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DIFFUSION RATE OF WINDTREE MODELS AND
LYAPUNOV EXPONENTS

CHARLES FOUGERON

ABSTRACT. Consider a windtree model with several parallel arbitrary
right-angled obstacles placed periodically on the plane. We show that
its diffusion rate is the largest Lyapunov exponent of some stratum of
quadratic differentials and exhibit a new general strategy to compute the
generic diffusion rate of such models. This result enables us to compute
numerically the diffusion rates of a large family of models and to observe
its asymptotic behaviour according to the shape of the obstacles.

1. INTRODUCTION.

The windtree model was first introduced by Paul and Tatiana Ehrenfest in
1912 [EE9Q] as part of statistical physics investigations. In this book they set
a simplified model for non interacting light particles moving around massive
particles that do not move but on which the light particles bounce with elastic
collision. We classically refer to the light particles as the wind and the static
ones as trees. The motivation of the two physicists was to understand the
kinetic behaviour of such a system. They asked, among others, the following
question: for a gemeric disposition of square trees orientated in the same
direction, does the speed of K light particles equidistributes asymptotically in
the 4 possible directions ?

Plenty of questions have been studied on this model, in particular for
the Z2-periodic case with square obstacles. The results feature alternatively
elements of chaotic and periodic behaviour. In [HW8(] was proven on the
one hand recurrence of the billiard flow and on the other hand abnormal
diffusion for special dimensions of the obstacles, [FU14] showed genericity
of non-ergodic behaviour, and its diffusion rate was computed to be 2/3 in
[DHL14|. A positive answer to the original question has only been provided
very recently by [MST18§].

In parallel a similar model with smooth convex obstacles has been studied
by a large amount of mathematicians throughout the twentieth century (see
e.g. [BS81] or [SV04]). In this case, the billiards satisfy some hyperbolicity
property and the behaviour of its flow is closely related to a Brownian motion.

A good tool to check if a polygonal windtree model has such an hyperbolic
behaviour is provided by the diffusion rates which should be 1/2 in the case
of Brownian-like motions. In particular the result of [DHLI4] breaks any
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hope to apply directly methods of the smooth convex case to the rectangu-
lar model. The question is still open in the case of asymptotic of polygonal
shapes approaching smooth convex ones, for example with the circle : is the
diffusion rate of periodic windtree models with regular n-gons going to 1/2
when n goes to co 7 We hope that developing methods to compute these
diffusion rates in more general settings provide a first step to understanding
this asymptotic and the non-convex obstacles cases.

The arguments of [DHL14] relies on a remarkable correspondence between
the diffusion rate of an infinite periodic billiard table and the Lyapunov expo-
nent of an associated translation surface. This computation was generalised
in [DZI5] to any Z2-periodic windtree which trees have only right angles
and are horizontally and vertically symmetric. In every of these cases, the
corresponding Lyapunov exponent belongs to some 2 dimensional subbundle
of the Hodge bundle. Moreover in all of these cases the Lyapunov exponent
is rational and can be computed using some geometric arguments.

In this article we describe a general strategy to exhibit the Lyapunov ex-
ponent of some locus in a stratum that corresponds to the diffusion rate of
a given periodic windtree model. It relies on two main ingredients : the first
one is to identify a common orbit closure of almost all translation surfaces
associated to a family of windtree tables; the second one is to find an irre-
ducible subbundle of the Hodge bundle on this locus which top Lyapunov
exponent is exactly the diffusion rate. The tools for the first craft are given
by recent results of [EMMI5], [Wril4] and [Wril5| and are introduced in
subsection For the second one, we show an additional lemma to the
work of [CE15] which yields the diffusion rate for any translation surface in
a generic direction.

We apply this method to the case of periodic windtree with several obsta-
cles in its fundamental domain. Pick a family of n > 2 rectangular obstacles
in a square, and repeat this table Z2-periodically in the plane. We show the
following theorem,

Theorem. The diffusion rate for almost every such windtree model, in al-
most every direction is equal to the top Lyapunov exponent of Q(14").
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Now take more general obstacles again with right angles, if n is the number
of obstacles ans p the total number of inward (concave) right angles in all
the obstacles, we have a similar result,

Theorem. The diffusion rate for almost every such windtree model, in al-
most every direction is equal to the top Lyapunov exponent of Q(147"+P —1P),

In the last section we discuss the value of these exponents running numer-
ical experiments with a Sage code developed by the author in a collaborative
project [DT16]. These experiments give strong evidences that the family
we have introduced above can approach arbitrarily close any diffusion rate
between 1/2 and 0. In particular it goes to 1/2 (i.e. the diffusion rate of the
Brownian motion) when the number of obstacles goes to infinity.

2. TRANSLATION SURFACES

2.1. Definition. A translation surface is a surface whose change of charts
are translations. Such a surface is endowed with a flat metric (the pull-back
of the canonical metric on R?) and a canonical direction.

One way to think of these translation surfaces is by gluing sides of a poly-
gon via translations. Let P be a polygon with 2k edges and let 21, ..., 29%
be complex numbers associated to the vectors of its sides. Assume that
2; = Zk+i, we glue the sides z; and zxy; and obtain a flat surface with conical
singularities of angle multiples of 2.

We can define similar structures allowing the change of charts to be also
translations composed with —Id. The class of surfaces we obtain are called
half-translation surfaces.

Using triangulations Veech showed in [Vee93| that this is a general con-
struction with a notion of pseudo-polygons (in a much wider class of struc-
tures). The complex numbers (z;)1<i<i (defined up to a sign in the case
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of half-translation surfaces) induce local coordinates in the moduli space of
such structures, we call them period coordinates. We will introduce them as
periods of abelian differentials below.

2.1.1. Differentials and Moduli spaces. There is a one-to-one correspondence
between compact translation surfaces and Riemann surfaces equipped with
a non-zero holomorphic 1-form. As well as between compact half-translation
surfaces and Riemann surfaces equipped with quadratic differentials.

For ¢ > 1 let « and B be partitions of 2g — 2 and 49 — 4. The strata
H(a) and Q(B) are defined to be the sets of (S,w) and (S,q) where S is
a genus g closed Riemann surface, w is a holomorphic 1-form on S, ¢ is a
quadratic differential on S, and their zeros multiplicities are given by « and
B. The conical points in a translation surface correspond to the zeros of the
differential. If d is the multiplicity of the zero, the angle is equal to 2(d+ 1)
(and (d 4 2)m for half-translation surfaces).

Given a translation surface (S,w), let ¥ C S be the set of zeros of w. Pick
a basis {{1,...,&,} for the relative homology group H;(S,%;Z). The map
O : H(a) — C™ defined by

w50~ ([ e [ )

redefines local period coordinates with translation as change of charts as
above.

There is a natural action of GL(2,R) on connected components of strata
coming from linear action of GL(2,R) on R? in charts. For any translation
surface in a stratum, its orbit closure via this action is some affine invariant
manifold of the stratum : it is defined in local period coordinates by linear
equations. They are endowed with a canonical measure supported on these
surfaces called affine measures [EM13|, [EMM15].

2.1.2. Translation cover. To any primitive half-translation surfaces S we as-
sociate its translation cover S corresponding to the subgroup of the funda-
mental group with holonomy equal to —1. It is a double cover. We endow S
with the pulled-back metric of S which defines a translation surface structure
for S.

From a differential geometric point of view, we constructed a double cover
of S on which the quadratic differential ¢ can be written w? where w is a
holomorphic 1-form.

Let (S, q) be a half-translation surface in Q(my, ...mg), S its translation
cover and ¥ the preimage of its singular points. Following [AEZ16], assume
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there is a basis {a1,b1,...,ag4,bq} of Hi(S;7Z) which has trivial linear holo-
nomy (this exists as long as there is a zero with odd multiplicity) and let
Y1, ---sYd—2 be primitive non crossing elements of H;(S,X;Z) representing
a path from P; to P41 where {Py,..., Py} = X.

Given a saddle connection or an absolute cycle with trivial linear holonomy
7, let v/, be its 2 lifts in S endowed with the orientation inherited from
~. Then we introduce
Fi=v ="
By definition 4 belongs to Hl_(S', 3 C) the —1-eigenspace of the linear au-
tomorphism induced by the deck involution of the double cover.

Proposition 1. The family {&1,31,...,&9,139,'}1,...,’yd,g} is a basis of
H{(5,%;C).

The dual family of {&1,31, .. ,dg,l;g,%, ...yYd—2} forms a basis of the
anti-invariant 1-forms,

HY(S,%:C) c HY(S,%;C)

where the relative cohomology is a local chart for some abelian stratum H(«).
This period is twice the polygonal periods we defined above up to a sign.

This is the basis we will be using to express equations of billiard families.

2.2. Windtree tables. Let P a filled polygon which does not self-intersect
will stand for the shape of the obstacles in our infinite billiard. Consider
the plane R? on which we place P periodically centered at each point of a
lattice A as scatterers such that copies do not overlap. We denote the space
consisting of the plane to which we removed the inside of every obstacle by

W(P, ).

Definition 1. We call W(P, A) a A-periodic windtree table with obstacle
P.

Our purpose here is to understand the billiard flow on this infinite table
and its asymptotic speed. We denote the billiard flow by

¢ : W(P,A) — W(P,A).

For p € W(P,A) the point ¢?(p) is the position of the flow after time ¢
starting from p in direction 6, which moves in straight lines until it encounters
an obstacle on which it bounces according to Snell-Descartes law of reflection.

Definition 2. In a windtree table W(P, A) for d the euclidian distance on
R, p e W(P,A) and 6 € [0, 27) the diffusion rate is the limit

0
lim sup log d(p, ¢ (p))
t—+00 logt
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2.2.1. Associated flat surface. As the billiard table W(P,A) is A-periodic,

we may consider its quotient
W(P,A) g ~R* /p — P = To(P)

which corresponds to playing billiard in a torus with one copy of the obstacle
P placed in it. Then we associate to it a flat surface on which the linear flow
corresponds to the billiard flow.

Take two copies of T (P) and glue the two copies of each side of P using
an isometry fixing the tangent vector and inverting the normal vector (the
axial symmetry along this side). Now when the flow is bouncing in the bil-
liard, the geodesic flow of the flat surface is simply changing of copy in the
surface.

The gluing maps are changing orientation, hence in order for this surface
to be a flat surface as defined above we choose as a convention two opposite
orientations for the two copies. The change of charts now preserves orienta-

tion and is in Iso™(C). We denote this flat surface by S(P,A) = S.

For each triple (p,6,t) € S x [0,27) x R, we define an element 7/ (p) €
H'(S;7Z) as follows. Consider the geodesic segment of lengths ¢ starting
from p in the direction 6 and close it by a small piece of curve that does not
cross h, and v,. The curve used to close the segment can be chosen to be
uniformly bounded.

Let h,v be a horizontal and vertical simple loop in T (P) that generate
the homology of the torus. Let hS = hy — hy and v° = v; — v9 where hi, hs
(resp v1,v9) are the two lifts of h (resp. v) in S. And let a f € H(S;Z?)

be a cocycle dual of (h°,v®) with respect to the intersection form.

The proposition below shows that the diffusion rate of a particle in a
windtree table W(P, A) can be reduced to the study of the pairing of the
approximate geodesic flow on S with f.

Proposition 2 (1 in [DHLI4]). The diffusion rate of ¢?(p) is equal to

lim sup log ‘<f’ 7 (p >‘
t—4o00 logt

when p and p project to the same point on TA(P).

3. LYAPUNOV EXPONENTS

In the previous section, we have seen that the diffusion rate on a windtree
table is related to the asymptotic pairing of a cohomology class with a
modified linear flow on the associated translation surface. We will consider
throughout this section a translation S in some abelian stratum () which



DIFFUSION RATE OF WINDTREE MODELS AND LYAPUNOV EXPONENTS 7

SL(2,R)-orbit closure is the affine invariant subspace M C H(a) and vp4 its
invariant measure.

The following theorem relates the diffusion rate with a Lyapunov expo-
nent,

Theorem (2 in [DHLI4]). Let Fy D F» D --- D Fj be the Oseledets
flag decomposition of the Kontsevich-Zorich cocycle on M, and X be its
top Lyapunov exponent. For every vaq-Oseledets generic translation sur-
face S € H(wa), for every point p € S with infinite forward orbit, for all
[ e\ Fy,

i BB

t—-+00 logt
In |[CE15] is proven that any translation surface S € H(«) such that its
SL(2,R)-orbit closure is M is Oseledets generic in Lebesgue-almost every
direction. In particular they show the following theorem,

Theorem 1. 1.5 in |CELS| Fiz S € Hi(a) and let M = SL(2,R) - S the
smallest affine invariant manifold containing S, let V' be a SL(2,R) invariant
subbundle of the Hodge bundle which is defined and continuous on M. Let
Ay : SL(2,R) x M — V denote the restriction of the Kontsevich-Zorich
cocycle to V and suppose that Ay is strongly irreducible with respect to the
affine measure vaq whose support is M. Then, for almost every 6 € [0, 27),

1 A
lim 108 ||Av(gsrox)

H — )\1
t—s00 logt

where \1 is the top Lyapunov exponent of Ay .

A little modification in their argument, which we delay to the Annex,
enables us to show an additional lemma to this theorem.

Lemma 1. In the previous theorem, for any h € V and almost every 0 €
[0, 27),

i 08 [[Av (grox)hl|
11m
t—o0 logt

—>>\1.

This reduces the computation of the diffusion rate of a windtree model to
determining irreducible components of the Kontsevich-Zorich cocycle along
SL(2,R)-orbits and in which of these is the cohomology class f.

In our case this will be done by the following irreducibility lemma,

Lemma 2. In strata of quadratic differentials with at most simple poles, and
more than 8 singularities that are not all of even order, the Kontsevich-Zorich
cocycle is strongly irreducible on Hf“ for the action of SL(2,R).
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Proof. The tautological bundle generated by the real and imaginary part of
the abelian form associated to a surface in the stratum is contained in H~
and not in HT. Thus according to Theorem 1.1 of [EFW1S8], the algebraic
hull of the Kontsevich-Zorich cocycle is the Zariski closure of monodromy.
But the monodromy on H™ is Zariski dense in Sp(2g, R) according to Section
6 in [GRI7]. Hence H™ cannot have invariant subspaces for the Kontsevich
Zorich cocycle, and is strongly irreducible. O

This implies the following,

Corollary 1. Let S be a half-translation surface which GL(2,R) orbit is
dense in a quadratic stratum, then for almost all direction and every point

p € S with infinite forward orbit, for all f € H'(S;R),

1
i sup 28150l _
t—-+o0 logt

where Ay is the top Lyapunov exponent of the quadratic stratum.

4. ORBIT CLOSURE

4.1. Some useful theorems. In this section we introduce some lemmas
resulting from recent breakthrough in the theory [EMMI5|, [Wril4] and
[Wril5).

Lemma 3. Let B a family of flat surfaces in a fived stratum which is rep-
resented in some period coordinates by a real linear subspace B. Then for
Lebesgue almost every S € B, the orbit closure is an unique GLa(R)-invariant
suborbifold L of the Teichmiiller space. Moreover, in the above period coor-
dinate, L is a linear subspace L such that B C L.

This is the fundamental lemma in this article. Since it shows the existence
of one generic orbit closure which contains orbit closures of all surfaces in
the family.

Proof. According to [EMM15| Proposition 2.16 or alternatively [Wril4] Corol-
lary 1.9, there are countably many GLy(R)-invariant closed orbifolds in each
stratum. Thus at least one orbit closure £ of the family B intersects B with
non-zero Lebesgue measure in B. In period coordinates, if two linear sub-
space L and B intersect with non-zero Lebesgue measure in B, then B C L.

Take now Lg intersection of all £ as above. This intersection, as any L, is
a closed GLg(R)-invariant subset which contains B. Thus the orbit closure
of any point of Ly is contained in Ly. This implies that any £ as above
coincide with Ly. Thus for any S € B which orbit closure has non-zero
measure intersection with B, GLy(R) - S = L.

Hence for any S € B such that N := GLg(R) - S # Ly, Lebesgue measure
of N'N B is zero. Taking out the countably many such subset of B, the set
of remaining points is of full Lebesgue measure and the orbit closure of each
of these points is Lg. (|
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Lemma 4. Suppose with the notation of the previous lemma, that B contains
a R-linear subspace D. Let Dg. and Dy, be the projections of D to H'(S;R)
and H'(S;iR). Then Vectc(Dge, Di) C L d.e. L contains the C-linear
span of Dgre and Dpp,.

This lemma will enable us to show that restrictions on the directions of
the sides of obstacles do not interfere with the orbit closure.

Proof. By Lemma [3 we know that D C L. By [Wril4] the field of definition
of such an affine manifold is real, in particular it is the complexification of
Lpe. O

Lemma 5. Let S be a half-translation surface, ¥ the set of its singularities,
and y1,7Y2, - --,Va @ basis of primitive non-crossing elements of Hy(S,%;7Z).
We denote by 4; their periods in S.

If n is the homology of the union of core curves of L-parallel cylinders in
the surface associated to periods ;. Then for all § in a neighborhood of zero
in C, the surface with periods

¥i + (0, 7) 0
1s in the orbit closure L.

Once we have conjectured what the generic orbit closure of our billiard
should be, our goal will consist in finding a surface in the family that has
some good cylinder decomposition. Using this lemma there will be surfaces
in the orbit closure breaking some symmetry, and by induction we will show
density.

Proof. This is a direct corollary of Lemma 4.11 in [Wril5]. Each cylinder
deformation adds some complex number § to the period of a given path for
every intersection. By shearing and stretching any § can be attained in a
neighborhood of zero. O

4.2. Periodic windtree with several obstacles. Choose a layout for n
rectangular obstacles in the plane, all oriented in the same horizontal direc-
tion. Now repeat Z?-periodically this pattern in the plane, assuming at an
initial step that they do not overlap. In other terms, pick a square torus in
which you place n horizontal rectangular obstacles. We call B,, this family
of billiards. We investigate its generic GL(2,R) orbit closure to compute its
diffusion rate. The case of B; was done in [DHLI4] in which the authors
proved that the diffusion rate is 2/3.

As in 2.2] we associate to each windtree table in B, a half-translation
surface in Q(1%"). This yields an embedding

S: B, s Q(14M)
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4.2.1. Orbit closure. We prove the following Lemma,

Lemma 6. For Lebesgue almost every windtree table in By, n > 2, the image
of its associated half-translation surfaces in Q(1%") has a dense GL(2,R)-
orbit.

Let S € S(B,), the surface S has genus n + 1 and the stratum Q(1%")
has dimension 6n. We consider a1, b1, as, ba simple loops which generate the
homology of the two copies of the torus, and take c¢1,dy,...,ch—1,dn—1 the
loops around the obstacles and between two consecutive obstacles. These
generate the absolute homology of S. Now for each obstacle 7, start at the
lower left corner and browse the rectangle clockwise, we denote by «;, f;, o
the three saddle connection we cover until the lower right corner. Let ~; be a
path from the lower right corner of obstacle ¢ to lower left corner of obstacle
1+ 1.

ai
bl A d3 A
dy — do b,
VvV
a
P>
C1 3
by A C2 A
= i

FIGURE 1. Basis for relative homology.

These paths form a basis of the relative homology group of S. According
to Lemma [1] if we take the hat image of these homology elements besides
from &/, , they form a basis of H; (S, 3;C) which induce local coordinates
in the stratum (see e.g. [AEZ16]) called period coordinates.

We also introduce Bz{ for 1 <7 <n —1 the last side of the rectangle that
closes obstacle . In other term, the class that satisfies o + 8; + o + 5 = ¢;.
For ways of intersection numbers with cylinders we will construct later, we
will prefer to replace ¢; by /3, in the basis and equations.

To write down equations in period coordinates we need to eliminate an
ambiguity given by the non trivial holonomy of the surface. We choose a
fundamental domain for the action of this holonomy given by the two copies
glued along the vertical sides to which we remove the horizontal sides. This
corresponds to drawing the copies reflected along the horizontal axis. Now
the family S is defined locally by the following equations, where we make
the abuse to write the homology class while meaning their period,
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Im(a;) =0, Re(by) =0, Re(ay) = Im(by)
(1) Im(B;) =0, Re(a;) =0forall1 <i<n
di=~—7;foralll1<i<n-1

a; = ag, by = —bo
(2) a;=—al forall1<i<n-—1
Bi=—Biforalll <i<n-—1

There are 2n + 3 real equations and 3n — 1 complex equations. The qua-
dratic stratum is of complex dimension 6n, thus the induced subspace is of
real dimension 12n —2n —6n —1 = 4n — 1. On the other hand for the family
of billiards, we have 2n variables for the size of each obstacle, 2n — 2 for
relative position of the obstacles, and 1 dimensions for the size of the square
torus. Thus we have indeed listed all the equations that define our billiard
family.

Below we show that these two sets of equations do not constrain the generic
orbit closure for our billiards which as a consequence will be the whole stra-
tum. The first argument relies on Lemma [4] and the second on Lemma [5]

First remark that the periods appearing in equations are not con-
strained by equations . Lemma [4| then implies that the affine space corre-
sponding to the orbit closure L contains Vectc (a1, 55, d;, ;) and Vecte (b1, o,
and consequently does not satisfy neither of the equations in . We have
shown that the orbit closure contains the space defined by equations .

In the following we demonstrate inductively that L contains affine spaces
defined by a smaller subset of equations in which will eventually be
empty. To do so we point out surfaces in the space defined by the given
subset which have a cylinder rationally independent to any other ones in
the same direction. We will show that all but one equations of this sub-
set are respected by the shifted periods in Lemma [5| This will imply that
the orbit closure contains the subspace defined by all but this latter equation.

We want to decorrelate the periods of b1 and bs but in the family a cylinder
in the torus along a1 has always a symmetric counter-part along as. We use
the fact proven above that in the orbit closure v; and d; have no correlation
thus we can move the obstacles in the two copies independently. Figure
shows how to have a cylinder in one torus and not in the other by moving
the obstacles and obstructing the flow in one copy. For a generic choice of
lengths, the hatched cylinder is not commensurable to any other cylinder and

Vi)
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its core curve intersects only b1. The cylinder deformation breaks the relation
between a1 and as and the same construction in the vertical direction breaks
the relation between by and by. As a result, the affine space L contains the
space defined by equations minus the equations on a and b.

i

===
a——"
a—"
—=———"
="
===

———
S
S
S
S
S
S
S=="==

"

FIGURE 2. Good cylinder decomposition to deform by

Consider now the billiard with the same square obstacles of irrational side
length such that all the obstacles are aligned in order. The distances between
the obstacles are chosen such that they are rationally independent. On these
surfaces there is a full decomposition in cylinders and all of the cylinders are
rationally independent. The cylinder going from the right of the last obstacle
to the left of the first intersects by, a1 and by. The number of intersection of
the core curve with each one of these curves is one. The previous argument
has eliminated the constrains on b; and be thus this cylinder deformation
breaks the relation between o and of.

Now by induction we take the cylinder intersecting o) and «;y1. By
assumption o} does not appear in any equation and so we can break the
relation between ;4 and o T

D> >
L (B 44 LD |

- L "~

N
V Vv

FIGURE 3. Good cylinder decomposition to deform «;

The same argument can be applied in the vertical direction for §; and 3.
This ends the proof of generic density for billiards in S(B,,).

This density result together with Lemma [3] and Corollary [I] imply the
following,

Theorem 2. The diffusion rate for Lebesgue-almost every windtree model
in B, with n > 2 in Lebesgue-almost every direction is equal to the top
Lyapunov exponent of Q(14").
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4.2.2. Obstacles with many right angles. Consider now a more general pe-
riodic windtree table with n obstacles which are horizontal polygons with
right angles. For each obstacle i there are k; inward (concave) and 4 + k;
outward (concave) right angles. Which implies that the obstacle has 2 + k;
vertical and 2+ k; horizontal sides. We denote this family by B, (k1, ..., kp).

The associated quadratic differential has simple zeros at the outward right
angles and poles at the inward. It has genus n + 1 and is in the stratum

Q(14n+p7 _1P)
where p = Y k;.

To construct a basis of homology of the associated translation surface, we
start from the left point of the lowest horizontal side and browse the obstacle
boundary clockwise until we come back to the starting point. This yields
saddle connections o}, 8}, a2, ... ,a;““ki, ﬁfrk". The classes attkn and gi+Fn
are not taken into consideration to yield a basis of H; (S, %;C). Let v; be
the path joining the starting points two consecutive obstacles 7 and ¢+ 1 and
define as in the previous section absolute homology classes a,b and d.

The equations in period coordinates are very similar as in the previous
case, we only need to adapt equations on the obstacles.

Im(ai) =0, Re(b1) =0, Re(ar) = Im(by)

Re(e) =0foralll1<i<nand1<j<2+k —1

Im(ﬂg):Oforall1§i§nand1§j§2+ki—1
di=~—7;foralll1 <i<n-1

a; = ag, by = —by

4+k;
Zag:Oforalllgign—l
j=1

41k,

Y pl=0foralll <i<n-1
j=1

There are now » (4 + 2k; — 2) + 3 = 2n + 2p + 3 real equations and 3n — 1
complex equations. The quadratic stratum is of complex dimension

2n+ 1) +4n+2p—2=6n+2p
thus the induced subspace is of real dimension

12n4+4p—-2n—-2p—3—-6n+2=4n+2p—1.
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On the other hand for the family of billiards, we have ) (442k;—2) = 2n+2p
variables for the size of each obstacle, 2n — 2 for relative position of the ob-
stacles, and 1 dimensions for the size of the square torus. Thus we have
indeed listed all the equations that define our billiard family.

The first part of the previous argument applies verbatim to this case with
the real and imaginary part equations. For the second part we need to
exhibit a similar construction of cylinders. The construction of Figure [2] is
straightforward to generalise to any shape of obstacle. We will detail the
generalisation of the construction in Figure

Start with the vertical side that does not appear in the basis. Now we can
find an element of the family such that the obstacle n is in the neighborhood
of a rectangle as in Figure[d] making every other side very small, and similarly
for the first obstacle. There is a horizontal cylinder joining the given side of
obstacle n with a side of the first obstacle. This surface will be completely
decomposed into horizontal cylinders and the lengths are chosen to be all
rationally independent.

[N N
Vv |

N N
vV |
FIGURE 4. Example of deformation
This enables us to break the equation constraining the a{. Then by in-

duction we show that a generic billiard in B, (k1, ..., k,) induces a quadratic
differentials with dense orbits in the stratum. We have the following theorem,

Theorem 3. For anyn > 2, ki,...k, > 0 and p = >_ ki, the diffusion
rate for in Lebesgue-almost every windtree model By, (ki, ..., ky) in Lebesque-
almost every direction is equal to the top Lyapunov exponent of Q(147+P —1P).

5. SOME NUMERICAL COMPUTATIONS

Figure [5| shows numerical approximations of the principal Lyapunov ex-
ponent of strata Q(1%"). We observe that it goes to 1/2 when n — oo.

In Figure [6], we represent a computation of the principal Lyapunov ex-
ponent for Q(1#4"*10 —119) When we fix the number of simple poles and
increase the number of simple zeros, the diffusion rate again goes to 1/2 but
now by smaller values.
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FIGURE 5. Principal Lyapunov exponent for Q(147)

05

FIGURE 6. Principal Lyapunov exponent for Q(147+10 —110)

The 1/2 value is also the diffusion rate for the Brownian motion. Intu-
itively, these convex angles scatter the linear flow which follows completely
different paths from one side to the other of the singularity. They mimic the
hyperbolic behaviour of smooth convex obstacles.

An opposite behaviour is given by the concave right angles of the ob-
stacles. In Figure [7], we present the largest Lyapunov exponent of strata
corresponding to windtrees with two obstacles with an increasing number of
concave angles.

Further experiments show that in contrary to the previous case for a fixed
number of simple zeros and a number of simple poles going to infinity, the
principal Lyapunov exponent is going to zero. A heuristic explanation for
this phenomenon is that when the flow hits the obstacle close to a concave
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01

FIGURE 7. Principal Lyapunov exponent for Q(18+7, —1P)

right angle in the billiard it comes back on its steps slightly shifted as drawn
in Figure |8 This enters in resonance with the result of [DZ15] which states
that when we increase the number of concave right angles of a single obstacle
for a periodic windtree, the diffusion rate goes to zero. This also enters in
the frame of the more general Grivaux-Hubert conjecture that we explore
and reformulate in [Foul6.

F1GURE 8. Flow bouncing close to a concave right angle.
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APPENDIX A. GENERIC LYAPUNOV EXPONENT

In this section we follow the proof of [CEL5| which shows that any trans-
lation surface is Lyapunov and Birkhoff generic in its orbit closure for almost
every direction. We will focus on one of the key results in this article about
Lyapunov genericity on a irreducible component for the Kontsevich-Zorich
cocycle.

Theorem (1.5 in [CEL5]). Fiz z € Hi(a) and let M = SL(2,R)x the
smallest affine invariant manifold containing x, let V' be a SL(2,R) invariant
subbundle of the Hodge bundle which is defined and continuous on M. Let
Ay : SL(2,R) x M — V denote the restriction of the Kontsevich-Zorich
cocycle to V and suppose that Ay is strongly irreducible with respect to the
affine measure vy whose support is M. Then, for almost every 0 € [0, 27),

i 108 [[4v (groa)]]
11m
t—00 logt

—))\1

where \1 is the top Lyapunov exponent of Ay .

Our purpose here is to show the following additional lemma to this theorem,
introduced as Lemma [I] in section [3B

Lemma. In the previous theorem, for any h € V and almost every 6 € [0, 27)

i 108 [[4v (groz)hl|
11m
t—o0 logt

—>>\1.

In [CEI5] intuition of the result is provided by analogy with random walks.
We start by showing the analog of Lemma [I] for random walks.

A.1. Random walks. Let p be a SO(2, R)-invariant compactly supported
measure on SL(2,R) which is absolutely continuous with respect to Haar
measure. A measure v on Hi(«) is called p-stationary if

kv = / (9+v)dp(g) = v.
SL(2,R)

By a theorem of Furstenberg [Fur63b], [Fur63al, restated in [NZ99|| Theorem
1.4], there exists a probability measure p on SL(2,R) such that the map
v — p* v is a bijection between ergodic measures for the action of upper
triangular subgroup of SL(2,R) and ergodic u stationary measures which are
SL(2, R)-invariant affine measures according to [EM13][Theorem 1.4].

This is a first step for an analogy between Teichmiiller flow in some affine
invariant locus and a random walk with the associated measure.

Let Grs denote the grassmanian of s-dimensional subspaces in the SL(2, R)
invariant subbundle of the Hodge bundle V. Let H = H;(a) x Gr, and & be
the p stationary measure on it; we may write dv(z,U) = dv(x)dng(U).

The measure 7, on Grg heuristically corresponds to the mean position of
any linear subspace carried along the Teichmiiller flow using Gauss-Manin
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connection. Let h be some vector in V' \ 0 and I(h) C Grs be the set of
s-dimensional subspaces containing h.

Lemma (C.10 in [EMI13|). If the cocycle Ay is strongly irreducible on V
then for almost every x € Hi(a) and any vector hy € V', 05(L(hy)) =0

In particular if we consider some Oseledets flag this Lemma yields that
generically they do not contain a fixed vector h along random walks.

We show a random walk version of the theorem in the previous paragraph,

Theorem 4 (Theorem 2.6 and Lemma 2.9 of [CEL]). Fiz x € Hi(«) and
let M = SL(2,R) -z the smallest affine invariant manifold containing x, let
V' be a SL(2,R) invariant subbundle of the Hodge bundle which is defined and
continuous on M. Let Ay : SL(2,R) x M — V denote the restriction of the
Kontsevich-Zorich cocycle to V' and suppose that Ay is strongly irreducible
with respect to the affine measure vag whose support is M. Then for a fized
h €V and for pN-almost every G = (g1, ..., Gn,--.),

) 1
lim —log|[Av(gn ... g1,2)h|| = M
n—oo N

where A1 is the top Lyapunov exponent of Ay .

This theorem already appears in [CEI5| as a remark to a more general
theorem. We reformulate the proof in this specific case for convenience to
the reader.

A.2. Proof Theorem [4. We fix M and V as in the theorem. Pick an
arbitrary vg € V and let v;(g) = Ay (gi...g1,2)vo. The key tool to show
this theorem is a decomposition lemma for the sequences of cocycle in the
case of strong irreducibility.

Lemma (2.11 and 2.16 in [CE15]). For all € > 0, there exists an integer L
such that for every x € M almost every g we have that oll but a set of N of
density 4e is in disjoint blocks [i + 1,i + L] so that

|| Av(GitL - - Git1,9)V]]
|[v]]

Proof. Refer to section 2.3 of [CEL5].

exp(A; —€)F < < exp(\ +e)F.

O

Now let g be in the full measure set as above, K be the subset of density
4e and I the set of indices i in the blocks [i 4+ 1,7+ L]. Then for n > L,

ol = Yo %
1—

B [
= D>, ltpamd D, o ||vz 1||+ Z

ieIN[l,n—L] i€eKN[1,n—L] —-L'+1

Hvz

-~

S1 So S3
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where n — L' = max{n — L,I + L}.

Let C such that for all g in the support of p and all y € M, ||Av(g,y)|| <
C. Then |S3] < LlogC, and |S2| < 4enlogC.

Moreover I I
’ ﬁ[?'-'an”' > 1 — 4e
n
Hence
Si>|IN[L,...;n]|- (M —€)L > (1 — 4e)n(A1 — ¢)
and

1 L
ﬁloganH > (1 —4e)(M —€) —4elogC — ElogC

for almost every g and any n > L.

Since € > 0 is arbitrary, we get for all h € V' and almost every g,

liminflog ||Av(gn ... g1,2)h|| > A1
n—oo
And with a similar argument we get an upper bound

limsuplog ||Av(gn ... g1,2)h|] < A1

n—0o0

Which implies Theorem

A.3. Proof of Lemma According to the sublinear tracking Lemma of
[CEL5], for almost every 6 € [0,27), there exists § = (g1,...,9n,...) satis-
fying Theorem [4 such that we can write

gwnTo = €ngn - - - g1
with €, € SL(2,R) satisfying

.1
Jim —log [lex|| =0
By the cocycle relation we have

Av (g, o) = Av(€n, gn - - 12) Av (gn - - - 1, T).
But there exists C' > 0 and N < oo so that for all ¢ € SL(2,R) and all
T € Hl(a),
1Ay (g, )| < Cllgl|™.
Hence
log ||Av (gxn, rex)h|| = log||Av (gn - . . g1, z)||h + o(n).
Which shows the Lemma.
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