (DO13C) in 
leachates in the managed grassland (circles) and the abandoned 
grassland (squares) at peak drought and after rewetting. Colours 
represent drought and control treatment. The shaded area indicates 
the peak-drought period. Note that at peak drought there were no 
leachates. Error bars indicate ±SD

(a) (b)

(d)(c)
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The two grasslands studied here differ in their general strategies 
of growth and resource acquisition, which are characterized by a gra-
dient of fast-growing (managed grassland) versus slow-growing plant 
communities, associated with bacterial- versus fungal-dominated mi-
crobial communities (Grigulis et al., 2013; Ingrisch et al., 2018). Our 
study suggests that along with these changes in the fast–slow plant 
economic spectrum (Reich,  2014), abandonment also shifted the 
preferential allocation of assimilates from storage towards metabolic 
activity under ample water supply. Furthermore, these changes alter 
the importance of belowground metabolic activity under drought 
conditions, with consequences for short-term losses of assimilated C 
during drought and rewetting. In the managed grassland dominated 
by fast-growing species, increased investment of assimilated C into 
belowground metabolism during drought and rewetting increased 

the losses of recent C, whereas enhanced partitioning into storage 
in the abandoned grassland dominated by slow-growing species sup-
ported a preservation of recent C. Overall, we conclude that while 
severe drought can override the effects of abandonment of grassland 
management on the respiratory dynamics of recent C, abandonment 
alters strategies of belowground assimilate investment, with conse-
quences for soil-CO2 fluxes during drought and drought recovery.
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