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X-ray single-particle imaging involves the measurement of a large number of noisy diffraction patterns of isolated
objects in random orientations. The missing information about these patterns is then computationally recovered in
order to obtain the 3D structure of the particle. While the method has promised to deliver room-temperature structures
at near-atomic resolution, there have been significant experimental hurdles in collecting data of sufficient quality and
quantity to achieve this goal. This paper describes two ways to modify the conventional methodology that significantly
ease the experimental challenges, at the cost of additional computational complexity in the reconstruction procedure.
Both these methods involve the use of holographic reference objects in close proximity to the sample of interest, whose
structure can be described with only a few parameters. A reconstruction algorithm for recovering the unknown degrees
of freedom is also proposed and tested with toy model simulations. The techniques proposed here enable 3D imaging
of biomolecules that is not possible with conventional methods and open up a new family of methods for recovering

structures from datasets with a variety of hidden parameters.
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1. INTRODUCTION

Single-particle imaging (SPI) at x-ray free-electron lasers (XFELs)
should, in principle, be able to image the structure and dynamics
of biomolecules at near-atomic resolution and subpicosecond
time scales [1]. Challenges still remain in collecting a sufficient
number of high-quality diffraction patterns, where “high-quality”
refers to diffraction patterns with low background and high signal,
enough to enable the orientation determination and merging of
individual patterns into a 3D structure. Various studies have been
performed on the minimum quality of patterns that are still toler-
able [2-5], and they conclude that single proteins can be imaged
with currently available XFEL sources as long as the background
scattering is significantly less than the scattered signal from the
particle and if 10> — 10° patterns from identical objects can be
collected. Most experimental work [6-8] has been focused on
method development on much larger particles that scatter enough
to be comfortably over the theoretical boundaries.

Various techniques have been employed to deliver the samples
into the x-ray focus. Aerosol methods have the lowest background
[9,10], but the particle densities are often so low as to make col-
lection of a large number of patterns infeasible. One can collect
more patterns by using a larger x-ray focus, but this proportionally
reduces the scattered signal per pattern, which means that the
integrated signal stays constant over time.

Alternatively, one can use a carrier medium for the particles,
which can significantly increase the data collection rate. This
medium can either be a liquid jet [11,12] or a solid substrate that

2334-2536/20/060593-09 Journal © 2020 Optical Society of America

is scanned in the x-ray focus [13—15]. Unfortunately, the scat-
tering from the carrier medium overpowers the signal from the
particle, usually making hit detection of even single biomolecules
impossible. This can, in principle, be improved by reducing the
focus size significantly, such that it almost matches the particle size.
In that case, only a very small volume of the carrier medium will
be illuminated, which should make the signal from the particle
detectable. However, x-ray optics capable of such small foci and
high flux densities at XFELs do not exist yet.

In this paper, we discuss two alternative strategies for obtaining
high-quality diffraction patterns with minimal modifications to
currently available sample preparation and delivery technologies.
The general principle for both strategies is to gain signal-to-
noise by including scattering from a strongly scattering reference
[16,17]. This is, of course, the holographic principle that has
already been applied in diffractive imaging settings, notably in
the form of Fourier transform holography [18] or as “free-flying”
holography [19]. In both of those cases, the stated goal has been
to recover the structure of the particle in single shots without the
need for phase retrieval. In contrast, the objective here is to recover
the full 3D structure of a mostly reproducible object from a large
number of patterns of composite structures consisting of the target
objectaswell asa reference.

The first composite object we consider is one where a gold
nanoparticle (preferably a sphere) is chemically attached to the
target object in an aerosol imaging setup. The second system is
one where a 2D crystal is placed in the beam path with a unit cell
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comparable to the target object size. This can be achieved on a
substrate in a straightforward manner by placing the 2D crystal on
onesside of the substrate and the sample on the other.

The common feature of these methods is that they add hetero-
geneity to the dataset, since the diffraction patterns vary not only
in the orientation of the particles in the beam but also in the prop-
erties and relative position of the reference. Composite objects like
those we will discuss in Section 2 have been proposed before [20],
but this structural variability has been ignored, and the reference
and the target needed to be separated by a distance larger than the
size of either, which is not the case here.

As we will show, in the methods proposed here, we gain exper-
imental efficiency at the cost of computational complexity. In the
next sections, we will discuss the two types of systems in detail. We
will also describe a reconstruction algorithm for reconstructing
the structure of the samples from these holographic patterns by
treating these additional latent variables in a way similar to when
one does the unknown orientations in conventional SPI. For
the nanoparticle reference case, we will also show the results of
some 2D simulations on a toy model to show the efficacy of the
algorithm.

In the following discussion, for convenience we refer to an
identical or reproducible target object. One should note that exact,
atomic-resolution reproducibility is not required. The problem of
conformational variability is the same one faced by conventional
SPI, and the techniques being developed to deal with structural
variability should also be applicable to the imaging methods
described here.

2. SINGLE-PARTICLE REFERENCE

For the first holographic system, we consider a situation where the
unknown target particle is attached to a single reference structure,
specifically a spherical gold nanoparticle (AuNP). This reference
has the benefit of alleviating problems with finding the hits over
background due to the high scattering cross section, thus enabling
the use of smaller particles than what could be used in conventional
SPI. Second, due to the high density, the acceleration of the par-
ticles in the flow field is lower and the density of particles in the
aerosol stream is higher, increasing the hit rate, i.e., the fraction
of pulses for which a particle is in the x-ray focus. Finally, these
spherical references have just a single parameter to describe their
structure: the radius. Gold nanospheres of a wide range of sizes
are relatively easy to produce and are even commercially available.
Various methods for linking them to proteins and DNA have
also been extensively studied [21-23]. The best involve linkers
where one end attaches site-specifically to certain residues/bases
on the biomolecule and the other to the surface of the AuNP.
However, these experimental benefits come at the cost of increased
heterogeneity.

In addition to the inherent structural variability of the target, we
will have to solve for the relative positions of the reference and the
unknown object and the size of the reference. If the reference was
anisotropic and not a sphere, one would also have to contend with
the relative orientation of the two objects, consequently making
spheres even more desirable. Thus, we have four additional degrees
of freedom for spherical references, and more for an arbitrary one.
However, we should note that not all of these degrees need to be
independent. Since the spheres are linked to points on the surface,
there is a strong correlation between the position of the center and
the size. Nevertheless, there is a substantial increase in the phase
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space of parameters that need to be solved for each diffraction
pattern.

If one was performing a conventional SPI experiment with
such samples, while the data collection process would be consid-
erably eased by the experimental benefits described above, one
would need to find a subset of patterns corresponding to the same
composite object so that a 3D structure could be retrieved. This
means throwing away a lot of data in order to find this subset.
The holographic approach would be to decompose the composite
object as the sum of the density of the spherical AuNP p, (r, ) and
the unknown object p, (r), where 4 represents the diameter of the
sphere. The total electron density is

px) =p,(r) + p, (r — t, 4), 1)

where tis the relative shift of the centers of the two objects. The 3D
intensity distribution of this object sampled in a single shot then
becomes

1(q, d, © = | F,(q) + F.(q, d)e*™*|, @)

where the F terms represent the Fourier transform of the den-
sities and the shift of the sphere becomes a phase ramp in 3D.
The Fourier transform of a sphere is straightforward to calculate
analytically:

sin(s) — s cos(&)) 3)

F(q, d) xd’ ( E

with s = 7id|q|. This is illustrated in Fig. 1, where one can see the
effect on the intensity distributions due to the addition of a spheri-
cal AuNP on a randomly generated organic-like cluster.

Equation (2) makes it explicit that one must solve for the
diameter and relative shift of each pattern in order to recover
the structure of the common object. Unlike in the conventional
SPI method, all diffraction patterns contribute to the structure,
increasing the signal-to-noise ratio (SNR) and generating a higher
resolution structure. Of course, the best case scenario would still
be when the parameters & and t have very narrow distributions,
but this method effectively makes the experiment more tolerant to
variations in the attachment process while still benefiting from the
experimental advantages of the gold reference.

For a single shot, if photons can be reliably counted, the noise
at a given pixel from Poisson statistics is the square root of the
measured intensity, which is the sum of the expected intensity from
Eq. (2) and a background term B(q). The signal is the difference
compared to the sphere diffraction pattern and the background.
Keeping the convention of a positive value, the SNR can be
written as

1(q, d,t) — |F,(q, d)*

SNR(q) =
@ I(q,d,t)+ B(q)

4)

In the absence of a reference, the SNR simplifies to

|£,(q)]
V1+B@Q/IF,(@P

In the limit where the sphere signal F; (q) is much larger than
that of the object, the SNR can be approximated as

2|F,(q)|] cosrq.t+ ¢,)]
J1+ B@/IE (q. &)
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Fig.1. Random sphere cluster used as the test object for illustration. (a) Intensity distribution of the test object shown on a logarithmic scale. Inset shows
the projected electron density on a linear scale. (b) The same test object with a strongly scattering reference sphere attached. The main figure again shows
the log-scale intensity distribution, while the inset shows the projected electron density. The size of the intensity image is 185 x 185 pixels, while the inset is

50 x 50 pixels.

Two points can be noted here regarding the SNR in these two
limits. The first is that the detrimental effect of a given background
is lower in the case with a strong reference. Thus, even though the
noise increases in absolute terms with a strong reference, the signal
becomes more background tolerant.

In the second expression, the cosine term represents the fluc-
tuation of the signal as the reference is translated with respect to
the object. The amplitude of this fluctuation is the term relevant
to determining whether one can solve for the relative positions
from the patterns and recover the complex structure factor F, (q).
Due to the coherent holographic addition, this SNR amplitude is
double what one would obtain if there was no reference.

A. Reconstruction Algorithm

The data set described above contains diffraction patterns which
are noisy Ewald-sphere slices through many 3D intensities
described by Eq. (2) at a random, unknown orientation and
scale factor, due to variations in the incident fluence. A reconstruc-
tion algorithm to recover the parameters of each pattern and the
structure of the object is described in this section. The pseudocode
for the procedure in a single iteration is given in Algorithm 1, with
some details regarding scaling removed for clarity. (Please note that
in the algorithm, the functions calc_prob and update_intensities
are identical to the ones in the standard Expand-Maximize-
Compress (EMC) algorithm described elsewhere [2,24].)

The EMC algorithm [2] used widely in conventional SPI [5-8]
is composed of three steps in each iteration: expand, maximize, and
compress. The goal in each iteration is to find a model that has a
higher likelihood of generating the data measured on the detector.
The expand step is a transformation from model space to detector
space for a given set of sampled hidden parameters. In the stand-
ard use case, the model is a grid of 3D intensities and the hidden
parameters are the orientation. So in the expand step, one interpo-
lates the 3D intensities along an Ewald sphere surface rotated by
the given orientation and then applies standard polarization and
solid angle corrections to produce the predicted intensities on the
detector.

The maximize step finds an update to each of these detector
views using the expectation maximization procedure and given a
noise model. Usually, one also needs to find the maximum like-
lihood fluence factors. The result is a set of updated views that
together have a higher likelihood but are not necessarily consis-
tent with a single 3D intensity. At the end of each iteration, this
consistency is enforced in the compress step. The straightforward
solution is to reinterpolate the detector views into the 3D model
after undoing the detector corrections. Once the 3D intensity has
converged, standard iterative phase retrieval algorithms are used to
get the electron density.

In the holographic case, the maximize step is left unchanged,
since the objective is still to find the best possible predictions for
the intensity at each detector pixel. The common 3D model is now
not the 3D intensity of the whole object but the complex Fourier
transform of the unknown target, F,(q). In the expand step, one
now interpolates the complex values along the Ewald sphere as
before, but then converts them to detector intensities according to
Eq. (2) before applying detector corrections. As stated before, the
predicted detector intensities depend upon the orientation, sphere
diameter, and relative shift.

The compress step, though, is not so straightforward, since the
determination of the optimal F,(q) from many different detector
intensities is effectively a phase retrieval problem. The first part
of this is to recover the 3D intensities for a given set of 4 and t
diameter and shift parameters. This can be accomplished simply
by interpolation as before. One is then left with many 3D intensity
volumes, each corresponding to a different realization of Eq. (2),
from which a single complex F, (q) must be determined. A divide
and concur difference map approach [25,26] will be used here to
solve this problem.

Iterative projection algorithms such as difference map [27] and
hybrid input—output [28] are used to solve constraint satisfaction
problems like phase retrieval by searching for the intersection of
two constraint sets in a high dimensional space. In these methods,
update rules are composed of projections to sets, which are defined
to be the pointin the set closest to any given pointin this space. The
divide and concur method extends these algorithms to an arbitrary
number of constraint sets by expanding the state vector. If there
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Algorithm 1.

Pseudocode for the Reconstruction Algorithm with Variably Attached Spheres

function RUN_ITERATION(F, (q))
> Generate 3D intensities for different sphere diameter and shift states, r
forrin1..N, do
1@ < |F,(q) + F, (q, d,)e>m o ?
end for

> Probability of measured photon counts in pattern d having state r and orientation Q

Pyrq < carc_rros(/, (R2.q), K,)

> Update 3D intensities for each r
forr in1..N, do

1!(q) < UPDATE_INTENSITIES( Py, 0, K4)
end for

> Do phase retrieval with multiple 3D holograms, I,(q)
F(q) < F,(Q® N,
for;in1..N; do
F,.(q) < DIFFERENCE_MAP(F,(q), I/ (q))
end for

return PROJ_CONCUR(F, (q))
end function

function DIFFERENCE_MAP(F (q), 1(q))

Pp(q) < prOJ_DIVIDE(F(q), /(q))

return F(q)+ Proj_coNcUR[2Pp(q) — F(q)] — Pp(q)
end function

function PrOJ_DIVIDE(F (q), /(q))
forr in1..N, do
> Implement Eq. 5 with d, and ¢,
end for
end function

function PrROJ_CONCUR(F (q))
> Replace all N, copies of F(q) by their average
end function

> Initialization with N, copies

are [V constraints to satisfy, the new state vector is V copies of the
original one. In the divide projection, each of the copies is pro-
jected to one of the constraint sets. The concur projection enforces
consistency, and the projection is just to replace each copy with the
average over all of them.

As applied to the compress step here, the divide projection will
be a standard modulus projection from phase retrieval for each
of the 3D intensity volumes. If the nth intensity is Zobs . (q), the
divide projection for that copy F, ,(q) will be

| Leale,n ‘q.t,
7DD[}:a,n(q)] = #qu))}:calc,n(q) - E (q, dn)€2ﬂzq. n, (5)

where [calc,n(q) = |Fcalc,n(q)|2 = [(q, dna tn) from Eq (2) The
concur projection will set each copy equal to the average over all of
them. In addition, one can add additional real-space constraints
like positivity or a bounded support and the projection will be to
project the averaged copy to those constraints. This is especially
helpful at low resolutions, where the phase shift can be small due to
the range of translations. After convergence, the solution chosen
for the next iteration is taken to be the concur projection, which
is just the average over all copies with the real-space constraints

applied.

B. Practical Concerns

When reconstructing experimental data, it may often be the case
that one can determine the sphere diameter from single shots to
higher than the sampling precision in the EMC reconstruction.
This is because the diameter can be estimated by the azimuthally
averaged intensity /(|q|), which will have a relatively good SNR
even with only a few hundred scattered photons. In this situation,
the maximize step can be simplified to not calculate the proba-
bilities over all diameters for every pattern, but just over the shift
parameters.

In general, this reconstruction strategy lends itself readily to
refinement, i.c., to systematically increasing the sampling rate
with increasing resolution. At low resolutions, where the Ewald
sphere curvature can be neglected, only the in-plane position of
the reference need be recovered. Put another way, only one out-of-
plane position need be sampled. As more angle data are included,
one should sample more finely in the neighborhood of the most
likely positions for each pattern. This approach works because the
intensity dependence due to translation seen in Eq. (2) is smooth
and the error metric near the solution is convex. A similar refine-
ment strategy is used in single-particle cryo-electron microscopy,
where in-plane translations and per-pattern contrast transfer
functions (corresponding to out-of-plane translations) need to be
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solved [29]. As one approaches resolutions below 1 nm, spherical
reference objects do not exist, which means three additional orien-
tation parameters would have to be solved for, at the same angular
precision as the objects themselves.

Regarding the sampling rate for translations, the primary term
of interest is the holographic cross term in Eq. (2), which is written
out explicitly as follows:

Letoss(q, d, ) =2 F,(@)|| F; (q, )| cos(2mq.t+ ¢, (q)),

where F,(q) = |F,(q)|e?@. The cosine term covers one full
period when t changes by 27 /|q|, where q has been defined using
the crystallographic convention. We speculate that an estimated
sampling rate of 1/|q| should be sufficient to correctly place pat-
terns in the right bin during refinement, although this must be
tested in simulations.

The computational complexity for the conventional EMC
algorithm with a Poisson noise model is determined by the expec-
tation step, and it scales with the number of orientations times
the number of photon-containing pixels in the data set. Here, this
would be multiplied by the number of sampled states. Naturally,
both the orientations and the number of sampled states will be
much lower in a refinement iteration than for a global search.

C. 2D Simulations

Simulations have been performed to illustrate the data produced
and to demonstrate the reconstruction algorithm. For simplicity,
a 2D toy model has been used that is rotated in-plane, similar to
previous experiments to test the performance of the EMC algo-
rithm with sparse data [4,30]. There is one parameter for the angle
and there are two for the shift, but the qualitative structure of the
problem remains the same. The test object representing the pro-
jected density of a random agglomeration of spheres and its Fourier
intensity is shown in Fig. 1(a).

In order to generate the holographic data, the density of the
sphere was added to that of the test object, with the sphere cen-
ter and diameters randomly sampled from normal distributions
of a certain width. The result of one instance of this is shown
in Fig. 1(b), which also shows the intensity distribution of the
composite object. These intensities were then Poisson sampled to

10!

(a)

Fig. 2.

generate photon counts per pixel [Fig. 2(a)] and rotated in-plane
by a random angle. For this simulation, 10,000 patterns with
10° photons/frame were generated. The sum of all the patterns,
showing azimuthal symmetry due to random in-plane rotations, is
shown in Fig. 2(b). The electron density of the sphere was chosen
to be around 11 times that of the object, corresponding to the
scattering factor ratio between gold and a protein-like material.

The sphere diameters for each shot were randomly sampled
from a normal distribution with a mean of 7 pixels and a standard
deviation of 1 pixel. For comparison, the test object image in the
inset of Fig. 1(a) is 50 x 50 pixels in size. The shift of the sphere
center was randomly sampled from a 2D normal distribution with
a standard deviation of 1 pixel. For these simulations, all of these
parameters were independently generated, but as mentioned ear-
lier, itis quite possible that the sphere diameter and center positions
are correlated. The reconstruction algorithm could be made more
efficientif these correlations were known.

The initial guess for the iterate, F,(q), is a set of random com-
plex numbers. The reconstruction proceeds iteratively as described
in Section 2.A, with the main difference that the object is 2D and
there is only one degree of freedom for the orientations, namely
the in-plane angle. Additionally, a support constraint is applied
in conjunction with the concur projection. The initial support is
taken to be a 37 x 37 pixel square region centered in the field of
view. The support is updated every five iterations using a shrink-
wrap-like [31] update rule where the current iterate is convolved
with a Gaussian kernel with a standard deviation of 2 pixels and
thresholded such that 2050 pixels are inside the support. Fifty
iterations of the divide and concur difference map were applied for
every EMCiteration with the B parametersetto 1.

The results for a typical run are shown in Fig. 3. Figure 3(a)
shows the concur projection of the current iterate after every five
iterations. These images were rotated by —15° to align with the
true solution to make visual identification of features easier. The
reconstruction will have, in general, a random rotational offset
with respect to the ground truth. One can see that most of the
structure of the test object has been recovered, but some additional
density is also present. This can probably be optimized by modi-
fying the phase retrieval parameters, especially those related to

107

(b)

Ilustration of the forward calculation, used both to generate data and in the expand step. (a) Poisson-sampled photon counts of the intensity dis-

tribution in Fig. 1(b) shown on a logarithmic scale. Almost all the photons are concentrated at a low resolution, as is expected from the Fourier transform of
a compact object. The actual data will be a randomly rotated version of this pattern. (b) Virtual powder pattern, or integrated image for 10,000 iterations of
this process with different sphere diameters, positions, and in-plane rotations. The innermost region and the corners of the detector were masked out.
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Single-particle reference simulation results. (a) Reconstructed iterates after every five iterations. The reconstructions were rotated by —15° to

facilitate comparison with the original image. (b) Intensity reconstruction of the final iteration with a sphere of diameter 7 nm and shifts of 4-0.5 pixels in

both the X and Y directions shown on a logarithmic scale.

the support update. After every iteration, the 2D detector inten-
sities were reconstructed for every set of sphere diameter and shift
parameters by averaging over all the in-plane rotations. One of
these is shown for the final iteration in Fig. 3(b). This can be com-
pared with the true intensities with similar parameters shown in
Fig. 1(b).

Figure 4(a) shows the Fourier ring correlation (FRC) metric
[32] comparing the reconstructions for a few iterations to the
ground truth. The vertical dashed line indicates the edge of the
“detector,” corresponding to a full-period resolution of 1 pixel,
and the horizontal dashed line indicates the somewhat arbitrary
FRC = 0.5 cutoff. The final plot [Fig. 4(b)] shows the convergence
of the most likely parameters (diameter, position, orientation) for
each pattern as the iterations proceed. This convergence plot is the
same one used in the Dragonfly [24] software and shows how after
around 10 iterations the most likely parameters are already mostly
converged.

3. REFERENCE LATTICE

The second method we will discuss to provide a holographic ref-
erence is to utilize a 2D crystal, either patterned onto a chip or
as a self-assembled colloidal crystal [33]. An illustration of the
experimental data for this is shown in Fig. 5. One way to get such
data is to have the 2D crystal on one side of a substrate and the
target samples randomly dispersed on the other side. Such fixed
target scanning geometries have been used for SPI of gold clusters
[14] as well as 2D crystallography [13] and fiber diffraction [15].
Asbefore, one would have to solve for additional parameters on top
of the object orientation, namely, the position of the object’s center
within the unit cell as well as variations in the separation between
the lattice and object along the beam direction.

However, the big advantage of using a lattice reference rather
than directly putting the sample on the substrate is the extreme
gain in background tolerance obtained by using integrated Bragg
peak intensities. Since experimental background scattering from
the substrate and other beamline components is slowly varying, itis
often straightforward to determine the integrated peak intensities,
as is standard in crystallography. In contrast to the single-particle

reference discussed in Section 2, the 2D crystal is prepared sep-
arately from the target sample and the relative positions and
orientations of the two systems should be uniformly distributed.

Let the electron density of the unit cell be p, (r) and that of the
unknown object be p, (r), as before. Let the unit cell be larger than
the object, with the illuminated region represented by a probe
function P(r) that is significantly larger than both. The first con-
dition can be relaxed somewhat but is convenient for sufficient
sampling, especially at low resolution, as will soon be evident. The
second condition is necessary to avoid going into the regime of
ptychography, where one would have to recover the shot-by-shot
probe profile [34,35].

The 2D crystal can be represented as the unit cell convolved
with a grid of Dirac delta functions,

pr(r)=p.(0) % Y 8(r—17), ©)

where the * symbol represents convolution. The scattering contrast
is the sum of the electron densities of the crystal and the rotated and
translated object multiplied by the probe,

p(r) =[pr(r) + p,(Rr — O] - P(r), @)

where R and t are rotations and translations of the object with
respect to a canonical configuration.

The far-field diffraction pattern is the Fourier transform of p (r)
sampled along the Ewald sphere. Using the convolution theorem,
we get

F(@ =Y F(q)Fr(q—q)+ F,(Rqe™,  (8)

where the F (q) terms represent the Fourier transforms of the
corresponding real-space quantities. Since the spot size is assumed
to be large compared to the object, the effect of convolving F, (q)
is neglected. The first term represents a reciprocal lattice of broad
Bragg peaks whose shape is given by the probe Fourier transform;
the height is given by the magnitude of the unit cell transform at
the center of the Bragg peak. The diffracted intensities are given by
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Fig. 4.  Single-particle reference simulation metrics. (a) Fourier ring correlation between reconstructions and ground truth as a function of itera-
tion number. The oversampling ratio is close to 4 for these simulations, and the vertical dashed line corresponds to a resolution of 1 real-space pixel.
(b) Convergence plot of most likely parameters for each frame as a function of iteration.
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Fig. 5. 2D schematic showing the diffraction from a 2D crystal made up of spheres in a triangular lattice with the same cluster test object used in
Section 2.C. (a) The projected electron density showing the lattice, the target, and the probe, which here had a full width at half-maximum of 5 unit cells.
(b) The expected intensity distribution from such a composite object on a logarithmic scale. The peak intensities are modulated by the orientation and
position of the target object. One can also see the weak diffuse scattering from the molecular transform of the target object itself, but this will likely be
drowned in the background scattering from the substrate. Note that the superlattice peaks visible along the horizontal axis are due to interpolation artifacts
not expected in the real data.

(@) =F(Q)F*(q)
the background. Also, if the probe is much larger than a unit cell,
=y |F[ (q)F,(q—q)) |2 + |F0 (R.q) |2 as assumed, we would expect the Bragg peaks to be much brighter
i - . . .9 than the diffuse molecular transform of the target object. If the
+F,(R.g)e™ Zl: LCT )FP (q—q) +cc. integration of the probe function F,(q — q;) in the neighborhood

of the peak is IV, the integrated peak intensities are given by
where c.c. refers to the complex conjugate of the previous term.
The first term is simplified by the assumption that the probe is
much larger than the unit cell, and thus the width of the Bragg peak
is much less than the reciprocal lattice constant. In practice, there
will be background scattering from various components in the

Lis(@= | NF.(q)’

+2N |F,(R.q)| | F.(q))] cos(@, + 2 qi.t — @),

beamline added to the intensities. The background is measurably (10)
higher in than the aerosol-based sample delivery method discussed

in Section 2. As in serial crystallography, this can be mitigated by where the ¢_ terms represent the phases of the Fourier transform
working with the integrated intensity of each Bragg peak at q;. terms. With the choice of a simple object for the unit cell, F,(q)

The relatively slowly varying | F,|* term is assumed to be lost in can be precalculated or measured beforehand.
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A reconstruction approach very similar to that in Section 2.A is
applicable, except that Eq. (2) is replaced by Eq. (10) and the inten-
sities are only sampled at the reciprocal lattice points. Depending
on the relative sizes of the object and the unit cell, a worry might
be that the sampling rate of the Bragg peaks may be insufficient to
determine the structure 2b initio. However, with random orien-
tations, the sampling provided by R.q; will be sufficient beyond
the first few bk orders. Nevertheless, for completeness at low
resolutions, a unit cell larger than the object would be preferable.

The other experimental parameter that requires some consid-
eration is the size of the beam focus P (r) compared to the lattice
constant. The biggest challenge in determining F,(q) is the deter-
mination of the translation and orientation parameters for each
diffraction pattern. For variable translations, Eq. (10) can be seen
as a constant plus a scaled cosine as a function of (q.t). As in the
SNR discussion in Section 2 and Eq. (4), the amplitude of the
cosine term is the signal relevant to determining the translation t.
The noise in the Poissonian photon counting regime is the square
root of Ips(q), which is approximately just the square root of the
first term, V| F,(q;). Thus, the SNRis

2N|F,(R.q)||F.(q;)]
NI|F.(q)]

=2|F,(R.q)l,

which is independent of N. Since background subtraction during
peak integration is an additional source of noise, NV should be
as large as possible. However, detectors lose the ability to count
individual photons if the signal is too high, either due to saturation
or due to switching to a lower gain mode. The noise in the measure-
ment would then be higher than /7y, because of the additional
uncertainty about how many photons were measured. Thus, the
optimal probe size in the absence of background would be the
largest IV where the detector can still count photons. This
optimum would shift to a larger N when there is significant
background, which would likely be the limiting experimental
factor, especially at high resolutions.

4. DISCUSSION

X-ray SPI remains an experimentally demanding method for
determining the structure of uncrystallized single biomolecules.
Problems still remain in obtaining sufficient data of high quality,
and questions remain regarding the feasibility of transitioning to
smaller particles.

Two methodologies have been proposed here, both of which
improve experimental efficiency by incorporating strongly scatter-
ing holographic references, but they also add complexity because
the composite object is not necessarily reproducible. A reconstruc-
tion algorithm involving a modification to the EMC algorithm is
proposed for recovering the additional degrees of freedom. The
key insight is to separate the reference and the object, as shown in
Egs. (2) and (10), and explicitly sample the different degrees of
freedom introduced by the addition of the reference. These meth-
ods also differ from other commonly used holographic methods
like Fourier transform holography or in-flight holography, where
the references are separated to such an extent that one can perform
single-shot imaging without the need for phase retrieval.

The first reference proposed is one where a strong reference
scatterer like a gold nanosphere is chemically attached to the target
object in an aerosol imaging setup. The size and relative position
of the sphere is assumed to vary shot-to-shot in some intervals.
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The reference makes hit detection easier and improves the hit
rate, since the composite objects are denser, and hence slower in
the aerosol stream. 2D simulations were performed showing the
reconstruction process and the ability to determine the unknown
degrees of freedom (sphere size, position, and object orientation).

The second geometry uses a 2D crystal reference in a scanning
fixed-target sample geometry. High hit rates can be achieved by
controlling the density of particles deposited on the surface. The
lattice reference produces Bragg peaks in the diffraction pattern
that are much more robust to background, which is usually a lim-
iting factor due to the presence of a substrate in the beam path.
The integrated peak intensity contains information about the
structure of the target object as well as its position relative to the
lattice unit cell. The gain in background tolerance may also enable
sample preparation methods that are either easier or that leave the
biomolecule in a closer-to-native state, like liquid cells or graphene
sandwiches.

Further work is required to test the limits of the method in
terms of minimum target object size with currently available
XFEL parameters. The author also hopes that these ideas will be
tested experimentally in the near future, potentially opening up
a new dimension in optimizing experiments to achieve the goal
of atomic-resolution structure and dynamics of uncrystallized
biomolecules.

The data generation and reconstruction code for the 2D simula-
tions shown here are available at [36].
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