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THE AFFINE VW SUPERCATEGORY

M. BALAGOVIĆ, Z. DAUGHERTY, I. ENTOVA-AIZENBUD, I. HALACHEVA, J. HENNIG,
M. S. IM, G. LETZTER, E. NORTON, V. SERGANOVA, AND C. STROPPEL

Abstract. We define the affine VW supercategory s⩔, which arises from studying the
action of the periplectic Lie superalgebra p(n) on the tensor product M ⊗ V

⊗a of an
arbitrary representation M with several copies of the vector representation V of p(n). It
plays a role analogous to that of the degenerate affine Hecke algebras in the context of
representations of the general linear group; the main obstacle was the lack of a quadratic
Casimir element in p(n)⊗p(n). When M is the trivial representation, the action factors
through the Brauer supercategory sBr . Our main result is an explicit basis theorem
for the morphism spaces of s⩔ and, as a consequence, of sBr . The proof utilises the
close connection with the representation theory of p(n). As an application we explicitly
describe the centre of all endomorphism algebras, and show that it behaves well under
the passage to the associated graded and under deformation.
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Introduction

Classical and higher Schur-Weyl duality. Classical and higher Schur-Weyl dualities
are important tools in representation theory. Working over the fixed ground field C, the
classical Schur-Weyl duality for the general linear Lie algebra gln refers to the double
centralizer theorem applied to the commuting actions of gln and the symmetric group Sa

gln ↷ V ⊗a ↶ Sa (0.1)

on the tensor product of a copies of the vector representation V . By (higher) Schur-Weyl
duality (see [1], [7]) we mean the existence of commuting actions

gln ↷M ⊗ V ⊗a ↶Ha (0.2)

of gln and the degenerate affine Hecke algebra Ha on the tensor product of an arbitrary
gln-representation M with V ⊗a. The degenerate affine Hecke algebra Ha, introduced by
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2 THE AFFINE VW SUPERCATEGORY

Drinfeld [18] and Lusztig [28], contains the group algebra C[Sa] and the polynomial alge-
bra C[y1, . . . , ya] as subalgebras, and is isomorphic as vector space to C[Sa]⊗C[y1, . . . , ya].
In particular it has a basis

B = {wyk11 ⋯ykaa ∣ w ∈ Sa, ki ∈ N0}.
The action of the symmetric group on M ⊗ V ⊗a is given by permuting the tensor factors
of V ⊗a. To get the action of the polynomial generators yi, one additionally considers the
Casimir element

Ωgln = ∑
1≤i,j≤n

Eij ⊗Eji ∈ gln ⊗ gln, (0.3)

labels the tensor factors of M ⊗ V ⊗a as 0,1, . . . , a, and then sets

yi =
i−1∑
j=0

Ω
gln
ji , (0.4)

with Ωji denoting the action of Ω on the j-th and i-th tensor factors of M ⊗ V ⊗a. These
operators satisfy yi+1 = siyisi + si for si = (i, i + 1) ∈ Sa, and define an action of Ha. When
M is the trivial representation, this action factors through the quotient Ha → C[Sa], and
(0.2) reduces to (0.1). The quotient mapHa → C[Sa] sends y1, . . . , ya to the Jucys-Murphy
elements of C[Sa].

The existence of (0.1) and (0.2) allows one to pass knowledge about the representation
theory between the two sides of the duality. It is also crucial for the construction and
definition of 2-Kac Moody representations in the sense of Rouquier, [34].

Commuting actions for the periplectic Lie superalgebras p(n). We aim to estab-
lish a duality analogous to (0.2) in a situation where gln is replaced by the periplectic Lie
superalgebra p(n). The family p(n), n ≥ 2, is the first family of so-called “strange” Lie
superalgebras in the classification of reductive Lie superalgebras [23]. The hope is to use
a duality like (0.2) as a tool in understanding the representation theory of p(n).

The superalgebra p(n) is defined as the subalgebra of the general linear superalgebra
gl(n∣n), consisting of all elements preserving a certain bilinear form β on the vector
representation V of gl(n∣n) (see Section 3 for the definition). The duality analogous
to (0.1) has been established in [30], where it was shown that the centralizer algebra
Endp(n)(V ⊗a) is a certain Brauer superalgebra, a signed version of the Brauer algebra.
One would like to add polynomial generators y1, . . . , ya to the Brauer superalgebra, and
define their action on the tensor product M ⊗V ⊗a of an arbitrary p(n)-representation M
with a copies of the vector representation V using an analogue of (0.4) for some suitably
defined element Ω ∈ p(n)⊗ p(n), which centralizes the action of p(n) on tensor products.
Unfortunately, such an element Ω does not exist in p(n)⊗ p(n).

The main idea is to instead consider a fake Casimir element (see also [3])

Ω = ∑
b∈X

b⊗ b∗ ∈ p(n)⊗ gl(n∣n).
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Here X is a basis of p(n), and {b∗ ∣ b ∈ X} is the dual basis with respect to the supertrace
form on gl(n∣n). This element does not act on a tensor product M ⊗ N of arbitrary
p(n)-representations, but does act on the tensor product M ⊗ V of an arbitrary p(n)-
representation M and the vector representation V for gl(n∣n). A formula analogous to
(0.4) defines the action of commuting elements y1, . . . , ya on M ⊗ V ⊗a, centralizing the
p(n) action. We thus obtain, see Proposition 22, commuting actions

p(n) ↷M ⊗ V ⊗a ↶ s⩔a
, (0.5)

of p(n) and a certain affine VW superalgebra s⩔a. More generally, we establish an action
of the affine VW supercategory s⩔, see Section 1.4, on the category of modules of the
formM ⊗V ⊗a obtained by varying a. Our main result (Theorem 2) gives an explicit basis
of all the morphism spaces in s⩔.

The linear independence is proved using the duality (0.5) for a specific choice for M ,
namely a Verma module of highest weight 0. We verify that the PBW filtration on M is
compatible with a filtration on the algebras s⩔a, which we build to mimic the filtration
by the degree of the polynomials in C[y1, . . . , ya] in case (0.2). We explicitly describe the
associated graded algebra and deduce the basis theorem from there. As an application we
give a description of the centre of all endomorphism algebras involved. The arguments
involve the concept of PBW-deformations and (noncommutative) Rees algebras.

Links to other results of this type. A special feature of the periplectic Lie superal-
gebras is that s⩔a are superalgebras, since the involved endomorphism algebra has odd
generators. This does not occur in the context of higher Schur-Weyl dualities of the clas-
sical Lie superalgebras (see [12], [40] for a general treatment, [8], [20], [26] for different
cases with M = C, and [9], [16], [19], [35], [36] for higher dualities).

The superalgebra s⩔a is a super (or signed) version of the affine VW algebra, defined
in [32] and studied in [19] in the context of higher Schur-Weyl dualities for classical Lie
algebras in type BCD. In other words, it is a super version of the degenerate BMW
algebras, see e.g. [16]. This means that, in addition to involving superalgebras, the
duality (0.5) also has flavours of type BCD. In diagrammatic terms, this means working
with generalized dotted Brauer diagrams with height moves involving signs.

A basis theorem for the endomorphism algebras of objects in s⩔ was obtained inde-
pendently in [11] by an algebraic method developed in [32], also using the fake Casimir
operator. The Brauer superalgebras recently appeared in the literature under the names
odd Brauer algebras, marked Brauer algebras or periplectic Brauer algebras, indicating the
slightly different points of view on the subject.

Brauer supercategories can be realized as subcategories, as well as quotients, of the
VW supercategories. (In terms of representations, this corresponds to taking M to be
the trivial representation; they are a super version of the classical Brauer categories as
defined e.g. in [27]). As a direct consequence of our basis theorem we thus obtain a
basis theorem for the Brauer supercategories, hence reprove results from [6], [25] and [30].
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Under this quotient, the elements y1, . . . , ya of the superalgebra s⩔a specialise to Jucys-
Murphy elements in the Brauer superalgebras. This allows one to apply the Cherednik [13]
and Okounkov-Vershik [10], [33] approaches in this context. First steps in this direction
were already successfully taken in [3] and [14] from different perspectives to determine the
blocks and decomposition numbers in the category of finite dimensional representations of
p(n) and of the Brauer superalgebra, and further developed in [15]. A thorough treatment
of the corresponding category O is so far missing and will be deferred to subsequent work.

The roadmap of the paper. In Section 2 we define the Brauer supercategory sBr ,
the VW supercategory s⩔, and their endomorphism algebras sBra and s⩔a, and state
the main results, Theorems 1 and 2. In particular, Theorem 2 gives bases S●a,b of the
endomorphism spaces of s⩔. In Section 3 we prove that S●a,b are spanning sets using a

topological argument. In Section 4 we discuss the Lie superalgebra p(n) and its repre-
sentations, the fake Casimir Ω, and prove the existence of the commuting action (0.5).
In Section 5 we prove linear independence of the sets S●a,b by finding large n and large

enough p(n)-representations M , so that the set S●a,b maps into a set of linearly indepen-
dent operators onM⊗V ⊗a. This proves Theorem 2, and Theorem 1 follows as a corollary.
As an application, in Section 5 we describe the presentation, the centre, and a certain
deformation of the endomorphism algebras s⩔a = Ends⩔(a).

Acknowledgements. We thank Gwyn Bellamy, Michael Ehrig, Stephen Griffeth,
Joanna Meinel, Travis Schedler and Anne Shepler for helpful discussions. This project
was started at the WINART workshop in Banff, and was developed and finalised during
several visits of some of the authors to the Hausdorff Center of Mathematics (in particular
to MPI and HIM) in Bonn. We thank these places for the excellent working conditions.

1. Definitions and main results

In this section we define the Brauer supercategory sBr and the affine VW supercategory
s⩔ as monoidal supercategories, and state Theorems 1 and 2, which give diagrammatic
bases for the morphism spaces in these categories.

We fix C as the ground field for the whole paper.

1.1. Monoidal supercategories. We start by recalling some basic facts about monoidal
supercategories. For a thorough discussion, see e.g. [6].

A superspace is a vector space V with a Z2 grading, V = V0⊕V1. Homogeneous vectors
v ∈ V0 are said to be even or of parity v = 0, and v ∈ V1 are said to be odd or of parity
v = 1. Linear maps between superspaces inherit the grading; homogeneous linear maps are
called even or odd, respectively, depending on whether they preserve or change the parity
of homogeneous vectors. Formulas involving parity are usually written for homogeneous
elements and extended linearly. A tensor product of superspaces is again a superspace.
For f, g homogeneous linear maps of superspaces, f ⊗ g is defined as

(f ⊗ g)(v ⊗w) = (−1)gvf(v)⊗ g(w)
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on homogeneous vectors v ⊗w. The following Koszul sign rule holds for compositions

(f ⊗ g) ○ (h⊗ k) = (−1)gh(f ○ h)⊗ (g ○ k). (1.1)

We use the common diagram calculus: the object a ⊗ b is depicted by drawing the b to
the right of a, similar for f ⊗ g.

A supercategory is a category enriched in superspaces; this means all morphism sets are
superspaces, and composition preserves parity. We will be using the usual string calculus
for morphisms in strict monoidal supercategories (see e.g. [24, Definition XI.2.1]). More
precisely, we will define strict monoidal supercategories (sBr and s⩔) using generators
and relations by

(i) specifying a set of generating objects; all objects in the category are obtained as
finite tensor products a1 ⊗ ⋯ ⊗ ar of generating objects ai (including the empty
tensor product, which is defined to be the unit object 1);

(ii) specifying a set of generating morphisms; all morphisms in the category are then
obtained as linear combinations of finite compositions of horizontal (using the ten-
sor product f⊗g) and vertical (using the composition f ○g) stackings of compatible
generating morphisms and the identity morphisms. Diagrammatically, f⊗g is pre-
sented as placing f to the left of g, whereas f ○ g is presented as stacking f on top
of g; in particular, morphisms are read from bottom to top;

(iii) specifying a set of generating relations for morphisms; the full set of relations
is obtained as the two sided tensor ideal generated by the specified generating
relations. Implicitly, we also require the morphisms to respect the sign rule (1.1);
these are sometimes called the height moves in string calculus.

1.2. The Brauer supercategory sBr . The Brauer supercategory is the C-linear strict
monoidal supercategory sBr , generated as a monoidal supercategory by a single object ★
and morphisms

s = ∶ ★ ⊗ ★ Ð→ ★ ⊗ ★,
b = ∶ ★ ⊗ ★ Ð→ 1, and b∗ = ∶ 1Ð→ ★ ⊗ ★,

with parities s = 0, b = b∗ = 1, subject to the following defining relations:

(R1) The braid relations: = and = ,

(R2) The snake relations or adjunctions: = − and = ,

(R3) The untwisting relations: = and = − .
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The supercategory structure means the height moves via (1.1) are also satisfied, e.g.

= b ○ (1⊗ 1⊗ b) = b⊗ b = , = b ○ (b⊗ 1⊗ 1) = − b⊗ b = − .

The objects of sBr are sometimes written as natural numbers N0, identifying a ∈ N0

with ★⊗a, where ★⊗0 = 1. A diagram is a finite composition (horizontally or vertically) of
generating morphisms and identity morphisms. It consists of lines, connecting pairs of
points among the bottom and top ones, which we call strings. Elements of HomsBr(a, b)
are linear combinations of diagrams with strings connecting a points at the bottom and
b points at the top. We let 1a ∈ HomsBr(a, a) denote the identity morphism, and let

bi = 1i−1 ⊗ b⊗ 1a−i+1 ∈ HomsBr(a + 2, a), b∗i = 1i−1 ⊗ b
∗ ⊗ 1a−i+1 ∈ HomsBr(a, a + 2),

si = 1i−1 ⊗ s⊗ 1a−i−1 ∈ HomsBr(a, a)
denote the morphisms obtained by applying b, b∗ and s on the i-th and (i + 1)-st tensor
factors. The supercategory sBr can alternatively be generated as a supercategory (as
opposed to a monoidal supercategory) by vertically stacking compatible bi, b∗i , si.

1.3. Normal diagrams. We call a string with both ends at the top of the diagram a
cup, a string with both ends at the bottom of the diagram a cap, a string with one end
at the top and one at the bottom a through string, and a string with no endpoints a loop.

Call a diagram d ∈ HomsBr(a, b) normal if all of the following hold:

● any two strings intersect at most once;
● no string intersects itself;
● no two cups or caps are at the same height;
● all cups are above all caps;
● the height of caps decreases when the caps are ordered from left to right with
respect to their left ends;
● the height of cups increases when the caps are ordered from left to right with
respect to their left ends.

As a consequence, every string in a normal diagram has either one cup, or one cap, or no
cups and caps, and there are no closed loops. A diagram with no loops in HomsBr(a, b)
has a+b

2 strings. In particular, if a + b is odd then this space is zero.
Each normal diagram d ∈ HomsBr(a, b), where a, b ∈ N0, gives rise to a partition P (d) of

the set of a+b points into 2-element subsets given by the endpoints of the strings in d. We
call such a partition a connector and let Conn(a, b) denote the set of all such connectors;
its size is (a + b − 1)!!. For each connector c ∈ Conn(a, b), we pick a normal diagram
dc ∈ P −1(c) ⊂ HomsBr(a, b). (Note that different normal diagrams in a single fibre P −1(c)
differ only by braid relations, and thus represent the same morphism, see Lemma 10.)

Theorem 1. The set Sa,b = {dc ∣ c ∈ Conn(a, b)} is a basis of HomsBr(a, b).
We show that it is a spanning set using topology in Section 2. Linear independence can

also be seen directly using topology, since the defining relations of sBr do not change the
underlying connector of a diagram. However, we obtain it using representation theory in
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Section 4 as a direct consequence of the more general Theorem 2. For the special case of
a = b, this theorem appears as a basis theorem for the algebra Aa in [30].

Let us also remark that the above choice of normal diagrams for basis vectors is for
convenience only. It is enough to choose one diagram d′c with no loops in every fibre
P −1(c); the set {d′c ∣ c ∈ Conn(a, b)} is then also a basis. This choice of basis differs from
Sa,b by signs only, meaning it is a subset of {±d ∣ d ∈ Conn(a, b)} with exactly one choice
of sign for each d, see Proposition 11.

1.4. The affine VW supercategory s⩔. The affine VW supercategory, or affine
Nazarov-Wenzl supercategory, is the C-linear strict monoidal supercategory s⩔, generated
as a monoidal supercategory by a single object ★, morphisms s = ∶ ★ ⊗ ★ Ð→ ★ ⊗ ★,
b = ∶ ★ ⊗ ★Ð→ 1 and b∗ = ∶ 1 Ð→ ★ ⊗ ★ as above, and an additional morphism

y = ∶ ★ Ð→ ★
with y = 0, subject to relations (R1)-(R3) above, and

(R4) The dot relations: = + + and = + .

The objects in s⩔ can be identified with integers a ∈ N0, and the morphisms are
linear combinations of dotted diagrams. The category can alternatively be generated by
vertically stacking bi, b∗i , si and yi = 1i−1 ⊗ y ⊗ 1a−i ∈ Homs⩔(a, a). It is a filtered category,
in the sense that the spaces Homs⩔(a, b) have a filtration with Homs⩔(a, b)≤k being the
span of all dotted diagrams with at most k dots.

1.5. Normal dotted diagrams. Call a dotted diagram d ∈ Homs⩔(a, b) normal if:

● the underlying diagram obtained by erasing the dots is normal;
● all dots on cups and caps are on the leftmost end, and all dots on the through
strings are at the bottom.

Let S●a,b be the set of normal dotted diagrams obtained by taking all diagrams in Sa,b

and adding dots to them in all possible ways. Let Sk
a,b ⊂ S●a,b and S≤ka,b = ⋃k

l=0S
l
a,b be

the sets of such diagrams with exactly k dots, respectively at most k dots. In particular,

S0
a,b = S

≤0
a,b = Sa,b. Note that if a ≡ b mod 2 then the cardinality of Sk

a,b is (a+b2 +k−1k
)⋅(a+b−1)!!,

and if a /≡ b mod 2 then the cardinality of Sk
a,b is 0.

The following basis theorem is the main result of this paper.

Theorem 2 (Basis Theorem). The set S≤ka,b is a basis of Homs⩔(a, b)≤k, and consequently

the set S●a,b is a basis of Homs⩔(a, b).
The proof will be given in Sections 2 and 4. The identification Sa,b = S

0
a,b defines an

embedding of categories sBr Ð→ s⩔ and hence Theorem 2 directly implies Theorem 1.
As an immediate consequence of Theorem 2 we obtain the following:
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Corollary 3. The diagrams without dots form a supersubalgebra HomsBr(a, a) of the
superalgebra Homs⩔(a, a). The dotted diagrams whose underlying undotted diagram is
the identity morphism 1a form a polynomial subalgebra C[y1, . . . , ya], and the subalgebras
C[y1, . . . , ya] and HomsBr(a, a) together generate Homs⩔(a, a) as vector superalgebra.
1.6. The affine VW superalgebra s⩔a. For any a ∈ N, the endomorphism space s⩔a =

Homs⩔(a, a) has the structure of a superalgebra. It is the signed version of the affine VW
algebra (see [19, Section 2] for the setup we use), and the affine version of the Brauer
superalgebra HomsBr(a, a). These algebras have an interesting structure, and allow an
h̵-deformation. For more details, including a presentation and a description of the centre,
see Section 5.

One can also define cyclotomic quotients of the algebras s⩔a by mimicking the con-
structions in [2] for affine VW algebras, see also [11]. We expect Lemma 8 (stating the
vanishing of all loop values) to simplify the necessary admissibility conditions from [2]
and more explicitly [19] drastically, but do not pursue this here.

2. Spanning sets for sBr and s⩔
In this section we show that the sets Sa,b and S●a,b span the corresponding morphism

spaces in the categories sBr and s⩔ (Propositions 11 and 12).

2.1. Some diagrammatic relations. First, we establish some additional relations in
these categories. Note that these relations are local and hold wherever they are defined
within a bigger expression, and we indicate how the local diagram fits into the larger one
by specifying the position (i ∈ N) of a string (always counted from the left).

The first lemma shows that in sBr (and consequently in s⩔), similar untwisting rela-
tions to (R3) hold for caps as they do for cups, and that any isolated loops are zero.

Lemma 4 (Untwisting relations). The following relations hold in sBr and s⩔:
(a) = (b) = (c) = 0

bisi+1 = bi+1si bisi = bi bib
∗
i = 0

Proof. (a) Using the relations in sBr and (1.1), the morphism s can be rewritten as

(R2)
= − = −

(R3)
= −

and therefore

= − =
(R2)
= .
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(b) We use part (a), the relations in sBr and the Koszul sign rule (1.1) to show

(R2)
= = −

(R3)
= − =

(a)
= −

(R3)
=

(R2)
=

(c) With = and − = , we have = 1
2 +

1
2 = 1

2 −
1
2 = 0. �

The next lemma explains how a dot can be moved within a dotted diagram in s⩔. In
particular, it can slide through crossings and cups, modulo some diagrams with a smaller
number of dots.

Lemma 5 (Dot sliding relations). The following relations hold in s⩔:
(a) = + − (b) = − − (c) = −

siyi+1 = yisi + 1 − b
∗
i bi siyi = yi+1si − 1 − b

∗
i bi yi+1b

∗
i = yib

∗
i − b

∗
i

Proof. To obtain the relations (a) and (b), we multiply the first relation in (R4) by si on
the left, respectively on the right, and then use the braid and untwisting relations (R1),
(R3) together with Lemma 4(b) to simplify. To prove (c), we compute:

(R2)
= − =

(R4)
= −

(R2)
= − . �

By induction, we obtain formulas for sliding dots along cups or caps:

Lemma 6. The following relations hold in s⩔ for any k ≥ 1.

(a) k =
k∑

j=0

(k
j
) j , (b) k =

k∑
j=0

(−1)k+j(k
j
) j ,

(c) k =

k∑
j=0

(k
j
) j , (d) k =

k∑
j=0

(−1)k+j(k
j
) j ,

where the integers attached to the dots indicate the number of dots on the strand.

The following formulas for sliding dots through a crossing can also be verified in a
straightforward way using induction, and should be compared with [2, Lemma 2.3].
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Lemma 7 (Generalized dot sliding). For any k ∈ Z≥0 we have the following relations:

(a)
k
=

k
+

k−1∑
j=0

⎛⎜⎝
k-1-j

j −
k-1-j

j

⎞⎟⎠
(b)

k
=

k
−

k−1∑
j=0

⎛⎜⎝ k-1-j
j
+

k-1-j

j ⎞⎟⎠
Furthermore, as we show next, as a generalization of Lemma 4(c), isolated loops in s⩔

with any number of dots are zero.

Lemma 8 (Loop values). For any k, ℓ ∈ N0, the following relation holds in s⩔:
k ℓ = 0, that is, biy

k
i y

ℓ
i+1b

∗
i = 0 for any i ≥ 1.

Proof. Using Relation (R4) to consecutively slide dots from the right side of the loop to
the left, any loop with dots as above can be written as a linear combination of loops with
dots on the left only. Hence, without loss of generality, we can assume ℓ = 0. Applying
Relation (R4) and Lemma 5(c), we can rewrite a loop with k + 1 dots on the left in two
different ways (where the integers always indicate the number of dots on the strand):

k + k = k = k+1 = k = k − k .

Subtracting k from both sides, we get 2( k ) = 0. �

Example 9. Lemma 8 shows that all isolated loops, i.e. those which do not intersect any
other strands, with or without dots are equal to zero. This does not mean that all dotted
diagrams involving (non-isolated) loops are equal to zero, as the following example shows.

d = = − − = − −

= − + = 0 + + = 2

Note that although d has one dot, but above calculation shows that it can be rewritten
as a diagram with no dots. This is a general phenomenon - resolving loops in a diagram
with k dots will produce a linear combination of diagrams without loops which all have
< k dots (see the proof of Proposition 12).
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2.2. Spanning set. We now prove the first part of Theorems 1 and 2 - namely, that the
sets Sa,b and S

≤k
a,b span HomsBr(a, b) and Homs⩔(a, b)≤k , respectively.

Lemma 10. If d1, d2 in HomsBr(a, b) are any two normal diagrams with the same con-
nector, P (d1) = P (d2), then d1 = d2 ∈ HomsBr(a, b).
Proof. As they are both normal, the diagrams d1 and d2 differ by at most the order of the
crossings, so by braid relations (R1), d1 = d2 in sBr . �

Proposition 11. Any diagram d in sBr is either equal to zero (if it has loops) or (if
it has no loops) to ±dc ∈ Sa,b, where c = P (d) is the connector corresponding to d. In
particular, Sa,b spans HomsBr(a, b).
Proof. If the diagram d ∈ sBr has any loops, we can use relations (R1) – (R3) together
with Lemma 4 to isolate the loops to one side, which shows d = 0.

If the diagram has no loops, we can use relations (R1) – (R3) and Lemma 4 to eliminate
any self intersections, double intersections (two strings intersecting twice), and change the
height of cups and caps. The resulting normal diagram d′ will have the same connector
as d, c ∶= P (d) = P (d′), and it will differ from d in sBr by possibly a sign, d = ±d′. It
will possibly differ from dc ∈ Sa,b by the order of the crossings, so by Lemma 10 it satisfies
d′ = dc. Thus, d = ±dc. �

The situation is only slightly more involved for s⩔, as transforming a diagram to an
element of S●a,b can produce additional terms with fewer dots, in effect replacing the
diagram by a linear combination of elements of S●a,b. More precisely we have

Proposition 12. Any dotted diagram d ∈ Homs⩔(a, b)≤k is equal to a linear combination
of elements in S≤ka,b.

Proof. We argue by induction on k, with k = 0 given by Proposition 11. Assume k ≥ 1,
and let d be a diagram with k dots.

If d contains loops, work with one loop at a time to:

(i) slide all the dots on the loop so they are all to the left;
(ii) slide any dots on other strings away from the loop, so that no dots are in the

interior of the loop.

This is accomplished using (R4) and Lemma 5. At each step, we get a linear combination
of one diagram with the same number of dots, which are now in a better position, i.e.
further away from the interior of a loop or more to the left on a loop, and diagrams with
fewer dots. Applying the induction assumption to diagrams with fewer dots, it is enough
to prove the claim for the diagram with all the dots on loops moved all the way to the
left, and no dots in the interior of loops. For such a diagram, any loop can be moved
away from the other strings, so by Lemma 8 that diagram is equal to zero. This proves
the claim for dotted diagrams with loops.

Next, assume that d has no loops. Working with one string at a time,

(i) slide all the dots on through strings to the bottom.
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(ii) slide the dots on cups and caps all the way to the left.

Again, this is done using (R4) and Lemma 5. At the end of this process, we have replaced
d by a linear combination of a diagram d′ with k dots (which are all the way on the
bottom of through strings, and on the left of cups and caps), plus diagrams with fewer
dots. Apply the induction assumption to diagrams with fewer dots; it remains to prove

the claim for d′. The position of dots on d′ means that it is of the form ∏i y
ai
i d
′′∏j y

bj
j

for some ai, bj ∈ N0 and some undotted diagram d′′ ∈ sBr . Applying Proposition 11 to d′′

completes the proof. �

2.3. A flipping functor ι ∶ s⩔ → s⩔op. We describe a functor between the supercate-
gory s⩔ and its opposite, which on the level of diagrams corresponds to an upside-down
flip, with some additional signs.

Proposition 13. There is an isomorphism of supercategories ι ∶ s⩔ → s⩔op, given on
objects by the identity and on morphisms by:

ι(si) = −si, ι(bi) = b∗i , ι(b∗i ) = −bi, ι(yi) = −yi.
The inverse functor is given by ι3. It restricts to an anti-isomorphism on each Ends⩔(a),
a ∈ N (sending si , ei, yi to minus themelves in the notation from Section 5.1).

Proof. To see that ι respects the defining relations of s⩔, we note that (R1) and the
first part of (R4) are invariant under the diagrams upside-down, the flips of (R3) and the
second part of (R4) are a consequence of Lemmas 4 and 5, and the first diagram of (R2)
turns into the second after the flip, with the sign changes being consistent as well. �

3. The periplectic Lie superalgebra p(n)
We recall some facts from the representation theory of the Lie superalgebra p(n). For

more details on Lie superalgebras see for instance [31], [39], and for p(n) see also [3].

3.1. Definition and bases. From now on, let V = Cn∣n be the superspace of superdimen-
sion n∣n, meaning V = V0⊕V1 with V0 = C

n, V1 = C
n. Let v1, . . . , vn be the standard basis of

V0 and v1′ , . . . , vn′ be the standard basis of V1. We let [n] ∶= {1, . . . , n}, [n′] ∶= {1′, . . . , n′}
denote the sets of indices.

The general linear Lie superalgebra gl(n∣n) is the Lie superalgebra of endomorphisms
of V , with Z/2Z−grading induced by V , and the Lie superbracket given by the super
commutator [x, y] = xy − (−1)xyyx. In terms of matrices,

gl(n∣n) = {(A B

C D
) ∣ A,B,C,D ∈Mn,n(C)} ,

with

gl(n∣n)0 = {(A 0
0 D

)} = gl(n)⊕ gl(n) and gl(n∣n)1 = {(0 B

C 0
)} .
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We call V the vector representation of gl(n∣n). A basis of gl(n∣n) is given by the matrix
units Ers for r, s ∈ [n] ∪ [n′], which act on V as Ersvt = δstvr for t ∈ [n] ∪ [n′].

Let β ∶ V ⊗ V → C be the bilinear form given by

β∣V
0
⊗V

0
= β∣V

1
⊗V

1
= 0 and β(vi, vj′) = β(vj′ , vi) = δi,j for all i, j ∈ [n].

It is symmetric, odd, and non-degenerate on V . André Weil named such forms periplectic
by analogy with symplectic forms. The corresponding periplectic Lie superalgebra p(n) is
then defined as the Lie supersubalgebra of gl(n∣n) preserving β, i.e. it is spanned by all
homogeneous elements x which satisfy β(xu, v)+(−1)x̄ūβ(u,xv) = 0. In terms of matrices,

p(n) = {(A B

C −At) ∈ gl(n∣n) ∣ B = Bt,C = −Ct} ,
with

p(n)0 = {(A 0
0 −At)} , p(n)1 = {(0 B

C 0
)} .

Lemma 14. The set X = {A−ij ∣ i, j ∈ [n]} ∪ {B+ij ∣ i ≤ j ∈ [n]} ∪ {C−ij ∣ i < j ∈ [n]} is a basis

for p(n), where A±ij = Eij±Ej′i′ , B±ij = Eij′ ±Eji′ , C±ij = Ei′j ±Ej′i, and A±ij = 0, B
±
ij = C

±
ij = 1.

The universal enveloping superalgebra of a Lie superalgebra g is the quotient of the
tensor algebra T (g) by the ideal generated by elements of the form x⊗y−(−1)xyy⊗x−[x, y]
for all homogeneous x, y ∈ g. Letting

g = p(n), g−1 = {(0 0
C 0

) ∈ p(n)} , g0 = {(A 0
0 −At) ∈ p(n)} , g1 = {(0 B

0 0
) ∈ p(n)} ,

the PBW-Theorem for p(n) theorem states that multiplication gives an isomorphism of
vector superspaces

Λ(g1)⊗ S(g0)⊗Λ(g−1)→ U(p(n)).
There is a supertrace form on gl(n∣n), given by

⟨x, y⟩ = str(xy), with str((A B

C D
)) = tr(A) − tr(D). (3.1)

It is bilinear, invariant in the sense ⟨[x, y], z⟩ = ⟨x, [y, z]⟩ for all x, y, z ∈ gl(n∣n), and
nongdegenerate. The subalgebra p(n) is isotropic with respect to this form; however, one
can consider the dual space p(n)⊥ of p(n) in gl(n∣n) with respect to this form, which
satisfies gl(n∣n) = p(n)⊕ p(n)⊥. The basis X of p(n) gives rise to a dual basis X ∗ = {x∗ ∣
x ∈ X } for p(n)⊥, in the sense that ⟨x∗, y⟩ = δxy ∀ y ∈ X . It is explicitly given as

(A−ij)∗ = 1

2
A+ji, (B+ij)∗ = −12C+ji, (B+ii)∗ = −

1

4
C+ii, and (C−ij)∗ = 12B−ji.



14 THE AFFINE VW SUPERCATEGORY

3.2. The category p(n) −mod. We consider the monoidal supercategory p(n) −mod
of representations of p(n) with the set Homp(n)(M,N) of morphisms from M to N

given by linear combinations of homogeneous C-linear maps f from M to N such that
f(x.m) = (−1)xfx.f(m) for homogeneous elements m ∈ M , x ∈ p(n). We in particular
allow morphisms to be odd (i.e. they change the parity of elements they are applied to).

This supercategory is symmetric, with the braiding given by the superswap

σ ∶M ⊗N →N ⊗M, σ(m⊗ n) = (−1)mnn⊗m.

We call V the vector representation of p(n). The form β induces an (odd) identification
of V → V ∗ as p(n)-representations, given by v ↦ β(v,−). Similarly, the bilinear form(β ⊗ β) ○ (1 ⊗ σ ⊗ 1) ∶ V ⊗4 → C induces an identification (V ⊗ V )∗ → V ⊗ V . With that,
the dual map to the form β can be thought of as β∗ ∶ C→ V ⊗ V ; it is given by

β∗(1) =∑
i

(vi ⊗ vi′ − vi′ ⊗ vi).
Lemma 15. The following are maps of Lie superalgebra modules of degrees 1, 1, and 0:

β ∈ Homp(n)(V ⊗ V,C), β∗ ∈ Homp(n)(C, V ⊗ V ), σ ∈ Homp(n)(V ⊗ V,V ⊗ V ).
3.3. A (fake) quadratic Casimir element. Because of the absence of the Killing form
on p(n), there is no Casimir element in U(p(n)), nor a quadratic Casimir in p(n)⊗ p(n).
(In fact, the centre of U(p(n)) is trivial.) We can however use the supertrace form on
gl(n∣n) to define a fake Casimir in p(n)⊗ gl(n∣n) as follows (see also [3]). Let

Ω = 2∑
x∈X

x⊗ x∗ ∈ p(n)⊗ gl(n∣n);
explicitly,

Ω =∑
i,j

A−ij ⊗A
+
ji −

1

2
∑
i

B+ii ⊗C
+
ii −∑

i<j

B+ij ⊗C
+
ji +∑

i<j

C−ij ⊗B
−
ji. (3.2)

This element does not act on an arbitrary tensor productM⊗N of p(n)-representations,
but acts on M ⊗ V , for M any p(n)-representation, and V the above described vector
representation. Its action gives a morphism in p(n) −mod by the following proposition,
first observed in [3, Lemma 4.1.4].

Proposition 16. The actions of Ω and p(n) onM⊗V commute, i.e. Ω ∈ Endp(n)(M⊗V ).
Proof. The Lie superalgebra p(n) acts on M ⊗ V via the coproduct ∆ of U(p(n)), given
by ∆(y) = y ⊗ 1 + 1⊗ y. For any homogeneous element y ∈ p(n) ⊂ gl(n∣n), we have

[y ⊗ 1 + 1⊗ y, xi ⊗ x
∗
i ] = [y, xi]⊗ x∗i + (−1)ȳx̄ixi ⊗ [y, x∗i ].

Furthermore, by expanding in the basis {xi}i ∪ {x∗i }i of gl(n∣n), we can see that

[y, xi] =∑
j

⟨x∗j , [y, xi]⟩xj , and [y, x∗i ] =∑
j

⟨[y, x∗i ], xj⟩x∗j ,
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Therefore, using the invariance of the supertrace form (3.1),

[∆(y),Ω] = [y ⊗ 1 + 1⊗ y,∑
i

xi ⊗ x
∗
i ] =∑

i

[y, xi]⊗ x∗i +∑
i

(−1)ȳx̄ixi ⊗ [y, x∗i ]
=∑

i,j

⟨x∗j , [y, xi]⟩(xj ⊗ x∗i ) +∑
i,j

(−1)ȳx̄i⟨[y, x∗i ], xj⟩(xi ⊗ x∗j )
=∑

i,j

⟨x∗j , [y, xi]⟩(xj ⊗ x∗i ) −∑
i,j

⟨[x∗i , y], xj⟩(xi ⊗ x∗j )
=∑

i,j

⟨x∗j , [y, xi]⟩(xj ⊗ x∗i ) −∑
i,j

⟨x∗i , [y, xj]⟩(xi ⊗ x∗j ) = 0. �

Remark 17. Note that Ω is even, Ω = 0, since from (3.2) we see that

Ω ∈ (gl(n∣n)1̄ ⊗ gl(n∣n)1̄)⊕ (gl(n∣n)0̄ ⊗ gl(n∣n)0̄) ⊂ (gl(n∣n)⊗ gl(n∣n))0̄.
We consider the special case when M = V , and calculate the action of Ω in that case.

Lemma 18. The action of Ω on V ⊗ V is explicitly given by σ + β∗β.

Proof. This is an explicit calculation in the basis {va ⊗ vb ∣ a, b ∈ [n] ∪ [n′]} of V ⊗ V . We
include the computation for the case a, b ∈ [n]. The remaining three cases follow similarly.

Let a, b ∈ [n]. Then
(A−ij ⊗A+ji)(va ⊗ vb) = A−ijva ⊗A+jivb = δajvi ⊗ δbivj = δajδbi(vb ⊗ va),
(B+ij ⊗C+ji)(va ⊗ vb) = B+ijva ⊗C+jivb = 0, and
(C−ij ⊗B−ji)(va ⊗ vb) = C−ijva ⊗B−jivb = 0,

and therefore Ω(va ⊗ vb) =∑i,j δajδbivb ⊗ va + 0 + 0 + 0 = vb ⊗ va = (σ + β∗β)(va ⊗ vb). �

3.4. Jucys-Murphy type elements. Once we have the above fake Casimir operator,
we can define certain commuting elements of Endp(n)(M ⊗ V ⊗a). They are intended to
mimic the action of the polynomial generators of the degenerate affine Hecke algebra in
case of gl(n).

Label the tensor factors ofM⊗V ⊗a by 0,1, . . . , a, and let Ωij denote the operator acting
as Ω applied to the ith and jth factor and the identity everywhere else. For 1 ≤ j ≤ a, let

Yj =
j−1∑
i=0

Ωij ∈ Endp(n)(M ⊗ V ⊗a),
(see [3, Section 4.1]) The following result is then standard.

Proposition 19. The operators Y1, Y2, . . . , Ya pairwise commute.

Proof. Now Ω commutes with the coproduct ∆(y), y ∈ p(n), so Ω⊗1 = Y1 commutes with

(∆⊗ 1)Ω = ∑
x∈X

∆(x)⊗ x∗ = ∑
x∈X

(x ⊗ 1⊗ x∗ + 1⊗ x⊗ x∗) = Y2.
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As operators on M ⊗V ⊗V , this says that Y1 commutes with Y2. Using ∆j to denote the
iterated coproduct p(n)→ p(n)⊗j , by induction we get that

Yj = (∆j
⊗ 1)Ω commutes with Yk =

k−1∑
i=0

Ωi,k for k < j,

since ∆j(x) for x ∈ X commutes with Ωi,k for i, k < j. �

Remark 20. There is a quotient map s⩔→ sBr , determined by y1 → 0, bi ↦ bi, b∗i ↦ b∗i ,
si ↦ si. Under this quotient map,

yj ↦ j−1∑
i=1

⎛⎜⎝ +
⎞⎟⎠
ij

.

These commuting elements of sBra are the analogues of Jucys-Murphy elements for the
symmetric group or the Brauer algebra, see [10] and [32, Section 2]. As elements of
the superalgebra sBra, they were independently defined in [14, Section 6], and their
eigenvalues are then used, following the approach of [33], to study the representation
theory of sBra and consequently p(n). In terms of the action on M ⊗ V ⊗a, taking the
cyclotomic quotient determined by y1 ↦ 0 corresponds to taking M to be the trivial
module (see Lemma 18). This recovers the action of sBr on V ⊗a from [30].

Remark 21. We have the following relation in Homp(n)(M ⊗ V ⊗a), for any 1 ≤ j < a,
which can be checked directly:

Ωi,j+1 = σj Ωij σj for i < j.

3.5. The functor ΨM
n . The diagrammatically described supercategory s⩔ can be re-

lated to p(n) −mod and used to study the representation theory of the periplectic Lie
superalgebra.

Analogous to the notation Ωji, we will denote by σi, βi and β∗i the operators acting as
σ,β and β∗ in the ith and (i + 1)st positions of a tensor product M ⊗ V ⊗a, and identity
elsewhere. Here, M is considered as the 0th factor.

Proposition 22. For anyM ∈ p(n)−mod, there is a superfunctor ΨM
n ∶ s⩔Ð→ p(n)−mod

defined on objects by a↦M ⊗ V ⊗a and on morphisms by

si ↦ σi, bi ↦ βi, b∗i ↦ β∗i , yi ↦ Yi = ∑
0≤j<i

Ωji.

Proof of Proposition 22. From Lemma 15 and Proposition 16, we know that β,β∗, σ, and
Ω are morphisms in p(n)−mod, hence so are the images of si, bi, b∗i , yi under Ψ

M
n . Further-

more, ΨM
n preserves parity, since si = σi = 0, bi = βi = b∗i = β

∗
i = 1, and yi = ∑0≤j<iΩji = 0,

see Remark 17. It remains to check that the images of the generating morphisms satisfy
the defining relations of s⩔. In the calculations we suppress the 0-th tensor factor M .

(R1) (a) σ2
i = 1. This follows from σ2(v ⊗w) = (−1)vwσ(w ⊗ v) = (−1)2vwv ⊗w = v ⊗w.
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(b) σiσi+1σi = σi+1σiσi+1. It is enough to prove this for i = 1, a = 3:

(σ1σ2σ1)(u⊗ v ⊗w) = (−1)uv(σ1σ2)(v ⊗ u⊗w) = (−1)uv+uwσ1(v ⊗w ⊗ u)
= (−1)uv+uw+vww ⊗ v ⊗ u = (σ2σ1σ2)(u⊗ v ⊗w).

(R2) (a) βiβ∗i+1 = −1. It is enough to prove this for i = 1:

β1β
∗
2 (v) = (−1)vβ1(v ⊗ β∗(1)) = (−1)vβ1 (v ⊗ ( n∑

i=1

vi ⊗ vi′ − vi′ ⊗ vi))
= (−1)v n∑

i=1

(β(v, vi)vi′ − β(v, vi′)vi) = −v.
The last equality is easily checked on every v = vj , j ∈ [n] ∪ [n′].

(b) βi+1β∗i = 1. Similar.
(R3) (a) σi+1β∗i = σiβ

∗
i+1. It is enough to prove this for i = 1:

σ2β
∗
1 (v) = σ2 ( n∑

i=1

(vi ⊗ vi′ − vi′ ⊗ vi)⊗ v) = n∑
i=1

((−1)vvi ⊗ v ⊗ vi′ − vi′ ⊗ v ⊗ vi),
σ1β

∗
2 (v) = n∑

i=1

((−1)vvi ⊗ v ⊗ vi′ − (−1)v+vvi′ ⊗ v ⊗ vi).
(b) σiβ∗i = −β

∗
i . This follows from the fact that β∗(1) is skew supersymmetric.

Note that this, together with the previous relations, also implies that βiσi = βi
and β∗i βi = 0, which will be used in proving (R4)(b).

(R4) (a) Yi+1 = σiYiσi + σi + β∗i βi. This formula follows via the following computation,
using Remarks 20 and 21, and Lemma 18

Yi+1 = ∑
0≤k<i+1

Ωk,i+1 = ∑
0≤k<i

Ωk,i+1 +Ωi,i+1 = ∑
0≤k<i

σiΩk,iσi +Ωi,i+1

= σi ( ∑
0≤k<i

Ωk,i)σi + σi + β∗i βi = σiYiσi + σi + β∗i βi
(b) β1(Y1−Y2) = −β1. We have β○(x∗⊗1−1⊗x∗) = 0 for any x∗ ∈ p(n)⊥, which can

be checked directly on a basis of V ⊗V , and hence β1○(Ω01−Ω02) = 0. It follows
that β1(Ω01 −Ω02 −Ω12) = −β1Ω12 = −β1(σ1 + β∗1β1) = −β1σ1 + 0 = −β1. �

4. Linear independence of S●a,b

The purpose of this section is to prove linear independence of the sets Sa,b and S●a,b, and
thus prove Theorems 1 and 2. The idea is to exploit a close connection of s⩔ and the repre-
sentation theory of the periplectic Lie superalgebra p(n). Namely, as explained in Propo-
sition 22, for every n and every p(n)-representationM , the functor ΨM

n ∶ s⩔→ p(n)−mod
gives a way of interpreting diagrams d ∈ Homs⩔(a, b) as linear p(n)-homomorphisms
ΨM

n (d) ∶M ⊗V ⊗a →M ⊗V ⊗b. For given a, b, and k in N0, we will pick n and an appropri-
ate M ∈ p(n) −mod so that the corresponding functor Ψn = ΨM

n ∶ s⩔→ p(n) −mod maps
S≤ka,b to a linearly independent set in Homp(n)(M ⊗ V ⊗a,M ⊗ V ⊗b).
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The argument for linear independence is slightly easier in the associated graded setting.
For that purpose, we define an auxillary category gs⩔ and auxilary functors Φn, which will
turn out to be the associated graded of s⩔ and Ψn. This is analogous to the structure of
the main proof in [5], where a close connection between the affine oriented Brauer category
and W-algebras is exploited to construct certain functors, which are then used to prove
linear independence. We start with some preliminaries about filtrations and gradings.

4.1. Graded and filtered supercategories. An N0-filtered superspace is a superspace
U with a filtration by subspaces {0} = U≤−1 ⊆ U≤0 ⊆ U≤1 ⊆ ⋯ ⊆ U , and U = ⋃k≥0U

≤k. A su-
percategory C such that for everyM,N ∈ C, HomC(M,N) has a fixed filtration compatible
with composition of morphisms, HomC(M,N)≤k ×HomC(N,P )≤ℓ → HomC(M,P )≤(k+ℓ) is
a supercategory C enriched in the category of filtered superspaces (that is in the category
whose objects are filtered superspaces and morphisms are homogeneous linear maps of
degree zero). We call such a supercategory a filtered supercategory. A graded supercate-
gory is a supercategory enriched in graded superspaces; this means its morphism spaces
are graded superspaces, and composition is a homogeneous linear map of degree zero.

We say a functor F ∶ C → D between two filtered (respectively, graded) supercategoriesC and D is filtered (respectively, graded) if it preserves the filtration (respectively, grading)
on the morphism spaces.

Now assume we have a filtered supercategory C. Its associated graded supercategory
grC is the graded supercategory with the same objects as C, and morphism spaces the
graded superspaces HomgrC(M,N) = gr(HomC(M,N)) = ⊕k≥0HomgrC(M,N)k , where
HomgrC(M,N)k = HomC(M,N)≤k/HomC(M,N)≤(k−1).

A filtered functor F ∶ C → D between two filtered supercategories induces a graded
functor gr(F ) ∶ grC → grD. The functor gr(F ) is equal to F on objects, and takes the
associated graded map of F on the morphism superspaces.

4.2. The supercategories C−fmod and C−gmod, and the functor G. Let
C−fmod be the supercategory with objects N0-filtered superspaces, and morphisms
given by the filtered superspaces HomC−fmod(M,N) = ⋃k∈N0

HomC−fmod(M,N)≤k, where
HomC−fmod(M,N)≤k = {f ∶ M → N ∣ f linear, f(M≤i) ⊆ N≤(i+k) for all i}. This is an
N0-filtered supercategory as above.

Similarly, let C−gmod denote the supercategory whose objects are N0-graded super-
spaces, and whose morphisms are superspaces of linear maps equipped with the grading
coming from the objects, that is HomC−gmod(M,N) = ⊕k∈N0

HomC−gmod(M,N)k, where
HomC−gmod(M,N)k = {f ∶M → N ∣ f linear, f(M i) ⊆ N (i+k) for all i}. It is an N0-graded
supercategory in the above sense.

In particular, we can consider the associated graded category gr(C−fmod) described
above. (Note that gr(C−fmod) and C−gmod are not the same categories; objects of
gr(C−fmod) are filtered while objects of C−gmod are graded vector superspaces.)
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There is a functor G ∶ gr(C−fmod)→ C−gmod which associates to a filtered superspace
M = ⋃iM

≤i its associated graded superspace G(M) = gr(M) =⊕iM
≤i/M≤(i−1). On mor-

phisms G ∶ HomC−fmod(M,N)≤k/HomC−fmod(M,N)≤(k−1) → HomC−gmod(gr(M), gr(N))k
is given on f ∈ HomC−fmod(M,N)≤k and m ∈M≤i by

G(f +HomC−fmod(M,N)≤(k−1))(m +M≤(i−1)) = f(m) +N≤(k+i−1).
4.3. s⩔ as a filtered supercategory. The affine VW supercategory s⩔ can be viewed
as a filtered supercategory, with the filtration on the morphism spaces given by the num-
ber of dots. Let gr(s⩔) be its associated graded supercategory, defined as above. In
particular, the following relations hold in gr(s⩔):

= ∈ Homgr(s⩔)(2,2)1 = Homs⩔(2,2)≤1/Homs⩔(2,2)≤0,

= ∈ Homgr(s⩔)(2,0)1 = Homs⩔(2,0)≤1/Homs⩔(2,0)≤0.
(grR-4)

It is however not a priori obvious that these, along with (R1)-(R3), are the only defining
relations for gr(s⩔). In general, given a filtered algebra or a category, describing its
associated graded by generators and relations is a nontrivial problem, and the solution to
this problem usually goes most of the way towards proving a basis theorem for the filtered
version (as basis theorems for graded versions are usually easier). With that in mind, we
define another category gs⩔ by generators and relations, and prove in Section 4.10 that
gr(s⩔) and gs⩔ are indeed isomorphic as graded supercategories.

4.4. The category gs⩔. Let gs⩔ be the C-linear monoidal supercategory generated as

a monoidal supercategory by a single object ★, morphisms s = ∶ ★ ⊗ ★ Ð→ ★ ⊗ ★,
b = ∶ ★ ⊗ ★ Ð→ 1, b∗ = ∶ 1 Ð→ ★ ⊗ ★ and y = ∶ ★ Ð→ ★, subject to relations

(R1)–(R3) and (grR-4). The Z/2Z parity is given by s = y = 0, b = b∗ = 1. The N0-grading
is given by deg s = deg b = deg b∗ = 0,deg y = 1. Note that the imposed relations are N0-
homogeneous and so the category is well-defined. In other words, the objects of gs⩔ are
nonnegative integers, the morphisms are linear combinations of dotted diagrams, and the
N0-grading is given by the number of dots on the diagram.

The following is analogous to Proposition 12, and proved in exactly the same way.

Lemma 23. For any a, b, k ∈ N0, the set Sk
a,b is a spanning set for Homgs⩔(a, b)k .

4.5. The functor Θ ∶ gs⩔ → gr(s⩔). The tautological assignments Θ(⋆) = ⋆, Θ(s) = s,
Θ(b) = b, Θ(b∗) = b∗, Θ(y) = y define a graded monoidal superfunctor Θ ∶ gs⩔ → gr(s⩔).
It is bijective on objects, and full, i.e. surjective on morphisms.
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4.6. The Verma module M(0) and the functor Ψn. For n ∈ N, let n+ denote the
Lie subalgebra of strictly upper triangular matrices, and b the Lie subalgebra of lower
triangular matrices in gl(n). They can be considered as subalgebras of gl(n) = g0 ⊆ p(n)
via the inclusion Eij ↦ A−ij . Consider C as the trivial representation of b ⊕ g−1 ⊆ p(n)
by letting A−ij with i ≥ j and C−ij with i < j act on it by 0. Consider the p(n)-module

M(0) = Indp(n)
b⊕g−1

C, the Verma module of highest weight 0. Using the PBW theorem we

can see that, as a vector superspace, this is U(p(n))⊗U(b⊕g−1) C ≅ Λ(g1)⊗ S(n+).
Consider the filtration onM(0) coming from the PBW theorem, i.e. given by deg(B+ij) =

deg(A−ij) = 1. In particular, M(0) ⊗ V ⊗a inherits a filtration (by putting V in degree 0).
In this way, M(0)⊗ V ⊗a can be considered, for any a ∈ N0, as an object in C−fmod.

Lemma 24. The superfunctor Ψ
M(0)
n ∶ s⩔→ p(n)−mod induces (by forgetting the action

of p(n) on the image of Ψ
M(0)
n ) a filtered superfunctor Ψn ∶ s⩔→ C−fmod.

Proof. The generators si, bi, b∗i of s⩔ have filtered degree 0, and map under the functor
Ψn to σi, βi, β∗i which only act on the i-th and (i + 1)-st tensor factors of M(0) ⊗ V ⊗a,
1 ≤ i ≤ a−1, thus do not change the filtered degree defined on the 0-th tensor factorM(0).

The generator yk has filtered degree 1 in s⩔, and its image under Ψn is the operator

Ψn(yk) = k−1∑
i=0

Ωik.

For i = 1, . . . , k − 1 the operator Ωik does not change the filtered degree. For i = 0, the
operator Ω0k acts on M(0)⊗ V ⊗a as

Ω0k = (∑
i,j

A−ij ⊗A
+
ji −

1

2
∑
i

B+ii ⊗C
+
ii −∑

i<j

B+ij ⊗C
+
ji +∑

i<j

C−ij ⊗B
−
ji)

0k

.

The summands with C−ij, i < j and A
−
ij , i ≥ j in the 0-th tensor factor preserve the filtered

degree. The summands with B+ij , i ≤ j, and A
−
ij , i < j in the 0-th tensor factor increase

the filtered degree by 1. Thus, Ψn(yk) acts by increasing the filtered degree by 1. �

4.7. The functor Φn. Next, we define a certain graded superfunctor, which will eventu-
ally turn out to be gr(Ψn).

Consider again the vector space Λ(g1) ⊗ S(n+), now as a graded superspace with the
grading given by deg(B+ij) = deg(A−ij) = 1. This gives a grading on (Λ(g1)⊗ S(n+))⊗V ⊗a.

Define a functor Φn ∶ gs⩔ → C−gmod on objects by Φn(a) = (Λ(g1)⊗ S(n+)) ⊗ V ⊗a.
In the image, we again label Λ(g1)⊗ S(n+) as the 0-th tensor factor, and V ⊗ . . . ⊗ V as
factors 1,2, . . . , a. With this convention, set Φn(si) = σi, Φn(bi) = βi, Φn(b∗i ) = β∗i , and let

Φn(yk) = (∑
i<j

A−ij ⊗A
+
ji −

1

2
∑
i

B+ii ⊗C
+
ii −∑

i<j

B+ij ⊗C
+
ji)

0k

,

with the action of A−ij ∈ n+ and of B+ij ∈ g1 on Λ(g1)⊗ S(n+) given by multiplication.

Lemma 25. Φn ∶ gs⩔→ C−gmod is a well-defined graded superfunctor.
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Proof. This is a direct calculation analogous to Proposition 22 and Lemma 24. �

Lemma 26. With our fixed n ∈ N, the following square strictly commutes:

gs⩔
=Θ

��

Φn
// C−gmod

gr(s⩔) grΨn
// gr(C−fmod)

G

OO

That is, G ○ grΨn ○Θ = Φn on all objects and morphisms.

Proof. It clearly strictly commutes on objects, and on the generating morphisms si, bi, b∗i
of degree 0, so it only remains to check it on yk of filtered degree 1. This follows from the
proof of Lemma 24 and from the definition of Φn. �

Define a total ordering → on the set [n]∪ [n′] by saying that i→ j if there is a path (of
length at least one) from i to j in the graph

1→ 2→ . . . → n→ n′ → (n − 1)′ → . . . → 2′ → 1′. (4.1)

With this we have the following technical tool:

Lemma 27. Let 0 /=m ∈M(0), i1, . . . , ia ∈ [n] ∪ [n′], and 1 ≤ k ≤ a be arbitrary. Then

Φn(yk)(m ⊗ vi1 ⊗ vi2 ⊗ . . . ⊗ via) = ∑
ik→j

mj ⊗ vi1 ⊗ . . . ⊗ vik−1 ⊗ vj ⊗ vik+1 ⊗ . . . ⊗ via

for some mj ∈M(0). Additionally, if ik ∈ [n − 1], then mik+1 = A
−
ik,ik+1

m ≠ 0.

Proof. First note that by definition, Φn(yk)(m⊗ vi1 ⊗ vi2 ⊗ . . . ⊗ via) equals
(∑
i<j

A−ij ⊗A
+
ji −

1

2
∑
i

B+ii ⊗C
+
ii −∑

i<j

B+ij ⊗C
+
ji)

0k

(m⊗ vi1 ⊗ vi2 ⊗ . . .⊗ via) =
=∑

i<j

A−ijm⊗ vi1 ⊗ . . . ⊗A
+
jivik ⊗ . . . ⊗ via −

1

2
∑
i

B+iim⊗ vi1 ⊗ . . .⊗C
+
iivik ⊗ . . . ⊗ via−

−∑
i<j

B+ijm⊗ vi1 ⊗ . . . ⊗C
+
jivik ⊗ . . .⊗ via .

Thus, all summands are of the form mj ⊗ vi1 ⊗ . . .⊗ vj ⊗ . . .⊗ via for mj ∈M(0).
To determine the occuring vj , recall that A+ji = Eji + Ei′j′ and C+ji = Ej′i + Ei′j, and

therefore we have

A+jivl = δilvj , A+jivl′ = δjlvi′ , for i < j and C+jivl = δilvj′ + δjlvi′ , C+ijvl′ = 0. (4.2)

In either case, vj is (possibly a constant multiple of) another standard basis vector, whose
index appears strictly to the right of ik in (4.1), thus proving the first claim. For the
second, it follows from (4.2) that the only summand transforming vik to vik+1 acts by
A+ik+1,ik on the k-th tensor factor, and thus acts by A−ik,ik+1 in the 0-th tensor factor,
replacing m by A−ik,ik+1m. �
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4.8. The key construction. The following construction, associating two vectors vd and
wd to a diagram d ∈ Homs⩔(a, b), is key to the proof of Theorem 2 in Section 4.10.
In the special case when d has no dots and has the same number of cups and caps
(i.e. d ∈ Homs⩔(a, a)0), it specializes to a certain construction from [30, Section 4]; see
Section 4.11 for details.

Given a diagram d ∈ Homs⩔(a, b)k and n ≥ a+b
2 + k, define vd ∈ V

⊗a and wd ∈ V ⊗b by the
following algorithm.

STEP 0. Put an ordering on the strings in d so that caps come first, ordered left to right
with respect to their left end; then through strings, ordered left to right with
respect to their bottom end; then cups, ordered right to left with respect to their
right end. (See for instance (4.3), where the strings are ordered using the set{ 1○, 2○, 3○, 4○, 5○, 6○, 7○} with the usual ordering.)

STEP 1. Starting with the smallest cap label, and repeating along the order, label its left
end by the minimal i ∈ [n] which is bigger than all the labels already assigned. If
the cap has ℓ dots, label its right end by i + ℓ.

STEP 2. Continue with the through strings in the assigned order, and for each, label its
bottom end by the minimal i ∈ [n] which is bigger than all the labels already
assigned. If the through string has ℓ dots, label its top end by i + ℓ.

STEP 3. For each cup in order, label its right end by the minimal element i of the set [n]
which is bigger than all the labels already assigned. If the cup has ℓ dots, label its
left end by i + ℓ.

STEP 4. For each cup and cap, change the right end label from i to i′.
STEP 5. Now we have assigned to the bottom of the diagram labels i1, i2, . . . , ia and to the

top j1, j2, . . . , jb for some i1, . . . , ia, j1, . . . , jb ∈ [n] ∪ [n′]. Set
vd = vi1 ⊗ vi2 ⊗ . . . ⊗ via ∈ V

⊗a, and wd = vj1 ⊗ vj2 ⊗ . . .⊗ vjb ∈ V
⊗b.

Example 28. For instance, for d = y21s2s6β
∗
3β
∗
1s3s2β1s2y

2
1y2y

2
4y6 ∈ Homs⩔(6,8)8,

d =

1
1○

3’4
2○

5

6
3○

8

9
4○

9

10
5○

1112’12

6○
13’15

7○

(4.3)

we get v = v1⊗v4⊗v3′⊗v6⊗v9⊗v10 ∈ V ⊗6, and wd = v15⊗v12⊗v13′⊗v12′⊗v5⊗v11⊗v9⊗v8 ∈ V ⊗8.
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Remark 29. The largest label is always a+b
2 + k. We require n ≥ a+b

2 + k in order to be
able to realize va+b

2
+k ∈ V = C

n∣n in STEP 5.

The ordering in STEP 0 could be changed, as long as all caps come first, then all
through strings, then all cups. This changes the vectors vd and wd, but preserves the
important features of the construction.

Observe also that if i′, j′ ∈ [n′] are labels with i′ at the bottom, j′ at the top, then i < j.

4.9. The key lemma. The proof of linear independence relies on the observation that
the vectors vd and wd can be used to distinguish diagrams in Sk

a,b.
Namely, the standard basis v1, . . . , vn, v1′ , . . . , vn′ of V induces a standard basis Bb of

V ⊗b. For any vector z ∈M(0)⊗ V ⊗b and any standard basis vector w ∈ Bb we denote by⟨w ∣ z⟩ ∈M(0) the coefficient of z in this standard basis. In other words,

z = ∑
w∈Bb

⟨w ∣ z⟩⊗w.
Lemma 30. Let a, b, k ∈ N0. For any d, d′ ∈ Sk

a,b
, we have ⟨wd ∣ Φn(d′)vd⟩ ≠ 0 iff d = d′.

Proof. ⇐ We repeatedly use the second part of Lemma 27.
Consider a cap with ℓ dots on it, and the edges labelled i and (i + ℓ)′. By Lemma 27,

applying the ℓ dots replaces vd by a linear combination of vectors which have the tensor
factor vi of vd replaced by some vj ’s with i → j, such that the path in (4.1) from i to j
has length at least ℓ. Exactly one such summand will give a non-zero contribution when
such a vj is paired with v(i+ℓ)′ via β; namely, the one with j = i + ℓ. Applying this dotted
cap transforms the 0-th tensor factor, say m, into the factor A−i,i+1A

−
i+1,i+2 . . . A

−
i+ℓ−1,i+ℓm.

Next, consider a through string with ℓ dots and labels i and i + ℓ. It prescribes the
order of some superswaps of tensor factors of vd. After applying the ℓ dots, vd is replaced
by a linear combination of vectors which have the tensor factor vi of vd replaced by some
vj with i → j, for which the path in (4.1) from i to j has length at least ℓ. Reading off
the coefficient of wd manifests itself in the tensor factor corresponding to this string to
reading off the coefficient of vi+ℓ. The only summand with a non-zero contribution is the
one with j = i + ℓ; in effect the 0-th tensor factor got acted on by A−i,i+1A

−
i+1,i+2 . . .A

−
i+ℓ−1,i+ℓ.

Finally, consider a cup with ℓ dots and labels i + ℓ and i′. The β∗ corresponding
to this cup produced ∑j(vj ⊗ vj′ − vj′ ⊗ vj); applying the ℓ dots on the left end of it
and reading off the coefficient of vi+ℓ ⊗ vi′ (as prescribed by ⟨wd ∣ ⋅ ⟩) gives exactly one
summand with a non-zero contribution. The effect on the 0-th tensor factor is action by
A−i,i+1A

−
i+1,i+2 . . . A

−
i+ℓ−1,i+ℓ. Thus, ⟨wd ∣ Φn(d′)vd⟩ is, up to a possible sign, equal to

∏
i (i+ℓ)’

A−i,i+1 . . . A
−
i+ℓ−1,i+ℓ ⋅ ∏

i

i+ℓ

A−i,i+1 . . .A
−
i+ℓ−1,i+ℓ ⋅ ∏

i+ℓ i’

A−i,i+1 . . . A
−
i+ℓ−1,i+ℓ ≠ 0,

where the factors are given by the shape and the assigned labels of d.⇒ Let d′ ∈ Sk
a,b be any diagram for which ⟨wd ∣ Φn(d′)vd⟩ ≠ 0. We first recover the

underlying connector P (d′) from the labelling of d.
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Consider any cap in d′. By Lemma 27 and the ordering →, the dots increase indices
i ∈ [n] or replace them by j′ ∈ [n′], and they decrease j′ ∈ [n′]. From that, and the facts⟨wd ∣ Φn(d′)vd⟩ ≠ 0 and β(vi, vj) = β(vi′ , vj′) = 0, β(vi, vj′) = δij, it follows that a cap in d′

can connect two points which are labelled in d by an (unordered) pair of the form {i, j}
or {i, j′} with i ≤ j.

Next, consider any cup in d′. Note that β∗(1) = ∑i(vi⊗vi′−vi′⊗vi), and that subsequent
application of dots increases i ∈ [n] or replaces it by j′ ∈ [n′], and decreases j′ ∈ [n′]. Hence⟨wd ∣ Φn(d′)vd⟩ ≠ 0 implies that a cup in d′ can only connect those pairs of points in d

labelled by {i′, j′}, or by {i, j′} with i ≥ j.
Finally, consider any through string in d′. The possibilities for its labels (bottom and

top) are then, by Lemma 27 and ⟨wd ∣ Φn(d′)vd⟩ ≠ 0, given by ordered pairs of the form(i, j′), or of the form (i, j) with i ≤ j, or of the form (i′, j′) with i ≥ j. However, the last
of these is not possible by Remark 29, so the remaining possibilities for the bottom and
top labels of a through string are (i, j′) and (i, j) with i ≤ j.

For any diagram d′′, let ∩(d′′) denote the number of caps of d′′; ∪(d′′) the number of
cups, and t(d′′) the number of through strings. By the above analysis, all labels i′ ∈ [n′]
on the bottom are on caps in d′, so

∩(d′) ≥# labels j′ ∈ [n′] at the bottom = ∩(d). (4.4)

As every cup in d′ has at least one label of type j′ ∈ [n′], we also see that

∪(d′) ≤ # labels j′ ∈ [n′] at the top = ∪(d). (4.5)

We get a sequence of inequalities

t(d′) = a − 2 ∩ (d′) (4.4)≤ a − 2 ∩ (d) = t(d) = b − 2 ∪ (d) (4.5)≤ b − 2 ∪ (d′) = t(d′).
This implies that (4.4) and (4.5) are equalities, and moreover

∩(d′) = ∩(d), ∪(d′) = ∪(d), t(d′) = t(d). (4.6)

So, d and d′ have the same number of cups, of caps and of through strings.
Next, we reconstruct the caps of d′. We saw in (4.4), (4.6) that any label j′ ∈ [n′] on

the bottom of the diagram d′ needs to be on a cap, and all caps have exactly one label of
type j′ ∈ [n′]. The other end of that cap is labelled by some i ∈ [n] with i ≤ j. Starting
from the smallest bottom label of type j′ ∈ [n′], there is exactly one label at the bottom
of type i ∈ [n] with i ≤ j, so these two labels must be joined by a cap in d′. To get the
non-vanishing of the action of the dots composed with β prescribed by this cap, this cap
needs by Lemma 27 to have at most j − i dots in d′. (It has exactly j − i dots in d).
Proceed with the next smallest label of type j′ ∈ [n′], noticing that there is exactly one
unpaired label i with i ≤ j, and pair them. After doing this for all j′ ∈ [n′] on the bottom,
we see that the connectors P (d′) and P (d) have the same pairing of the points given by
caps, and every cap in d′ has at most as many dots as the corresponding cap in d.

Next, we recover the cups. By (4.5) and (4.6), every label of type j′ ∈ [n′] needs to
be on an end of a cup, whereas the other end is labelled by some i ∈ [n] with j ≤ i, and
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which has at most i − j dots. By STEP 0 the cups come last, so there is exactly one
such pairing of points on the top. So, P (d′) and P (d) also have the same pairing of the
points given by cups, and every cup in d′ has at most as many dots as the corresponding
cup in d. Finally, all remaining unassigned labels are of type i ∈ [n], and there is exactly
one pairing such that the bottom label is smaller than the top label. So, the connectors
P (d′) and P (d) have the same pairing of the points given by through strings, and every
through string in d′ has at most as many dots as the corresponding through string in d.

Therefore, P (d) = P (d′). As the underlying undotted diagrams of d and d′ are both in
Sa,b, they are the same. Finally, as d′ has at most as many dots as d on every string, and
they have the same total number of dots, we conclude that d′ = d. �

Example 31. For the diagram d from Example 28,

⟨wd ∣ Φn(d)vd⟩ = A−12A−23A−45A−67A−78A−10,11A−13,14A−14,15 ∈ U(n−) =M(0).
4.10. Proof of Theorem 2. In this section we will finally prove the linearly independence
of S●a,b, thus proving Theorem 2. We start by proving it in the graded setting.

Lemma 32. Given a, b, k ∈ N0, and n ≥
a+b
2 + k, the map

Φn ∶ Homgs⩔(a, b)k Ð→ HomC−gmod(M(0)⊗ V ⊗a,M(0)⊗ V ⊗b)k
maps the set Sk

a,b to a linearly independent set. Thus, Sk
a,b is linearly independent in

Homgs⩔(a, b)k, and Φn is injective on Homgs⩔(a, b)k .
Proof. Assume there are some αd′ ∈ C such that ∑d′∈Sk

a,b
αd′Φn(d′) = 0. For any d ∈ Sk

a,b
,

applying both sides of the above equation to the vector vd, reading off the coefficient of
wd, and applying Lemma 30, we get αd = 0.

So, the set {Φn(d) ∣ d ∈ Sk
a,b} is linearly independent. From that it follows that Sk

a,b

is linearly independent in Homgs⩔(a, b)k. It is also a spanning set for Homgs⩔(a, b)k by
Lemma 25, so Φn is injective on Homgs⩔(a, b)k. �

Corollary 33. For all a, b ∈ N0, the set S●a,b is a basis of Homgs⩔(a, b).
Lemma 34. For all a, b ∈ N0, the set S●a,b is linearly independent in Homs⩔(a, b).
Proof. Assume there is a nontrivial relation among elements of S●a,b in Homs⩔(a, b). As
this is a filtered category, the highest order terms (of degree k) in this relation give a
nontrivial relation among the elements of Sk

a,b in Homgr(s⩔)(a, b). Thus, it is enough to

prove that the set Sk
a,b is linearly independent in Homgr(s⩔)(a, b) for each k.

Set n = a+b
2 + k and consider the square

Homgs⩔(a, b)k
Θ

����

�

� Φn
// HomC−gmod(M(0)⊗ V ⊗a,M(0)⊗ V ⊗b)k

Homgr(s⩔)(a, b)k grΨn
// Homgr(C−fmod)(M(0)⊗ V ⊗a,M(0)⊗ V ⊗b)k

G

OO
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The map Φn is injective by Lemma 32, and the diagram strictly commutes by Lemma 26.
Thus, Θ is injective. It is surjective by Section 4.5, so it is an isomorphism of superspaces.

In particular, Θ maps the basis Sk
a,b of Homgs⩔(a, b)k to a basis in Homgr(s⩔)(a, b)k

which by construction is Sk
a,b. �

Corollary 35. Θ ∶ gs⩔→ gr(s⩔) is a graded isomorphism.

Corollary 36. For any a, b, k, and n ≥ a+b
2 + k, the map Ψn is injective on Homs⩔(a, b)≤k.

Theorem 2 now follows directly from Proposition 12 and Lemma 34.

4.11. A basis theorem for sBr as a special case. Theorem 1 now follows immediately
by realizing the supercategory sBr as the 0-th filtration piece of the supercategory s⩔.
Proof of Theorem 1. Consider the functor I ∶ sBr → s⩔ which is the identity on objects
and interprets undotted diagrams as dotted diagrams with zero dots. For every a and
b, I ∶ HomsBr(a, b) → Homs⩔(a, b) maps the spanning set Sa,b to the set S0

a,b, which by

Theorem 2 is a basis of Homs⩔(a, b)0. Thus, the set Sa,b is a basis of HomsBr(a, b). �

Remark 37. The functor Ψn ○ I ∶ sBr → C−fmod can be decomposed as Ψn ○ I = Jn ○ΨC
n

where ΨC
n ∶ sBr → Vect is given on objects by ΨC

n(a) = V ⊗a and the expected map on mor-
phisms, and Jn ∶ Vect → C−fmod, is given by Jn(W ) =M(0)⊗W . The functor ΨC

n appears
in [30]. It is shown there that when n ≥ a, ΨC

n ∶ HomsBr(a, a) → Homp(n)(V ⊗a, V ⊗a) maps
Sa,a to a linearly independent set, thus proving that Sa,a is a basis, and that ΨC

n is injective
on HomsBr(a, a). It is also proved that ΨC

n is surjective, so EndsBr(a) ≅ Endp(n)−mod(V ⊗a)
for a ≤ n (see [30, Theorem 4.5]).

Remark 38. Clearly ΨC
n is not injective if n < a since it is not injective when restricted

to the symmetric group Sa. The question of surjectivity of the functors ΨM
n for different

modulesM is interesting and so far not understood. One would need to better understand
the combinatorics of decomposition numbers in p(n) −mod or category O(p(n)). To our
knowledge, only the decomposition numbers of the finite dimensional (thick and thin)
Kac modules are known, see [3]. Even in these cases, a precise surjectivity statement is
so far not available. Based on explicitly calculated examples, we expect a more involved
behaviour than in the gl(n∣n) case, see [9].

5. The affine VW superalgebra s⩔a and its centre

We fix a ≥ 2 ∈ N for the whole section, and study the affine VW superalgebra s⩔a =

Ends⩔(a). The results from the previous section show that the algebra s⩔a is a PBW
deformation of the algebra gs⩔a, in the sense that s⩔a is a filtered algebra, and gr(s⩔a) =
gs⩔a. For h̵ a parameter, the Rees construction gives the algebra Ah̵ over C[h̵], such that
its specializations at h̵ = 0 and h̵ = 1 are precisely A1 = s⩔a and A0 = gs⩔a. We then use
Theorem 2 to describe the center of the C[h̵]-algebra Ah̵, and all its specializations At

for any t ∈ C; in particular we find the centre of s⩔a and gs⩔a. We refer e.g. to [4], [21],
[37], [41] for the general theory.
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5.1. The algebras Ah̵. We first define a C[h̵]-algebra Ah̵ and its specializations At at
t ∈ C directly using generators and relations.

Definition 39. Let Ah̵ be the superalgebra over C[h̵] with generators

si, ei, yj 1 ≤ i ≤ a − 1, 1 ≤ j ≤ a

where si = ei = yj = 0, subject to the relations:

(VW1) Involutions: s2i = 1 for 1 ≤ i < a.
(VW2) Commutation relations:

(i) siej = ejsi if ∣i − j∣ > 1,
(ii) eiej = ejei if ∣i − j∣ > 1,
(iii) eiyj = yjei if j ≠ i, i + 1,
(iv) yiyj = yjyi for 1 ≤ i, j ≤ a.

(VW3) Affine braid relations:
(i) sisj = sjsi if ∣i − j∣ > 1,
(ii) sisi+1si = si+1sisi+1

for 1 ≤ i ≤ a − 1,
(iii) siyj = yjsi if j ≠ i, i + 1.

(VW4) Snake relations:
(i) ei+1eiei+1 = −ei+1,
(ii) eiei+1ei = −ei

for 1 ≤ i ≤ a − 2.
(VW5) Tangle and untwisting relations:

(i) eisi = ei and siei = −ei
for 1 ≤ i ≤ a − 1,

(ii) siei+1ei = si+1ei,
(iii) si+1eiei+1 = −siei+1,
(iv) ei+1eisi+1 = ei+1si,
(v) eiei+1si = −eisi+1

for 1 ≤ i ≤ a − 2.
(VW6) Idempotent relations:

e2i = 0 for 1 ≤ i ≤ a − 1.
(VW7) Skein relations:

(i) siyi − yi+1si = −h̵ei − h̵,
(ii) yisi − siyi+1 = h̵ei − h̵

for 1 ≤ i ≤ a − 1.
(VW8) Unwrapping relations:

e1y
k
1e1 = 0 for k ∈ N.

(VW9) (Anti)-Symmetry relations:
(i) ei(yi+1 − yi) = h̵ei,
(ii) (yi+1 − yi)ei = −h̵ei

for 1 ≤ i ≤ a − 1.

For any t ∈ C, let At be the quotient of Ah̵ by the ideal generated by h̵ − t.

Remark 40. The above set of relations is not minimal. For instance, relations (VW6)
and (VW8) can be deduced from (VW5)(i) and (VW9).

As a C[h̵]-algebra, Ah̵ is filtered by deg(yi) = 1, deg(si) = deg(ei) = 0. Considered as a C-
algebra, Ah̵ can be given a grading by setting deg(yi) = deg(h̵) = 1, deg(si) = deg(ei) = 0.
Interpreting si , ei = bi ∗ bi, yi as diagrams as in Section 1, the elements of Ah̵ and At

can be written as linear combinations of dotted diagrams with a bottom points and a top
points.

Lemma 41. The set S●a,a is a spanning set for Ah̵ and At for any t.

Proof. Using the braid, snake and untwisting relations (analogous to (R1)-(R4)) in Ah̵ or
At we see that every element of S●a,a gives rise to a well-defined element of Ah̵, respectively
At. Then we can repeat the proof that S●a,a spans s⩔a for these algebras. �

Proposition 42. (a) The assignments ϕ1(yi) = yi, ϕ1(si) = si and ϕ1(ei) = b∗i bi define
an isomorphism of algebras ϕ1 ∶ A1 → s⩔a.



28 THE AFFINE VW SUPERCATEGORY

(b) The assignments ϕ0(yi) = yi, ϕ0(si) = si and ϕ0(ei) = b∗i bi define an isomorphism
of algebras ϕ0 ∶ A0 → gs⩔a.

(c) For any t ≠ 0, the assignments ψt(yi) = tyi, ψt(si) = si and ψt(ei) = ei define an
isomorphism of algebras ψt ∶ At → A1.

(d) The set S●a,a is a C-basis of At for any t, and a C[h̵]-basis of Ah̵.

Proof. (a) One checks directly that ϕ1 can be extended to an algebra homomorphism
by checking that all relations from Definition 39 hold in s⩔a. To see surjectivity,
consider an arbitrary element b of s⩔a, and let us construct its preimage. Assume
without loss of generality that b = p(y1, . . . , ya)d q(y1, . . . , ya) for some monomials
p, q, and some undotted diagram d. If d has c cups, then it also has c caps, and can
be written in the form d = σ1(b∗1b1)(b∗2b2) . . . (b∗c bc)σ2 for some permutations σ1, σ2.
Thus, b = pσ1(b∗1b1)(b∗2b2) . . . (b∗c bc)σ2q = ϕ1(pσ1e1e2 . . . ecσ2q). So, ϕ1 is a surjective
homomorphism mapping a spanning set to a basis, so it is an isomorphism.

(b) Analogous to (a).
(c) A direct check of the relations shows that this assignment extends to an algebra

homomorphism for any t ∈ C. For t ≠ 0, the inverse is given by ψ−1t (yi) = 1
t
yi,

ψ−1t (si) = si and ψ−1t (ei) = ei.
(d) For any t ≠ 0, S●a,a is a basis of s⩔a by Theorem 2, so by (a) and (c) above it is also

a basis of At ≅ A1 ≅ s⩔a. For t = 0, S●a,a is a basis of gs⩔a ≅ A0 by Corollary 33.
Assume there is a relation among the elements of S●a,a in Ah̵, with coefficients in
C[h̵]. Evaluating at some t ∈ C for which not all coefficients vanish, we get a
relation in At, which is impossible. So, S●a,a is also a basis of Ah̵. �

5.2. The Rees construction. Let B = ⋃k≥0B
≤k be a filtered C-algebra. The Rees alge-

bra of B is the C[h̵]-algebra Rees(B), given as a C-vector space by Rees(B) =⊕k≥0B
≤kh̵k,

with multiplication and the h̵-action both given by (ah̵i)(bh̵j) = (ab)h̵i+j for a ∈ B≤i,
b ∈ B≤j, and ab ∈ B≤i+j the product in B. It is graded as a C-algebra by the powers of h̵.

Lemma 43. Let ⋃i≥0 Si be a basis of B compatible with the filtration, in the sense that
the Si’s are pairwise disjoint, and ⋃k

i=0Si is a basis of B≤k. Then ⋃i≥0 Sih̵i is a C[h̵]-basis
of Rees(B).
Proof. The set ⋃k

i=0 Si is a C-basis of B≤k, so ⋃k
i=0Sih̵k is a C-basis of B≤kh̵k, and then⋃k≥0⋃k

i=0 Sih̵k is a C-basis of Rees(B). On the other hand, ⋃k≥0⋃k
i=0Sih̵k = ⋃i≥0⋃k≥i Sih̵k =⋃i≥0⋃j≥0Sih̵i+j = ⋃j≥0 h̵

j(⋃i≥0 Sih̵i). Thus, the set ⋃i≥0 Sih̵i is a C[h̵]-basis of Rees(B). �

For any algebra B, let Z(B) denote the centre of B.

Lemma 44. Z(Rees(B)) = Rees(Z(B)).
Proof. The centre of B inherits the filtration of B, and Rees(Z(B)) embeds naturally into
Rees(B), with the image contained in Z(Rees(B)). To see the other inclusion, assume c
is central in Rees(B). Without loss of generality c is of homogeneous graded degree i, so
c = bh̵i for some b ∈ B≤i. This shows that b is a central in B, proving the claim. �
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Lemma 45. There is an isomorphism of C[h̵]-algebras Rees(A1) ≅ Ah̵.

Proof. The map Ah̵ → Rees(A1) is given on generators by yi ↦ h̵yi, si ↦ si, ei ↦ ei.
It is verified to be a morphism of algebras by directly comparing relations, and it is an
isomorphism as it maps the basis S●a,a to the basis S●a,a. �

5.3. The centre is a subalgebra of the symmetric polynomials. We now start
computing the centre of Ah̵, and show that Z(Ah̵) ⊆ C[h̵][y1, . . . , ya]Sa .

Lemma 46. For f ∈ Ah̵, the following are equivalent:

(a) fyi = yif for all i ∈ [a];
(b) f ∈ C[h̵][y1, . . . , ya].

Proof. Because of relation (VW2) (iv), only (a)⇒ (b) requires proof.
Assume that f ∉ C[h̵][y1, . . . , ya]. That means that the expansion of f in the basis

S●a,a contains at least one dotted diagram whose underlying undotted diagram is not the
identity 1a.

Assume that this expansion of f in the basis S●a,a contains at least one dotted diagram
with a cup. Label the top and bottom endpoints of strings 1, . . . , a from left to right.
Among all diagrams with a cup, choose d with a maximal number of dots on a cup; say
that this cup is connecting i and j, and has k dots on it. Then yif , written in the basis
S●a,a, contains at least one diagram with a cup and k + 1 dots on it (namely, yid). On the
other hand, fyi contains no diagrams with k + 1 dots on a cup, so yif ≠ fyi.

Now assume that the expansion of f in the basis S●a,a contains no diagrams with cups,
and consequently no diagrams with caps. Then it contains at least one dotted diagram
with a through strand connecting differently labelled points at the top and the bottom.
Among all such diagrams and all such strings, choose d with a maximal number of dots
on such a string; say the string is connecting i at the top of the diagram and j at the
bottom, i ≠ j, and it has k dots on it. Then yif , written in the basis S●a,a, contains at
least one diagram with a string connecting i and j and with k + 1 dots on it, while fyi
contains no such diagrams as i ≠ j. So, yif ≠ fyi. �

In particular, Z(Ah̵) ⊆ C[h̵][y1, . . . , ya]. The following lemma shows that Z(Ah̵) is in
fact a subalgebra of the symmetric polynomials C[h̵][y1, . . . , ya]Sa .

Lemma 47. Let f ∈ C[h̵][y1, . . . , ya] ⊆ Ah̵ and 1 ≤ i ≤ a − 1.

(a) If fsi = sif , then f(y1, . . . , yi, yi+1, . . . , ya) = f(y1, . . . , yi+1, yi, . . . , ya).
(b) For the special value h̵ = 0, the converse also holds: if f(y1, . . . , yi, yi+1, . . . , ya) =

f(y1, . . . , yi+1, yi, . . . , ya), then fsi = sif in A0.

Proof. It is enough to prove this for a = 2.

(a) By Lemma 7, the expansion of fs1 in the basis S●a,a is

f(y1, y2)s1 = s1f(y2, y1) + h̵∑
i,j

(αijy
i
1y

j
2 + βijy

i
1e1y

j
1) (5.1)
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for some αij, βij ∈ C. On the other hand, s1f is already a linear combination of
normal diagrams. If fs1 = s1f , then using that S●a,a is a basis, and reading off the
terms with the underlying undotted diagram s1, we get s1f(y2, y1) = s1f(y1, y2),
and so f(y2, y1) = f(y1, y2).

(b) For h̵ = 0 and f symmetric in y1, y2, equation (5.1) turns into the equalities
f(y1, y2)s1 = s1f(y2, y1) = s1f(y1, y2), thus fs1 = s1f . �

5.4. Some central elements. Consider the following elements in C[h̵][y1, . . . , ya]:
zij = (yi − yj)2, for 1 ≤ i /= j ≤ a and Dh̵ = ∏

1≤i<j≤a

(zij − h̵2).
Notice that the deformed squared Vandermonde determinant Dh̵ is symmetric, Dh̵ ∈

C[h̵][y1, . . . , ya]Sa . We will use these to produce central elements in Ah̵.

Lemma 48. For any 1 ≤ i ≤ a − 1, we have in Ah̵ the equality

ei ⋅ (zi,i+1 − h̵2) = (zi,i+1 − h̵2) ⋅ ei = 0,
and consequently Dh̵ei = eiDh̵ = 0.

Proof. Using (VW9) (i), we get ei ⋅ (zi,i+1 − h̵2) = ei(yi+1 −yi)2 − h̵2ei = h̵ei(yi+1 −yi)− h̵2ei =
h̵2ei − h̵2ei = 0, which implies eiDh̵ = 0. The claim Dh̵ei = 0 is proved analogously. �

Lemma 49. For any 1 ≤ k ≤ a − 1 we have Dh̵sk = skDh̵.

Proof. We analyze the commutation of sk with different factors (zij−h̵2) of Dh̵ separately.
Assume i, j ∉ {k, k + 1}. Then (VW3)(iii) says that yi and yj commute with sk. There-

fore,

(zij − h̵2)sk = sk(zij − h̵2). (5.2)

Now assume i = k, j = k + 1. We claim that

(zk,k+1 − h̵2)sk = sk(zk,k+1 − h̵2). (5.3)

To prove it, use (VW7) to calculate (yk − yk+1)sk = sk(yk+1 − yk) − 2h̵, and then

(yk − yk+1)2sk = (yk − yk+1)sk(yk+1 − yk) − 2h̵(yk − yk+1)
= (sk(yk+1 − yk) − 2h̵)(yk+1 − yk) − 2h̵(yk − yk+1) = sk(yk − yk+1)2.

The remaining factors of Dh̵ contain zij with exactly one of i, j in {k, k + 1}. Since
zij = zji, it suffices to consider j ≠ k, k + 1, and further assume j > k + 1. We claim that

(zk,k+1 − h̵2) ((zk,j − h̵2)(zk+1,j − h̵2)sk) = (zk,k+1 − h̵2) (sk(zk,j − h̵2)(zk+1,j − h̵2)) . (5.4)

To prove (5.4), let us first calculate

zk,jsk = (yk − yj)2sk = (yk − yj)sk(yk+1 − yj) + h̵(yk − yj)(ek − 1)
= skzk+1,j + h̵(ek − 1)(yk+1 − yj) + h̵(yk − yj)(ek − 1).
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From this and Lemma 48, we get

(zk,k+1 − h̵2)(zk,j − h̵2)sk = (zk,k+1 − h̵2) (sk(zk+1,j − h̵2) − h̵(yk + yk+1 − 2yj)) . (5.5)

Similarly,

(zk,k+1 − h̵2)(zk+1,j − h̵2)sk = (zk,k+1 − h̵2) (sk(zk,j − h̵2) + h̵(yk + yk+1 − 2yj)) . (5.6)

Using (5.5) and (5.6), we then obtain (5.4), since (zk,k+1 − h̵2) ((zk,j − h̵2)(zk+1,j − h̵2)sk)
equals

(zk,k+1 − h̵2) [sk(zk,j − h̵2)(zk+1,j − h̵2) + (h̵(yk + yk+1 − 2yj) − h̵(yk + yk+1 − 2yj))(zk,j − h̵2)]
which is however the same as (zk,k+1 − h̵2) (sk(zk,j − h̵2)(zk+1,j − h̵2)). Thus (5.4) holds.
Finally, (5.2), (5.3) and (5.4) imply Dh̵sk = skDh̵. �

Lemma 50. Let 1 ≤ i ≤ a − 1, and let f̃ ∈ C[h̵][y1, . . . , ya] be symmetric in yi, yi+1. Then
there exist polynomials pj = pj(y1, . . . , ya) ∈ C[h̵][y1, . . . , ya] such that

f̃si = sif̃ +
deg f̃−1∑
j=0

y
j
i ⋅ ei ⋅ pj .

Proof. Analogues of the formulas in Lemma 6 and 7 imply that for any k,

(yki + yki+1)si = si(yki + yki+1) + h̵ k−1∑
j=0

(yk−1−ji eiy
j
i+1 + y

j
i+1eiy

k−1−j
i )

= si(yki + yki+1) + h̵ k−1∑
j=0

y
k−1−j
i eiy

j
i+1 +

k−1∑
j=0

j∑
ℓ=0

h̵1+j−ℓ(−1)j+ℓyℓieiyk−1−ji .

Thus, the claim holds for f̃ = yki + y
k
i+1. It also trivially holds for f̃ = yj if j ≠ i, i + 1, as

such yj commute with si. Finally, note that if the claim holds for f̃1 and f̃2, it also holds

for f̃1f̃2 and f̃1 + f̃2. On the other hand, the algebra of polynomials symmetric in yi, yi+1
is generated by the yki + y

k
i+1, k ≥ 1, and yj’s with j ≠ i, i + 1, and the claim follows. �

Lemma 51. Let f̃ ∈ C[h̵][y1, . . . , ya]Sa be an arbitrary symmetric polynomial, and c a

constant. Then f =Dh̵f̃ + c lies in the centre of Ah̵.

Proof. The element f is in C[h̵][y1, . . . , ya] so it commutes with yi for all i. By Lemma 48,

fei = f̃Dh̵ei + cei = cei = eiDh̵f̃ + cei = eif.

Using Lemma 50, and then Lemmas 49 and 48 we get

fsi =Dh̵f̃ si + csi =Dh̵ (sif̃ +∑
j

y
j
i ⋅ ej ⋅ pj) + csi = siDh̵f̃ + sic = sif. �
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5.5. The centre of s⩔a and of Ah̵.

Proposition 52. The centre Z(A0) of the graded VW superalgebra gs⩔a consists of all

f ∈ C[y1, . . . , ya] of the form f =D0f̃ + c, for f̃ ∈ C[y1, . . . , ya]Sa and c ∈ C.

Proof. We showed in Lemmas 46 and 47 that Z(A0) ⊆ C[y1, . . . , ya]Sa , and that any
symmetric polynomial commutes with si for 1 ≤ i ≤ a − 1 and yj for 1 ≤ j ≤ a. It remains
to check which symmetric polynomials commute with ei for all 1 ≤ i ≤ a − 1. To this end,
fix f ∈ Z(A0). We will compute a condition on commutation with e1; then the symmetry
of f will complete the proof.

Expanding fe1 in the normal dotted diagram basis, the terms appearing with nonzero
coefficient all have underlying (undotted) diagrams equal to e1; i.e. fe1 is a linear com-
bination of terms of the form yk1e1pk with pk ∈ C[y3, . . . , ya]. Similarly, e1f is a linear
combination of terms of the form e1y

k
1pk. Comparing, we get pk = 0 for k > 0, and that

fe1 = p0(y3, . . . , ya)e1. Using the presentation of A0 given in Definition 39, we have that
a polynomial in the yi’s is annihilated by e1 if any only if it is a multiple of (y1 − y2) (see
(VW9), specializing to h̵ = 0). Thus

f = (y1 − y2)g + p0, with g ∈ C[y1, . . . , ya] and p0 ∈ C[y3, . . . , ya].
We claim that p0 ∈ C, which will follow from the symmetry of f . For this let byλ3

3 ⋯y
λa
a

be a non-zero summand of p0, and write yλ = yλ4

4 ⋯y
λa
a for short. If λ3 ≥ 1, then symmetry

implies byλ3

1 y
λ is a term in f , so that byλ3−1

1 yλ is a term in g. So −byλ3−1
1 y2yλ, and therefore

−by2y
λ3−1
3 yλ, are summands in f . Going back to g, we get that byλ3−1

3 yλ is a summand
there, so that by1y

λ3−1
3 yλ is a summand of f . But comparing the coefficient to that of

y2y
λ3−1
3 yλ, we see that this contradicts the symmetry of f . Therefore λ3 = 0 for all non-zero

summands of p0, and thus by symmetry, p0 ∈ C as claimed.
Next, since f is symmetric (specifically in y1 and y2), we have g is antisymmetric in y1

and y2. Thus g itself is a multiple of (y1 − y2), i.e. f − p0 is a multiple of (y1 − y2)2. But
now, since f − p0 is symmetric, it must also be a multiple of D0 = ∏1≤i<j≤a(yi − yj)2. So
finally, f is of the form

f = ∏
1≤i<j≤a

(yi − yj)2 ⋅ f̃ + c = D0f̃ + c,

for some symmetric polynomial f̃ ∈ C[y1, . . . , ya]Sa and constant c ∈ C. �

5.6. The centre of s⩔a. The main result of this section, Theorem 53, describes the
centre of s⩔a. To do that, we use the fact that the algebra s⩔a is a PBW deformation
of the algebra gs⩔a, determine the centre of gs⩔a and find a lift of the appropriate basis
elements to s⩔a. This approach differs from the common arguments for diagram algebras,
where often the centre is realized as a subring of invariant polynomials satisfying certain
cancellation properties, [17]. In our situation the cancellation properties did not appear
very manageable, and we therefore omitted them. It would however be nice to know if
an explicit result as Theorem 53 could be achieved for instance for affine VW algebras as
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in [32], [20], BMW-algebras, see e.g. [17], or walled Brauer algebras, see e.g. [22], [36].
Compare also with [14], where the center of the Brauer superalgebra sBra is described in
a similar way.

Theorem 53. The centre Z(s⩔a) of the VW superalgebra s⩔a = A1 consists of all

f ∈ C[y1, . . . , yn], of the form f = D1f̃ + c, for f̃ ∈ C[y1, . . . , ya]Sa an arbitrary symmetric
polynomial and c ∈ C.

Proof. For any filtered algebra B there exists a canonical injective algebra homomorphism
ϕ ∶ grZ(B)↪ Z(gr(B)), given for f ∈ Z(B)≤k by ϕ(f +Z(B)≤(k−1)) = f +B≤(k−1), see [29,
6.13, 6.14]. For B = s⩔a and gr(B) = gs⩔a, by Proposition 52 the centre of A0 consists

of elements of the form f = D0f̃ + c for f̃ a symmetric polynomial and c a constant. By
Lemma 51, D1f̃ + c lies in the centre of s⩔a, and we have ϕ(c) = c, and for f̃ symmetric

and homogeneous of degree k, ϕ(D1f̃ + s⩔≤a(a−1)+k−1a ) = D0f̃ . Using Proposition 52, we
see that every f ∈ Z(gs⩔a) is in the image of ϕ, so ϕ is an isomorphism. �

Remark 54. It is interesting to compare the description of the centre of s⩔a with [38,
Theorem 4.8]. It is shown there that the centre of U(p(n))/I, where I is the Jacobson
radical of U(p(n)), is isomorphic to the subring in the polynomial ring C[z1, . . . zn] of
the form C ⊕ C[z1, . . . , zn]SnΘ, where Θ = ∏i<j(zi − zj)2. In other words, this centre is
isomorphic to Z(s⩔a) when a = n.
Theorem 55. The centre Z(Ah̵) of the superalgebra Ah̵ consists of polynomials f ∈

C[h̵][y1, . . . , yn], of the form f =Dh̵f̃ +c, for f̃ ∈ C[h̵][y1, . . . , ya]Sa an arbitrary symmetric
polynomial and c ∈ C[h̵].
Proof. The centre Z(Ah̵) is by Lemma 45 isomorphic to Z(Rees(A1)), which is by
Lemma 44 isomorphic to Rees(Z(A1)). The centre Z(A1) consists by Theorem 53 of

elements of the form f = D1f̃ + c, with f̃ ∈ C[y1, . . . , ya]Sa and c ∈ C. Assume f̃ is ho-

mogeneous of degree k. Then D1f̃ ∈ A
≤k+a(a−1)
1 , which gives an element D1f̃ h̵k+a(a−1) of

Rees(Z(A1)) ≅ Z(Rees(A1)). Using Lemma 45, we see that Z(Ah̵) is spanned by con-

stants and the preimages under the isomorphism Ah̵ ≅ Rees(A1) of elements D1f̃ h̵k+a(a−1),

which are equal to Dh̵f̃ . �
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[4] A. Braverman and D. Gaitsgory, Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul

type. J. Algebra 181 (1996), no. 2, 315–328.

http://arxiv.org/abs/1610.08470


34 THE AFFINE VW SUPERCATEGORY

[5] J. Brundan, J. Comes, D. Nash and A. Reynolds, A basis theorem for the affine oriented Brauer

category and its cyclotomic quotients. Quantum Topology 8 (2017), 75–112.
[6] J. Brundan and A. Ellis, Monoidal supercategories. Comm. Math. Phys. 351 (2017), 1045–1089.
[7] J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels. Selecta Math. (N.S.) 14 (2008),
no. 1, 1–57.

[8] J. Brundan and C. Stroppel, Gradings on walled Brauer algebras and Khovanov’s arc algebra. Adv.
Math. 231 (2012), no. 2, 709–773.

[9] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV:

the general linear supergroup. J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 373–419.
[10] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation theory of the symmetric groups:

The Okounkov-Vershik approach, character formulas, and partition algebras. Cambridge Studies in Ad-
vanced Mathematics 121, Cambridge University Press, (2010).

[11] C. W. Chen and Y.N. Peng, Affine periplectic Brauer algebras. arXiv:1610.07781.
[12] S-J. Cheng and W. Wang, Dualities and representations of Lie superalgebras. Graduate Studies in
Mathematics 144, AMS, (2012).

[13] I. Cherednik, A new interpretation of Gelfand-Tzetlin bases. Duke Math. J. 54 (1987), no. 2, 563–577.
[14] K. Coulembier, The periplectic Brauer algebra. arXiv:1609.06760.
[15] K. Coulembier and M. Ehrig, The periplectic Brauer algebra II: decomposition multiplicities.
arXiv:1701.04606.

[16] Z. Daugherty, A. Ram and R. Virk, Affine and degenerate affine BMW algebras: actions on tensor

space. Selecta Math. (N.S.) 19 (2013), no. 2, 611–653.
[17] Z. Daugherty, A. Ram and R. Virk, Affine and degenerate affine BMW algebras: the center. Osaka
J. Math 51 (2014), no. 1, 257–283.

[18] V. Drinfeld, Degenerate affine Hecke algebras and Yangians. Funct. Anal. Appl. 20 (1986), 56–58.
[19] M. Ehrig and C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe

duality. arXiv:1310.1972, to appear in Adv. Math.
[20] M. Ehrig and C. Stroppel, Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie

superalgebra. Math. Z. 284 (2016), no. 1-2, 595–613.
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