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We anticipate noise from the Laser Interferometer Space Antenna (LISA) will exhibit nonstation-
arities throughout the duration of its mission due to factors such as antenna repointing, cyclosta-
tionarities from spacecraft motion, and glitches as highlighted by LISA Pathfinder. In this paper,
we use a surrogate data approach to test the stationarity of a time series, with the goal of identifying
noise nonstationarities in the future LISA mission. This will be necessary for determining how often
the LISA noise power spectral density (PSD) will need to be updated for parameter estimation rou-
tines. We conduct a thorough simulation study illustrating the power/size of various versions of the
hypothesis tests, and then apply these approaches to differential acceleration measurements from
LISA Pathfinder. We also develop a data analysis strategy for addressing nonstationarities in the
LISA PSD, where we update the noise PSD over time, while simultaneously conducting parameter
estimation, with a focus on planned data gaps. We show that assuming stationarity when noise is
nonstationary leads to systematic biases and large posterior variances in parameter estimates for
galactic white dwarf binary gravitational wave signals.

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA)
is a planned space-based gravitational wave (GW)
mission with an expected launch in 2034 led by the
European Space Agency (ESA) [5]. The aim of
this mission is to observe GW signals in the mil-
lihertz band which among others include astrophys-
ical objects such as galactic white dwarf binaries
[19], massive and supermassive black hole binaries
[44], and extreme mass ratio inspirals (EMRIs) [21].
LISA will consist of a set of three spacecrafts ar-
ranged into an “equilateral” triangle, each separated
by L = 2.5 × 106 km connected with a laser link.
The LISA constellation will cartwheel in an Earth-
trailing heliocentric orbit around the Sun at an angle
of 20 degrees between the Sun and Earth.

We expect LISA noise will be nonstationary in nu-
merous ways. For example, as the spacecrafts will
not always be able to point in the same direction
towards Earth for us to receive data, there will be
planned communication interruptions (gaps), where
the antennae will be repointed to adjust the beam
[13, 19]. This means physically moving the anten-
nae, which will create noise. Another subtle effect of
the repointing is that the distribution of mass near
the test mass will change, which might affect the

gravity gradient noise, leading to a change in accel-
eration noise [12, 36]. Controls may need to actively
hold the proof mass using electrostatic actuation,
which may lead to charging of the proof mass, and
a change in the state of the noise [11, 14, 34].

Cyclostationarities are also expected in LISA, for
example, due to the cartwheeling motion and orbits
of the satellites. As LISA does not have uniform sen-
sitivity in the sky and is more sensitive in the direc-
tion perpendicular to the plane of the constellation,
there will be higher amplitude confusion noise when
pointing to the line of sight of the galactic centre as
this is where a large amount of galactic white dwarf
binaries are located [29]. In addition, LISA has a
periodic orbit around the Sun, pseudo-periodic so-
lar activity can lead to cyclostationary noise [3, 4].

LISA Pathfinder (LPF) was an ESA satellite
whose goal was to demonstrate the technology for
the future LISA mission [7]. Glitches in differential
acceleration measurements ∆g have been analyzed
in previous studies, occurring at a rate of one glitch
per two days [8, 9]. As LISA will have a similar
architecture to LPF, we expect glitches as another
form of nonstationarity in the future mission [38].

To understand exactly what it means to have non-
stationary noise, first we must discuss precisely what
a stationary process is. A (weakly) stationary time
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series Y = (Y1, Y2, . . . , Yn)> is a stochastic process
that has constant and finite mean and variance over
time, i.e.,

E[Yt] = µ <∞,
Var[Yt] = σ2 <∞,

for all t, and an autocovariance function γ(.) that
depends only on the time lag s [18]. That is, for
a zero-mean weakly stationary process, the autoco-
variance function has the form

γ(s) = E[YtYt+s], ∀t,

where E[.] is the expected value operator, and t rep-
resents time. Note that the PSD function is the
Fourier transform of the autocovariance function.

Nonstationarities in a time series can therefore
come in the form of a trend, heteroskedasticity, or
time-varying autocorrelations (or PSDs). One can
also consider amplitude modulation (AM) and fre-
quency modulation (FM) to be forms of nonstation-
arity. In this paper, we are interested in a time-
varying PSD structure, where we want to identify
and handle this type of nonstationarity. To this
end, we propose two hypothesis tests to identify
whether a time series is stationary in terms of its
PSD, which will be described in Sections II C and
II D. Further, we have developed an analysis strategy
for dealing with nonstationary LISA noise, where
we update the estimate of the noise PSD over time,
rather than fixing it and assuming stationarity. It
is worth noting that in the context of Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO)
data analysis, fluctuations in the PSD have system-
atically biased parameter estimates [1, 2, 16]. Here,
we are particularly interested in the gap problem
[13, 19], where we believe satellite repointing could
temporarily change the noise structure of the LISA
satellites.

Common approaches to testing the stationarity of
a time series are the so-called unit root tests, includ-
ing the Augmented Dickey-Fuller (ADF) test [43],
Phillips-Perron (PP) test [33], and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test [28]. Unit root
tests have been noted in the GW literature by Ro-
mano and Cornish [39] to not be of particular value
as GW noise generally exhibits high autocorrelation
with roots close to the unit circle, which, as Müller
[31] outlines, is undesirable.

There are also the spectral analysis tests that con-
sider evolutionary (or time-varying) spectral esti-
mates using time-frequency representations of the
data. The most notable of these are the wavelet
test of von Sachs and Neumann [42], where the au-
thors propose using Haar wavelets of time-varying
periodograms to test for covariance stationarity, and
the Priestly-Subba Rao test [35] which tests the uni-
formity of a set of evolutionary spectra at different
time intervals, and is similar to a two-factor analysis
of variance (ANOVA). Another useful variant of the
wavelet test was later proposed by Nason et al [32].
In the context of GW data analysis for LIGO and
Virgo, Abbott et al [2] applied a a scaleogram test
of stationarity using an Anderson-Darling test [6].

Various resampling approaches for testing the sta-
tionarity of a time series have also been introduced,
where (usually) no parametric assumptions are made
about the distribution of the test statistic under the
null hypothesis. One such approach by Swanepoel
and Van Wyk [45] uses a modification of the boot-
strap of Efron [25] to test the equality of two spectral
densities from two independent time series. Dette
and Paparoditis [22] use a frequency-domain boot-
strap to more generally test the equality of two or
more spectral densities.

Our tests fall into the lesser-known surrogate data
tests which were first introduced by Theiler et al [46]
for testing non-linearities in time series, and later
adapted by Xiao et al [50] and Borgnat and Flan-
drin [17] for testing stationarity. These tests are
nonparametric in nature, where the original data are
resampled to create stationary surrogates with the
same periodogram. A version of the multitaper spec-
trogram of Thomson [47] with Hermite (rather than
Slepian) window functions (as discussed by Bayram
and Baraniuk [15]) is computed, where the estimated
spectrum in each time segment is compared to a
time-averaged spectrum using a distance measure,
typically a combination of the Kullback-Leibler di-
vergence and the log spectral deviation. The test
statistic for these tests are the sample variance of
these distances and a null distribution of test statis-
tics (which usually looks like a Gamma distribution
in shape) can be generated by replicating this on a
large number of surrogates.

In this paper, we propose two variants on the sur-
rogate data testing of Xiao et al [50] and Borgnat
and Flandrin [17]. We consider an autoregressive
spectrogram where each short-time segment uses a
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frequentist autoregressive (AR) estimate of its spec-
trum, with order selected based on the Akaike infor-
mation criterion (AIC). In the first variant, we can
either compute the Kolmogorov-Smirnov statistic or
the Kullback-Leibler distance to measure the dis-
tance between local spectra of short time segments
and the global spectrum. A test statistic is then
computed as the sample variance of these distances
and we use surrogates to populate the sampling dis-
tribution of this test statistic under the null hypothe-
sis of stationarity. Large variability in the distances
of the original time series would provide evidence
against stationarity. As a novel alternative, we fit a
least squares regression line to the cumulative me-
dian of Euclidean distances between columns in the
AR spectrogram. The slope of this line is used as a
test statistic and surrogates are again used to gener-
ate the null distribution. Here, if a time series is sta-
tionary, we would expect the PSD in neighbouring
segments of the spectrogram to be similar over time,
meaning the median of Euclidean distances should
fluctuate around a constant. A non-zero slope would
then provide evidence against the stationarity hy-
pothesis. In both variants, empirical percentiles are
used to create a critical value that is used as a re-
jection threshold.

We introduce these hypothesis tests to be used as
a tool for future LISA data analysis, with the over-
all goal of determining how often we should update
the noise PSD. Once this is decided, parameter esti-
mation routines can be implemented. In this paper,
we propose the use of a blocked Metropolis-within-
Gibbs sampler to simultaneously estimate the pa-
rameters of a galactic white-dwarf binary gravita-
tional wave signal and estimating the noise PSD be-
fore and after a planned data gap. We show that
this model leads to improved mean squared errors
of our parameter estimates than when assuming the
PSD does not change.

The paper is structured as follows. In Section II,
we introduce the notion of surrogate data testing,
defining two specific hypothesis tests to be used in
the future LISA mission. We then conduct a simula-
tion study to demonstrate the power of these tests,
and then apply the tests to differential acceleration
measurements from LPF to highlight nonstation-
arities in that data. In Section III, we introduce
our data analysis strategy for handling nonstation-
ary LISA noise. We inject a galactic white-dwarf
binary GW signal in nonstationary noise and im-

plement a blocked Metropolis-within-Gibbs sampler.
We mimic what we believe could happen to LISA
noise when repointing satellites during planned gaps,
and demonstrate that our model yields lower mean
squared errors for all signal parameters than under
an incorrect assumption of stationarity. We then
give concluding remarks in Section IV.

II. IDENTIFYING NONSTATIONARY
NOISE

A. Stationary Surrogates

Surrogate data testing was originally proposed by
Theiler et al [46] for testing non-linearities in time se-
ries, and later adapted by Xiao et al [50] and Borgnat
and Flandrin [17] for testing stationarity. The main
idea here is that one can create stationary “surro-
gates” of a (potentially nonstationary) time series
by directly manipulating the data in the frequency-
domain, preserving the second-order statistics, but
randomizing higher order statistics. In this way, we
can generate a stationary surrogate of a time series
that has the same empirical spectrum (periodogram)
as the original time series.

First, Fourier transform the time series Y (t) using

Ỹ (ω) =

∫
e−2πitωY (t)dt,

to get a frequency-domain representation (where t
represents time and ω represents frequency), and ex-
press this in polar coordinates such that

Ỹ (ω) = A(ω)eiϕ(ω),

where A(ω) = |Ỹ (ω)| is the magnitude vector and

ϕ(ω) = arg
(
Ỹ (ω)

)
is the phase vector.

Keeping the magnitude vector A(ω) fixed, we re-
place the phase vector ϕ(ω) by a new phase vec-
tor ϕ∗(ω) that is populated by iid Uniform[−π, π]
random variables. We now have a randomized
frequency-domain representation of the surrogate
Ỹ ∗(ω) = A(ω)eiϕ

∗(ω) which is inverse Fourier trans-
formed to give a time-domain representation of the
surrogate:

Y ∗(t) =
1

n

∫
e2πitωỸ ∗(ω)dω.
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Let (ω0, ω1, . . . , ωn/2−1, ωn/2) be the positive
Fourier frequencies. We only randomize the phase
for ω1, ω2, . . . , ωn/2−1 because ω0 and ωn/2 are al-
ways real-valued with zero phase, and the negative
Fourier coefficients are complex conjugates of the
positive Fourier coefficients for the inverse Fourier
transform to be real-valued, meaning ϕ(−ω) =
−ϕ(ω).

Surrogates are extremely useful for testing sta-
tionarity as they not only have the same peri-
odogram as the original data (which may or may
not be stationary), but they are stationary them-
selves, meaning if one can compute a test statistic
that can distinguish the null hypothesis (stationary)
from the alternative hypothesis (nonstationary), it
is straightforward to generate the sampling distri-
bution of the test statistic but computing the test
statistic on a large number of surrogates. We now
focus our attention on useful test statistics based on
the autoregressive spectrogram.

B. Autoregressive Spectrogram

The spectrogram is the most fundamental tool
used in time-frequency analysis. It contains at each
column an approximation of the PSD function for
consecutive time intervals. Thus, it allows us to as-
sess the evolution of this function over time. It is
computed as follows. First compute the short-time
Fourier transform (STFT),

Ỹ (ω, T ) =

∫
e−2πitωY (t)W (t− T )dt,

where W (.) is a window function of duration T of the
window. Then take the squared modulus of each seg-
ment. This amounts to computing the periodogram
of short windowed segments of the data, which may
or may not be overlapping in time.

It is well-known in the time series literature that
the periodogram is an asymptotically unbiased es-
timator of the spectral density function, but it is
not a consistent estimator. This has lead to a large
amount of literature on periodogram smoothing to
reduce the variance.

The most popular parametric approach is to fit
an autoregressive model where the order chosen by
AIC. In this paper, we use an AR estimate of the
spectrum for each segment of the spectrogram rather
than using the raw periodogram. Although there

are more sophisticated approaches to spectrum esti-
mation that perhaps do not rely on parametric as-
sumptions (see for example Choudhuri et al [20], Ed-
wards et al [24], Kirch et al [27], Maturana-Russel
and Meyer [30] for novel Bayesian approaches), we
use the frequentist AR method for the sake of com-
putational speed and ease.

For the remainder of the paper, when computing
the AR spectrogram, we utilize the Tukey window
with tapering coefficient equal to (1−Overlap)/10.

C. Variance of Local Contrast (VOCAL) Test

In this section, we describe the first of two surro-
gate tests, which we call the Variance of Local Con-
trast (VOCAL) Test. As with any hypothesis test,
we need to first define a test statistic that can dis-
tinguish between the null hypothesis and alternative
hypothesis.

First consider the original time series and find its
AR spectrogram. We need to contrast local features
in the spectrogram with the global spectrum by com-
puting a local contrast for each time segment (col-
umn) in the spectrogram. This is computed as

cl = κ(f̂l, f̂), l = 1, 2, . . . , L,

where L is the number of time segments (columns)

in the spectrogram, f̂l is the estimated (local) PSD

of the lth time segment of the spectrogram, f̂ is the
estimated (global) PSD of the entire time series (es-
timated using the same AR routine in the spectro-
gram), and κ is a suitable spectral distance,

In this paper we use as our local contrasts either
the Kolmogorov-Smirnov (KS) statistic

κ(f1, f2) = sup
ω
|F1(ω)− F2(ω)|,

where F1 and F2 are standardized empirical cumu-
lative distribution functions (ECDFs) computed by
normalizing the estimated PSDs f1 and f2, and tak-
ing their cumulative sums, or we use the symmetric
Kullback-Leibler (KL) divergence

κ(f1, f2) =
1

2

∫ (
f1 (ω)− f2 (ω)

)
log

f1(ω)

f2(ω)
dω,

where f1 and f2 are normalized PSDs.
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Fluctuations in the local contrasts can be used to
distinguish between stationarity and nonstationar-
ity as we would expect very little variability in the
local contrasts if a time series was stationary and
more variability if the time series was nonstation-
ary. To this end, we use the sample variance of local
contrasts as the test statistic for this test, i.e.,

V = Var(c),

where c = (c1, c2, . . . , cL).
We can then generate the sampling distribution

of this test statistic under the null hypothesis by
repeating this same process on stationary surro-
gate data. That is, for each surrogate (indexed by
s = 1, 2, . . . , S, for large S) compute the AR spec-
trogram, the local contrasts cs, and finally the test
statistic to give us

V0(s) = Var(cs), s = 1, 2, . . . , S,

where cs = (cs,1, cs,2, . . . , cs,L).
The hypothesis test can then be formalized by

considering where V lies in the distribution of V0.
Let

H0 : V < γ (Stationary),

H1 : V ≥ γ (Nonstationary),

where γ is the critical value chosen such that

p(V0 ≤ γ) = 1− α,

where α is the rejection threshold. Thus for an α =
0.05 rejection threshold, γ is computed as the 95%
percentile of V0. Alternatively, an approximate p-
value can be computed by

1

S

S∑
s=1

I{V0(s)≥V },

where I is an indicator function. Note that this is a
one-sided test.

The precision to which the p-value can be com-
puted depends on the number of surrogates gen-
erated. For example, if S = 1, 000, the p-value
can be computed to three decimal places, and if
S = 10, 000, the p-value can be computed to four
decimal places.

As an illustrative example of the test, consider the
autoregressive (AR) model, defined as:

Yt =

p∑
i=1

ϕiYt−i + εt,

where p is the order, (ϕ1, . . . , ϕp) are the model pa-
rameters, and εt ∼ N(0, σ2) for all t is the white
noise innovation process.

Consider the case where we have a length n = 213

time series generated from an AR(2) with parame-
ters (0.9, -0.9), and we concatenate this with a length
n = 213 time series generated from an AR(1) with
parameter 0.9, each with standard normal innova-
tions, as illustrated in Figure 1.
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FIG. 1: Time series containing 213 realizations
from an AR(2) with parameters (0.9,−0.9) and 213

realizations from an AR(1) with parameter 0.9.
Each series uses N(0, 1) innovations.

Setting the overlap to 75% and window length to
210, the associated AR spectrogram can be seen in
Figure 2. Notice how the spectrum changes around
halfway through the time series.
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FIG. 2: AR spectrogram from the time series
presented in Figure 1. Notice the abrupt change in

PSD structure at the halfway point.

We now generate 1,000 surrogates. One example
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of a surrogate of our original time series can be seen
in Figure 3 and its associated AR spectrogram can
be seen in Figure 4.
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FIG. 3: One example of stationary surrogate data
based on the time series presented in Figure 1.

0

1

2

3

0 5000 10000 15000
Time

F
re

qu
en

cy

0
2
4

log PSD

FIG. 4: AR spectrogram from the stationary
surrogate data presented in Figure 3.

Using the KS statistic as the local contrast, we
can generate the test statistic V from the original
data, and the empirical sampling distribution of the
test statistic using (V0(1), V0(2), . . . , V0(S)). Using
a 5% rejection threshold, we compute the 95% per-
centile of the empirical sampling distribution. This
is illustrated in Figure 5. As the test statistic V
is greater than the 95% percentile of the empirical
sampling distribution, we reject the null hypothesis
of stationarity.
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FIG. 5: Empirical sampling distribution of test
statistic (variance of local contrasts computed

using the KS statistic). The dotted black line is γ
(the 95% percentile of this null distribution) and

the dashed pink line is the test statistic V from the
original time series.

D. Slope of Median Euclidean Distance
(SOMED) Test

For our second surrogate test, we compare the Eu-
clidean distances between the estimated PSD func-
tions over time, i.e., a comparison between the
columns of the spectrogram. If a time series is sta-
tionary, each column in the spectrogram should look
approximately similar over time (see e.g., Figure 4).
Consequently, a sequence of consecutive distances
should fluctuate around a constant. We propose to
test stationarity by testing the significance of the
slope in a simple linear regression model fitted to
these distances.

First, we calculate the AR spectrogram. This con-
forms a matrix (r×m) where the rows and columns
stand for the energy or power at a particular fre-
quency and the time intervals, respectively. Then,
we calculate the Euclidean distance of each column
with respect to the other ones, that is

dij =

√√√√ r∑
k=1

(Yki − Ykj)2,

where Yi = (Y1i, . . . , Yki, . . . , Yri)
> is the ith column

of the spectrogram for i = 1, . . . ,m. The distances d
compound a symmetric matrix D which has a vector
of zeros in its diagonal.



7

Since D is symmetric, we discard the upper tri-
angular part and calculate the median of each row,
which generates a sequence v = (v2, . . . , vm), where
vi is the median of the Euclidean distances of the
estimated PSD for the ith time interval (column in
the spectrogram matrix) with respect to all the esti-
mated PSD of the previous time intervals, i.e., it is
a cumulative median. Since the first vi values em-
body a few comparisons that tend to generate low
discrepancies, these can be discarded, for instance,
the first 10% of the sequence.

If the time series is stationary, we would expect a
similar PSD across time. In other words, the cumu-
lative median of the Euclidean distances should fluc-
tuate around a constant, which can be tested eval-
uating the slope of a fitted simple linear regression
model. Thus, we fit a linear model yi = β0+β1xi+εi,
where the responses are the sequence v and the ex-
planatory variables points in time. We assume that
the errors εi are independent and identically dis-
tributed with E(εi) = 0 and Var(εi) = σ2. If the
estimated slope is zero it means that the time series
is stationary, otherwise the time series is nonstation-
ary. We assess this assumption of the time series
through the following hypotheses:

H0 : β1 = 0 (Stationary)

H1 : β1 6= 0 (Nonstationary).

The null hypothesis establishes that the sequence
of medians v does not change over time or equiv-
alently the PSD functions do not vary significantly
over time, showing the stationarity of the time series.

To test H0, we compare the slope estimated from

the original data β̂ with the empirical distribution
of the slopes estimated from surrogate data sets

β̂S = (β̂1, . . . , β̂S), i.e., under the null hypothesis
that assumes stationarity. Then, the p-value is cal-
culated by

1

S

S∑
s=1

(
I{−|β̂|>β̂s} + I{|β̂|<β̂s}

)
,

where I is an indicator function.
This test also has the potential of detecting

glitches using conventional statistical techniques
used to detect outliers in linear regression models.
This can be assessed by analyzing the cumulative
median values of the original data set.

Consider the AR spectrogram used in Section II C.
The nonstationary design of this process can be

clearly noted in the spectrogram displayed in Fig-
ure 2. The two PSDs corresponding to the AR(2)
and AR(1) processes have their peaks at different
frequencies. This difference is also clear in the com-
parison of the Euclidean distances displayed in Fig-
ure 6. The discrepancy in the PSD estimates is rep-
resented in the magnitude of the distances which
conform a block in the lower-right part.
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FIG. 6: Euclidean distances for the spectrogram
displayed in Figure 2.

The medians of the Euclidean distances of a spe-
cific time interval in Figure 6 with respect to its pre-
vious intervals are displayed in Figure 7. It can be
noticed the design of the process: the first half is cen-
tred below the second one. The slope of the simple
linear model is evidently non zero. The discrepancy
of the PSD estimates do not seem to fluctuate ran-
domly around a constant, which is evidence in favour
of the nonstationary nature of the process. Compar-
ing this slope with the empirical distribution of the
slopes calculated from the surrogate data sets we get
a p-value of 0.000. The SOMED test rejects the null
hypothesis, identifying successfully this data set as
nonstationary.

E. Testing Simulated Data

We now apply the surrogate tests to simulated AR
data (with standard white noise innovations) and
compute power or size for different scenarios. Con-
sider a length n = 212 time series Y that is split in
half into two length n/2 = 211 time series Y1 and
Y2. For the following three scenarios, let Y1 and
Y2 have the:
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FIG. 7: Median of the Euclidean distances for each
column of Figure 6. The dashed line stands for a

simple linear model.

1. Same dependence structure;

2. Different dependence structure;

3. Similar dependence structure.

In Scenario 1, we consider a time series with
the same dependence structure (and therefore PSD)
throughout its duration. Let Y1 and Y2 be gen-
erated from an AR(1) with parameter 0.9. In this
scenario, we show that both tests yield small Type I
Errors, and fail to reject the null hypothesis of sta-
tionarity the vast majority of times.

In Scenario 2, we look at an extreme example,
where Y1 and Y2 have vastly different dependence
structures. Let Y1 be generated from an AR(2) with
parameters (0.9, -0.9) and Y2 be generated from an
AR(1) with parameter 0.9. Here, we demonstrate
that both methods reject the null hypothesis of sta-
tionarity, with high power.

In Scenario 3, we let Y1 and Y2 have very similar
(but not equivalent) dependence structures. Let Y1

come from an AR(1) with parameter 0.8 and Y2

come from an AR(1) with parameter 0.9.
Finally we add a fourth scenario:

4. Time-varying dependence structure.

We use a time-varying autoregressive model
(TVAR), where coefficients vary linearly from -0.6
to 0.6. Here, we demonstrate that both approaches
reject the stationarity hypothesis when the spec-
trum is time-varying, with high power.

For each scenario we generate a time series, com-
pute its AR spectrogram, and test statistic. We then
create 1,000 stationary surrogates, compute their
AR spectrograms and test statistics and compare the
observed test statistic against the sampling distribu-
tion of test statistics. If the observed test statistic is
in the tails of the distribution, this gives us evidence
against the stationarity hypothesis. Specifically, we
use the 95% percentile as the critical value for the
one-sided VOCAL tests (i.e., a p-value of < 0.05),
and p-value of < 0.05 for the two-sided SOMED test.

The AR spectrograms are generated using a win-
dow length of 29, and overlap of 75%. We conduct
both the VOCAL and the SOMED hypothesis tests,
and consider both the KS and the KL variants on
the VOCAL test.

We replicate each simulation 1,000 times and re-
port the size or power of each test, at the 5% signifi-
cance level, where the size of a test is the probability
of falsely rejecting the null hypothesis when it is true
(or the probability of making a Type I Error), and
the power of a test is the probability of correctly re-
jecting the null hypothesis when it is false (or one
minus the probability of making a Type II Error).
Our results are presented in Table I.

TABLE I: Test size (probability of falsely rejecting
H0 when it is true) for Scenario 1, and test power
(probability of correctly rejecting H0 when it is

false) for Scenarios 2, 3, and 4.

Scenario KS KL SOMED

1 0.036 0.048 0.046

2 1.000 1.000 1.000

3 0.794 0.739 0.962

4 1.000 1.000 0.999

We see that when Y1 and Y2 have the same PSD,
all tests have a very small test size and that there is
less than a 5% chance of making a Type I error. For
the extreme case where Y1 and Y2 have very dif-
ferent PSDs, all tests give us power 1, which means
there is zero chance of making a Type II error. In the
case where we have similar but not equivalent PSDs,
all tests reject the null hypothesis the majority of the
time and the SOMED test works particularly well,
which is remarkable considering how similar the Y1

and Y2 are. When we have a time-varying PSD,
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we again have high power. All of these results give
us great confidence that the surrogate tests are per-
forming as required.

F. LISA Pathfinder

We now demonstrate that our surrogate tests can
detect nonstationarities in the clean (Level 3) ∆g
data from the noise runs of LPF. These data have
been corrected for the acceleration coming from cen-
trifugal force, acceleration on the x-axis coming from
the spacecraft motion along other degrees of free-
dom, and spurious acceleration noise from the digital
to analog converter of the capacitive actuation and
Euler force. Details can be found in the technical
note on the LPF data archive [10].

We analyze segments from two separate noise
runs. These have the following starting times and
lengths:

1. 2016-04-03 14:55:00 UTC for 12 days, 16
hours, 29 minutes, 59.40 seconds. We refer to
this data set as the Glitch Data Set.

2. 2017-02-13 07:55:00 UTC for 18 days, 13
hours, 59 minutes, 59.40 seconds. We refer
to this data set as the Amplitude Modulation
(AM) Data Set.

The LPF data are originally sampled at a rate
of 10 Hz (with sample interval ∆t = 0.1 s). For the
Glitch Data Set, we downsampled the data to 0.2 Hz
(∆t = 5 s) to obtain a Nyquist frequency of 0.1 Hz
(but first Tukey windowing with parameter 0.01,
then applying a low-pass Butterworth filter of order
4 and critical frequency 0.1 Hz to avoid aliasing is-
sues). The frequency range of interest for most GW
signals detectable by LISA is [10−4, 10−1] Hz. To
resolve the lowest frequency in this band, the short-
est (base 2) time series we can analyze is n = 211.
We therefore split the data into non-overlapping seg-
ments of length n = 211 to speed up computations.

It is important to note that in the mean sense
of stationarity, once filtered and downsampled, the
Glitch Data Set is nonstationary, as there is a trend.
We therefore remove this trend piecewise linearly for
each non-overlapping segment, and we focus our at-
tention on the question of whether LPF noise is non-
stationary in terms of its autocovariance function, or
equivalently its PSD.

For the AM Data Set, we take the Level 3 data
without any additional preprocessing. We examine
the first four hours of this data set.

1. Glitch Data Set

Here, we analyze the Glitch Data Set for four dif-
ferent cases. These are:

1. The full time series (see Figure 8).

2. A segment with a large glitch at the end of the
time series (see Figure 9).

3. A segment with a large glitch not at the end
of the time series (see Figure 10).

4. A stationary segment with no glitches present
(see Figure 11).

For the following surrogate tests, we compute an
AR spectrogram with no overlap and window length
29 for Case 1, and 27 for Cases 2–4. 1,000 surrogates
are then used to generate the sampling distribution
of the test statistics.

The full downsampled, filtered, and piecewise
linear detrended data can be seen in Figure 8.
This data set is full of transient, high amplitude
“glitches”.

−1e−13

0e+00

1e−13

2e−13

3e−13

0 100 200 300
Time [Hours]

∆ g

FIG. 8: ∆g LPF data from the Glitch Data Set.

When considering the full data set, we report a p-
value of 0.001 and 0.000 for the KS and KL variants
of the VOCAL test respectively, and 0.001 for the
SOMED test. These results indicate that all of the
surrogate tests provide evidence against the notion
of stationarity, which we attribute to the glitches.
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Now consider the case where we look at a segment
of the data set where the largest glitch is present.
We can see in Figure 8 that the largest glitch in the
time series is somewhere around 45 hours into data
collection (in the 15th segment from preprocessing).
We zoom on this segment (of length n = 211) and
its neighbouring earlier (14th) segment in Figure 9.

0e+00

1e−13

2e−13

3e−13

40 42 44
Time [Hours]

∆ g

FIG. 9: The 14th and 15th length n = 211 segments
from the Glitch Data Set. There is a noticeably

large glitch at the end of the displayed time series.

When analyzing the time series in Figure 9, where
the glitch is at the end of the time series, we report
a p-value of 0.001 for the KS variant of the VO-
CAL test, 0.000 for the KL variant of the VOCAL
test, and 0.002 for the SOMED test, all providing
very strong evidence against the notion of stationar-
ity. We attribute this nonstationarity to the glitch
present in the data set.

The glitch at the end of the times series causes nat-
urally a large Euclidean distance for the last interval
in comparison to the previous ones in the SOMED
test case. This is reflected in the estimated simple
regression model. The glitch has a leverage effect in
the estimated slope, which results in the rejection of
the null hypothesis.

When the large glitch is not at the end of the time
series as in Figure 10, the KS and KL variants of the
VOCAL test both yield p-values of 0.000, meaning
we have very strong evidence against stationarity.
However, for the SOMED test, we report a p-value
of 0.701, which means we are not rejecting the notion
of stationarity here.

Unlike the previous case, the glitch is relatively in
the middle of the sequence, which results in a large
value in one of the central cumulative medians of the

0e+00

1e−13

2e−13

3e−13

41 42 43 44 45 46 47
Time [Hours]

∆ g

FIG. 10: Same data as in Figure 9 but translated
so that the glitch occurs 75% of the way through

the time series.

Euclidean distances in the SOMED test case. This
large value has a null effect on the estimated slope
of the linear model due to its position. Thus, the
method fails wrongly to reject the null hypothesis.
However, this large value can be visualized via the
Cook’s distance, a measure of the impact of a single
observation in the parameter estimates. In this case,
the interval that contains the glitch has a Cook’s dis-
tance value of 0.39, which is extremely close to the
cut point given by the rule of thumb 0.4, and it is
quite different from the rest of the Cook’s distance
values, which have a median of 0.014 and standard
deviation of 0.070. Even though the SOMED test
fails to reject the stationary hypothesis in this case,
the glitch can be detected and thus the validity of
the conclusions based on this test can be questioned.
This procedure can be applied to other similar situ-
ations.

For Case 4 where the data looks stationary, we
report the following p-values: 0.836 and 0.198 for
the KS and KL variants of the VOCAL test respec-
tively, and 0.702 for the SOMED test. All three
do not reject the null hypothesis, meaning we have
no evidence against stationarity for this segment of
data.

2. AM Data Set

We see cyclostationary behaviour in the LPF data.
This is highlighted in the AM Data Set, which is
illustrated in Figure 12.
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FIG. 11: Stationary segment of the Glitch Data Set
occurring before the large glitch in Figures 9 and

10.

−5e−11

0e+00

5e−11

0 50 100 150 200
Time [Hours]

∆ g

FIG. 12: ∆g data from the AM Data Set.

For all of the surrogate tests, we compute an AR
spectrogram with no overlap and window length 29.
Using 1,000 surrogates to generate the sampling dis-
tribution of the test statistics, we report a p-value of
0.008 for the KS variant of the VOCAL test, 0.000
for the KL variant of the VOCAL test, and 0.000 for
the SOMED test, all providing very strong evidence
against the notion of stationarity.

III. ADDRESSING NONSTATIONARY
NOISE

Once we know how often to update the LISA
noise PSD (using the hypothesis tests defined in Sec-
tion II C and Section II D, or similar), we can develop
a LISA data analysis strategy. Here we describe a

parameter estimation routine for one non-chirping
galactic binary GW signal, where we simultaneously
estimate signal parameters and update the LISA
noise PSD over time to take into account the time-
varying nature of the noise. We include a planned
gap in the data stream and use different noise struc-
tures before and after the gap to mimic what we
expect to happen to LISA noise due to antenna re-
pointing. We also highlight the impact that nonsta-
tionary noise has on parameter estimates when noise
is assumed to be stationary.

A. Galactic White Dwarf Binary Gravitational
Wave Signal Model

We assume the low frequency approximation to
the LISA response as described by Carré and Porter
[19]. We define the GW strain in one TDI channel
as

h(t) = h+(t)F+(t) + h×(t)F×(t),

where the GW polarisations are defined as

h+(t) = A0

(
1 + cos2 ι

)
cos (Φ (t) + ϕ0) ,

h×(t) = −2A0 cos ι sin (Φ (t) + ϕ0) ,

for a non-chirping galactic white dwarf binary. Here,
A0 is the amplitude, ι is the inclination angle be-
tween the orbital plane of the source and the ob-
server, ϕ0 is the initial phase, and Φ(t) is the time-
dependent phase, which for a circular orbit, is de-
fined as

Φ(t) = 2πω0 (t+R⊕ sin θ cos (2πωmt− φ)) ,

where ω0 is the monochromatic frequency, ωm is the
LISA modulation frequency (defined as the recipro-
cal of the number of seconds in a year), R⊕ is the
time light takes to travel one astronomical unit, and
(θ, φ) is the sky location of the source.

Using the definitions of Rubbo et al [41], the an-
tenna beam factors are

F+(t) =
1

2

(
cos (2ψ)D+ (t)− sin (2ψ)D× (t)

)
,

F×(t) =
1

2

(
sin (2ψ)D+ (t) + cos (2ψ)D× (t)

)
,
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where

D+(t) =

√
3

64

(
− 36 sin2 (θ) sin (2α (t)− 2λ)

+ (3 + cos (2θ))

(
cos (2φ)

(
9 sin (2λ)

− sin (4α (t)− 2λ)
)

+ 2 sin (2φ)(
cos (4α (t)− 2λ)− 9 cos (2λ)

))
− 4
√

3 sin (2θ)
(

sin (3α (t)− 2λ− φ)

− 3 sin (α (t)− 2λ+ φ)
))

,

D×(t) =
1

16

(
√

3 cos (θ)
(

9 cos (2λ− 2φ)

− cos
(
4α (t)− 2λ− 2φ

))
− 6 sin (θ)

(
cos
(
3α (t)− 2λ− φ

)
+ 3 cos

(
α (t)− 2λ+ φ

)))
,

and α(t) = 2π t
T +κ is the orbital phase of the centre

of mass of the constellation, where T is the number
of seconds in a year (though in this study, we in-
crease the orbital modulation so that T is the num-
ber of seconds in a day for computational reasons),
and κ = 0 is the initial ecliptic longitude.

The parameters we are interested in estimating are
amplitude A0, monochromatic frequency ω0, initial
phase ϕ0, and inclination ι. All other parameters,
e.g., sky location (θ, φ), GW polarization angle ψ,
and initial ecliptic longitude κ, are fixed. To this
end, we place the following noninformative priors on
the signal parameters:

A0 ∼ Uniform[0,∞),

cosϕ0 ∼ Uniform[−1, 1],

cos ι ∼ Uniform[−1, 1],

ω0 ∼ Uniform[0.0001, 0.0191].

Although data will eventually be analyzed in the
three TDI channels A, E, and T [48] (where T is
the noise-only channel containing no signal infor-
mation), for simplicity, we will only consider the A
channel, meaning we set TDI channel angle λ = 0.

B. Bayesian Nonparametric Noise Model

To model the noise PSD, we use the Bayesian non-
parametric B-spline prior introduced by Edwards
et al [24]. The B-spline prior has the following rep-
resentation as a mixture of B-spline densities:

sr(x; k,wk, ξ) =

k∑
j=1

wj,kbj,r(x; ξ),

where bj,r(.) is the jth B-spline density of fixed de-
gree r, k is the number of B-spline densities in the
mixture, wk = (w1,k, . . . , wk,k) is the weight vector,
and ξ is the nondecreasing knot sequence.

The noise PSD f(.) is then modelled as as follows:

f(πx) = τ × sr(x; k,G,H), x ∈ [0, 1],

where the mixture weights and knot differences are
induced by CDFs G and H respectively, each on

[0, 1], and τ =
∫ 1

0
f(πx)dx is the normalization con-

stant.
We place the following a priori independent priors

on the noise PSD model parameters (k,G,H, τ):

p(k) ∝ exp{−θk2},
G ∼ DP(G0,MG),

H ∼ DP(H0,MH),

τ ∼ IG(α, β),

where DP represents a Dirichlet process, IG is the
inverse-gamma distribution, θ is a smoothing coef-
ficient, G0 and H0 are base measures, and MG and
MH are concentration parameters.

Finally, the joint prior is updated by the com-
monly used Whittle likelihood [49] to yield a pseudo-
posterior. For more details, such as implementation,
we refer the reader to Edwards et al [24].

This is in essence a blocked Metropolis-within-
Gibbs sampler similar to Edwards et al [23], where
we sequentially sample the signal parameters given
the noise parameters, and then the noise parameters
given the signal parameters.

C. Example

Consider the simple case where we have 48 hours
of data from the A TDI LISA channel, and there



13

is one planned outage at 22 hours for a duration
of four hours due to antenna repointing. Assume
this antenna repointing changes the noise structure.
Whether this is realistic is yet to be determined.

We generate a (non-chirping) galactic white-dwarf
binary signal with the following parameters to be
estimated:

A0 = 1× 10−21

ω0 = 0.005

ϕ0 = 3π/4

ι = π/2.

We fix the sky location (θ = π/4, ψ = π/4) and GW
polarization angle φ = 0. Let TDI channel angle
λ = 0 as we only consider the A channel. We set
the sample interval to ∆t = 10 s, yielding a Nyquist
frequency of ω∗ = 0.05 Hz.

The noise for this example is created as follows.
Before the gap, an AR(2) process with parameters
(0.9,−0.9) and standard deviation 1×10−22 is gener-
ated. After the gap, an AR(1) process with param-
eter 0.9 and standard deviation 4 × 10−22 is gener-
ated. The increase in the variance of noise and the
change in the autocovariance structure during the
second half is our attempt at simulating a change
in noise structure due to the repointing of antennae.
This noise setup yields an overall signal-to-noise ra-
tio (SNR) of % ≈ 50 (when considering both noise
segments).

We add this noise to the generated GW signal and
remove the middle four hours of the data to cre-
ate a gap. We then multiply the data by a Tukey-
type window, where we taper off any data to zero
where there is a gap, with a chosen taper param-
eter of r = 0.1. Note that this Tukey-type win-
dow will be applied to all galactic white-dwarf bi-
nary signals proposed during the MCMC algorithm
to ensure gaps are in the correct place in the signal
model.

A realization of this data setup can be seen in
Figure 13.

We implement the noise model in two different
ways. In the first approach, we assume the station-
ary model, where the PSD is assumed to stay con-
stant throughout the entire time series. In the sec-
ond approach, we do not assume stationarity, which
allows us to model the PSD before and after the gap
differently if they are in fact different (which they
are in this example). We then compare bias and
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FIG. 13: Panel 1: Non-chirping galactic
white-dwarf binary GW signal. Panel 2: AR(2)
noise in first half, AR(1) noise in second half.

Panel 3: Data (signal plus noise) with four hour
gap in the middle. Panel 4: Data multiplied by

Tukey-type window (with r = 0.1).

posterior variance between the two approaches.

D. Results

We run both algorithms for 100,000 iterations,
with a burn-in of 50,000 and thinning factor of 5. We
also use an adaptive proposal for each signal param-
eter described by Roberts and Rosenthal [37]. That
is, for each parameter, we use a standard Metropolis
step with Normal proposal centred on the previous
value, and variance that is automatically tuned to
achieve a desired acceptance rate of 0.44.

Figure 14 compares the posterior densities of our
parameter vector (A0, ω0, ϕ0, ι) when we assume the
nonstationary model versus the stationary model.

We can see that the bias (posterior median minus
truth) and posterior variance are smaller under the
nonstationarity assumption. This is summarized in
Table II as the mean squared error (MSE), which is
computed by:

MSE(θ̂) = Var(θ̂) + Bias(θ̂)2,
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FIG. 14: Posterior densities of parameters of
interest using the nonstationary noise assumption

(pink) versus the stationary noise assumption
(blue).

for each parameter θ.

TABLE II: Mean squared errors for parameters of
interest under the stationary and nonstationary

noise assumptions.

Stationary Nonstationary

A0 1.314 × 10−45 2.086 × 10−47

ω0 3.633 × 10−14 1.256 × 10−15

ϕ0 3.527 × 10−3 8.557 × 10−5

ι 1.369 × 10−3 1.424 × 10−5

We see that when we correctly use a nonstationary
noise model, the MSE for our parameter estimates
are one or two orders better than when using an
incorrect stationary noise model. These results indi-
cate that it is extremely important and necessary to
update the noise PSD when noise is nonstationary,
otherwise we run the risk of introducing systematic
biases into our astrophysical parameter estimates.

IV. DISCUSSION

In this paper, we have discussed methods to iden-
tify and address nonstationary noise in the future

LISA mission. We demonstrated the usefulness of
the lesser-known surrogate tests for assessing the
stationarity of a time series, introducing a novel vari-
ant in the form of the SOMED test. We applied the
surrogate tests to real LPF data and showed that
certain segments are nonstationary in nature, due to
glitches, and amplitude modulations. As the archi-
tecture of LISA will share many similarities to LPF,
we see this as an important first step in understand-
ing the stationarity/nonstationarity of LISA data.

We introduced a Bayesian semiparametric frame-
work for conducting parameter estimation when
there is nonstationary noise as a result of antenna
repointing. We highlighted the risk of assuming a
stationary noise model in this situation, as it leads
to systematic biases in astrophysical parameter esti-
mates, as well as larger posterior variances.

An interesting alternative framework for mod-
elling noise could be to modify the time-varying
spectrum estimation regime of Rosen et al [40],
which utilizes reversible jump MCMC [26] to deter-
mine the number of locally stationary segments in
a time series. One could use a blocked Metropolis-
within-Gibbs sampler similar to the one introduced
in this paper to model signal parameters given noise
parameters and vice versa. This is one avenue we
aim to explore in a future paper.

Another future initiative includes investigating
the impact of planned data gaps and nonstation-
ary noise on EMRI GW signals, particularly those
arising from near-extremal black holes.
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