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Introduction

In the early days of calculating Feynman amplitudes, it was proposed by Regge to consider

Feynman integrals as a kind of generalized hypergeometric functions [1], where the sin-

gularities of those hypergeometric functions coincide with the Landau singularities. Later

on Kashiwara and Kawai [2] showed that Feynman integrals satisfy indeed holonomic dif-

ferential equations, where the singularities of those holonomic differential equations are

determined by the Landau singularities.

Apart from characterizing the Feynman integral by “hypergeometric” partial differ-

ential equation systems, many applications determine the Feynman integral as a general-

ized hypergeometric series. Usually, the often used Mellin-Barnes approach [3] results in

Pochhammer series pFq, Appell functions, Lauricella functions and related functions by

applying the residue theorem [4]. Furthermore, for arbitrary one-loop Feynman integrals

it is known that they can always be represented by a small set of hypergeometric series [5].
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Thirdly, the Feynman integral may be expressed by “hypergeometric” integrals like the

generalized Meijer G- or Fox H-functions [6–8].

Thus there arise three different notions of the term “hypergeometric” in the Feynman

integral calculus, where every notion generalizes different characterizations of the classical

hypergeometric Gauß function 2F1(a, b, c;x). In the late 1980s Gelfand, Kapranov, Zelevin-

sky (GKZ) and collaborators [9–14] were starting to develop a comprehensive method to

generalize the notion of “hypergeometric” functions in a consistent way. Those functions

are called A-hypergeometric functions and are defined by a special holonomic system of

partial differential equations.

As Gelfand, Kapranov and Zelevinsky illustrated with Euler integrals, the GKZ ap-

proach not only generalizes the concept of hypergeometric functions but can also be used

for analyzing and solving integrals [9].

For physicists the GKZ perspective is not entirely new. Already in the 1990s, string

theorists applied the GKZ approach in order to calculate period integrals and worked out

the mirror symmetry [15, 16]. Recently, the GKZ approach was also used to obtain differ-

ential equations for the Feynman integral from the maximal cut [17]. Still, the approach

of Gelfand, Kapranov and Zelevinsky is no common practice among physicists.

In 2016 Nasrollahpoursamami showed that the Feynman integral satisfies a differential

equation system which is isomorphic to a GKZ system [18]. Very recently,1 this fact was also

shown directly in [19] based on the Lee-Pomeransky representation of the Feynman integral.

Beyond the above statement which characterizes generalized Feynman integrals as A-

hypergeometric functions, we show that generalized Feynman integrals as well as every

coefficient in the ε expansion in dimensional regularization belong to the class of Horn

hypergeometric functions. Furthermore, we give an explicit formula for a multivariate

series representation of a generalized Feynman integral for unimodular triangulations. This

allows, to evaluate the Feynman integral efficiently for convenient kinematic regions.

Therefore, from the perspective of GKZ it turns out that Horn hypergeometric func-

tions and Feynman integrals share many properties, e.g. Horn hypergeometric functions

satisfy special relations similar to the IBP-relations of the Feynman integral [20]. In this

article, we work out the connection between Feynman integrals and Horn hypergeometric

functions from the GKZ perspective and we give a strategy, as to how to use this knowledge

in the evaluation of Feynman integrals.

The connections between Feynman integrals and hypergeometric functions was inves-

tigated over decades and a comprehensive summary of these investigations can be found

in [21]. Horn hypergeometric functions also appear often in the Mellin-Barnes approach

and have been studied intensively by other authors, e.g [22, 23].

The paper is structured as follows. After recalling the parametric representations of

the Feynman integral, which are crucial for this approach, we mention some properties of

the Feynman integral, which can be obtained from their algebraic geometry description.

This first section will also include a short mathematical interlude about convex polytopes,

1The present paper was developed independently from [19], which the author noticed just shortly before

publication.
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which are necessary in the description of the properties of Feynman integrals, as well as in

the later GKZ approach. Secondly, we briefly introduce the GKZ hypergeometric system,

which is a system of partial differential equations and recall a series solution of those

systems. This leads us to the last section, in which we merge these two aspects in order

to derive an analytical series representation of the Feynman integral. To complete this

section we also discuss some features as well as possible difficulties which can arise in the

evaluation of Feynman integrals with GKZ systems. We conclude this article by calculating

the full massive sunset Feynman diagram as a non-trivial example in order to illustrate

this procedure and to give a glimpse of its further scope of application.

1 Feynman integrals

In this section we shortly recall the parametric representations of Feynman integrals, which

are based on graph polynomials [24]. Those parametric representations contain normally

two graph polynomials, known as the Symanzik polynomials. Recently, Lee and Pomeran-

sky [25] introduced a parametric representation, which depends only on one graph poly-

nomial, which simplifies the application of the Gelfand-Kapranov-Zelevinsky approach.

In this representation the Feynman integral can be formally described as a multivariate

Euler-Mellin integral.

In the second part of this section, we rely on some general properties of Euler-Mellin

integrals in order to recall some basic properties of the Feynman integral from the per-

spective of the Lee-Pomeransky representation. To keep this discussion short, we refer to

standard literature [3, 26, 27] for further properties of the Feynman integral.

Since the formulation of this properties of Feynman integrals, as well as the later

introduced GKZ approach, include convex polytopes, we give a short mathematical inter-

lude about convex polytopes between these two parts. A proceeding and more detailed

description of polytopes can be found in the appendix.

1.1 Parametric representations of Feynman integrals

The Feynman integral in momentum space is an (Ld)-dimensional loop integral over prop-

agators. Since propagators are at most quadratic in the loop momenta, one can rewrite

the Feynman integral as an n-dimensional integral over Schwinger parameters x1, . . . , xn ∈
R≥0 [28]. With this rephrasing one can make the Feynman integral also meaningful for

d ∈ C, as required in the procedure of dimensional regularization [29].

In the parametric version of Feynman integrals, two polynomials in the Schwinger

parameters arise, which are known as first and second Symanzik polynomial [24]

U =
∑
T∈T1

∏
ei /∈T

xi (1.1)

F = −
∑
F∈T2

sF
∏
ei /∈F

xi + U
∑
ei∈E

xim
2
i . (1.2)

Here, Ti is the set of spanning forests of the Feynman graph Γ consisting of i components,

E denotes the set of all edges of Γ and sF is the squared momentum flowing from the
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one component of the 2-forest F to the other component. For Euclidean kinematics the

coefficients of all monomials in the second Symanzik polynomial will be positive. In the

following we restrict the discussion to Euclidean kinematics in order to avoid zeros of the

Symanzik polynomials in the positive orthant x ∈ Rn>0. Since almost every Feynman inte-

gral with Minkowskian kinematics has a non-vanishing overlap with the Euclidean region,

one can extend the Euclidean result to the Minkowskian result by analytic continuation.

In this procedure additional divergences can appear and thus the analytic continuation can

be far from trivial [28].

As the starting point of this discussion we define the Feynman integral in the Feynman

parametric representation.

Definition 1.1 [Feynman integral]: For a given Feynman graph Γ with n edges, L loops2

and the Symanzik polynomials U and F , the Feynman integral is given as an n-dimensional

integral

IΓ(ν, d, p,m) :=
Γ(ω)

Γ(ν)

∫
Rn+

dxxν−1δ

(
1−

n∑
i=1

xi

)
Uω−

d
2

Fω
(1.3)

where ω :=
∑n

i=1 νi −
Ld
2 is the superficial degree of divergence and δ(x) denotes the Dirac

δ function. The ν ∈ Cn with Re νi > 0 are the propagator powers. Note that for simplicity

we use a multi-index notation throughout the whole paper, which implies the following

shorthand notations

dx := dx1 · · · dxn

xν−1 := xν1−1
1 · · ·xνn−1

n (1.4)

Γ(ν) := Γ(ν1) · · ·Γ(νn) .

Clearly, those integrals converge not for every values of ν ∈ Cn and d ∈ C and also

not for every choice of the polynomials U and F . It can be shown, that besides of the

class of massless tadpole graphs, these integrals define meromorphic functions in ν and d.

Therefore, we will consider the Feynman integral always as the meromorphic continuation of

the integral (1.3) to the whole complex plane. The convergence as well as the meromorphic

expansion will be discussed in more detail in section 1.3.

Remark: One is often interested in νi ∈ N. However, in the following it will be conve-

nient to consider a slightly more general notion of Feynman integrals where the propagator

powers νi are not restricted to integer values only. Just the restriction Re νi > 0 is nec-

essary to guaranty the parametric rewriting and convergence. These conditions are often

assumed in the literature e.g. in [30, 31].

The parametric representation in equation (1.3) is not the only representation in terms

of Schwinger parameters. For the following approach another parametric representation

invented by Lee and Pomeransky [25] is more convenient.

2In contrast to the nomenclature in graph theory, in the context of Feynman integrals a “loop” means

a closed path. Thus, L is the first Betti number of Γ.
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Theorem 1.1 [Lee-Pomeransky representation [25]]: The Feynman integral from equa-

tion (1.3) can also be written as

IΓ(ν, d, p,m) =
Γ
(
d
2

)
Γ
(
d
2 − ω

)
Γ(ν)

∫
Rn+

dxxν−1G−
d
2 , (1.5)

where the integral depends only on the sum of Symanzik polynomials G = U +F , which we

call the Lee-Pomeransky polynomial G. The equality of representations is in the sense of

meromorphic extension.

Proof. (A proof can be found also in [31]) Since U is homogeneous of degree L and F is

homogeneous of degree L+ 1, the integral in (1.5) as a function of d converges in the strip

Λ =
{
d ∈ C

∣∣∣2 Re
∑
i νi

L+1 < Re d <
2 Re

∑
i νi

L

}
. As we consider Re νi > 0 it is Λ 6= ∅. For

an equality in the sense of meromorphic extension it is sufficient to show that there is a

non-vanishing interval where the equality of representations holds.

Inserting 1 =
∫∞

0 ds δ(s −
∑

i xi) in (1.5), changing the integration order and substi-

tuting xi → sxi one obtains

IΓ(ν, d, p,m) =
Γ
(
d
2

)
Γ
(
d
2 − ω

)
Γ(ν)

∫ ∞
0

ds

∫
Rn+

dx δ(s− s
∑
i

xi)x
ν−1s

∑
i νi(sLU + sL+1F )−

d
2 .

(1.6)

Since the integral
∫∞

0 ds s
∑
i νi−L

d
2
−1(U + sF )−

d
2 can be calculated explicitly as a beta

function in the region Λ (and for U,F > 0) one attains the representation (1.3).

As a consequence of theorem 1.1 , the whole structure of a Feynman integral can be

expressed in only one single polynomial G ∈ C[x1, . . . , xn] . As it is possible for every

polynomial, one can write the Lee-Pomeransky polynomial G as

Gz(x) =
∑
aj∈A

zjx
aj =

N∑
j=1

zjx
a1j

1 . . . x
anj
n (1.7)

where A is a finite set consisting of N pairwise distinct column vectors aj ∈ Zn≥0 and the

coefficients of this polynomial are complex numbers z ∈ (C \ {0})N , which contain the

kinematics and masses. This representation is unique, up to the possibility of different

monomial orderings. Without loss of generality we can fix an arbitrary monomial ordering

and we denote the set of column vectors A in a matrix structure. As we will observe later,

the exponential vectors of the Lee-Pomeransky polynomial Gz satisfy an affine structure.

Thus, it will be convenient to define

A :=

(
1

A

)
=

(
1 1 . . . 1

a1 a2 . . . aN

)
∈ Z(n+1)×N

≥0 . (1.8)

Further, for an index set σ ⊂ {1, . . . , N} the notation Aσ denotes the restriction of A
according to columns indexed by σ.

In addition, we define coordinates ν := (ν0, ν) ∈ Cn+1, where the first entry of ν

contains the physical dimension ν0 := d
2 . From a mathematical point of view, the physical
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dimension d and the propagator powers νi have a similar role in parametric Feynman

integrals. This is the reason why instead of using dimensional regularization one can also

regularize the integral by considering the propagator powers as complex numbers as done

in analytic regularization [30].

In fact, this definition of Gz(x) includes a generalization of the original Feynman

integral, since also the first Symanzik polynomial gets coefficients zi. Thus, we define:

Definition 1.2 [Generalized Feynman Integrals]: Let Gz(x) a Lee-Pomeransky polyno-

mial with generic coefficients z ∈ CN satisfying Re zj > 0. The generalized Feynman

integral is the meromorphic continuation of the integral

JA(ν, z) := Γ(ν0)

∫
Rn+

dxxν−1Gz(x)−ν0 . (1.9)

defined on ν = (ν0, ν) ∈ Cn+1.

Remark: In this definition the complete graph structure, which is necessary to evalu-

ate the Feynman integral, is given by the matrix A. The variables z ∈ CN contain the

physical information about kinematics and masses and the ν ∈ Cn+1 are the regularization

parameters.

In contrast to equation (1.5) the coefficients in Gz which come from the first Symanzik

polynomial are treated as generic, instead of equal to 1. We will discuss later how one can

remove these auxiliary variables afterwards to obtain the “ordinary” Feynman integral. To

avoid unnecessary prefactors in the following, we omit also the factor Γ(ν0−ω)Γ(ν) in this

definition

With this definitions one can derive another representation of the Feynman integral as

a multi-dimensional Mellin-Barnes integral.

Theorem 1.2 [Representation as Fox H-function]: Let σ ⊂ {1, . . . , N} be an index subset

with cardinality n + 1, such that the matrix A restricted to columns of σ is invertible,

detAσ 6= 0. Then the Feynman integral can be written as the multi-dimensional Mellin-

Barnes integral

JA(ν, z) =
z
−A−1

σ ν
σ

| detAσ|

∫
γ

dt

(2πi)r
Γ(t)Γ(A−1

σ ν −A−1
σ Aσ̄t)z−tσ̄ zA

−1
σ Aσ̄t

σ (1.10)

wherever this integral converges. The set σ̄ := {1, . . . N} \ σ denotes the complement of σ,

containing r := N − n − 1 elements. Restrictions of vectors and matrices to those index

sets are similarly defined as zσ := (zi)i∈σ, zσ̄ := (zi)i∈σ̄, Aσ̄ := (ai)i∈σ̄. Every component

of the integration contour γ ∈ Cr goes from −i∞ to i∞ such that the poles of the integrand

are separated.

Corollary 1.3: Let N = n + 1 or in other words let A be quadratic. If there is a

region D ⊆ Cn+1 such that the Feynman integral JA(ν, z) converges absolutely for ν ∈ D,

the matrix A is invertible and the Feynman integral is only a simple combination of Γ-

functions:

JA(ν, z) =
Γ(A−1ν)

| detA|
z−A

−1ν . (1.11)
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Proof. Starting from equation (1.9) by the Schwinger trick one gets

JA(ν, z) =

∫
Rn+1

+

dx0 x
ν0−1
0 dxxν−1e−x0G , (1.12)

where ν0 = d
2 . Writing x = (x0, x), ν = (ν0, ν) and using the Cahen-Mellin integral

representation of exponential function one obtains

JA(ν, z) =

∫
Rn+1

+

dxxν−1

∫
δ+iRn+1

du

(2πi)n+1
Γ(u)z−uσ x−Aσu

∫
δ+iRr

dt

(2πi)r
Γ(t)z−tσ̄ x−Aσ̄t

(1.13)

with u ∈ Cn+1, t ∈ Cr, some arbitrary positive numbers δi > 0 and where we split the

polynomial G into a σ and a σ̄ part. By a substitution u→ A−1
σ u′ it is

JA(ν, z) = | detA−1
σ |
∫
δ+iRr

dt

(2πi)r
Γ(t)z−tσ̄

×
∫
Rn+1

+

dx

∫
Aσδ+iAσRn+1

du′

(2πi)n+1
Γ(A−1

σ u′)z−A
−1
σ u′

σ xν−u
′−Aσ̄t−1 . (1.14)

Since the matrix Aσ contains only positive values, the integration region remains the same

Aσδ+ iAσRn+1 ' δ′+ iRn+1 with some other positive numbers δ′ ∈ Rn+1
>0 , which addition-

ally have to satisfy A−1
σ δ′ > 0. By Mellin’s inversion theorem [32] only the t-integration

remains and one obtains equation (1.10).

Thereby, the integration contour has to be chosen, such that the poles are separated

from each other in order to satisfy A−1
σ δ′ > 0. More specific this means that the contour

γ has the form c+ iRn+1 where c ∈ Rn+1
>0 satisfies A−1

σ ν −A−1
σ Aσ̄c > 0. Clearly, in order

for those c to exist, the possible values of parameters ν are restricted.

The proof of the corollary is a special case, where one does not have to introduce the

integrals over t. The existence of the inverse A−1 is ensured by theorem 1.4.

Remark: A more general version of this theorem can be found in [33, thm. 5.6] with an

independent proof. In [34] a similar technique is used to obtain Mellin-Barnes representa-

tions from Feynman integrals.

The convergence of those Mellin-Barnes representation is discussed in [35] and general

aspects of multivariate Mellin-Barnes integrals can be found in [36].

The corollary can alternatively be proven by splitting the term G−ν0 by the multinomial

theorem in a multidimensional power series and solve the Mellin transform of this power

series by a generalized version of Ramanujan’s master theorem [37].

The type of the integral which appears in equation (1.10) is also known as multivariate

Fox H-function [35] and the connection between Feynman integrals and Fox H-function

was studied before [6–8].

Since the number of monomials in the Symanzik polynomials increases fast for more

complex Feynman graphs, the Mellin-Barnes representation of theorem 1.2 does not pro-

vide an efficient way to calculate those integrals. One exception are the massless 2-point

– 7 –
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m2 = 0

m1 6= 0

p

Figure 1. The 1-loop 2-point function with one mass.

functions consisting in n lines and having the loop number L = n−1. These so-called “ba-

nana graphs” or “sunset-like” graphs, have only n+1 monomials in G and satisfy therefore

the condition in the corollary.

In order to illustrate the theorem 1.2 about Mellin-Barnes representations, we finish

this section with a simple example.

Example 1.1: Consider the 1-loop 2-point function with one mass (see figure 1) having

the Symanzik polynomials U = x1 + x2 and F = (m2
1 − p2)x1x2 + m2

1x
2
1. Thus the matrix

A and the vector z are given by

A =


1 1 1 1

1 0 1 2

0 1 1 0

 z = (1, 1,m2
1 − p2,m2

1) . (1.15)

Choosing σ = {1, 2, 3}, the corresponding Feynman integral in the Mellin-Barnes represen-

tation of theorem 1.2 is given by

JA(ν, z) = z−ν0+ν2
1 z−ν0+ν1

2 zν0−ν1−ν2
3

∫ δ+i∞

δ−i∞

dt

2πi
Γ(t)Γ(ν0 − ν1 + t)

× Γ(ν0 − ν2 − t)Γ(−ν0 + ν1 + ν2 − t)
(
z2z4

z1z3

)−t
. (1.16)

For the correct contour prescription the poles have to be separated such that there exist

values δ satisfying max{0,−ν0 +ν1} < δ < min{ν0−ν2,−ν0 +ν1 +ν2}. In the formulation

to be introduced in the following section 1.3, this is equivalent to claim a full dimensional

Newton polytope of G. In this case, by Cauchy’s theorem the integral evaluates simply to a

Gaussian hypergeometric function

JA(ν, z) =
Γ(2ν0 − ν1 − ν2)Γ(ν2)Γ(ν0 − ν2)Γ(−ν0 + ν1 + ν2)

Γ(ν0)

× z−ν0+ν2
1 z−ν0+ν1

2 zν0−ν1−ν2
3 2F1

(
ν0 − ν2,−ν0 + ν1 + ν2

ν0

∣∣∣∣ 1− z2z4

z1z3

)
. (1.17)
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After restoring the original prefactors and coefficients z1 = z2 = 1, z3 = p2 −m2
1, z4 = m2

1

and ν0 = d
2 it agrees with the expected result

IΓ(ν1, ν2, d,m
2
1, p

2) =
Γ
(
d
2 − ν2

)
Γ
(
−d

2 + ν1 + ν2

)
Γ(ν1)Γ

(
d
2

) (1.18)

× (p2 −m2
1)

d
2
−ν1−ν2

2F1

(
d
2 − ν2,−d

2 + ν1 + ν2

d
2

∣∣∣∣∣ 1− m2
1

p2 −m2
1

)
.

1.2 Mathematical interlude: convex polytopes

In the following, it will be fruitful to describe properties and solutions of Feynman integrals

from a perspective of convex polytopes. In order to clarify some terminology, we give a short

review of the basic concepts of convex polytopes. Readers which are familiar with convex

polytopes can skip this interlude. More details about polytopes, customized to the hyperge-

ometric approach, can be found in the appendix. For further treatments we refer to [38–41].

A convex polytope P is defined as the convex hull of a finite set of points A =

{a1, . . . , aN}

P := Conv(A) :=


N∑
j=1

kjaj

∣∣∣∣∣∣ k ∈ RN≥0,
N∑
j=1

kj = 1

 (1.19)

where ai ∈ Rn. Additionally, if the points ai ∈ Zn form an integer lattice, P is called a

convex lattice polytope. Since in this discussion all polytopes will be convex polytopes, we

will call them simply “polytopes” in the following.

As a fundamental result of polytope theory, every polytope can also be written as a

bounded intersection of half-spaces

P := P (M, b) := {µ ∈ Rn|mT
j · µ ≤ bj , 1 ≤ j ≤ k} (1.20)

where b ∈ Rk and M ∈ Rk×n are real, mT
j denotes the rows of the matrix M and · is the

standard scalar product.

The Newton polytope ∆f corresponding to a multivariate polynomial f =
∑

α cαx
α ∈

C[x1, . . . , xn] is defined as the convex hull of its exponent vectors ∆f := Conv({α|cα 6= 0}).
A subset of P having the form F := {µ ∈ P |c µ = β}, with c ∈ Rk×n and where every

point of the polytope µ ∈ P satisfies the inequality c µ ≤ β, is called a face of P . Faces of

dimension zero are called vertices and faces of dimension n − 1 are called facets. Thus, if

equation (1.20) consist in a minimal set of inequalities, the facets of P are given by mT
j µ =

bj . The polytope without its faces is called the relative interior relintP of the polytope P .

The dimension of a polytope P = Conv(A) is defined as the dimension of its affine

hull, and thus one can easily see

dim(Conv(A)) = rank

(
1

A

)
− 1 . (1.21)

As before in equation (1.8), we will denote the matrix A with an additional row (1, . . . , 1)

as A =

(
1

A

)
. If a polytope P ⊂ Rn has the dimension n it is called to be full dimensional

and degenerated otherwise.
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For full dimensional polytopes it is meaningful to introduce a volume of polytopes. As

the volume vol0(P ) ∈ N of a lattice polytope we understand a volume, which is normalized

such that the standard simplex has volume 1. Therefore, this volume is connected to the

standard Euclidean volume vol(P ) by a factorial of the dimension vol0(P ) = n! vol(P ).

For a full dimensional simplex P4 = Conv(A) the volume is given by the determinant

vol0(P4) = | detA|. Thus, one way of calculating the volume of a polytope is by dividing

the polytope in simplices.

A subdivision of a polytope P into simplices, where the union of all simplices is the

full polytope and the intersection of two distinct simplices is either empty or a proper face

of both simplices, is called a triangulation.

A triangulation T (ω) = {σ1, . . . , σr} of a polytope P = Conv(A) is called regular, if

there exists an height vector ω ∈ RN , such that for every simplex σi of this triangulation

there exists another vector ri ∈ Rn+1 satisfying

ri · aj = ωj for j ∈ σi
ri · aj < ωj for j /∈ σi ,

where · denotes the scalar product.

It can be shown, that every convex polytope admits always a regular triangulation [41].

If all σ ∈ T (ω) belongs to simplices with volume 1 (i.e. | detAσ| = 1) the triangulation is

called unimodular.

In order to reduce later more complicated Feynman integrals to simpler one, we intro-

duce subtriangulations.

Definition 1.3 [Subtriangulation]: Let P ⊂ Rn be a polytope and T be a triangulation of

P . A simplicial complex T ′ is a subtriangulation of T (symbolically T ′ ⊆ T ) if

a) T ′ is a subcomplex of T (i.e. T ′ is a subset of T , and T ′ is a polyhedral complex) and

b) the union of all simplices in T ′ equals a (convex) polytope P ′ ⊆ P .

If the triangulations differ T ′ 6= T the subtriangulation is a proper subtriangulation T ′ ⊂ T .

Example 1.2: Consider the point configuration from example 1.1

A =


1 1 1 1

1 0 1 2

0 1 1 0

 . (1.22)

There are two regular triangulations T1 = {{1, 2, 4}, {2, 3, 4}} and T2 = {{1, 2, 3}, {1, 3, 4}}.
The first can be obtained e.g. by a height vector ω1 = (0, 0, 1, 0). For the other triangulation

one can consider ω2 = (0, 0, 0, 1).

The possible proper subtriangulations of these two triangulations are simply the single

simplices itself.
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µ1

µ2

1

2
3

4 µ1

µ2

1

2
3

4

The triangulation T1 of Conv(A) The triangulation T2 of Conv(A)

generated by ω1 = (0, 0, 1, 0) generated by ω2 = (0, 0, 0, 1)

Figure 2. The two possible regular triangulations of the Newton polytope ∆G = Conv(A) corre-

sponding to the Lee-Pomeransky polynomial G = z1x1 + z2x2 + z3x1x2 + z4x
2
1.

1.3 Properties of Feynman integrals

In the definitions of the Feynman integrals we have omitted to discuss the convergence

of those integrals. E.g. by power counting [42] the convergence behavior of the original

Feynman integrals in momentum space is well known, as well as for the parametric Feynman

integral (1.3) [28]. Therefore, we discuss the convergence shortly for the representation (1.5)

and (1.9), respectively. This discussion involves the perspective of polytopes, which allows

a clear and short notation. The theorems are mostly direct implications of the work

of [33, 43, 44] and proofs can be found there.

Theorem 1.4 [following from [33, thm. 2.2], the second statement is proven in [44, thm.

3.1]]: Consider the Feynman integral (1.9) in the Euclidean region Re zj > 0 with positive

dimensions Re ν0 > 0 and the Lee-Pomeransky polynomial G = U + F . Denote by ∆G the

Newton polytope of G and by relint ∆G its relative interior. Then the Feynman integral

converges absolutely if the real parts of ν scaled componentwise by the real part of ν0 = d
2

lie in the relative interior of the Newton polytope

Re(ν)/Re(ν0) ∈ relint ∆G . (1.23)

In the description of (1.20) this is equivalent to demanding bj Re ν0 − mT
j · Re ν > 0 for

1 ≤ j ≤ k. Furthermore, if the Newton polytope ∆G is not full-dimensional, the Feynman

integral does not converge absolutely for any choice of ν0 and ν.

The second statement means, that Feynman integrals which do not have a full-

dimensional Newton polytope ∆G are neither dimensionally nor analytically regularizable.

This result is not surprising, since if the Newton polytope is not full dimensional, the poly-

nomial G has a special homogeneous property. A polynomial G is homogeneous in such

that way, that there exists numbers c0, . . . , cn ∈ Z not all zero, such that

Gz(s
c1x1, . . . , s

cnxn) = sc0Gz(x1, . . . , xn) (1.24)

holds. If G corresponds to a massless tadpole graph, G is homogeneous in this sense, since

massless tadpole graphs have F = 0 and the first Symanzik polynomial is homogeneous of

degree L. Thus, there will be no values for ν = (ν0, ν) ∈ Cn+1 that those integrals converge.
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However one usually sets those tadpole graphs to zero by including a counterterm in the

renormalization procedure, which removes all tadpole graphs [27] (see also [31, section 3.1]).

Since the Feynman integral in (1.9) is only equivalent to the original Feynman integral

in the meromorphic extension, the convergence region of (1.9) has no deeper physical mean-

ing. Using the following theorem one can deduce the meromorphic continuation of (1.9)

to the whole complex plane, which determines the physical relevant poles of the Feynman

integral.

Theorem 1.5 [Meromorphic continuation of Feynman integrals [33, thm. 2.4, rem. 2.6]]:

Consider a Feynman integral JA in the Euclidean region Re zj > 0 with a full-dimensional

Newton polytope ∆G = {µ ∈ Rn|mT
j · µ ≤ bj , 1 ≤ j ≤ k}. Then one can rewrite the

Feynman integral as

JA(ν, z) = ΦA(ν, z)

k∏
j=1

Γ(bj Re ν0 −mT
j · Re ν) (1.25)

where ΦA(ν, z) is an entire function with respect to ν ∈ Cn+1.

Example 1.3: Consider the example from above which correspond to figure 1. For the

relative interior of the Newton polytope one obtains from the facet representation, the region

of convergence (with Re ν0 > 0)

Re(ν0 − ν2) > 0 Re(−ν0 + ν1 + ν2) > 0

Re(ν2) > 0 Re(2ν0 − ν1 − ν2) > 0

which enables us to separate the poles of the Feynman integral in the Γ functions

IA(ν, z) = ΦA(ν, z)
Γ(−ν0 + ν1 + ν2)Γ(ν0 − ν2)

Γ(ν1)

with an entire function ΦA(ν, z).

This result is remarkable in many different ways. Firstly, it guarantees that the Feyn-

man integral can be meromorphically continued to the whole complex plane, which confirms

dimensional and analytical regularization. Secondly, equation (1.25) gives an easy method

to calculate the (possible) poles of the Feynman integral. And thirdly, in the ε expansion

one can focus only on a Taylor expansion of ΦA instead of a Laurent expansion of JA.

Thus, one can determine the coefficients by differentiating, which makes the procedure

much easier.

These theorems do not rely on any special properties of the Symanzik polynomials. In

fact, Feynman integrals are just a subset of Euler-Mellin integrals. The following lemma is

a simple implication from the properties of Symanzik polynomials to be at most quadratic,

and to be homogeneous of degree L and L+ 1, respectively.
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Lemma 1.6: Let A =

(
1

A

)
be a point configuration coming from a Feynman graph.

a) The entries of the matrix A are restricted to A ∈ {0; 1; 2}(n+1)×N . Every column of

A contains at most one entry equals 2. For massless Feynman integrals the points are

even in A ∈ {0; 1}(n+1)×N .

b) All points in A are arranged on two parallel hyperplanes in Rn. The hyperplanes have

the normal vector (1, 1, . . . , 1) and a distance of 1 between them. This means that the

Newton polytopes ∆G arising in Feynman integrals are compressed in one direction.

c) The Newton polytope ∆G, corresponding to a Feynman graph, has no interior points.

Thus, we have reformulated the Feynman integral as an Euler-Mellin integral, which

defines a meromorphic function in ν ∈ Cn+1. To consider the Euclidean region we have

restricted3 the discussion to the right half space z ∈ CN with Re zj > 0. Further, in

corollary 1.3 we had a class of Feynman integrals which provides a simple and analytic

solution. These integrals will be helpful to find boundary values for the following partial

differential equation systems. The Newton polytopes ∆G, which define the convergence

regions and determine the whole structure of the Feynman graphs, which is necessary to

evaluate Feynman amplitudes, are relatively well behaved.

2 General hypergeometric functions

Since the first hypergeometric function was studied by Euler and Gauss more than 200 years

ago, many different generalization of hypergeometric functions were introduced: Pochham-

mer series pFq, Appell’s, Lauricella’s and Kampé-de-Fériet functions, to name a few. Those

functions can be characterized in three different ways: by series representations, by integral

representations and as solutions of partial differential equations. Therefore, there are in

principle three different branches to generalize the notion of a hypergeometric function.

The most general series representation goes back to Horn [45] and was later investigated

by Ore and Sato (a summarizing discussion can be found in [10]). A Horn hypergeometric

series is a multivariate power series in the variables x1, . . . , xr ∈ C∑
k∈Nr0

c(k)xk (2.1)

where ratios of coefficients c(k+ei)
c(k) are rational functions in k1, . . . kr and where ei is the

standard basis in the Euclidean space. Thus, the coefficients can be represented mainly by

3In [33] there is a possibility to remove this limitation by considering the coamoeba of G.
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a product of Pochhammer symbols,4 which are defined as

(a)n :=
Γ(a+ n)

Γ(a)
. (2.2)

Negative integers in arguments of Γ functions can be avoided by considering appropriate

limits. In the terms of the series of Horn hypergeometric functions we consider a ∈ C as

complex numbers and n as integer combinations of the k1, . . . , kr. Among many beautiful

properties, derivatives with respect to the parameters of Horn hypergeometric are again

Horn hypergeometric functions [22]. For further studies of Horn hypergeometric functions

we refer e.g. to [23].

2.1 GKZ hypergeometric functions

Since the late 1980s the theory of general hypergeometric functions was reinvented by the

characterization of the partial differential equation system by Gelfand, Graev, Kapranov,

Zelevinsky and collaborators [9–14]. This approach combines the different characterizations

of hypergeometric functions and gives a comprehensive method to analyze and describe

general hypergeometric functions. In this section we introduce the Gelfand-Kapranov-

Zelevinsky (GKZ) hypergeometric system, which is a system of partial differential equations

and discuss roughly how to solve this system by power series. The following recapitulation

is adapted for the application to Feynman integrals and will miss some generality in order

to keep the discussion short. Since the theory of general hypergeometric functions involves

many mathematical aspects inter alia algebraic geometry, combinatorics, number theory

and Hodge theory, we refer for more detailed studies to [10, 13, 46–50].

Let A ∈ Z(n+1)×N be an integer matrix with n + 1 ≤ N , rankA = n + 1 and assume

that the columns of A span the full integer lattice5 colspanZA = Zn+1. Further, we

consider that A includes a row6 of the form (1, 1, . . . , 1). The ladder condition means that

A lies in an n-dimensional affine hyperplane of Zn+1. Without loss of generality we can

consider that A is of the form A =

(
1

A

)
as in equation (1.8). Then the Gelfand-Kapranov-

Zelevinsky (GKZ) hypergeometric system is defined as the D-module, consisting of toric

and homogeneous differential operators

HA(β) = {∂u − ∂v|Au = Av, u, v ∈ NN} ∪ 〈Aθ + β〉 (2.3)

where θ = (z1
∂
∂z1

, . . . , zN
∂
∂zN

) is the Euler operator and β ∈ Cn+1. By 〈D〉 we denote the

ideal generated by components of D over C. Solutions Φ(z) of these differential systems

HA(β)Φ(z) = 0 are called A-hypergeometric functions.

4By the property of the Pochhammer symbols to satisfy (a)−1
n = (1 − a)−n for n ∈ Z one can convert

Pochhammer symbols in the denominator to Pochhammer symbols in the numerator and vice versa. The

most general form of those terms are given by the Ore-Sato theorem [10].
5The existence of a subset A′ ⊆ A, which forms a full dimensional, unimodular simplex ConvA′, is a

sufficient condition for this assumption.
6One can generalize this condition to rowspanQA = (1, . . . , 1). However, for the following this general-

ization is not necessary.
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One of the most important properties of those hypergeometric systems (2.3) is to be

holonomic, i.e. the dimension of the solution space is finite and we can give an appropriate

basis of the solution space. There are several possibilities to construct those bases. In

the following we discuss a solution in terms of multivariate power series, which was the

first solution invented in [11]. Furthermore, there are solutions in terms of different sorts

of integrals [51]. The following discussion is simplified for the later approach and based

on [52] and [48].

Let A ∈ Z(n+1)×N be an integer matrix with n + 1 ≤ N and full rank as before.

Furthermore consider the corresponding lattice L := kerZA = {(l1, . . . , lN ) ∈ ZN |l1a1 +

. . . + lNaN = 0}, which has rankL = N − n − 1 =: r by the rank-nullity theorem. Then

for ξ ∈ CN the formal series

ϕξ(z) =
∑
l∈L

zl+ξ

Γ(ξ + l + 1)
(2.4)

is called Γ -series. It turns out, that these Γ-series are formal solutions of the GKZ sys-

tem (2.3) for an appropriate choice of ξ:

Lemma 2.1 [Γ-series as formal solutions of GKZ hypergeometric systems [11, 48]]: Let

L be the corresponding lattice to A and ξ ∈ CN satisfying Aξ + β = 0. Then the series

ϕξ(z) is a formal solution of the GKZ system HA(β)

HA(β)ϕξ(z) = 0 .

Proof. For u ∈ NN and r ∈ CN it is
(
∂
∂z

)u
zr = Γ(r+1)

Γ(r−u+1)z
r−u (with an appropriate limit,

respectively). Furthermore one can add an element of L to ξ, without changing the Γ-series.

Since u− v ∈ L it is

∂uϕξ(z) =
∑
l∈L

zl+ξ−u

Γ(ξ + l − u+ 1)
= ϕξ−u(z) = ϕξ−v(z) = ∂vϕξ(z) (2.5)

which shows that the Γ-series satisfies the toric equations. For the homogeneous equations

one considers

N∑
j=1

ajzj
∂

∂zj
ϕξ(z) =

∑
l∈L

 N∑
j=1

aj(ξj + lj)

 zl+ξ

Γ(ξ + l + 1)

=

N∑
j=1

ajξj
∑
l∈L

zl+ξ

Γ(ξ + l + 1)
= −βϕξ(z) . (2.6)

The restriction Aξ + β = 0 allows in general many choices of ξ. Let σ ⊆ {1, . . . , N}
be an index set with cardinality n + 1, such that the matrix A restricted to columns of

that index set σ is invertible, detAσ 6= 0. Due to the assumption rankA = n + 1 those

index sets always exist. Denote by σ̄ = {1, . . . , N} \ σ the complement of σ. If one sets

ξσ = −A−1
σ (β +Aσ̄k) and ξσ̄ = k the condition Aξ + β = 0 is satisfied for any k ∈ Cr.

– 15 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
1

On the other hand we can split the lattice L = {l ∈ ZN |Al = 0} in the same way

Aσlσ +Aσ̄lσ̄ = 0 and obtain a series only over lσ̄

ϕξ(z) =
∑
lσ̄∈Zr

s.t. A−1
σ Aσ̄lσ̄∈Zn+1

z
−A−1

σ (β+Aσ̄k+Aσ̄lσ̄)
σ zk+lσ̄

σ̄

Γ(−A−1
σ (β +Aσ̄k +Aσ̄lσ̄) + 1)Γ(k + lσ̄ + 1)

. (2.7)

In order to simplify the series one can choose7 k ∈ Nr0, since terms with (k + lσ̄)i ∈ Z<0

will vanish. The Γ-series depends now on k and σ

ϕσ,k(z) = z−A
−1
σ β

σ

∑
λ∈Λk

z−A
−1
σ Aσ̄λ

σ zλσ̄
λ!Γ(−A−1

σ (β +Aσ̄λ) + 1)
(2.8)

where Λk = {k + lσ̄ ∈ Nr0|Aσ̄lσ̄ ∈ ZAσ} ⊆ Nr0 for any k ∈ Nr0. Therefore, the Γ-series is

turned into a power series.

Remark: In the unimodular case | detAσ| = 1, the coefficient matrix A−1
σ Aσ̄ ∈ Z(n+1)×r

is an integer matrix and therefore it is Λk = Nr0. Furthermore, the set {Λk|k ∈ Nr0} is a

partition of Nr0 with cardinality | detAσ| [52].

In order to show that Γ-series are actual solutions of the GKZ system and not only

formal ones, one has to prove that Γ-series converge for some z ∈ CN . By an application

of the Stirling approximation it can be shown, that the Γ-series always converge absolutely

for sufficiently small values of the variables xj :=
(zσ̄)j∏

i(zσ)
(A−1
σ Aσ̄)ij

i

. A proof of the absolute

convergence of Γ-series can be found in lemma B.

Another issue is also that the Γ-series can be identical to zero, which is also inconvenient

in order to construct a solution space. The Γ-series is zero for all z ∈ CN , if and only if for

all λ ∈ Λk the expression A−1
σ (β + Aσ̄λ) contains at least one positive integer entry. To

avoid these cases one considers generic β ∈ Cn+1:

Definition 2.1 [Very genericity]: If no component of A−1
σ (β +Aσ̄λ) is a strictly positive

integer for all λ ∈ Nr0 one says that β is very generic with respect to σ. In the unimodular

case this is equivalent to claim, that for the components i which satisfy (A−1
σ Aσ̄)ij ≥ 0 for

all j, it is (A−1
σ β)i /∈ Z>0.

Thus, typically non generic cases arise for even integer dimensions, which should not

be surprising, since for these dimensions the Feynman integrals mostly diverge, which is

the reason why we exclude this values already.

To normalize the first term of the power series to 1, we will deal in the following with

a slightly different version of the Γ-series

φσ,k(z) := Γ(−A−1
σ β + 1)ϕσ,k(z) = z−A

−1
σ β

σ

∑
λ∈Λk

z−A
−1
σ Aσ̄λ

σ zλσ̄
λ!(1−A−1

σ β)−A−1
σ Aσ̄λ

(2.9)

which is well-defined in the case (A−1
σ β)i /∈ Z>0. Here (1 − A−1

σ β)−A−1
σ Aσ̄λ denotes the

(multivariate) Pochhammer symbol (a)n :=
∏
j

Γ(aj+nj)
Γ(aj)

.

7Also the choice k ∈ Zr would be possible, but it does not change the series, see [52, lemma 3.2.].
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Remark: In the unimodular case | detAσ| = 1 one can rewrite the Γ-series

φσ(z) = z−A
−1
σ β

σ

∑
λ∈Nr0

(A−1
σ β)A−1

σ Aσ̄λ
λ!

zλσ̄

(−zσ)A
−1
σ Aσ̄λ

(2.10)

by Pochhammer identities.

As mentioned above the holonomic rank is finite. For very generic β one can determine

the holonomic rank by a polytope corresponding to A =

(
1

A

)
.

Theorem 2.2 [Holonomic rank of GKZ systems [9, 12, 49]]: Consider a GKZ system

HA(β) with arbitrary A ∈ Z(n+1)×N and very generic β ∈ Cn+1. Let Conv(A) be the

corresponding convex polytope and denote by vol0 the normalized Euclidean volume, such

that the standard simplex has a volume equal to 1. Then the holonomic rank of the GKZ

system is equal to the volume of the polytope Conv(A)

rankHA(β) = vol0(Conv(A)) . (2.11)

This means that one needs vol0(Conv(A)) linearly independent solutions to construct

the solution space. The regular triangulations of the polytope Conv(A) provide a con-

struction of linearly independent Γ-series. Definitions and basic properties of the regular

triangulations can be found in the mathematical interlude of section 1.2 and in the ap-

pendix.

In the following we will only discuss the case of unimodular triangulation, since almost

all Feynman integrals admit an unimodular triangulation. We will motivate this restriction

in section 3.5 in more detail. Nevertheless, there is a simple generalization to the non-

unimodular case, which can be found e.g. in [51, 52].

Theorem 2.3 [Solution Space of GKZ [12, 52]]: Let T be a regular unimodular triangu-

lation and let β be very generic with respect to every σ ∈ T . Then the Γ-series {ϕσ}σ∈T
form a basis of the solution space of the hypergeometric GKZ system HA(β). Furthermore,

all these Γ-series have a common region of convergence.

To conclude, we defined holonomic systems of partial differential equations, which can

be characterized by a matrix A ∈ Z(n+1)×N and a vector β ∈ Cn+1. Furthermore, for

generic values of β we are able to construct the whole solution space in terms of power

series by regular triangulations of the polytope Conv(A).

3 Feynman integrals as hypergeometric functions

It is one of the first observations in the calculation of simple Feynman amplitudes, that

Feynman integrals evaluate mostly to hypergeometric functions. This observation was lead-

ing Regge to the conjecture that Feynman integrals are always hypergeometric functions
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and he based his conjecture on the partial differential equations which are satisfied by the

Feynman integral [1].

Typically, those hypergeometric functions also appear in the often used Mellin-Barnes

approach. This is a consequence of Mellin-Barnes representations with integrands con-

sisting in a product of Γ functions, which can be identified by the hypergeometric Fox

H-functions [6–8] or which can be evaluated to some series-based hypergeometric func-

tions, like the Appell or Lauricella functions by application of the residue theorem [4, 5].

But except of some special cases, like the one-loop integrals [5], this correspondence is more

or less unproved, which is also due to the fact that multivariate Mellin-Barnes integrals

can be highly non trivial [36].

A new opportunity to examine the correspondence between hypergeometric functions

and Feynman integrals is the Gelfand-Kapranov-Zelevinsky approach. It was already stated

by Gelfand himself, that “practically all integrals which arise in quantum field theory” [9]

can be treated with this approach. Recently, the connection between Feynman integrals

and A-hypergeometric function was concertized in [18] and, independently of the present

paper, in [19].

Based on the Lee-Pomeransky representation of Feynman integrals it is a standard

application to show that generalized Feynman integrals are A-hypergeometric, analogue to

the examples in [48].

Theorem 3.1 [Feynman integral as A-hypergeometric function8]: A generalized Feynman

integral JA(ν, z) satisfies the hypergeometric GKZ system in the variables z ∈ CN

HA(ν)JA(ν, z) = 0 . (3.1)

Thus the generalized Feynman integral is an A-hypergeometric function.

Proof. Firstly, we show that the generalized Feynman integrals satisfy the toric part {∂u−
∂v|Au = Av, u, v ∈ NN}. Derivatives of the Feynman integral with respect to z result in

∂u
∫
Rn+

dxxν−1Gz(x)−ν0 = −ν0(−ν0−1) · · · (−ν0−|u|−1)

∫
Rn+

dxxν−1x
∑
i uiaiGz(x)−ν0−|u|

(3.2)

where |u| :=
∑

i ui. From the row (1, 1, . . . , 1) in A it follows immediately that |u| = |v|.
Therefore, one obtains the same equation for v.

Secondly, consider for the homogeneous part 〈Aθ+ν〉 that JA(ν, sab1z1, . . . , s
abN zN ) =

Γ(ν0)
∫
Rn+

dxxν−1Gz(x1, . . . , sxb, . . . , xn)−ν0 . After a substitution sxb → xb for s > 0 it is

JA(ν, sab1z1, . . . , s
abN zN ) = s−νbJA(ν, z) . (3.3)

A derivative with respect to s completes the proof for s = 1.

Thus, as suggested already by Gelfand and confirmed in [18] and [19], every generalized

Feynman integral with an Euclidean region satisfies the GKZ hypergeometric system and

can be treated within the framework of GKZ. This will allow inter alia a series representa-

tion of the Feynman integral.

8In [18] it was proven, that the Feynman integrals satisfy a system of differential equations which is

isomorphic to the GKZ system. Recently, the theorem was independently proven in [19] in a similar way.
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3.1 Hypergeometric series representations of generalized Feynman integrals

As stated in theorem 3.1 generalized Feynman integrals are A-hypergeometric functions.

Thus, one can directly apply the results of hypergeometric GKZ systems from section 2.

Consider first the case ν ∈ (C \Z)n+1 in order to satisfy the very genericity of ν and to be

sure that the Feynman integral has no poles. Later we can relax this strict claim.

We fix a regular, unimodular triangulation T of the Newton polytope ∆G of the Lee-

Pomeransky polynomial G = U + F . Then by theorem 2.3, we can write the generalized

Feynman integral as a linear combination of Γ-series

JA(ν, z) =
∑
σ∈T

Cσ(ν)φσ(ν, z) (3.4)

where the z ∈ CN are defined in the positive half-space Re zi ≥ 0 in the region where the

Γ-series converge. Thus, one has to determine the meromorphic functions Cσ(ν) in order

to get a series representation of Feynman integrals. This can be done by comparing equa-

tion (3.4) with boundary values of the Feynman integral. As we will see in the following,

the Feynman integrals transmit their functions Cσ(ν) to simpler Feynman integrals. This

enables us to reduce Feynman integrals to the case described in corollary 1.3 and derive

an analytic expression of the functions Cσ(ν).

For this purpose, consider a generalized Feynman integral JA with a Newton polytope

P = ∆G = Conv(A), consisting of the vertices a1, . . . , aN , and an unimodular triangulation

T = {σ1, . . . , σr, η1, . . . , ηs} of P . Furthermore, let T ′ = {σ1, . . . , σr} be a proper subtri-

angulation of T . Denote the vertices of the convex polytope P ′, which correspond to the

subtriangulation T ′, by a1, . . . , aM with M < N and the corresponding Feynman integral9

by J ′A′ . Thus, in the second Feynman integral some monomials in Gz are missing

J ′A′(ν, z1, . . . , zM ) = lim
zM+1,...,zN→0

JA(ν, z1, . . . , zN ) . (3.5)

Applying the results from the previous sections to both Feynman integrals independently

one obtains on the one hand

JA(ν, z1, . . . , zN ) =

r∑
i=1

Cσi(ν)φσi(ν, z1, . . . , zN ) +

s∑
i=1

Cηi(ν)φηi(ν, z1, . . . , zN ) (3.6)

with the Γ-series

φσi(ν, z1, . . . , zN ) = z
−Aσiν
σi

∑
λ∈N|σ̄i|0

zλσ̄iz
−AσiAσ̄iλ
σi

λ!(1−Aσiν)−AσiAσ̄iλ
i = 1, . . . , r (3.7)

φηi(ν, z1, . . . , zN ) = z
−Aηiν
ηi

∑
λ∈N|η̄i|0

zλη̄iz
−AηiAη̄iλ
ηi

λ!(1−Aηiν)−AηiAη̄iλ
i = 1, . . . , s (3.8)

9J ′A′ is not necessarily a Feynman integral coming from an actual Feynman graph. It is sufficient, that

J ′A′ has the shape of an Euler-Mellin integral described in definition 1.2. Thus, G′z can be an arbitrary

non-homogeneous polynomial.
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and on the other hand

J ′A′(ν, z1, . . . , zM ) =

r∑
i=1

C ′σi(ν)φ′σi(ν, z1, . . . , zM ) (3.9)

with

φ′σi(ν, z1, . . . , zM ) = z
−A′σiν
σi

∑
λ∈N|σ̄i|0

zλσ̄iz
−A′σiA

′
σ̄i
λ

σi

λ!(1−A′σiν)−A′σiA
′
σ̄i
λ

i = 1, . . . , r . (3.10)

Due to the construction it is aM+1, . . . , aN ∈
⋃r
i=1 σ̄i. Therefore, in the limit

zM+1, . . . , zN → 0 only some zσ̄ will be affected and it is simply

lim
zM+1,...,zN→0

φσi(ν, z1, . . . , zN ) = φ′σi(ν, z1, . . . , zM ) . (3.11)

Apart from that, as a consequence of the homogeneous differential equations 〈Aθ+ ν〉
all solutions of a GKZ hypergeometric system have to satisfy the scaling property φ(ν, sz) =

s−ν0φ(ν, z). It can be easily seen that Γ-series satisfy this property. In the power series

part of a Γ-series the variables z only appear as ratios, such that they are scaling invariant

(in accordance with lemma A.3). However, the monomial z
−A−1

η ν
η in front of the power

series will give the scaling property since s
∑
i∈η(−A−1

η ν)i = s−ν0 according to lemma A.3.

Since in every Γ-series φηi some of the variables zM+1 . . . , zN are contained in the

monomial, the scaling property will be violated in the limit zM+1 . . . , zN → 0. Thus, the

functions limzM+1,...zN→0 φηi can not be linearly dependent of {φ′σi}. Since one already has

r linearly independent solutions φ′σi and therewith has a full-dimensional solution space for

the Feynman integral J ′A′ , the Γ-series φηi have to vanish

lim
zM+1,...,zN→0

φηi(ν, z1, . . . , zN ) = 0 . (3.12)

Thus, the GKZ systems behave naturally, as also mentioned in [10]: if one deletes a

vertex of Conv(A), the Γ-series which correspond to simplices containing this vertex will

vanish. This leads to a very simple connection between subtriangulations of Feynman

integrals. Applying the limit zM+1, . . . , zN → 0, the meromorphic functions Cσ(ν) will not

be affected and one obtains Cσi(ν) = C ′σi(ν).

Thus, one can determine the meromorphic functions Cσ(ν) by considering simpler

Feynman integrals which refer to subtriangulations, where by a simpler Feynman integral

we mean a Feynman integral where the Lee-Pomeransky polynomial G has less monomials.

In this way one can define ancestors and descendants of Feynman integrals by deleting

or adding monomials to the Lee-Pomeransky polynomial G. E.g. the massless one-loop

bubble graph is a descendant of the one-loop bubble graph with one mass, which itself

is a descendant of the full massive one-loop bubble. Those ancestors and descendants do

not necessarily correspond to Feynman integrals in the original sense, since one can also

consider polynomials G which are not connected to graph polynomials anymore.

As a trivial subtriangulation of an arbitrary triangulation one can choose one of its

simplices. In doing so, one can relate the prefactors Cσ(ν) to the problem where only one
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simplex is involved. For such problems, one can solve the Feynman integral easily as seen in

corollary 1.3. Therefore, for an unimodular triangulation one can find that the prefactors

are simply given by

Cσ(ν) = Γ(A−1
σ ν) (3.13)

which results in the following theorem:

Theorem 3.2 [Series representation of Feynman integrals]: Let T be a regular, unimod-

ular triangulation of the Newton polytope ∆G = Conv(A) corresponding to a generalized

Feynman integral JA. Then the generalized Feynman integral can be written as

JA(ν, z) =
∑
σ∈T

z−A
−1
σ ν

σ

∑
λ∈N|σ̄|0

Γ(A−1
σ ν +A−1

σ Aσ̄λ)

λ!

zλσ̄

(−zσ)A
−1
σ Aσ̄λ

(3.14)

where the series have a common region of convergence. This representation holds for

generic ν ∈ Cn+1, which means that ν has to be chosen such that the Feynman integral has

no poles and none of the power series in (3.14) will be identical to zero.

Example 3.1: To illustrate the series representation, we continue the example 1.1 cor-

responding to figure 1. The point configuration for this Feynman graph was given by

A =


1 1 1 1

1 0 1 2

0 1 1 0

 z = (1, 1,m2
1 − p2,m2

1) . (3.15)

For the triangulation T1 = {{1, 2, 4}, {2, 3, 4}} one obtains the series representation

JA(ν, z) = z−2ν0+ν1+2ν2
1 z−ν2

2 zν0−ν1−ν2
4

∑
λ∈N0

1

λ!

(
−z1z3

z2z4

)λ
Γ(ν2 + λ)

× Γ(2ν0 − ν1 − 2ν2 − λ)Γ(−ν0 + ν1 + ν2 + λ)

+ zν2−ν0
4 z−2ν0+ν1+ν2

2 z2ν0−ν1−2ν2
3

∑
λ∈N0

1

λ!

(
−z1z3

z2z4

)λ
Γ(ν0 − ν2 + λ)

× Γ(−2ν0 + ν1 + 2ν2 − λ)Γ(2ν0 − ν1 − ν2 + λ) . (3.16)

In the physical relevant limit z → (1, 1,m2
1 − p2,m2

1) and ν = (2 − ε, 1, 1) one can easily

evaluate the series

JA(2− ε, 1, 1, 1, 1,m2
1 − p2,m2

1) = (m2
1)−εΓ(1− 2ε)Γ(ε)2F1

(
1, ε

2ε

∣∣∣∣ m2
1 − p2

m2
1

)
(3.17)

+ (m2
1 − p2)1−2ε(p2)−1+εΓ(1− ε)Γ(2− 2ε)Γ(−1 + 2ε)

which agrees with the expected result. The series representation which can be obtained by

the triangulation T2, as well as the former result in example 1.1, are equivalent to this

result by transformation rules of the 2F1 function.
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Thus, we found a series representation for generalized Feynman integrals which admit

an unimodular triangulation. Based on experience, it is reasonable to conjecture that every

off-shell Feynman graph admits an unimodular triangulation. But also for non-unimodular

triangulations, the Feynman integral can be referred back to a case which admits an uni-

modular triangulation. We will examine the case of non-unimodular triangulations and this

relation in section 3.5. Typically, a Feynman graph admits many different possibilities to

triangulate its corresponding Newton polytope. Therefore, one usually obtains a large num-

ber of series representations. This is not surprising, since hypergeometric functions satisfy

many transformation formulas and can be converted to other hypergeometric functions.

Therefore, in practical computations one can choose a series representation, which

converges fast for the given kinematics and evaluate the Feynman integral numerically by

considering the first summands of every series.

These series representations — like the whole GKZ approach — are only valid for

generalized Feynman integrals. In principle this series representation is also true for fixed

values of z. But for non-generic values of z it can happen, that the series in (3.14) do not

converge anymore. We address this point in the following.

3.2 The limit from generalized Feynman integrals to non-generic Feynman

integrals

Up to this point, the theorems were statements about the generalized Feynman integral.

The next natural question is how one can perform the limit to the non-generic, “ordinary”

Feynman integral, i.e. the limit, where the extra variables, which are connected to the first

Symanzik polynomial are set equal to 1. In this limit the convergence behavior of the

Γ-series can be changed. Consider a region D ⊆ Cn+1 where the Feynman integral (1.5)

converges for ν ∈ D. Since in this case the linear combination (3.4) is still finite, there

can arise only two problems: a) every series converges separately, but they do not have

a common convergence region anymore or b) some of the Γ-series diverge, but the linear

combination is still finite. In the first case a) the convergence criteria for the variables of

the Γ-series xj = (zσ̄)j
∏
i(zσ)

−(A−1
σ Aσ̄)ij

i exclude each other for different σ ∈ T . In the

second case b) the variables xj become constants after the limit (usually equals 1), which

can be outside of the convergence region.

Because of these possible issues, it can be difficult to perform the limit. Fortunately

there is a strategy to tackle these problems in many cases by transformation formulas of

hypergeometric functions. E.g. for the 2F1 hypergeometric function, there is a well known

transformation formula [53]

2F1

(
a, b

c

∣∣∣∣ z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1

(
a, b

a+ b− c+ 1

∣∣∣∣ 1− z)
+ (1− z)c−a−b

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

2F1

(
c− a, c− b
c− a− b+ 1

∣∣∣∣ 1− z) , (3.18)

which can be applied to change a limit xj → 1 to the much simpler case of a limit xj → 0.

We illustrate this method with an example. For the 2-loop sunset graph with two different
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masses, inter alia there appears the hypergeometric series

φ2 =
∑
k∈N4

0

(1− ε)k3+k4(ε)k1+2k2+k3(ε− 1)−k1−k2+k4(2− 2ε)k1−k3−k4

× 1

k1!k2!k3!k4!

(
−z1z6

z5z2

)k1
(
−z4z6

z2
5

)k2
(
−z2z7

z3z5

)k3
(
−z2z8

z3z6

)k4

(3.19)

where one has to consider the limit (z1, z2, z3, z4, z5, z6, z7, z8) → (1, 1, 1,m2
2,m

2
1 + m2

2 −
p2

1,m
2
1,m

2
2,m

2
1). In this limit it appears the term (−1)k4 , which is not in the convergence

region for small values of ε > 0 anymore. Therefore, we evaluate the k4 series carefully and

write

φ2 = lim
t→1

∑
(k1,k2,k3)∈N3

0

(1− ε)k3(ε− 1)−k1−k2(2− 2ε)k1−k3(ε)k1+2k2+k3

1

k1!k2!k3!

× (−x1)k1 (−x1x2)k2 (−x2)k3
2F1

(
−ε+ k3 + 1, ε− k1 − k2 − 1

2ε− k1 + k3 − 1

∣∣∣∣ t) (3.20)

where xi =
m2
i

m2
1+m2

2−p2
1
. With the transformation formula (3.18) for the 2F1 function, one

can split the series in a convergent and a divergent part

φ2 =
∑

(k1,k2,k3)∈N3
0

Γ(k2 +2ε−1)Γ(−k1 +k3 +2ε−1)

Γ(−k1 +3ε−2)Γ(k2 +k3 +ε)
(1−ε)k3(ε−1)−k1−k2(2−2ε)k1−k3

×(ε)k1+2k2+k3

1

k1!k2!k3!
(−x1)k1(−x2)k3(−x1x2)k2 + lim

t→1

∑
(k1,k2,k3,k4)∈N4

0

(1− t)k2+k4+2ε−1

k1!k2!k3!k4!

× Γ(−k2−2ε+1)Γ(−k1 +k3 +2ε−1)Γ(k2 +k3 +ε+k4)Γ(k2 +2ε)Γ(−k1 +3ε−2+k4)

Γ(k3−ε+1)Γ(−k1−k2 +ε−1)Γ(k2 +k3 +ε)Γ(k2 +2ε+k4)Γ(−k1 +3ε−2)

×(ε)k1+2k2+k3(1−ε)k3(ε−1)−k1−k2(2−2ε)k1−k3(−x1)k1(−x2)k3(−x1x2)k2

=
∑

(k1,k2,k3)∈N3
0

Γ(k2 +2ε−1)Γ(−k1 +k3 +2ε−1)

Γ(−k1 +3ε−2)Γ(k2 +k3 +ε)
(1−ε)k3(ε−1)−k1−k2(2−2ε)k1−k3

×(ε)k1+2k2+k3

1

k1!k2!k3!
(−x1)k1(−x2)k3(−x1x2)k2 + lim

t→1
(1− t)2ε−1 (3.21)

×
∑

(k1,k3)∈N2
0

(−x1)k1(−x2)k3

k1!k3!

Γ(−2ε+1)Γ(−k1 +k3 +2ε−1)

Γ(1−ε)Γ(ε−1)
(ε)k1+k3(2−2ε)k1−k3 .

Comparing the divergent part with the other Γ-series, which occurs in the calcula-

tion of the sunset graph with two masses, one can find another divergent series which

exactly cancels this divergence. This cancellation always has to happen, since the linear

combination has to be finite.

Therefore, one can derive a convergent series representation also for non-generic Feyn-

man integrals by considering convenient transformation formulas of hypergeometric func-

tions. In principle, this procedure will work in general, but it can be necessary to involve

more complicated transformation formulas than the well-studied 2F1 transformation and

also the cancellation of the divergences may be not so obvious as in this case. Fortunately,
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many graphs (also for L > 1) can even be evaluated with the transformation formula of

the 2F1 function.

In fact, this limit can reduce the dimension of the solution space, which is the expected

behavior. For generic variables z ∈ CN the dimension of the solution space is equal

to vol0 ∆G according to theorem 2.2. In contrast for non-generic values of z ∈ CN the

dimension of the solution space is equal to the Euler characteristic (−1)nχ((C?)n \ {G =

0}) [31], which is in general smaller or equal to the volume of the Newton polytope

(−1)nχ((C?)n \ {G = 0}) ≤ vol0 ∆G . (3.22)

Thus, by calculating the Euler characteristic we can count the expected dependencies in the

limit from generalized to non-generic Feynman integrals. According to [31] it is meaningful

to define the number of master integrals as the dimension of the solution space. Therefore,

one can see the linear combination of Γ-series (3.4) as a procedure similar to a decomposition

of a general Feynman integral into a basis of master integrals. This analogy mirrors also

the existence of different decompositions (which corresponds to different triangulations)

and their transformation into each other by shift relations [20].

3.3 The ε expansion of hypergeometric series representations

In the calculus of dimensional regularization [29] one is usually interested in the Laurent

expansion of the Feynman integrals around ε = 0 where d = 4−2ε. Due to the theorem 1.5

one can relate this task to the Taylor expansion of the hypergeometric series representation.

Thus, one has simply to differentiate the Horn hypergeometric series. As pointed out in [22],

the derivatives with respect to parameters of Horn hypergeometric series are again Horn

hypergeometric series of higher degree. By the identities (a)m+n = (a)m(a + m)n and

(a)rn = rrn
∏r−1
j=0

(
a+j
r

)
n

for r ∈ Z>0 one can reduce all derivatives to two cases [22]

∂

∂a

∞∑
n=0

B(n)(a)nx
n = x

∞∑
k=0

∞∑
n=0

B(n+ k + 1)
(a+ 1)n+k(a)k

(a+ 1)k
xn+k (3.23)

∂

∂a

∞∑
n=0

B(n)(a)−nx
n = −x

∞∑
k=0

∞∑
n=0

B(n+ k + 1)
(a)−n−k−1(a)−k−1

(a)−k
xn+k . (3.24)

Thus, Horn hypergeometric functions do not only appear as solutions of Feynman integrals

with unimodular triangulations, but also in every coefficient of the Laurent expansion of

those Feynman integrals. Therefore, the class of Horn hypergeometric functions is sufficient

to describe almost all Feynman integrals and their Laurent expansion. Hence, it is not

surprising that also the combinatorial structure of Feynman integrals is reflected in the Horn

hypergeometric functions. For instance, the relations between different Feynman integrals

can be derived by transformation formulas of hypergeometric functions and vice versa [20].

Another way to expand the Horn hypergeometric functions around ε = 0 in some cases

could be the approach of S- and Z-sums [54], which are related to multiple polylogarithms

and related functions. Unfortunately, many examples, which can be generated by the GKZ

approach, belong not to the known algorithms given in [54].
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3.4 Applications to other parametric representations

The GKZ mechanism with the resulting series representation used above is not limited to

the Feynman integral in the Lee-Pomeransky representation. It is a method which can

be used for all integrals of Euler-Mellin type including one polynomial.10 Thus, there are

more applications in the Feynman integral calculus. For example the Feynman parametric

representation (1.3) is of that form, if either the first Symanzik polynomial U or the second

Symanzik polynomial F drops out.

This is the case e.g. for so called “marginal” Feynman integrals [55], where ω = d/2.

In this case the first Symanzik polynomial drops out of the representation (1.3) and one

obtains the integral
∫
Rn−1

+
dx̃ x̃ν̃−1F̃−d/2 with x̃ = (x1, . . . , xn−1), ν̃ = (ν1, . . . , νn−1) and

F̃ = F |xn→1. For instance all “banana”-graphs are marginal for νi = 1 and d = 2.

In contrast the second Symanzik polynomial drops out for ω = 0, which is the well-

studied case of periods (e.g. [56])
∫
Rn−1

+
dx̃ x̃ν̃−1Ũ−d/2 with Ũ = U |xn→1. Note that this

integral is highly non-generic from the perspective of the GKZ approach. Thus, the case

where the second Symanzik polynomial F remains is usually much easier, since one has

not to introduce extra variables in the first Symanzik polynomial U .

Last but not least, also the Baikov representation [31, 57] is a possible candidate to

apply the GKZ approach as well.

3.5 Non-unimodular triangulations of Feynman polytopes

The treatments above were specialized to unimodular triangulations only. This strategy

has various reasons. Without much effort, one could extend theorem 2.3 also to the case of

non-unimodular triangulations and write the Feynman integral as a linear combination of

Γ-series as in equation (3.4). In contrast, for a non-unimodular triangulation one can not

determine the meromorphic functions Cσ(ν) such as easy as in theorem 3.2. Nevertheless,

one can reduce Feynman integrals without unimodular triangulations to subtriangulations

as described in section 3.1.

However, after checking common Feynman integrals up to three loops, we are leaded

to the conjecture that all off-shell Feynman graphs admit at least one unimodular triangu-

lation. This conjecture seems also likely by considering the very specific form of Newton

polytopes ∆G arising in Feynman integrals (lemma A.2).

In contrast some on-shell graphs do not admit an unimodular triangulation. For in-

stance the on-shell full massive 1-loop bubble with G = x1 + x2 + m2
1x

2
1 + m2

2x
2
2 does not

allow an unimodular triangulation. However, since the off-shell fully massive 1-loop bubble

admits unimodular triangulations, one can treat the on-shell Feynman integral as a limit

of the off-shell version.

This behavior holds in general: one can always add monomials to the Lee-Pomeransky

polynomial G→ G′, such that the Newton polytope ∆G′ admits an unimodular triangula-

tion. This can be seen by a result of Knudsen et al. [58]:

10Following the approach described in [33] a generalization to Euler-Mellin integrals with several polyno-

mials is also possible.
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Figure 3. The 2-loop 2-point function (sunset graph) with three different masses.

Lemma 3.3 [[40, 58]]: For every lattice polytope P there is an integer k ∈ N such that

the dilated polytope kP := {kµ|µ ∈ P} admits an unimodular triangulation.

Thus, if the Newton polytope ∆G of a Feynman integral does not admit an unimodular

triangulation, one can dilate the polytope ∆G until the polytope k∆G admits an unimodular

triangulation. Then the original Feynman integral can be obtained as a limit where all

additional vertices vanish and where we scale the propagator powers by k and the whole

integral by kn

JA(ν, z) = knΓ(ν0)

∫
Rn+

dxxkν−1Gz(x
k)−ν0 . (3.25)

Thus, one can always write the Feynman integral as a limit of another integral where its

Newton polytope allows an unimodular triangulation. That is the reason, why we can

focus only on the unimodular triangulations and vindicates the procedure above.11

4 Advanced example: full massive sunset

To illustrate the GKZ method stated above, as well as to show the power of this approach,

we calculate a series representation of the sunset Feynman integral with three different

masses according to figure 3. The corresponding Feynman graph consists in n = 3 edges

and the Lee-Pomeransky polynomial includes N = 10 monomials

G = x1x2 + x1x3 + x2x3 + (m2
1 +m2

2 +m2
3 − p2)x1x2x3

+m2
1x

2
1(x2 + x3) +m2

2x
2
2(x1 + x3) +m2

3x
2
3(x1 + x2) . (4.1)

In the representation of equation (1.7) we encode this polynomial by

A =


1 1 1 1 1 1 1 1 1 1

0 1 1 0 1 0 1 2 1 2

1 0 1 1 0 2 1 0 2 1

1 1 0 2 2 1 1 1 0 0

 (4.2)

z = (1, 1, 1,m2
3,m

2
3,m

2
2,m

2
1 +m2

2 +m2
3 − p2

1,m
2
1,m

2
2,m

2
1) . (4.3)

11After completion of the present article, it has been found that a similar result as in theorem 3.2 can

also be achieved for regular, non-unimodular triangulation. This will be discussed in more detail in a future

article.
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The rank of the kernel of A is equal to r = N − n − 1 = 6 and therefore we will

expect 6-dimensional Γ-series. Moreover, the polytope ∆G = Conv(A) has the volume

vol0(Conv(A)) = 10 (calculated with polymake [59]), which leads to 10 basis solutions,

and there are 826 different ways for a regular triangulation of the Newton polytope ∆G,

where 466 of those triangulations are unimodular. We choose the unimodular triangulation

(calculated with TOPCOM [60])

T152 = {{3, 6, 7, 9}, {3, 7, 9, 10}, {3, 7, 8, 10}, {2, 5, 7, 8}, {2, 3, 7, 8},
{2, 4, 5, 7}, {1, 4, 6, 7}, {1, 2, 4, 7}, {1, 3, 6, 7}, {1, 2, 3, 7}} (4.4)

in order to get series, which converge fast for highly relativistic kinematics m2
i � m2

1 +

m2
2 +m2

3 − p2. Further, we set νi = 1 and d = 4− 2ε.

In the limit z → (1, 1, 1,m2
3,m

2
3,m

2
2,m

2
1 + m2

2 + m2
3 − p2

1,m
2
1,m

2
2,m

2
1) the series φ1,

φ3, φ5, φ6, φ8 and φ9 are divergent for small values of ε > 0. By the method described

in section 3.2 one can split all these series by the transformation formula for the 2F1

hypergeometric function in a convergent and a divergent part. The divergent parts of

these series cancel each other. In doing so the resulting Γ-series have linear dependences

and the dimension of the solution space will reduce from 10 to 7.

By applying all these steps one arrives at the following series representation of the full

massive sunset integral

IA(ν, z) =
s1−2ε

Γ(3− 3ε)

[
x1−ε

2 φ1 + (x1x2)1−εφ2 + x1−ε
1 φ3 + (x1x3)1−εφ4 + x1−ε

1 φ5

+x1−ε
3 φ6 + (x2x3)1−εφ7 + x1−ε

3 φ8 + x1−ε
2 φ9 + φ10

]
(4.5)

where the Γ-series are given by

φ1 =

∞∑
k2,k3,k4,k5,k6=0

(−x2)k2(−x3)k3(−x2x3)k4(−x1x2)k5(−x1)k6

k2!k3!k4!k5!k6!

×Γ(k2−3ε+3)Γ(k2 +k3 +k4−k6−2ε+3)Γ(k3−k5−k6−ε+1)

× Γ(k2 +k3 +2k4 +2k5 +k6 +ε)Γ(k4 +k5 +2ε−1)Γ(−k2−k3−k4 +k6 +2ε−2)

Γ(k2 +k4 +k5−ε+2)Γ(k3 +k4−k6 +ε)

φ2 =

∞∑
k1,k2,k3,k4,k5,k6=0

(−x1)k1+k5(−x2)k2+k6(−x1x3)k3(−x2x3)k4

k1!k2!k3!k4!k5!k6!

×Γ(k1 +k2 +2k3 +2k4 +k5 +k6 +1)Γ(k1 +k2−3ε+3)

×Γ(−k2−k4 +k5−k6 +ε−1)Γ(−k1−k3−k5 +k6 +ε−1)

φ3 =

∞∑
k1,k3,k4,k5,k6=0

(−x1)k1(−x1x3)k3(−x3)k4(−x1x2)k5(−x2)k6

k1!k3!k4!k5!k6!

×Γ(k1−3ε+3)Γ(k1 +k3 +k4−k6−2ε+3)Γ(k4−k5−k6−ε+1)

× Γ(k1 +2k3 +k4 +2k5 +k6 +ε)Γ(k3 +k5 +2ε−1)Γ(−k1−k3−k4 +k6 +2ε−2)

Γ(k1 +k3 +k5−ε+2)Γ(k3 +k4−k6 +ε)

– 27 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
1

φ4 =
∞∑

k1,k2,k3,k4,k5,k6=0

(−x1)k1+k3(−x3)k2+k6(−x1x2)k4(−x2x3)k5

k1!k2!k3!k4!k5!k6!

×Γ(k1 +k2 +k3 +2k4 +2k5 +k6 +1)Γ(k1 +k2−3ε+3)

×Γ(−k2 +k3−k5−k6 +ε−1)Γ(−k1−k3−k4 +k6 +ε−1)

φ5 =
∞∑

k1,k2,k3,k4,k5=0

(−x1)k1(−x1x3)k2(−x3)k3(−x1x2)k4(−x2)k5

k1!k2!k3!k4!k5!

×Γ(k1 +k2 +k3−k5−2ε+2)Γ(−k2−k3 +k5−ε+1)Γ(−k1−k2−k4 +ε−1)

× Γ(k1 +2k2 +k3 +2k4 +k5 +ε)Γ(k2 +k4 +2ε−1)Γ(−k1−k2−k3 +k5 +2ε−1)

Γ(−k3 +k4 +k5 +ε)Γ(−k1 +3ε−2)

φ6 =
∞∑

k2,k3,k4,k5,k6=0

(−x3)k2(−x2)k3(−x1)k4(−x2x3)k5(−x1x3)k6

k2!k3!k4!k5!k6!

×Γ(k2−3ε+3)Γ(k2 +k3−k4 +k5−2ε+3)Γ(k3−k4−k6−ε+1)

× Γ(k2 +k3 +k4 +2k5 +2k6 +ε)Γ(−k2−k3 +k4−k5 +2ε−2)Γ(k5 +k6 +2ε−1)

Γ(k2 +k5 +k6−ε+2)Γ(k3−k4 +k5 +ε)

φ7 =
∞∑

k1,k2,k3,k4,k5,k6=0

(−x2)k1+k3(−x3)k2+k5(−x1x2)k4(−x1x3)k6

k1!k2!k3!k4!k5!k6!

×Γ(k1 +k2 +k3 +2k4 +k5 +2k6 +1)Γ(k1 +k2−3ε+3)

×Γ(−k1−k3−k4 +k5 +ε−1)Γ(−k2 +k3−k5−k6 +ε−1)

φ8 =

∞∑
k1,k3,k4,k5,k6=0

(−x3)k1(−x2)k3(−x1)k4(−x2x3)k5(−x1x3)k6

k1!k3!k4!k5!k6!

×Γ(k1 +k3−k4 +k5−2ε+2)Γ(−k3 +k4−k5−ε+1)Γ(−k1−k5−k6 +ε−1)

× Γ(k1 +k3 +k4 +2k5 +2k6 +ε)Γ(−k1−k3 +k4−k5 +2ε−1)Γ(k5 +k6 +2ε−1)

Γ(−k3 +k4 +k6 +ε)Γ(−k1 +3ε−2)

φ9 =

∞∑
k1,k2,k3,k4,k6=0

(−x2)k1(−x3)k2(−x2x3)k3(−x1x2)k4(−x1)k6

k1!k2!k3!k4!k6!

×Γ(k1 +k2 +k3−k6−2ε+2)Γ(−k2−k3 +k6−ε+1)Γ(−k1−k3−k4 +ε−1)

× Γ(k1 +k2 +2k3 +2k4 +k6 +ε)Γ(k3 +k4 +2ε−1)Γ(−k1−k2−k3 +k6 +2ε−1)

Γ(−k2 +k4 +k6 +ε)Γ(−k1 +3ε−2)

φ10 =

∞∑
k1,k2,k3,k4,k5,k6=0

(−x3)k1+k2(−x2)k3+k5(−x1)k4+k6

k1!k2!k3!k4!k5!k6!

×Γ(k2−k3 +k4−k5−ε+1)Γ(k1 +k3−k4−k6−ε+1)

×Γ(−k1−k2 +k5 +k6−ε+1)Γ(k1 +k2 +k3 +k4 +k5 +k6 +2ε−1) (4.6)

with xi =
m2
i

m2
1+m2

2+m2
3−p2 and s = m2

1 + m2
2 + m2

3 − p2. All these series converge for small

values of xi and the series representation can be obtained by a very simple algorithm, which

is a straightforward implementation of the steps described in section 3. In fact, some of

these Γ-series are related to each other. One can reduce the whole system only to φ1, φ2, φ5
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and φ10 by the relations φ1(x1, x2, x3) = φ3(x2, x1, x3) = φ6(x1, x3, x2), φ2(x1, x2, x3) =

φ4(x1, x3, x2) = φ7(x3, x2, x1) and φ5(x1, x2, x3) = φ8(x2, x3, x1) = φ9(x2, x1, x3). By these

relations one can also verify the expected symmetry of the Feynman integral under the

permutation x1 ↔ x2 ↔ x3.

In order to expand the Feynman integral IA for small values of ε > 0 one can use the

methods described in section 3.3 or alternatively by expanding each Γ-function separately.

The latter requires to distinguish between positive and negative integers in the argument

of the Γ-function

Γ(bε+ n)
n∈Z≥1

= Γ(n)

[
1 + bεψ0(n) +

b2ε2

2

(
ψ0(n)2 + ψ1(n)

)
+
b3ε3

6

(
ψ0(n)3 + 3ψ0(n)ψ1(n) + ψ2(n)

)
+O

(
ε4
)]

Γ(bε+ n)
n∈Z≤0

=
(−1)n

Γ(−n+ 1)

[
1

bε
+ ψ0(1− n) +

bε

2

(
2ζ2 + ψ0(1− n)2 − ψ1(1− n)

)
(4.7)

+
b2ε2

6

(
ψ0(1− n)3 + 6ζ2ψ0(1− n)

−3ψ0(1− n)ψ1(1− n) + ψ2(1− n)) +O
(
ε3
) ]

.

By the distinction of cases between positive and negative arguments in the Γ functions

many terms arise, which are easily manageable by a CAS but which are space-consuming

in print, wherefore we omit to state these results here. The correctness of these results

was checked numerically by FIESTA [61] with arbitrary kinematics and masses, satisfying

xi < 0.5. For small values of xi the resulting series converges fast, such that for a good

approximation one only has to take the first summands into account. An upper bound for

the errors in a finite summation can be estimated by a majorant geometric series, similar

to the procedure in theorem B.3. Vice versa one can determine the number of required

summands for a given error bound. Furthermore, the summands of a Horn hypergeometric

series always have a rational ratio. Thus, in a numerical calculation one only has to evaluate

rational functions. In this way Horn hypergeometric series have a relatively simple and

controllable numerical behavior in the case |xi| � 1.

5 Conclusion and outlook

We showed in this article that Feynman integrals can be described as hypergeomet-

ric functions. Namely we showed that a) every generalized Feynman integral is an A-

hypergeometric function, that b) every generalized Feynman integral which admits a reg-

ular, unimodular triangulation has a representation in Horn hypergeometric functions and

that c) all scalar, dimensional regularizable and Euclidean Feynman integrals can be written

at least as a limit of a linear combination of Horn hypergeometric functions. Furthermore,

the latter (c) is also true for all coefficients in a Laurent expansion of the Feynman integral

in a dimensional or analytic regularization.

Since hypergeometric functions are mostly represented in terms of integrals including

polynomials, Mellin-Barnes integrals including Γ-functions or series including Pochham-

– 29 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
1

mer symbols, it is not surprising that also Feynman integrals appear normally in one of

those representations. From the perspective of general hypergeometric functions the com-

mon ground of these representations is an integer matrix A ∈ Z(n+1)×N or equivalently

a Newton polytope ∆G = Conv(A). By the triangulation of this Newton polytope we

derived an analytic formula for a hypergeometric series representation of the Feynman in-

tegral. As there are in general many different ways to triangulate a polytope, there are

also many different series representations possible. Similar to the Feynman integral those

hypergeometric series satisfy different relations between each other and can therefore also

be transformed in equivalent representations. However, the series representations can differ

in their convergence behavior. Thus, there can be series representations which converge

fast for given kinematics so that we sometimes only need the first summands in order to

reach a high precision numerical approximation.

For the purpose of a practical usage of this concept, we discussed possible obstacles

which can appear in the concrete evaluation and gave some strategies to solve them. The

procedure described in section 3 and illustrated in section 4 works similarly in all cases and

can be read as an algorithm.

Besides numerical applications, there are structurally interesting implications for the

Feynman integral. Since in both subjects similar questions appear, the hypergeometric

perspective opens new ways to analyze the Feynman integral. For instance the singularities

of hypergeometric functions, and therefore simultaneously the singularities of Feynman

integrals, are given by the A-discriminants and the coamoebas.

The series representation given in the present work, is only one of many consequences

that we can obtain by the connection between Feynman integrals and hypergeometric

functions. On the one hand we outlined in section 3.4 that we also can apply the GKZ

approach to other integrals appearing in the Feynman calculus. On the other hand one can

also solve the GKZ system with other functions to obtain representations of the Feynman

integral e.g. in terms of other integrals. This leads us to the question, if one can relate

Feynman integrals with the GKZ approach to other Feynman integrals in a consistent way,

in order to get linear relations between Feynman integrals similar to the IBP approach.

Furthermore, it would be desirable to get a better understanding of the relations

between Feynman integrals and their diagrams sharing parts of the matrices A. The

simplest connection between those Feynman integrals are the ancestors and descendants

of Feynman integrals mentioned in section 3.1. Lastly, we leave several technical questions

open to solve in future work. For instance, a proof of the conjecture that off-shell Feynman

integrals always admit unimodular triangulations together with a better understanding of

the behavior in non-generic cases as described in section 3.2, would show that all off-shell

Feynman integrals can be written as Horn hypergeometric functions and not only as a limit

of Horn hypergeometric functions.

In this article we suggested a new perspective of an old idea to characterize Feynman

integrals. This hypergeometric perspective can be useful for practical computation but

also for a better conceptual understanding of Feynman integrals. Still, this is merely a

starting point for future research on the correspondence between Feynman integrals and

hypergeometric functions in the GKZ theory.
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A Convex polytopes & triangulations

Convex polytopes constitute one of the main concepts in the present paper and are the key

link between Feynman integrals and hypergeometric functions. They characterize the whole

structure of a Feynman graph, which is necessary to evaluate the Feynman integral as a

function of kinematics and masses. Furthermore they determine the region of convergence

of the Feynman integral (theorem 1.4), the poles and the meromorphic continuation of

the Feynman integral (theorem 1.5) and their triangulations give series representations

(theorem 3.2) in terms of Horn hypergeometric series.

In section 1.2 we already invented the most important concepts which are essential for

this approach. At this point, we give some more details which are closely related to this

approach and which give an illustrative viewpoint on polytopes. For further treatments we

refer to [38–41].

In the mathematical interlude in section 1.2 we introduced the two ways to represent

a polytope (by vertices and by the intersection of half-spaces). For general polytopes the

transformation of these two representations can be complicated. However for simplices

there is a simple connection.

Lemma A.1: Let P4 = Conv(A) be a full dimensional simplex with no internal points

and let A =

(
1

A

)
be as before. Then the matrix A describes the relative interior of the

polytope µ ∈ relint(P4) ⇔ A−1

(
1

µ

)
> 0. Furthermore the i-th row of A−1

(
1

µ

)
= 0

describes the facet, which is opposite to the point defined by the i-th column of A.

Proof. Since P4 is a full dimensional simplex it is detA 6= 0 and one can write

P4 =

{
µ ∈ Rn

∣∣∣∣∣
(

1

µ

)
= Ak, ki ≥ 0

}
=

{
µ ∈ Rn

∣∣∣∣∣A−1

(
1

µ

)
≥ 0

}
. (A.1)

Thus for the relative interior of a simplex it is A−1

(
1

µ

)
> 0 and every of the n + 1 rows

of A−1

(
1

µ

)
= 0 describes a facet of the simplex.
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Vertices of the simplex are the intersection of n facets. Thus, a vertex v of P4 is the

solution of n rows of the linear equation system A−1x = 0. Clearly the k-th column of A
solves the system A−1x = 0 except of the k-th row. Hence, the intersection of n facets is

the k-th column of A, where k is the index which belongs to the facet which is not involved

in the intersection. In a simplex that means that the k-th facet is opposite to the k-th

vertex.

In the case of a general convex polytope the connection between vertices and inter-

section of halfspaces is more complex. Nevertheless, one can establish an inequality which

holds for all points in the polytope.

Lemma A.2: Let P = Conv(A) ⊂ Rn a full dimensional polytope with N vertices and

ν = (ν0, ν) ∈ Cn+1, with Re ν0 > 0 as before. Consider further an index set of vertices

σ ⊂ {1, . . . , N} which corresponds to a simplex, detAσ 6= 0. Then the following equivalence

holds

ν/ν0 ∈ P ⇔ (A−1
σ )iν ≥

N−n−1∑
j=1

(A−1
σ Aσ̄)ijrj with r ∈ RN−n−1

≥0 (A.2)

where ν/ν0 := (ν1/ν0, . . . νn/ν0) is the componentwise division.

Proof. From the vertex definition of polytopes it is

ν/ν0 ∈ P ⇔

(
1

ν/ν0

)
= Ak̃ ⇔ ν = Ak (A.3)

for k, k̃ ∈ RN≥0. Since the polytope is full dimensional, there is a triangulation and one can

divide the polytope in A = (Aσ,Aσ̄) where Aσ has an inverse. Thus the lemma follows by

multiplying by the inverse A−1
σ .

This lemma establishes a connection between the signs of the matrix A−1
σ Aσ̄ and the

geometry of the polytope. Since the signs of A−1
σ Aσ̄ determine the kinematic regions where

the series representations (theorem 3.2) converge fast, this lemma can be useful to analyze

triangulations in a numerical application.

Furthermore, the matrices Aσ and Aσ̄ which appear in the triangulation procedure

has some special properties, which also guarantees the convergence of Γ-series.

Lemma A.3: Let P = Conv(A) be a full dimensional polytope with integer vertices

A ∈ Zn×N and T a triangulation, where the indices of the simplices are denoted by σ.

Then it holds ∑
i∈σ

(A−1
σ Aσ̄)ij = 1 (A.4)

for all j = 1, . . . , N and ∑
i∈σ

(A−1
σ ν)i = ν0 (A.5)

where σ̄ is the complement of σ and ν = (ν0, ν1, . . . , νn) ∈ Cn+1 an arbitrary complex

vector.
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Proof. The columns of the matrix B =

(
−A−1

σ Aσ̄
1

)
∈ QN×r are a basis of the lattice

L := ker(A) ∩ ZN , which can be verified by direct computation AB = 0. It follows

particularly that
∑

j Bjk = 0 and thereby equation (A.4). The second statement (A.5)

follows trivially from
∑

j,k(Aσ)ij(A−1
σ )jkνk = νi.

This lemma also implies that the appearing variables xj = (zσ̄)j
∏
i(zσ)

−(A−1
σ Aσ̄)ij

i in

the Γ-series are dimensionless (without units). Therefore, the unit of the Γ-series will be

only determined by the monomial in front of the power series and is equal to [φσ,k(ν, z)] =

[zi]
−ν0 .

To finish this short section about polytopes, we introduce another method to triangu-

late convex polytopes. In section 1.2 there was already a method described how to construct

triangulations by generic height vectors. Here, we discuss a combinatorial way to triangu-

late polytopes. This combinatorial approach also allows the structure of subtriangulations

in a natural way.

In order to ensure the convexity of polytopes, we will formulate the concept of visibility

in mathematical terms. Consider a face F of a convex polytope P ⊂ Rn and an arbitrary

point x ∈ relint(F ) in the relative interior of F . The face F is visible from another point

p /∈ F , if the line segment [x, p] intersects P only at x [41].

With the concept of visibility, we can add points to a triangulation and obtains an

enlarged triangulation. Let T be a regular triangulation of the convex polytope Conv(A).

Then the set

T ′ = T ∪ {B ∪ {p} |B ∈ T and B is visible from p} (A.6)

is a regular triangulation of the convex polytope Conv(A ∪ p) [41]. In doing so, one can

create a so-called placing triangulation by starting with an arbitrary point (the triangula-

tion of one point is still the point) and placing then step by step the other points to the

previous triangulation. The order of the added points will determine the triangulation.

In practice there are different algorithms available to calculate triangulations of convex

polytopes efficiently, e.g. TOPCOM [60] and polymake [59].

B Convergence of Γ-series

The Γ-series were introduced in section 2.1 as formal solutions of the GKZ hypergeometric

system. Using standard arguments, we proof, that those Γ-series always have a non-

vanishing region of convergence. The proof is roughly orientated towards [48]. In order to

show the convergence of the Γ-series one has to estimate the summands. As an application

of the Stirling formula one can state the following lemma:

Lemma B.1 [similar to [48]]: For every C ∈ C there are constants κ,R ∈ R>0 indepen-

dent of M , such that
1

|Γ(C +M)|
≤ κR|M ||M |−M (B.1)

for all M ∈ Z.
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Proof. Firstly, consider the non-integer case C /∈ Z. For M > 0 it is

|Γ(C +M)| = |Γ(C)|
M−1∏
j=0

|(C + j)| ≥ |Γ(C)|
M−1∏
j=0

||C| − j|

= |Γ(C)|
M∏
j=1

∣∣∣∣ |C| − j + 1

j

∣∣∣∣ j ≥M !QM |Γ(C)| (B.2)

where Q = min
∣∣∣ |C|−j+1

j

∣∣∣ > 0 and we used a variation of the triangle inequality |a + b| ≥
||a| − |b||. With Stirling’s approximation one obtains further

|Γ(C +M)| ≥ |Γ(C)|
√

2πQMMM+ 1
2 e−M ≥ |Γ(C)|

√
2π

(
Q

e

)M
MM . (B.3)

In contrast, for M < 0 and the triangle inequality |a− b| ≤ |a|+ |b| one obtains

|Γ(C +M)| = |Γ(C)|
|M |∏
j=1

∣∣∣∣ 1

C − j

∣∣∣∣ ≥ |Γ(C)|
|M |∏
j=1

∣∣∣∣ 1

|C|+ j

∣∣∣∣ ≥ |Γ(C)|
|M |∏
j=1

∣∣∣∣ 1

|C|+ |M |

∣∣∣∣
=

(
1 +
|C|
|M |

)−|M |
|M |M |Γ(C)| ≥ |Γ(C)|(1 + |C|)−|M ||M |M . (B.4)

By the setting κ = |Γ(C)|−1 and R = max
(
1 + |C|, eQ−1

)
one can combine both cases to

equation (B.1). The case M = 0 is trivially satisfied whereat we set 00 := 1.

Consider now the case where C ∈ Z. If C + M ≤ 0 the Γ-function has

a pole and the lemma is trivial satisfied. For C + M ≥ 1 it is Γ(C + M) ≥(
C +M − 3

2

) (
C +M − 5

2

)
· · · 1

2 =
Γ(C+M− 1

2
)

Γ( 1
2

)
= 1√

π
Γ(C + M − 1

2) which recurs to the

non-integer case with C ′ = C − 1
2 /∈ Z.

In order to estimate products of “self-exponential” functions aa the following inequality

is helpful.

Lemma B.2: The following estimation holds for ai ∈ R>0(
N∑
i=1

ai

)∑N
i=1 ai

≥
N∏
i=1

aaii ≥

(
1

N

N∑
i=1

ai

)∑N
i=1 ai

(B.5)

where N ∈ N.

Proof. The left inequality is trivially true. The right inequality will be proven by consider-

ing different cases of N . For N = 2 without loss of generality it is a1
a2

:= r ≥ 1. The latter

is then equivalent to the Bernoulli inequality

aa1
1 a

a2
2 ≥

(
a1 + a2

2

)a1+a2

⇔
(

1 +
r − 1

1 + r

)r+1

≥ r . (B.6)
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For N = 2n with n ∈ N the lemma can be reduced to the case N = 2 by an iterative use.

All the other cases can be reduced to a 2n-case by adding the mean value ∆ := 1
N

∑N
i=1 ai

(
∆∆
)2n−N N∏

i=1

aaii ≥

(∑N
i=1 ai + (2n −N)∆

2n

)∑N
i=1 ai+(2n−N)∆

=

(∑N
i=1 ai
N

)∑N
i=1 ai

∆(2n−N)∆ (B.7)

with 2n −N > 0.

Now, one can estimate the summands of the Γ-series to find a convergent majorant.

Theorem B.3 [Convergence of the Γ-series [11]]: There is always a non-vanishing interval

I = (a, b) 6= ∅ with a, b ∈ RN>0 such that the Γ-series of equation (2.8) converges absolutely

for |z| ∈ I.

Proof. The sum in equation (2.8) can be written in the form∑
λ∈Λk

xλ

Γ(a+ Cλ)
(B.8)

where xj =
(zσ̄)j∏

i(zσ)
(A−1
σ Aσ̄)ij

i

, a := (1, . . . , 1, 1 − A−1
σ β) ∈ CN , C :=

(
1r

−A−1
σ Aσ̄

)
∈ QN×r

and r = N − n− 1. Due to the form of Λk it is Cλ ∈ ZN×r.
Furthermore by lemma A.3 it is also

∑N
i=1Cij = 0, which will imply D :=∑

Cij>0Cijλj = −
∑

Cij>0Cijλj = 1
2 |
∑

ij Cijλj |. Thus, one can estimate by lemma B.1∣∣∣∣∣
N∏
i=1

1

Γ(ai +
∑r

j=1Cijλj)

∣∣∣∣∣ ≤ K
N∏
i=1

R
|
∑r
j=1 Cijλj |

i

∣∣∣∣∣∣
r∑
j=1

Cijλj

∣∣∣∣∣∣
−

∑r
j=1 Cijλj

. (B.9)

With lemma B.2 one can estimate further

N∏
i=1

∣∣∣∣∣∣
r∑
j=1

Cijλj

∣∣∣∣∣∣
−

∑r
j=1 Cijλj

≤ DDND
2 D

−D = ND
2 (B.10)

by splitting the product in the N1 factors with positive exponent −
∑r

j=1Cijλj > 0 and

the N2 factors with negative exponent −
∑r

j=1Cijλj < 0. With Rmax = maxiRi we get

our final estimation ∣∣∣∣∣
N∏
i=1

1

Γ(ai +
∑r

j=1Cijλj)

∣∣∣∣∣ ≤ KND
2 R

2D
max . (B.11)

Thus, the Γ-series can be estimated by a geometric series and there is always a non-

vanishing region of absolute convergence.

Therefore, Γ-series have always a non-vanishing region of convergence and provide

actual solutions of the GKZ hypergeometric system. In addition to it, it was shown in [10]

that all Γ-series of a triangulation have a common region of absolute convergence.
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C Characteristics of several simple graphs

In order to classify different Feynman graphs with regard to their complexity from a hyper-

geometric perspective, we collate some characterizing numbers for several standard Feyn-

man graphs in table 1. According to theorem 3.2 one expect vol0 ∆G series with dimension

r := N − n − 1 in a hypergeometric series representation. Every of those series contains

(n + 1) Γ-functions. Further, every regular, unimodular triangulation Tu gives a way to

write the Feynman integral as Horn hypergeometric functions.

If the number of master integrals C = (−1)nχ((C?)n \ {G = 0}) [31] is less than the

volume of the Newton polytope C < vol0 ∆G one expects linear dependencies in the limit

from the generalized Feynman integral to the “ordinary”, non-generic Feynman integral

according to section 3.2.
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[45] J. Horn, Über hypergeometrische Funktionen zweier Veränderlichen (in German), Math.

Annalen 117-117 (1940) 384.

[46] K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer, Japan (2011).

[47] M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric
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