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1 Introduction

The recent experiments of heavy ion collision at the Relativistic Heavy Ion Collider (RHIC) and the Large

Hadron Collider (LHC) have produced a strongly coupled quark-gluon plasma (QGP) and explored the

QCD phase structure under finite baryon density and strong magnetic fields [1–4]. In addition, strong

magnetic fields are present in neutron stars and magnetars [5, 6], as well as in the cosmological phase

transition during the early stages of the universe [7]. Therefore, understanding the effect of magnetic field

on QCD phase transition is an important task in fundamental physics.

The early investigation by lattice QCD showed that the phase transition temperature increases with

the external magnetic field, i.e. magnetic catalysis (MC) [8–10]. The MC phenomenon has been confirmed

by many effective QCD theories [11–30] as well as holographic QCD (hQCD) models [31, 32]. See [26]

for a review. However, later lattice simulations revealed the opposite results by considering the physics

quark mass that the phase transition temperature decreases with the external magnetic field, i.e. inverse

magnetic catalysis (IMC) [33–43]. The IMC phenomenon has been investigated in numerous literature

[44–65]. Theoretically, we still do not fully understand the response of the microscopic mechanism for the

magnetic field effects. The one interpretation is that the effect of magnetic field can reduce the number

of the effective dimensions of the quarks, which leads to the chiral condensation [26, 51]. Comparing with

the heavy quark, increasing temperature, the light sea quarks can be excited easily which induces chiral

condensation of the light quarks. Furthermore, it is believed that the corresponding effects are due to the

competition between the direct valence effect and the indirect sea effect [33, 37, 66, 67]. The valence effect

induces dynamical mass generation and always causes MC phenomenon. While including the back-reaction

– 1 –



of the sea quarks on the gauge fields and the screening effect of the gluon interactions will suppress the

phase transition and causes the IMC phenomenon. On the other hand, the recent lattice simulations have

demonstrated that the magnetic effect depends on quark mass. For light quarks, the sea effect wins the

competition and induces IMC phenomenon. While for heavy quarks, the valence effect becomes more

important and the phase transition behaves as MC phenomenon [66, 67].

Investigating the QCD phase transitions has been a long crusade to understand the fundamental

physics and astrophysics for decades. Since most perturbative QCD calculations and effective models

suggest MC, people believe that IMC is due to the strongly coupled dynamics near the phase transition.

However, the standard perturbative method can not treat the issue well because of the strongly coupled

region. In addition, the non-perturbative techniques such as lattice QCD are facing the sign problem for

finite baryon densities. In order to reveal the whole picture in the ”temperature-chemical potential” plane,

the holographic framework [68–70] is a good candidate to fulfill the job. In hQCD, phase transitions in the

presence of external magnetic field has been previously studied for both confinement-deconfinement phase

transition [71–77] and chiral condensation [31, 32, 48, 73, 78–91].

One of the ingredients of MC/IMC phenomena is anisotropy. A series study in [77, 87, 89, 92] reveals

that the isotropy could be broken not only by introducing a magnetic field but also a relevant or marginal

operator. In this work, we study the magnetic effect on phase transition in QCD for heavy quarks by

holographic correspondence. We are going to explore how the phase transition is affected by the external

magnetic field, which plays the role of anisotropy. We study a hQCD model by considering an uniform but

anisotropic external magnetic field in the 5-dimensional Einstein-Maxwell-Scalar (EMS) system, which is

dual to a 4-dimensional QCD theory. This background is a magnetic generalization of the EMS frameworks

considered in [93–99], in which a family of analytic solutions were obtained, and the phase diagram and

the equations of states in QCD have been extensively studied. To ensure the stability of the gravitational

background, we check the null energy condition (NEC), which induces a constraint for the profile of scalar

field. To study heavy quarks, we fit our parameters by the Regge linear spectrum of J/ψ mesons. By

calculating the phase transition temperature for different chemical potentials under the varied magnetic

field to obtain the phase structure of QCD. We find the MC/IMC phenomenon for the small/large external

magnetic field. In addition, we locate the critical end point (CEP) for the QCD phase transition in (T, µ,B)

3-dimensional phase diagram. We find that the CEP moves to the lower chemical potential with a growing

magnetic field. Furthermore, the CEP forms a closed boundary in the (µ,B) plane, beyond which the

phase transition becomes crossover.

The organization of the remaining parts of this paper is as follows. The hQCD model with anisotropic

constant magnetic field has been constructed and a class of analytic gravitational background solutions

have been presented in Sec. 2. The holographic phase transition and CEP with magnetic effects have been

investigated in Sec. 3. Finally, we devote to the conclusions and discussions.
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2 Holographic Model

Einstein-Maxwell-Scalar (EMS) system is one of the fundamental frameworks to build holographic models

effectively describing the phenomena of the strongly coupled field theory. Using EMS system to construct

hQCD models was advocated in [100, 101], and has been improved afterward in many literature.

In this work, we will investigate the phase structure in the presence of external magnetic field in QCD

analytically by using a well established analytical hQCD model in [94–99]. Hopefully we can shed a light

on this issue and deliver deeper insights for numerical simulations and experiments.

2.1 Holographic EMS System with Magnetic Field

We consider a 5-dimensional EMS system as a thermal background for the corresponding QCD, which is

constructed in Einstein frame as

SB =
1

16πG5

∫

d5x
√−g

[

R− f (φ)

4
F 2 − 1

2
(∂φ)2 − V (φ)

]

, (2.1)

where G5 labels the 5-dimensional Newtonian constant, R refers to the Riemann scalar, φ is a neutral

scalar field, and Fµν = ∂µAν − ∂νAµ represents the field strength originated from the gauge field Aµ. f(φ)

is the gauge kinetic function and V (φ) is the potential of the φ. The equations of motion are obtained by

varying the Eq. (2.1)

∇2φ =
∂V

∂φ
+
F 2

4

∂f

∂φ
, (2.2)

∇µ [f(φ)F
µν ] = 0, (2.3)

Rµν −
1

2
gµνR =

f(φ)

2

(

FµρF
ρ

ν − 1

4
gµνF

2

)

+
1

2

[

∂µφ∂νφ− 1

2
gµν (∂φ)

2 − gµνV (φ)

]

. (2.4)

To take account of external magnetic field, we consider the following anisotropic ansatz of the background

blackening metric and (φ, Aµ) fields in Einstein frame

ds2 = wE(z)
2

[

−b(z)dt2 + g11(z)dx
2
1 + g22(z)

(

dx22 + dx23
)

+
dz2

b(z)

]

, (2.5)

φ = φ (z) , Aµ = (At(z), 0, 0, A3(x2), 0) , (2.6)

where wE(z) = ed(z)

z is the warped factor with the sub-index E labeling the Einstein frame, d(z) is the

deformed factor which describes the warping geometry deformed from AdS spacetime, and b(z) stands for

the blackening factor which formulates the black hole background. Conventionally, z = 0 corresponds to

the conformal boundary of the 5-dimensional space-time, and we have set the radial of AdS5 to be unit by

scale invariant.

We consider two components in the gauge field Aµ as Eq. (2.6). The non-trivial temporal component

At(z) associates with the chemical potential µ and the spatial component A3 = Bx2 introduces an external
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magnetic field along the x1 direction. The magnetic field in the x1 direction breaks the rotational symmetry

SO(3) to the SO(2). Therefore, the metric at finite temperature becomes magnetic field dependent and

anisotropic which is similar to [102]. We assume that

g11 = ec1C(B)z2 , g22 = ec2C(B)z2 , (2.7)

where the coefficients c1,2 are two constants and C(B) is an arbitrary function of B. Note that, at the

boundary z → 0, b = g11 = g22 = 1.

The black hole entropy and temperature for this ansatz are well defined as

s(zh) =
w3
Eg22

√
g11

4

∣

∣

∣

∣

z=zh

, (2.8)

T (zh) = −∂zb
4π

∣

∣

∣

∣

z=zh

. (2.9)

Before we start to solve the equations of motion, it is worth to verify the null energy condition (NEC)

to guarantee the consistency of the gravitational model. The NEC can be expressed as

TµνN
µNν ≥ 0, (2.10)

where T µν is the energy-momentum tensor of the matter fields. The null vector Nµ satisfies the condition

gµνN
µNν = 0 and could be chosen as

Nµ =
1

√

b (z)
N t +

sin θ cos θ√
g11

Nx1 +
sin2 θ√
2g22

(Nx2 +Nx3) + cos θ
√

b (z)N z, (2.11)

for arbitrary parameter θ. Then the NEC Eq. (2.10) becomes

(

A′2
t +

B2 sin2 θ

e2c2Cz2

)

f sin2 θ

2w4
E

+
bφ′2 cos2 θ

2w2
E

≥ 0, (2.12)

which demands that the kinetic gauge function f and φ′2 should be positive. (Which is the positive energy

definite through the Legendre transformation of Lagrange density.)
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Plugging the ansatz Eq. (2.5) and Eq. (2.6) into Eqs. (2.2 - 2.4), the equations of motion reduce to

A′′

t +

(

f ′

f
+
w′

E

wE
+ (c1 + 2c2)Cz

)

A′

t = 0, (2.13)

φ′2 +
6w′′

E

wE
− 12w′2

E

w2
E

+ 2(c1 + 2c2)C + 2(c21 + 2c22)C
2z2 = 0, (2.14)

b′′ +

(

3w′

E

wE
+ c1Cz

)

b′ − 2c2C

(

1 + (c1 + 2c2)Cz
2 +

3zw′

E

wE

)

b− f

w2
E

(

A′2
t +

B2

e2c2Cz2

)

= 0, (2.15)

V +
3bw′′

E

w3
E

+
6bw′2

E

w4
E

+

(

3bC(c1 + 4c2)z +
9b′

2

)

w′

E

w3
E

+
fB2

2w4
Ee

2c2Cz2
+
b′′ + (c1 + 6c2)Czb

′ + 4c2C
(

1 + (c1 + 2c2)Cz
2
)

b

2w2
E

= 0, (2.16)

φ′′ +

(

3w′

E

wE
+
b′

b
+ (c1 + 2c2)Cz

)

φ′ +

(

A′2
t − B2

e2c2Cz2

)

f ′(φ)

2bw2
E

− w2
E

b
V ′(φ) = 0. (2.17)

Since there are four physical quantities At, φ, b, V so we only need four equations of motion Eqs. (2.13 -

2.16). The last Eq. (2.17) is the redundancy one because of the Bianchi identity.

In order to solve the equations of motion, we need to consider boundary conditions for the first and

second order ODEs. The asymptotic AdS condition in the UV limit at the conformal boundary z → 0,

and the regular condition in the IR limit at the black hole horizon z → zh are imposed.

(i) z → 0 :

d(0) = φ(0) = 0, b(0) = 1, (2.18)

At(0) = µ. (2.19)

(ii) z = zh :

At(zh) = b(zh) = 0, (2.20)

where µ is the chemical potential. According to the holographic dictionary of the gauge/gravity correspon-

dence,

At(z) = µ− ρz2 + ... (2.21)

In addition, as the magnetic field shrinks to zero, the spacial symmetry should restore and return to the

asymptotic AdS near the boundary,

g11 = g22 = 1. (2.22)
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2.2 Analytical Solution

The equations of motion Eqs. (2.13 - 2.17) are very complicated. However, we found that the equations

system can be analytically solved if we set c2 = 0. With this choice, the equations reduces to

A′′

t +

(

f ′

f
+
w′

E

wE
+ c1Cz

)

A′

t = 0, (2.23)

φ′2 +
6w′′

E

wE
− 12w′2

E

w2
E

+ 2c1C
(

1 + c1Cz
2
)

= 0, (2.24)

b′′ +

(

3w′

E

wE
+ c1Cz

)

b′ − f

w2
E

(

A′2
t +B2

)

= 0, (2.25)

V +
3bw′′

E

w3
E

+
6bw′2

E

w4
E

+

(

3bc1Cz +
9b′

2

)

w′

E

w3
E

+
b′′ + c1Czb

′

2w2
E

+
fB2

2w4
E

= 0. (2.26)

The fields At, φ
′ and b can be analytically integrated from the Eqs. (2.23 - 2.25) as

At(z) = µ

[

1− I2(z)

I2(zh)

]

, (2.27)

φ′ =

√

−6w′′

E

wE
+

12w′2
E

w2
E

− 2c1C (1 + c1Cz2), (2.28)

b(z) = 1− I1(z)

I1(zh)
+

µ2

I22 (zh)I1(zh)

∣

∣

∣

∣

∣

I1(zh) I12(zh)

I1(z) I12(z)

∣

∣

∣

∣

∣

+
B2

I1(zh)

∣

∣

∣

∣

∣

I1(zh) I13(zh)

I1(z) I13(z)

∣

∣

∣

∣

∣

, (2.29)

with the help of the following integrals,

I1(z) =

∫ z

0

dy

w3
Ee

1
2
c1Cy2

, (2.30)

I2(z) =

∫ z

0

dy

wEfe
1
2
c1Cy2

, (2.31)

I3(z) =

∫ z

0
wEfe

1
2
c1Cy2dy, (2.32)

I12(z) =

∫ z

0
I ′1(y)I2(y)dy = I1(z)I2(z)− Ĩ12(z), (2.33)

I13(z) =

∫ z

0
I ′1(y)I3(y)dy = I1(z)I3(z)− Ĩ13(z). (2.34)

It is apparent that the blackening factor b(z) receives the contribution from both chemical potential µ and

magnetic field B. In addition, if the magnetic field is turned off, the family of solutions will reduce to the

original EMS system [94].

The potential V (z) can be obtained from Eq. (2.26). It is straightforward to reconstruct the potential
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V (φ) by z-expansion of both potential V (z) and scalar field φ(z),

V (φ) = −12 +
(−3)

2
φ2 + ..., (2.35)

with the coefficient −3 being exactly the m2 of the scalar field φ, which satisfies the BF bound implying

that the gravitational background is stable and −12 relates to the cosmological constant in AdS5. This

process is the so-called potential reconstruction.

To consider meson spectrum, we add a matter action of a probe vector field V into the background,

Sm = − 1

16πG5

∫

d5x
√−g f (φ)

4
F 2
V . (2.36)

The equation of motion for the vector field reads

∇µ[f(φ)F
µν
V ] = 0. (2.37)

We use the gauge invariance to fix the gauge Vz = 0 and write Vi(~x, z) = φ(~x)vi(z)with ∇2φ(~x) = m2φ(~x).

The equation of motion of the transverse vector field Vµ (∂µVµ = 0) in the background Eq. (2.5) is

v′′i +

(

b′

b
+
w′

E

wE
+
f ′

f
− c1Cz

)

v′i +
m2

b
vi = 0, (2.38)

which can be brought to the Schrödinger equation

ψ′′

i + U(z)ψ +m2ψi = 0, (2.39)

where the potential is

U(z) =
X ′′

X
− 2X ′2

X2
, (2.40)

with

X =

(

ec1Cz2/2

bfwE

)1/2

. (2.41)

To realize the linear Regge trajectories for the meson mass spectra, we choose the gauge kinetic function

as

f(z) =
e
−

(

Rgg+
c1C
2

)

z2

zwE
. (2.42)

At T = µ = B = 0, we thus have

U(z) =
3

4z2
+R2

ggz
2. (2.43)

which leads to the linear mass spectrum m2
n = 4Rggn, and the parameter Rgg can be fitted by the Regge

spectra, for instance the J/ψ meson.
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For the heavy quark sector, we choose the deformed factor d(z) =
−Rgg

3 z2 − pz4 so that the warped

factor wE(z) =
1
z exp

(

−Rgg

3 z2 − pz4
)

. The parameter p recalls the transition point at µ = B = 0 which

can be fitted from lattice QCD. The parameter Rgg and p have been addressed in [94, 97] for the vanishing

magnetic field with Rgg = 1.16 and p = 0.273.

With the above choice, the integrals Eqs. (2.30 - 2.34) are monotonously growing functions of z from

zero, and the integrals Eq. (2.31) and Eq. (2.32) do not depend on the magnetic field B.

To investigate the magnetic effects on the phase diagram, we need to explicitly fix the function C(B)

in the component of the metric g11 = ec1C(B)z2 . Dimension analysis 1 restricts C(B) ∼ B, we then take

C(B) = B without loss of generality. Subsequently, c1 ≤ 0 ensures the correct monotonous behavior of

entropy as the size of BH changes. For simplicity, we set c1 = −1 in the later calculations.

3 Phase Transition in QCD

In this section, we study the phase structure for the black hole background which we obtained in the last

section. The phase transition between the black holes correspond to both the confinement-deconfinement

phase transition and the chiral phase transition in the dual holographic QCD theory [94].

In the presence of magnetic field, the QCD phase diagram is sensitive to the background magnetic field.

It has been showed that the effect of background magnetic field on the transition temperature depends on

the masses of the dynamical quarks. For light quarks with physical mass, lattice simulation reveals the

IMC phenomenon for small chemical potential [34, 35, 37, 39, 42, 43]. While for heavy quarks, the MC

phenomenon is observed [8–10]. In this work, we focus on the model of heavy quarks, since we have fixed

the model parameters in terms of linear Regge behavior of J/ψ meson and these parameters capturing the

dynamics of the heavy quarks sector.

3.1 Magnetic Effects on Temperature

Using the solutions Eqs. (2.27 - 2.29), the BH entropy density and the Hawking temperature are straight-

forwardly calculated,

s(zh) =
1

4I ′1(zh)
, (3.1)

T (zh) = T0
(

1 + µ2Tµ +B2TB
)

, (3.2)

where

T0 =
I ′1(zh)

4πI1(zh)
, Tµ = − Ĩ12(zh)

I22 (zh)
, TB = −Ĩ13(zh). (3.3)

1More precisely speaking that T
√

B
should be dimensionless.

– 8 –



0.5 1.0 1.5 2.0 zh

0.5

1.0

1.5

T

0.5 1.0 1.5 zh

0.2

0.4

0.6

0.8

1.0

T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 zh

0.2

0.4

0.6

0.8

1.0

T

0.2 0.4 0.6 0.8 1.0 1.2 zh

0.2

0.4

0.6

0.8

1.0

T

Figure 1. Temperature vs horizon. From left to right: µ = 0, µ = 0.5, µ = µCEP (B), µ = 1.0. In each figure, from
top to bottom: B = 0, 0.2, 0.4, 0.6. Interestingly, the Hawking-Page transition only happens in µ = B = 0.

From the explicit expression of the integral I1(z), we can show that

T0 =
I ′1(zh)

4πI1(zh)
=

1

4πw3
E(zh)

∫ zh
0 e−

1
2
B(z2

h
−y2) dy

w3
E
(y)

≥ 1

4πw3
E(zh)

∫ zh
0

dy
w3

E
(y)

= T0|B=0 , (3.4)

which implies that magnetic field will enhance the BH temperature T (zh) by T0. On the other hand, both

Tµ and TB are negative due to the positive integrals. The effect from Tµ and TB grows for larger magnetic

B and bigger horizon zh, so that magnetic field will reduce the BH temperature eventually for large B.

The two effects compete each other as we changing the magnetic field.

The black hole temperature in the presence of the background magnetic field B for heavy quarks at

different chemical potential are plotted in Fig.1. For small chemical potential µ < µCEP , the temperature

is a multiple-valued function of the black hole horizon, which indicates that there would be a first-order

phase transition between the large and the small sizes of black holes. For µ > µCEP , the temperature

becomes monotonous and the phase transition could reduces to a crossover. At the critical point µ = µCEP ,

we expect a second-order phase transition.

The influence of magnetic field on temperature can be read from Fig.1. The temperature is enhanced

at small horizon zh due to the effect from T0, while is reduced at large zh due to the effect from Tµ and

TB . To investigate the magnetic effect in detail, we take the derivative of the temperature with magnetic

field,

dT

dB
=

I ′1
8πI1

(

H(zh)−
µ2

I22

∫ zh

0

[

H(zh) +
I1y (y)

I1 (y)

]

I1 (y) I
′

2 (y) dy

)

−B
2I ′1

8πI1

∫ zh

0

[

H(zh) +
I1y (y)

I1 (y)

]

I1 (y) I
′

3 (y) dy −
BI ′1Ĩ13
2πI1

, (3.5)

where

H(zh) = z2h −
I1y (zh)

I1 (zh)
and I1y (zh) =

∫ zh

0
y2I ′1dy. (3.6)
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It is easy to show that H(zh) ≥ 0 by using the monotonicity of the integral I1(z).

For small magnetic field, we can neglect the last term in Eq. (3.5),

dT

dB
≃ I ′1

8πI1

(

H(zh)−
µ2

I22

∫ zh

0

[

H(zh) +
I1y (y)

I1 (y)

]

I1 (y) I
′

2 (y) dy

)

, (3.7)

which is positive for not too large chemical potential µ since I1 > 0. This implies the MC behavior for

small chemical potential.

On the other hand, for large magnetic field B, only the last term in Eq. (3.5) is important,

dT

dB
≃ −B

2I ′1
8πI1

∫ zh

0

[

H(zh) +
I1y (y)

I1 (y)

]

I1 (y) I
′

3 (y) dy −
BI ′1Ĩ13
2πI1

< 0, (3.8)

which implies the IMC behavior for large magnetic field.

3.2 Magnetic Effects on QCD Phase Diagram

As we argued in the previous section, the rough structure of QCD phase transition can be read from the

behavior of black hole temperature. However, to obtain the exact phase diagram, we need to calculate the

free energy of the thermodynamic system. The free energy in grand canonical ensemble can be obtained

from the first law of thermodynamics,

F = ǫ− Ts− µρ−MB, (3.9)

where ρ =
µ

2I2(zh)
is the baryon density, M represents the magnetization which is associated to B, and ǫ

labels the internal energy density. Comparing the free energies of BHs at the same temperature for certain

finite value of chemical potential, we are able to obtain the phase structure of BHs which gives the phase

diagram of the holographic QCD due to AdS/CFT correspondence. At fixed volume, the differential of

the free energy is defined as [43]

dF = −sdT − ρdµ −MdB. (3.10)

For the fixed chemical potential µ and magnetic field B, the free energy can be evaluated by the following

integral,

F = −
∫

sdT =

∫

∞

zh

s(z̄h)T
′(z̄h)dz̄h (3.11)

where we have normalized the free energy to vanish at zh → ∞.

The thermodynamic properties for heavy quarks without magnetic field has been studied in [94]. The

temperature vs horizon is plotted in the left figure of Fig.2. At µ = 0, the temperature has a minimum

value which implies the Hawking-Page phase transition. For a finite but small µ, the temperature drops to

zero at certain horizon, but a first order phase transition still happens at a finite temperature between the

local minimum and maximum temperatures. From the local minimum and maximum for each chemical
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Figure 2. (Left) Temperatures vs horizon. From top to bottom: µ = 0, 0.5, µCEP , 1.0. (Middle) Free energies vs
temperature for the corresponding µ′s. The intersection of the swallow-type patterns labels the first order phase
transition. (Right) QCD phase diagram for heavy quarks. The phase transition line is within the shadow region
which is enclosed by the curves of the local minimum and maximum temperatures that shrink to the CEP at
(µCEP , TCEP ) = (0.714, 0.528).

potential µ < µCEP , we can partition a region where the phase transition could happen. The CEP of the

phase diagram will take place at the specific temperature TCEP where the local minimum and maximum

temperature are degenerated at characteristic chemical potential µCEP . When the chemical potential is

beyond a critical value µ > µCEP , the temperature becomes monotonous and the phase transition reduces

to a crossover. The exact phase transition temperature can be obtained from the free energy. The free

energy vs temperature is demonstrated in the middle figure of Fig.2. The intersection of the swallow-type

patterns labels the first order phase transition temperature at each chemical potential where the free energy

and temperature are equal at different horizons. As the chemical potential increasing, the swallow-type

gradually compresses and eventually becomes a singular point where character the second order phase

transition. When µ > µCEP , the free energy becomes smooth function with respect to temperature that

implies the phase transition is weaken to a crossover. The phase diagram is delivered in the right figure

of Fig.2. The shadow region is enclosed by the curves of the local minimum and maximum temperatures,

which shrink to the CEP. The phase transition line is within the shadow region. We should remark that

the behavior of the heavy quarks is in contrast to that of the light quarks, in which crossover occurs at

small chemical potential and becomes phase transition for µ > µCEP .

In the presence of magnetic field B, the behavior of free energy are qualitatively the same as that

with zero magnetic field as showed in the middle figure of Fig.2. The exact values of the phase transition

temperature changes with both chemical potential µ and magnetic field B are plotted in Fig.3.

For fixed B fields, phase transition extends from µ = 0 to finite chemical potentials and terminates at

a CEP, the red dots, as showed in the left figure of Fig.3. Increasing the magnetic field from zero enhances

the phase transition temperature. This confirms the MC behavior as we expected from the behavior of

the temperature. The MC phenomenon we found for the heavy quarks is consistent with the recent lattice

simulations [66, 67]. Furthermore, it shows that the CEP of the phase transition moves towards to the

lower chemical potential when the magnetic field increases, that is consistent with the recent works using

PNJL model [61, 64, 105].
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Figure 3. (Left) Phase diagram on T − µ plane for B = 0, 0.2, 0.4, 0.6 from bottom to top. The red dots label the
CEPs for different magnetic fields. (Middle) Phase diagram on T − B plane for µ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 from
top to bottom. The red dots label the CEPs for different chemical potentials which are collected in the red dashed
line with the shadow region standing for the crossover zone. (Right) The 3-dimensional phase diagram in T − µ−B
axes. The curved surface represents the first order phase transition area and terminates at the red dashed boundary
which is the collection of CEPs.

We plot the phase transition temperature vs magnetic field for different chemical potentials in the

middle figure of Fig.3. For small magnetic field, it clearly shows that the phase transition temperature

increases along the magnetic field, i.e. MC phenomenon as we have discussed. On the other hand, when

the magnetic field B become large enough, we observe that the phase transition temperature reduces with

the increasing magnetic field. This justifies our conclusion of IMC behavior at large magnetic field by the

argument of the competition between the contributions from T0 and TB to the temperature in Eq. (3.2).

In our case, the flipping magnetic field B ∼ 0.96 at µ = 0, which magnitude is very close to [34, 71]. Since

the sign problem would not encounter at µ = 0, we expect this appearance can be attended in lattice

QCD. We also notice that the phase transition will reach CEP before it turns to IMC from MC if the

chemical potential is too large µ & 0.6 GeV . Another words, IMC only appears at relatively low baryon

density, which statement has also been declared in [89]. For each chemical potential, there exists a critical

magnetic field BCEP (µ) beyond that the phase transition becomes crossover. The CEPs for different

chemical potentials are along the red dashed line with the shadow region standing for the crossover zone.

The full phase transition structure including both chemical potential and magnetic field is combined

in a 3-dimensional phase diagram as plotted in the right figure of Fig.3. The left two diagrams are the

3-dimensional phase diagram projected on the T−µ and T−B planes, respectively. The four lines with the

fixed magnetic fields in the T −µ diagram are put with the corresponding colors in the 3-dimensional phase

diagram. In addition, the red dashed line in the 3-dimensional phase diagram indicates the 3-dimensional

CEP boundary, beyond which the phase transition becomes crossover.

3.3 Critical End Point

It is crucial to locate the CEP of the phase transition [103–106]. It has been showed that the QCD phase

transition temperature gradually cools down as QCD matter being more and more dense, i.e. increasing
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Figure 4. The CEPs on T −µ, T −B and µ−B planes. We can observe that the CEP temperature are linear with
the magnetic field. On the other hand, as magnetic field increasing, the chemical potential gradually decreases and
eventually vanishes at B ∼ 1.31 GeV 2 which implies that the whole transition line is weaken to a transition point.
We can demonstrate this tendency in the T − µ plane. As the imposing magnetic field become stronger, the CEP
temperature become higher but CEP baryon density become looser. Another words, the first order phase transition
line become shorter, the crossover region become wider, as the magnetic field is stronger.

chemical potential. The CEP of the first order phase transition can be evaluated by the free energy Eq.

(3.11).

The authors of [61, 64, 105] have studied confinement-deconfinement phase transition by using PNJL

model. They showed that the CEP moves towards lower chemical potentials with increasing magnetic field

if considering a magnetic field dependent coupling G(B), and the CEP could eventually approaches to the

zero chemical potential for large enough magnetic field. Their result is only for light quarks, here we show

that the similar behavior preserves for heavy quarks.

The tendency of CEP with magnetic field is plotted in the left figure of Fig.4. When the magnetic field

increasing, the CEP moves to the lower chemical potential and approaches to T ∼ 0.613 GeV at µ = 0.

The CEP on T −B plane is plotted in the middle figure of Fig.4. When the chemical potential increasing,

the CEP moves to the smaller magnetic filed and returns to the original CEP at B = 0. It is interesting

to observe that the CEP temperature are linear with the magnetic field. Furthermore, the CEP forms a

closed boundary on µ − B plane as plotted in the right figure of Fig.4. Beyond the boundary the phase

transition becomes crossover.

4 Conclusion

In this paper, we have constructed an analytical holographic QCD model for heavy quarks in the presence

of the external magnetic field by using the Einstein-Maxwell-Scalar system with potential reconstruction

approach. We introduced both electrical and magnetic fields in a single bulk U(1) gauge field. The electrical

component is interpreted as the global baryon number conservation symmetry on the boundary theory by

holography. While the magnetic component corresponds to the boundary external magnetic field. In this

holographic setup, we have checked the NEC to ensure that the gravitational background is a stable. In

addition, in this background, we have also considered the linear Regge spectrum of J/ψ mesons. Since the
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parameters are fixed by the heavy mesons spectrum, the holographic model captures the characters of the

heavy quarks sector.

We calculated the free energy to obtain the phase transition temperatures for heavy quarks at different

chemical potentials and magnetic fields in the holographic QCD model in the anisotropic background. For

small magnetic field, we found MC phenomenon that is consistent with the recent lattice results [66, 67].

While for large enough magnetic field, we found IMC phenomenon due to the competition between the

contributions from T0 and TB to the temperature in Eq. (3.2). Thus the phase transition will change from

MC to IMC as the magnetic field growing. However, we noticed that the phase transition will reach its

critical end point before it turns to IMC from MC if the chemical potential is large enough µ & 0.6GeV .

See Fig.3 for the phase diagrams at different chemical potentials and magnetic fields.

In addition, there exists a extreme point for the phase transition for either chemical potential or

magnetic field, i.e. the CEP. Beyond CEP, the phase transition becomes to crossover. We discover that,

for fixed magnetic fields, the CEP moves to the lower chemical potential and eventually approaches to

µ = 0. While for fixed chemical potentials, the CEP decreases with the magnetic field growing. It is

interesting to observe that the CEP temperature are linear with the magnetic field. We do not understand

the reason of this linear behavior and it is deserved to study in the future. See Fig.4 for the CEP at

different chemical potentials and magnetic fields.

In this work, we only focused on the thermodynamics of the black hole to obtain the phase transition

between two black holes with different sizes, by calculating their free energies in the hQCD model. It is also

interesting to investigate the definite order parameters to explore further information associated with the

phase transitions, such as confinement and chiral symmetry breaking. The two kinds of phase transitions

will show different characteristic behaviors with respect to the magnetic field. We would like to study these

corresponding order parameters to confirm such phenomenon in terms of holographic approach. We leave

this part in the future.

Acknowledgements

We would like to thank Umut Grsoy, Danning Li, Xiaoning Wu, Lang Yu for useful discussion. S.H. also

would like to appreciate the financial support from Jilin University and Max Planck Partner group. This

work of Y.Y is supported by the Ministry of Science and Technology (MOST 106-2112-M-009 -005 -MY3)

and National Center for Theoretical Science, Taiwan. The work of P.H.Y. was supported by the University

of Chinese Academy of Sciences.

References

[1] V. Skokov, A. Illarionov, V. Toneev, ”Estimate of the magnetic field strength in heavy-ion collisions”,

Int.J.Mod.Phys.A 24 (2009) 5925-5932, arXiv:0907.1396 [nucl-th].

[2] V. Voronyuk, V.D Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin,

”Electromagnetic field evolution in relativistic heavy-ion collisions”, Phys.Rev.C 83 (2011) 054911,

arXiv:1103.4239 [nucl-th].

– 14 –



[3] Adam Bzdak, Vladimir Skokov, ”Event-by-event fluctuations of magnetic and electric fields in heavy ion

collisions”, Phys.Lett.B 710 (2012) 171-174, arXiv:1111.1949 [hep-ph].

[4] Wei-Tian Deng, Xu-Guang Huang, ”Event-by-event generation of electromagnetic fields in heavy-ion

collisions”, Phys.Rev.C 85 (2012) 044907, arXiv:1201.5108 [nucl-th].

[5] Robert C. Duncan, Christopher Thompson, ”Formation of very strongly magnetized neutron stars -

implications for gamma-ray bursts”, Astrophysical Journal Letters v.392 (1992), p.L9.

[6] Sandro Mereghetti, ”The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray

Pulsars”, Astron.Astrophys.Rev. 15 (2008) 225-287, arXiv:0804.0250 [astro-ph].

[7] K. Enqvist, P. Olesen, ”On Primordial Magnetic Fields of Electroweak Origin”, Phys.Lett.B 319 (1993)

178-185, arXiv:hep-ph/9308270.

[8] M. D’Elia, S. Mukherjee and F. Sanfilippo,, ”QCD Phase Transition in a Strong Magnetic Background”,

Phys.Rev.D 82 (2010) 051501, arXiv:1005.5365 [hep-lat].

[9] E.-M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson, A. Schreiber, ”Two-color QCD with

staggered fermions at finite temperature under the influence of a magnetic field”, Phys.Rev.D 85 (2012)

114504, arXiv:1203.3360 [hep-lat].

[10] M. D’Elia, ”Lattice QCD Simulations in External Background Fields”, Lect.Notes Phys. 871 (2013) 181-208,

arXiv:1209.0374 [hep-lat].

[11] V.P.Gusynin, V.A.Miransky, I.A.Shovkovy, ”Catalysis of Dynamical Flavor Symmetry Breaking by a

Magnetic Field in 2+1 Dimensions”, Phys.Rev.Lett. 73 (1994) 3499-3502, Phys.Rev.Lett. 76 (1996) 1005

(erratum), arXiv:hep-ph/9405262.

[12] V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, ”Dimensional Reduction and Dynamical Chiral Symmetry

Breaking by a Magnetic Field in 3+1 Dimensions”, Phys.Lett.B 349 (1995) 477-483, arXiv:hep-ph/9412257.

[13] V. P. Gusynin, V. A. Miransky, I. A. Shovkovy, ”Dimensional Reduction and Catalysis of Dynamical

Symmetry Breaking by a Magnetic Field”, Nucl.Phys.B 462 (1996) 249-290, arXiv:hep-ph/9509320.

[14] G. W. Semenoff, I. A. Shovkovy, L. C. R. Wijewardhana, ”Universality and the magnetic catalysis of chiral

symmetry breaking”, Phys.Rev.D 60 (1999) 105024, arXiv:hep-th/9905116.

[15] J. Alexandre, K. Farakos, G. Koutsoumbas, ”Magnetic catalysis in QED3 at finite temperature: beyond the

constant mass approximation”, Phys.Rev.D 63 (2001) 065015, arXiv:hep-th/0010211.

[16] V. A. Miransky, I. A. Shovkovy, ”Magnetic catalysis and anisotropic confinement in QCD”, Phys.Rev.D 66

(2002) 045006, arXiv:hep-ph/0205348.

[17] A. A. Osipov, B. Hiller, A. H. Blin, J. da Providencia, ”Dynamical chiral symmetry breaking by a magnetic

field and multi-quark interactions”, Phys.Lett.B 650 (2007) 262-267, arXiv:hep-ph/0701090 .

[18] E. S. Fraga and A. J. Mizher, ”Can a strong magnetic background modify the nature of the chiral transition

in QCD?”, Nucl.Phys.A 820 (2009) 103C-106C, arXiv:0810.3693 [hep-ph].

[19] Kenji Fukushima, Marco Ruggieri, Raoul Gatto, ”Chiral magnetic effect in the PNJL model”, Phys.Rev.D 81

(2010) 114031, arXiv:1003.0047 [hep-ph].

– 15 –



[20] A. J. Mizher, M. N. Chernodub, E. S. Fraga, ”Phase diagram of hot QCD in an external magnetic field:

possible splitting of deconfinement and chiral transitions”, Phys.Rev.D 82 (2010) 105016, arXiv:1004.2712

[hep-ph].

[21] Raoul Gatto, Marco Ruggieri, ”Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic

Background”, Phys.Rev.D 83 (2011) 034016, arXiv:1012.1291 [hep-ph].

[22] Kouji Kashiwa, ”Entanglement between chiral and deconfinement transitions under strong uniform magnetic

background field”, Phys.Rev.D 83 (2011) 117901, arXiv:1104.5167 [hep-ph].

[23] Bogdan V. Galilo, Sergei N. Nedelko, ”Impact of the strong electromagnetic field on the QCD effective

potential for homogeneous Abelian gluon field configurations”, Phys.Rev.D 84 (2011) 094017, arXiv:1107.4737

[hep-ph].

[24] V. Skokov, ”Phase diagram in an external magnetic field beyond a mean-field approximation”, Phys.Rev.D 85

(2012) 034026, arXiv:1112.5137 [hep-ph].

[25] Kenji Fukushima, Jan M. Pawlowski, ”Magnetic catalysis in hot and dense quark matter and quantum

fluctuations”, Phys.Rev.D 86 (2012) 076013, arXiv:1203.4330 [hep-ph].

[26] Igor A. Shovkovy. ”Magnetic Catalysis: A Review”, Lect.Notes Phys. 871 (2013) 13-49,

arXiv:1207.5081[hep-ph].

[27] Eduardo S. Fraga, ”Thermal chiral and deconfining transitions in the presence of a magnetic background”,

Lect.Notes Phys. 871 (2013) 121-141, arXiv:1208.0917 [hep-ph].

[28] M. Ferreira, P. Costa, D. P. Menezes, C. Providncia and N. Scoccola, ”Deconfinement and chiral restoration

within the SU(3) Polyakov–Nambu–Jona-Lasinio and entangled Polyakov–Nambu–Jona-Lasinio models in an

external magnetic field”, Phys.Rev.D 89 (2014) 1, 016002, Phys.Rev.D 89 (2014) 1, 019902 (addendum),

arXiv:1305.4751 [hep-ph].

[29] E. S. Fraga, B. W. Mintz, J. Schaffner-Bielich, ”A search for inverse magnetic catalysis in thermal

quark-meson models”, Phys.Lett.B 731 (2014) 154-158, arXiv:1311.3964 [hep-ph].

[30] M. Ferreira, P. Costa, C. Providncia, ”Deconfinement, chiral symmetry restoration and thermodynamics of

(2+1)–flavor hot QCD matter in an external magnetic field”, Phys.Rev.D 89 (2014) 3, 036006,arXiv:1312.6733

[hep-ph].

[31] Stefano Bolognesi, David Tong, ”Magnetic Catalysis in AdS4”, Class.Quant.Grav. 29 (2012) 194003,

arXiv:1110.5902 [hep-th].

[32] D. Dudal, D. R. Granado, T. G. Mertens, ”No inverse magnetic catalysis in the QCD hard and soft wall

models”, Phys.Rev.D 93 (2016) 12, 125004, arXiv:1511.04042 [hep-th].

[33] M. D’Elia and F. Negro, ”Chiral Properties of Strong Interactions in a Magnetic Background”, Phys.Rev.D 83

(2011) 114028, arXiv:1103.2080 [hep-lat].

[34] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, K. K. Szabo, ”The QCD

phase diagram for external magnetic fields”, JHEP 02 (2012) 044, arXiv:1111.4956 [hep-lat].

[35] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, A. Schafer, ”QCD quark condensate in external

magnetic fields”, Phys.Rev.D 86 (2012) 071502, arXiv:1206.4205 [hep-lat].

– 16 –



[36] G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber, A. Schaefer, ”Magnetic field-induced gluonic (inverse)

catalysis and pressure (an)isotropy in QCD”, JHEP 04 (2013) 130, arXiv:1303.1328 [hep-lat].

[37] F. Bruckmann, G. Endrodi, T. G. Kovacs, ”Inverse magnetic catalysis and the Polyakov loop”, JHEP 04

(2013) 112, arXiv:1303.3972 [hep-lat].

[38] E.-M. Ilgenfritz, M. Muller-Preussker, B. Petersson, A. Schreiber, ”Magnetic catalysis (and inverse catalysis)

at finite temperature in two-color lattice QCD”, Phys.Rev.D 89 (2014) 5, 054512, arXiv:1310.7876 [hep-lat].

[39] V. G. Bornyakov, P. V. Buividovich, N. Cundy, O. A. Kochetkov and A. Schfer, ”Deconfinement transition in

two-flavour lattice QCD with dynamical overlap fermions in an external magnetic field”, Phys.Rev.D 90

(2014) 3, 034501, arXiv:1312.5628 [hep-lat].

[40] Gergely Endrodi, ”Critical point in the QCD phase diagram for extremely strong background magnetic

fields”, JHEP 07 (2015) 173, arXiv:1504.08280 [hep-lat].

[41] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, A. Rucci and F. Sanfilippo, ”Magnetic field effects on

the static quark potential at zero and finite temperature”, Phys.Rev.D 94 (2016) 9, 094007, arXiv:1607.08160

[hep-lat].

[42] Akio Tomiya, Heng-Tong Ding, Swagato Mukherjee, Christian Schmidt, Xiao-Dan Wang, ”Chiral phase

transition of three flavor QCD with nonzero magnetic field using standard staggered fermions”, EPJ Web

Conf. 175 (2018) 07041, arXiv:1711.02884 [hep-lat].

[43] V. V. Braguta, M. N. Chernodub, A. Yu. Kotov, A. V. Molochkov, A. A. Nikolaev, ”Finite-density QCD

transition in magnetic field background”, Phys.Rev.D 100 (2019) 11, 114503, arXiv:1909.09547 [hep-lat].

[44] N. O. Agasian, S. M. Fedorov, ”Quark-hadron phase transition in a magnetic field”, Phys.Lett.B 663 (2008)

445-449, arXiv:0803.3156 [hep-ph].

[45] Eduardo S. Fraga, Leticia F. Palhares, ”Deconfinement in the presence of a strong magnetic background: an

exercise within the MIT bag model”, Phys.Rev.D 86 (2012) 016008, arXiv:1201.5881 [hep-ph].

[46] Raoul Gatto, Marco Ruggieri, ”Quark Matter in a Strong Magnetic Background”, Lect.Notes Phys. 871

(2013) 87-119, arXiv:1207.3190 [hep-ph].

[47] Eduardo S. Fraga, Jorge Noronha, Leticia F. Palhares, ”Large Nc Deconfinement Transition in the Presence of

a Magnetic Field”, Phys.Rev.D 87 (2013) 11, 114014, arXiv:1207.7094 [hep-ph].

[48] Florian Preis, Anton Rebhan, Andreas Schmitt, ”Inverse magnetic catalysis in field theory and gauge-gravity

duality”, Lect.Notes Phys. 871 (2013) 51-86, arXiv:1208.0536 [hep-ph].

[49] M. N. Chernodub, ”Electromagnetic superconductivity of vacuum induced by strong magnetic field”,

Lect.Notes Phys. 871 (2013) 143-180, arXiv:1208.5025 [hep-ph].

[50] Kenji Fukushima, Yoshimasa Hidaka, ”Magnetic Catalysis vs Magnetic Inhibition”, Phys.Rev.Lett. 110 (2013)

3, 031601, arXiv:1209.1319 [hep-ph].

[51] Dmitri E. Kharzeev, Karl Landsteiner, Andreas Schmitt, Ho-Ung Yee, ”Strongly interacting matter in

magnetic fields”: an overview”, Lect.Notes Phys. 871 (2013) 1-11, arXiv:1211.6245 [hep-ph].

[52] Jingyi Chao, Pengcheng Chu, Mei Huang, ”Inverse magnetic catalysis induced by sphalerons”, Phys.Rev.D 88

(2013) 054009, arXiv:1305.1100 [hep-ph].

– 17 –



[53] M. Ferreira, P. Costa, O. Loureno, T. Frederico, C. Providncia, ”Inverse magnetic catalysis in the (2+1)-flavor

Nambu–Jona-Lasinio and Polyakov–Nambu–Jona-Lasinio models”, Phys.Rev.D 89 (2014) 11, 116011,

arXiv:1404.5577 [hep-ph].

[54] Lang Yu, Hao Liu, Mei Huang, ”Spontaneous generation of local CP violation and inverse magnetic catalysis”,

Phys.Rev.D 90 (2014) 7, 074009, arXiv:1404.6969 [hep-ph].

[55] Alejandro Ayala, M. Loewe, Ana Julia Mizher, R. Zamora, ”Inverse magnetic catalysis for the chiral

transition induced by thermo-magnetic effects on the coupling constant”, Phys.Rev.D 90 (2014) 3, 036001,

arXiv:1406.3885 [hep-ph].

[56] Alejandro Ayala, M. Loewe, R. Zamora, ”Inverse magnetic catalysis in the linear sigma model with quarks”,

Phys.Rev.D 91 (2015) 1, 016002, arXiv:1406.7408 [hep-ph].

[57] E. J. Ferrer, V. de la Incera, X. J. Wen, ”Quark Antiscreening at Strong Magnetic Field and Inverse Magnetic

Catalysis”, Phys.Rev.D 91 (2015) 5, 054006, arXiv:1407.3503 [nucl-th].

[58] Jens O. Andersen, William R. Naylor, Anders Tranberg, ”Inverse magnetic catalysis and regularization in the

quark-meson model”, JHEP 02 (2015) 042, arXiv:1410.5247 [hep-ph].

[59] Bo Feng, Defu Hou, Hai-cang Ren, ”(Inverse) Magnetic Catalysis in Bose-Einstein Condensation of Neutral

Bound Pairs”, Phys.Rev.D 92 (2015) 6, 065011, arXiv:1412.1647 [cond-mat.quant-gas].

[60] Niklas Mueller, Jan M. Pawlowski, ”Magnetic catalysis and inverse magnetic catalysis in QCD”, Phys.Rev.D

91 (2015) 11, 116010, arXiv:1502.08011 [hep-ph].

[61] MM. Ferreira, P. Costa and C. Providncia, ”The QCD phase diagram in the presence of an external magnetic

field: the role of the inverse magnetic catalysis”, arXiv:1509.01181 [hep-ph].

[62] Aftab Ahmad, Alfredo Raya, ”Inverse magnetic catalysis and confinement within a contact interaction model

for quarks”, J.Phys.G 43 (2016) 6, 065002, arXiv:1602.06448 [hep-ph].

[63] R. L. S. Farias, V. S. Timoteo, S. S. Avancini, M. B. Pinto, G. Krein, ”Thermo-magnetic effects in quark

matter: Nambu–Jona-Lasinio model constrained by lattice QCD”, Eur.Phys.J.A 53 (2017) 5, 101,

arXiv:1603.03847 [hep-ph].

[64] M. Ferreira, P. Costa and C. Providncia,, ”Magnetized QCD phase diagram”, Acta Phys.Polon.Supp. 10

(2017) 4, 1197-1202, arXiv:1712.08384 [hep-ph].

[65] Hardik Bohra, David Dudal, Ali Hajilou, Subhash Mahapatra, ”Anisotropic string tensions and inversely

magnetic catalyzed deconfinement from a dynamical AdS/QCD model”, Phys.Lett.B 801 (2020) 135184,

arXiv:1907.01852 [hep-th].

[66] M. D’Elia, F. Manigrasso, F. Negro and F. Sanfilippo, ”QCD phase diagram in a magnetic background for

different values of the pion mass”, Phys.Rev.D 98 (2018) 5, 054509, arXiv:1808.07008 [hep-lat].

[67] Gergely Endrodi, Matteo Giordano, Sandor D. Katz, Tamas G. Kovacs, Ferenc Pittler, ”Magnetic catalysis

and inverse catalysis for heavy pions”, JHEP 07 (2019) 007, arXiv:1904.10296 [hep-lat].

[68] Juan M. Maldacena, ”The Large N Limit of Superconformal Field Theories and Supergravity”,

Int.J.Theor.Phys. 38 (1999) 1113-1133, Adv.Theor.Math.Phys. 2 (1998) 231-252, arXiv:hep-th/9711200.

– 18 –



[69] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, ”Gauge Theory Correlators from Non-Critical String Theory”,

Phys.Lett.B 428 (1998) 105-114, arXiv:hep-th/9802109.

[70] Edward Witten, ”Anti De Sitter Space And Holography”, Adv.Theor.Math.Phys. 2 (1998) 253-291,

arXiv:hep-th/9802150.

[71] Kiminad A. Mamo, ”Inverse magnetic catalysis in holographic models of QCD”, JHEP 05 (2015) 121,

arXiv:1501.03262 [hep-th].

[72] Romulo Rougemont, Renato Critelli, Jorge Noronha, ”Holographic calculation of the QCD crossover

temperature in a magnetic field”, Phys.Rev.D 93 (2016) 4, 045013, arXiv:1505.07894 [hep-th].

[73] Kaddour Chelabi, Zhen Fang, Mei Huang, Danning Li, Yue-Liang Wu, ”Realization of chiral symmetry

breaking and restoration in holographic QCD”, Phys.Rev.D 93 (2016) 10, 101901, arXiv:1511.02721 [hep-ph].

[74] Si-wen Li, Tuo Jia, ”Dynamically flavored description of holographic QCD in the presence of a magnetic

field”, Phys.Rev.D 96 (2017) 6, 066032, arXiv:1604.07197 [hep-th].

[75] Diego M. Rodrigues, Eduardo Folco Capossoli, Henrique Boschi-Filho, ”Deconfinement phase transition in a

magnetic field in 2+1 dimensions from holographic models”, Phys.Lett.B 780 (2018) 37-40, arXiv:1709.09258

[hep-th].

[76] Diego M. Rodrigues, Eduardo Folco Capossoli, Henrique Boschi-Filho, ”Magnetic catalysis and inverse

magnetic catalysis in (2+1)-dimensional gauge theories from holographic models”, Phys.Rev.D 97 (2018) 12,

126001, arXiv:1710.07310 [hep-th].

[77] Umut Gursoy, Matti Jarvinen, Govert Nijs, Juan F. Pedraza, ”Inverse Anisotropic Catalysis in Holographic

QCD”, JHEP 04 (2019) 071, arXiv:1811.11724 [hep-th].

[78] Veselin G. Filev, Radoslav C. Rashkov, ”Magnetic Catalysis of Chiral Symmetry Breaking. A Holographic

Prospective”, Adv.High Energy Phys. 2010 (2010) 473206, arXiv:1010.0444 [hep-th].

[79] Florian Preis, Anton Rebhan, Andreas Schmitt, ”Inverse magnetic catalysis in dense holographic matter”,

JHEP 03 (2011) 033, arXiv:1012.4785 [hep-th].

[80] N. Callebaut, D. Dudal, ”On the transition temperature(s) of magnetized two-flavour holographic QCD”,

Phys.Rev.D 87 (2013) 10, 106002, arXiv:1303.5674 [hep-th].

[81] Alfonso Ballon-Bayona, ”Holographic deconfinement transition in the presence of a magnetic field”, JHEP 11

(2013) 168, arXiv:1307.6498 [hep-th].

[82] Brett McInnes, ”Inverse Magnetic/Shear Catalysis”, Nucl.Phys.B 906 (2016) 40-59, arXiv:1511.05293 [hep-th].

[83] Kaddour Chelabi, Zhen Fang, Mei Huang, Danning Li, Yue-Liang Wu, ”Chiral Phase Transition in the

Soft-Wall Model of AdS/QCD”, JHEP 04 (2016) 036, arXiv:1512.06493 [hep-ph].

[84] M. Ruggieri, G. X. Peng, ”Quark Matter in a Parallel Electric and Magnetic Field Background: Chiral Phase

Transition and Equilibration of Chiral Density”, Phys.Rev.D 93 (2016) 9, 094021, arXiv:1602.08994 [hep-ph].

[85] Nick Evans, Carlisson Miller, Marc Scott, ”Inverse Magnetic Catalysis in Bottom-Up Holographic QCD”,

Phys.Rev.D 94 (2016) 7, 074034, arXiv:1604.06307 [hep-ph].

[86] Danning Li, Mei Huang, Yi Yang, Pei-Hung Yuan, ”Inverse Magnetic Catalysis in the Soft-Wall Model of

AdS/QCD”, JHEP 02 (2017) 030, arXiv:1610.04618 [hep-th].

– 19 –



[87] U. Grsoy, I. Iatrakis, M. Jrvinen and G. Nijs, ”Inverse Magnetic Catalysis from improved Holographic QCD in

the Veneziano limit”, JHEP 03 (2017) 053, arXiv:1611.06339 [hep-th].

[88] Alfonso Ballon-Bayona, Matthias Ihl, Jonathan P. Shock, Dimitrios Zoakos, ”A universal order parameter for

Inverse Magnetic Catalysis”, JHEP 10 (2017) 038, arXiv:1706.05977 [hep-th].

[89] Umut Gursoy, Matti Jarvinen, Govert Nijs, ”Holographic QCD in the Veneziano limit at finite Magnetic Field

and Chemical Potential”, Phys.Rev.Lett. 120 (2018) 24, 242002, arXiv:1707.00872 [hep-th].

[90] Diego M. Rodrigues, Danning Li, Eduardo Folco Capossoli, Henrique Boschi-Filho, ”Chiral Symmetry

Breaking and Restoration in (2+1) Dimensions from Holography: Magnetic and Inverse Magnetic Catalysis”,

Phys.Rev.D 98 (2018) 10, 106007, arXiv:1807.11822 [hep-th].

[91] Diego M. Rodrigues, Danning Li, Eduardo Folco Capossoli, Henrique Boschi-Filho, ”Holographic Description

of Chiral Symmetry Breaking in a Magnetic Field in 2+1 Dimensions with an Improved Dilaton”, EPL 128

(2019) 6, 61001, arXiv:1811.04117 [hep-ph].

[92] Dimitrios Giataganas, Umut Grsoy, Juan F. Pedraza, ”Strongly-coupled anisotropic gauge theories and

holography”, Phys.Rev.Lett. 121 (2018) 12, 121601, arXiv:1708.05691 [hep-th].

[93] R. G. Cai, S. He and D. Li, A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system, JHEP

1203 , 033 (2012), arXiv:1201.0820 [hep-th].

[94] Song He, Shang-Yu Wu, Yi Yang, Pei-Hung Yuan, ”Phase Structure in a Dynamical Soft-Wall Holographic

QCD Model”, JHEP 04 (2013) 093, arXiv:1301.0385 [hep-th].

[95] Yi Yang, Pei-Hung Yuan, ”A Refined Holographic QCD Model and QCD Phase Structure”, JHEP 11 (2014)

149, arXiv:1406.1865 [hep-th].

[96] Yi Yang, Pei-Hung Yuan, ”Confinement-Deconfinment Phase Transition for Heavy Quarks”, JHEP 12 (2015)

161, arXiv:1506.05930 [hep-th]

[97] Meng-Wei Li, Yi Yang, Pei-Hung Yuan, ”Approaching Confinement Structure for Light Quarks in a

Holographic Soft Wall QCD Model”, Phys.Rev.D 96 (2017) 6, 066013, arXiv:1703.09184 [hep-th].

[98] Yi Yang, Pei-Hung Yuan, ”Universal Behaviors of Speed of Sound from Holography”, Phys.Rev.D 97 (2018)

12, 126009, arXiv:1705.07587 [hep-th].

[99] Meng-Wei Li, Yi Yang, Pei-Hung Yuan, ”Imprints of Early Universe on Gravitational Waves from First-Order

Phase Transition in QCD”, arXiv:1812.09676 [hep-th].

[100] Oliver DeWolfe, Steven S. Gubser, Christopher Rosen, ”A holographic critical point”, Phys.Rev.D 83 (2011)

086005, arXiv:1012.1864 [hep-th].

[101] Oliver DeWolfe, Steven S. Gubser, Christopher Rosen, ”Dynamic critical phenomena at a holographic critical

point”, Phys.Rev.D 84 (2011) 126014, 1108.2029 [hep-th].

[102] Irina Aref’eva, Kristina Rannu, ”Holographic Anisotropic Background with Confinement-Deconfinement

Phase Transition”, JHEP 1805 (2018) 206, arXiv:1802.05652 [hep-th].

[103] Z. Fodor, S.D. Katz, ”Lattice determination of the critical point of QCD at finite T and µ”, JHEP 03 (2002)

014, arXiv:hep-lat/0106002.

– 20 –



[104] Yoshitaka Hatta, Takashi Ikeda, ”Universality, the QCD critical/tricritical point and the quark number

susceptibility”, Phys.Rev.D 67 (2003) 014028, arXiv:hep-ph/0210284.

[105] M. Ferreira, P. Costa and C. Providncia, ”Multiple critical end points in magnetized three flavor quark

matter”, Phys.Rev.D 97 (2018) 1, 014014, arXiv:1712.08378 [hep-ph].

[106] Xun Chen, Danning Li, Defu Hou, Mei Huang, ”Quarkyonic phase from quenched dynamical holographic

QCD model”, JHEP 03 (2020) 073, arXiv:1908.02000 [hep-ph].

– 21 –


	1 Introduction
	2 Holographic Model
	2.1 Holographic EMS System with Magnetic Field
	2.2 Analytical Solution

	3 Phase Transition in QCD
	3.1 Magnetic Effects on Temperature
	3.2 Magnetic Effects on QCD Phase Diagram
	3.3 Critical End Point

	4 Conclusion

