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ABSTRACT 
 

The interplay between Pleistocene climatic variability and hominin adaptations to diverse 

terrestrial ecosystems is a key topic in human evolutionary studies. Early and Middle Pleistocene 

environmental change and its relation to hominin behavioural responses has been a subject of 

great interest in Africa and Europe, though little information is available for other key regions of 
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the Old World, particularly from Eastern Asia. Here we examine key Early Pleistocene sites of 

the Nihewan Basin, in high-latitude northern China, dating between ~1.4 to 1.0 million years ago 

(Ma). We compare stone tool assemblages from three Early Pleistocene sites in the Nihewan 

Basin, including detailed assessment of stone tool refitting sequences at the ~1.1 Ma-old site of 

Cenjiawan.  Increased toolmaking skills and technological innovations are evident in the 

Nihewan Basin at the onset of the Mid-Pleistocene Climate Transition (MPT). Examination of 

the lithic technology of the Nihewan sites, together with an assessment of other key Palaeolithic 

sites of China, indicates that toolkits show increasing diversity at the outset of the MPT and in its 

aftermath. The overall evidence indicates the adaptive flexibility of early hominins to ecosystem 

changes since the MPT, though regional abandonments are also apparent in high-latitudes, likely 

owing to cold and oscillating environmental conditions. The view presented here sharply 

contrasts with traditional arguments that stone tool technologies of China are homogeneous and 

continuous over the course of the Early Pleistocene.  

Keywords: Early hominins, behavioural adaptations, technological innovations, Mid-Pleistocene 

Climate Transition (MPT) 

INTRODUCTION 
 

Pleistocene stone tool industries, particularly those from China, have traditionally been 

considered a homogenous and long-lasting technological tradition. Hallam Movius [1] famously 

compared stone tool industries in Eastern Asia to those of the West, leading him to conclude that 

the eastern toolkits were unstandardized, monotonous, and unimaginative, thereby indicating that 

the toolmakers exhibited some level of ‘cultural retardation’ [2]. Though Movius’ views have 

been heavily critiqued by archaeologists [3–5], there is a persistent view that there were indeed 
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long periods of technological stasis in China [6,7] ranging over a period of a million years or 

more. Lithic analysts working in Eastern Asia tend to categorize stone tool assemblages found 

across the Pleistocene as simple, small tool technologies, and typable under terms such as ‘small 

tool traditions’, ‘Chopper-Chopping tool industries’ and Mode I assemblages [8,9]. Moreover, 

archaeologists have tended to view the adaptations of hominins in Eastern Asia as conservative, 

suggesting that early human populations were passive actors on Pleistocene landscapes, 

exhibiting few, if any, novel traits and flexible behaviours for coping with environmental change. 

Consistent with this view, hominin occupations in Eurasia are considered short-term and non-

permanent [10–13] and especially challenging for populations in high latitude regions, such as 

northern China, which exhibited strong seasonal variability [14]. Moreover, hominins are 

thought to have maintained generalized adaptive strategies to particular grassland-woodland 

ecosystems over the long-term and over vast parts of Asia, thereby suggesting that species such 

as Homo erectus exhibited low levels of behavioural plasticity [15]. 

In contrast to such characterizations, early hominins that moved across Asia displayed a 

remarkable level of adaptive and behavioural flexibility, evidenced by their presence in China by 

2.1 Ma [16], and their expansion across a large geographic range and into a variety of high- and 

low-latitude ecosystems [17,18]. Indeed, it has been argued that hominins in diverse ecosystems 

of northern China between ~1.66 to ~1.36 Ma display increased levels of adaptability to high 

environmental diversity and variability, setting the stage for the expansion of populations into 

new climatic and biotic zones [19].  In addition, recent technological analyses of Chinese lithic 

assemblages across the Pleistocene are beginning to demonstrate the presence of significant 

variability in technology, diversity in tool-making methods, and changes in tool types and raw 

material selection patterns [9,20,21]. Hominins occupying Eastern Asia ~800 thousand years ago 
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(ka) demonstrate adaptive and technological flexibility, as evidenced by the manufacture of large 

cutting tools soon after a meteorite impact and forest burning [22]. Innovations in stone tool 

reduction and the manufacture of finely retouched tools in Early Pleistocene assemblages have 

been suggested to be the consequence of responses to environmental variability [9,20,21], 

although this relationship has not been examined in any level of detail.   

To assess the degree to which early stone tool using hominins modified their tool manufacturing 

behaviours during the Early Pleistocene in Eastern Asia, we examined three well-known lithic 

sites from the Nihewan Basin in North China (Fig. 1ac) (Supplementary Note 1). The Nihewan 

Basin was selected for this study as it contains a long and well-developed fluvio-lacustrine 

sedimentary sequence with well-preserved archaeological sites of all stages of the Pleistocene, 

especially in the Early Pleistocene [23,24] (Fig. 1d and Supplementary Fig. 1). The chronology 

of the archaeological sites was established by correlation with the recognized magnetic polarities 

in the sedimentary sequence [18, 23] and in accordance with the geomagnetic polarity timescale 

[25, 26]. Here, we conducted a technological assessment of the Cenjiawan site, including new 

analysis of lithic refits, alongside inter-assemblage comparisons of Xiaochangliang and 

Donggutuo, thereby providing unprecedented information about lithic assemblage formation 

between ~1.41.1 Ma (Fig.1c-d, Supplementary Notes 14).  

RESULTS 

Stone tool knapping skills recorded in the Cenjiawan assemblage 
 

Cenjiawan was first excavated in the 1980s, retrieving a total of 1625 lithic artefacts and 257 

mammal fossils [27–29]. Magnetostratigraphic dating results showed that the Cenjiawan artefact 
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layer is just posterior to the Punaruu geomagnetic excursion [30], which has an 
40

Ar/
39

Ar age 

determination of 1.105±0.005 Ma [26], with Donggutuo dating to about the same age (Fig. 1d).  

The lithic assemblages of Cenjiawan have been subject to previous lithic refitting studies 

[28,31,32], providing unique information about lithic manufacturing methods for Early 

Pleistocene assemblages of Eastern Asia. Yet, previous publications provide limited information 

about the lithic assemblages and knapping sequences, without wider exploration of their 

evolutionary implications. Here, we present a re-newed study of the Cenjiawan lithic assemblage 

and the refitting groups, with the aim to examine details of stone tool knapping sequences to 

assess hominin technological skills and planning abilities (Supplementary Note 3).  

The lithic assemblages at Cenjiawan were produced mainly by freehand hard hammer percussion 

(FHHP) with rare examples of bipolar artefacts. The lithic artefacts are small in size, with 60% 

of the artefacts measuring less than 20 mm, suggesting minimal transport and sorting by fluvial 

processes [33,34]. The proportion of small artefacts and the high percentage of refit sets with all 

stages of stone tool reduction indicate on-site knapping activities by hominins. The lithic 

artefacts are composed of cores, flakes and flake fragments, accounting for 41.28% of the 

assemblage, whereas shatter, angular fragments and unflaked pebbles in a variety of sizes 

account for 54.27% of the assemblage (Supplementary Table 1). A total of 54 retouched artefacts 

were identified, including scrapers, denticulates, borers and notches, accounting for 3.34% of the 

lithic assemblage.  

Cenjiawan has been subject to an intensive program of refitting, producing detailed information 

about stone tool reduction sequences and behavioural activities [28,31,32]
 
(Fig. 2). However, in 

previous studies, detailed information on the refitted groups and metric results has not been 

reported. To understand the formation of lithic assemblages and reconstruct knapping sequences, 
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the refitted pieces were studied in detail, and diacritical schemes of flaking sequences were 

produced (Fig. 2). In this study, a total of 411 lithic artefacts are identified among 1616 pieces, 

comprising 105 refitted groups, and accounting for 25.43% of the lithic assemblage. The refits 

are mainly represented by the production of free-hand percussion, including cores (40.98%), 

whole flakes (42.2%) and flake fragments (22.53%) (Supplementary Table 1). A high percentage 

(29.63%) of refits were represented by retouched pieces. Few of the bipolar pieces could be 

refitted (n=2, 11.11%). A relatively high percentage of the refits are from angular fragments 

(54.91%) and shatter (13.11%). In addition to refits, there were 88 conjoins (i.e., distal to 

proximal conjoins, left to right conjoins) with 41 groups of conjoins represented by both flakes 

and tools (Supplementary Fig. 2).  

The refitting groups ranged from high numbers (with up to 25 pieces refit) to low numbers (only 

two pieces) (Supplementary Table 2, Supplementary Fig. 3). The groups with high numbers of 

refits provide detailed information about a dynamic process of reduction sequences, including 

information on the direction of flaking and on core rotation, thus allowing assessment of hominin 

planning procedures in order to obtain desired flake and tool products. 

Among the refitting groups, bi-directional flaking procedures were observed in 25 cases (Fig. 2a, 

b). Fig. 2a illustrates a refitted reduction sequence composed of 6 complete flakes and 1 

retouched piece on a flake.  This case illustrates an example where knappers obtained a number 

of flakes from two percussion directions, with a 90° turn in core rotation. Flake A1 was chosen 

from the group of flakes and finely retouched in order to produce a tip on the mid-section of a 

lateral edge. This type of retouched piece was not a unique find, suggesting that particular flake 

blanks were sought for producing tipped pieces (Supplementary Fig. 4).  Fig. 2b is another 

example of a bi-directional reduction sequence, composed of 6 refit flakes. In this case, the 
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knapper used two opposing flake platforms, turning the core 180° to perform flaking. The 

resultant core was highly consumed based on its small size and the application of a series of 

small flake (<30 mm) removals.  

Fig. 2c illustrates a three-directional reduction sequence, which is observed in 11 cases. The refit 

pieces in Fig. 2c show two changes in the direction of reduction, which is composed of 4 flakes. 

The first flaking sequence is represented by a whole flake (A1), which is later selected as a blank 

for tool-making. Two flakes (B1, B2) were then removed from another platform, and probably 

found to be undesirable as they were short and without typical conchoidal flake attributes, 

probably on account of the presence of poor-quality material. The core was then rotated a third 

time (sequence C) in an attempt to obtain additional, desired flakes (e.g., Flake C1). The 

reduction sequence illustrated in Fig. 2c is a good example of how knappers avoided low quality 

interstitial material, while seeking higher quality chert, as noted at other Nihewan sites [20,21].  

Four-directional flaking procedures were observed in 3 cases. Fig. 2d illustrates a refitted 

reduction sequence composed of 3 complete flakes and 2 broken flakes. The first flaking 

sequence is represented by two short flakes (A1 and A1’). One thick flake (B1) was then 

removed from another platform. The core was then rotated a third time (sequence C) in an 

attempt to obtain additional flakes, while the flake was broken (C1 is a flake conjoined by two 

parts). After the removal of the broken flake (C1), the core was then turned to strike it in a fourth 

direction, and D1 was removed. Flake D1 was broken into three parts. Although the center 

portion of this reduction group was missing, the outer part indicates that the knapper attempted to 

choose suitable directions for flaking, changing direction in order to more fully consume the core.   
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Refit groups represented by only two to three flake refits (n=63) are presented in the 

Supplementary Data. These refit groups mainly show single direction flaking and bi-directional 

flaking owing to the low refit numbers (Supplementary Table 2 and 3; Supplementary Fig. 3).  

Given their incomplete nature, it is of course difficult to determine if they were from simple 

unidirectional production sequences or parts of more complex reduction groups.  

Technological comparisons of the Nihewan Basin assemblages 
 

Re-analysis of the Cenjiawan lithic assemblages has provided new insights about stone tool 

manufacture at ca. 1.1 Ma. The refitting analysis indicated that the Cenjiawan knappers aimed to 

obtain as many flakes from cores as possible, changing the striking platform to achieve good 

results, thus showing some degree of forethought and planning in tool reduction. To understand 

how the Cenjiawan lithic assemblages compared to other Early Pleistocene sites in the Nihewan 

Basin, lithic data was obtained from Xiaochangliang (ca. 1.36 Ma) [20,35] and Donggutuo (ca. 

1.1 Ma) [21,36] (Supplementary Tables 46, Supplementary Notes 2 and 4). As comprehensive 

studies have recently been conducted on the lithic assemblages from these sites [20,21], a unique 

opportunity presented itself to understand lithic assemblage formation in the Nihewan Basin 

between ~1.361.1 Ma.  

In all three of the Nihewan sites, chert was exploited as the dominant raw material, ranging from 

96% to 68% of the total lithic assemblage. Freehand hard hammer percussion and bipolar 

percussion were applied in all three sites though with different frequency [20,21,27] (Fig. 3a). 

Cenjiawan had the highest percentage (97.37%) of hard hammer products (i.e., cores, flakes, 

flake fragments), followed by Donggutuo (77.47%) and Xiaochangliang, the latter of which had 

a much lower percentage (43.06%) [20]. The bipolar technique was applied frequently (56.94%) 
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at Xiaochangliang, and more rarely at Donggutuo (22.35%) and Cenjiawan (2.73%) [20,21] (Fig. 

3a), indicating that more controlled flaking methods were applied in the younger sites 

(Supplementary Table 4).  

Flake sizes were generally small at all three sites (Fig. 3b). Donggutuo and Cenjiawan had the 

highest frequency of small flakes; 95.39% of the flakes at Cenjiawan were smaller than 40 mm 

and no flake was larger than 60 mm. At Xiaochangliang, a higher percentage of the flakes were 

larger than 40 mm (Fig. 3b). Although small flakes were common in all three sites, the younger 

sites had a higher frequency of small flakes. The flake data generally corresponds with core sizes, 

as cores from Xiaochangliang are larger in comparison to the younger sites (Supplementary 

Tables 5 and 6, Supplementary Fig. 5). The production of smaller flakes from freehand 

percussion indicates well-controlled skills in working small nodules. The higher percentage of 

smaller cores relates to the efficient exploitation of raw materials as well. The refitting sets from 

Cenjiawan show that core reduction sequences (see the idealized schemes in the upper right-hand 

corner of Fig. 2) are similar to the ones from Xiaochangliang and Donggutuo, including the 

unidirectional, bidirectional, bifacial and multidirectional types [20,21]. Even though there are 

similar reduction sequences in the three sites, the flake attributes on the two later assemblages 

illustrates the dexterity of early hominins in obtaining desirable flakes from small rock nodules.  

Higher percentages of non-cortical flakes (types VI and V)
 
[37] were recorded in Donggutuo and 

Cenjiawan (Fig. 3c). Type VI and V flakes account for 59% in Xiaochangliang, 76% in 

Donggutuo and 85% in Cenjiawan. The higher percentage of smaller flakes (types V and IV) at 

Cenjiawan and Donggutuo suggest more in-depth reduction and a continuous flaking of cores, 

whereas at Xiaochangliang, the smaller assemblage likely results from roughing-out cores and 

the application of bipolar percussion [20].  Fig. 3d shows that plain and natural platforms were 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article-abstract/doi/10.1093/nsr/nw

aa053/5813450 by guest on 05 M
ay 2020



more frequent in the somewhat older site of Xiaochangliang. In contrast, there was more 

preparation of striking platforms at Donggutuo and Cenjiawan in order to control flaking.  

Donggutuo had a relatively high percentage of faceted platforms, with Cenjiawan having the 

highest percentage of linear platforms. The linear platform type at Cenjiawan likely relates to 

low flake thicknesses, with flakes having an average maximum thickness of 7.15 mm. Both 

Donggutuo and Cenjiawan show that the knappers were skillful in producing smaller and thinner 

conchoidal flakes by hard hammer percussion, though their flaking strategies differed somewhat. 

At Cenjiawan, knappers repeatedly changed core reduction directions to produce small and thin 

flakes. At Donggutuo, cores were sometimes prepared to work small nodules. This included 

preparation of platforms on ‘wedge-shaped’ cores with an aim to produce microblade-like forms 

[21].  

In each of the three sites, high quality and standardized retouched pieces were produced 

(Supplementary Figs. 6, 7), contrary to suggestions that there was no shaping of tools in these 

lithic assemblages [9]. The retouched pieces of the three sites are small in size and show regular 

and repeated retouched on the same margins of the blanks producing distinct features 

(Supplementary Fig. 7). Among the tool types were forms that can be classed as scrapers, 

denticulates, borers, notches and pointed tools. Compared to Cenjiawan and Donggutuo, the 

Xiaochangliang assemblage had a lower percentage of retouched tools (2.5%). Retouch was 

simpler in Xiaochangliang, and in Cenjiawan and Donggutuo, though more standardized tool 

forms were recognizable, such as borers and concave-edged scrapers (Supplementary Table 7). 

Retouched tools were commonly manufactured on flake blanks at Cenjiawan and Donggutuo, 

whereas at Xiaochangliang bipolar splinters and angular broken pieces predominate (Fig. 3e), 

corresponding with evidence of more controlled flaking at the younger sites. Fig. 3f reinforces 
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this pattern, demonstrating that at Cenjiawan and Donggutuo, the average maximum retouch 

extent and maximum retouch depth is longer, as opposed to the Xiaochangliang tools.  

Inter-assemblage comparisons between Xiaochangliang, Cenjiawan and Donggutuo, together 

with the refitting study at Cenjiawan, indicate that technological skills increase at ca. 1.11.0 

Ma. The lithic assemblages at Cenjiawan and Donggutuo show increasing levels of control in 

flaking procedures despite small clast size and raw material flaws, some degree of planning in 

the knapping process to produce desired flake blanks, and the application of retouch to produce 

standardised tools. The wedge-shaped cores from Donggutuo show parallel flake scars and partly 

prepared platforms, indicating some degree of planning and foresight to produce desired end-

products [21,38].  While utilizing the same type of raw materials, the Cenjiawan and Donggutuo 

hominins demonstrate some significant changes in lithic reduction methods in comparison to 

Xiaochangliang, including the application of more control and skilful conchoidal flaking 

methods, suggesting the efficient utilization of clasts, and planning to obtain desired blanks. Our 

findings are supported by the recent analysis of the Madigou assemblages, dating to ~1.2 Ma, 

which show innovations in tool-making, such as an increased emphasis on bipolar flaking, strong 

raw material preferences, the presence of a variety of retouched tools, and the shaping of some 

large tools [39].  

 

DISCUSSION 
 

To evaluate technological change over the long-term, and the relative skills of toolmakers at 

~1.11.0 Ma, it is instructive to examine the Nihewan sites in relation to lithic assemblages from 
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earlier and later sites of China (Fig. 4). At the 2.1 Ma old site of Shangchen (Lantian) [14] (Fig. 

4d2), freehand hard hammer percussion was applied to cores along a single platform in order to 

produce a few flakes. Likewise, at Majuangou III, the oldest site in the Nihewan Basin (Fig. 4d1), 

a relatively simple core-flake reduction sequence was identified at ~1.66 Ma [18,29]. Though 

retouched pieces were present at Majuangou, these were not regular in shape, having retouch 

typically confined to small areas on a single edge. The Shangchen and Majuangou III lithic 

assemblages contrast with those from Xiaochangliang, dating to ~1.36 Ma, as somewhat 

increased technological flexibility is indicated by the use of both bipolar and freehand reduction 

techniques, including the presence of retouched pieces which show more regularity in form [20]. 

Therefore, we suggest that the Early Pleistocene lithic assemblages at Shangchen and Majuangou 

III show relatively straightforward percussion techniques to obtain flake products, whereas by 

~1.36 Ma, increased tool-making skills are evident, just prior to the technological innovations 

witnessed at ~1.01.1 Ma at Cenjiawan and Donggutuo (Fig. 4d1).  

The technological innovations evidenced at ca. 1.11.0 Ma in the Nihewan Basin correspond 

with the early stages of the MPT (Fig. 4a), which is characterized by an alteration of the length 

and intensity of glacial-interglacial cycles, and by the periodicity of high-latitude climate 

oscillations, changing from 41 kyr to 100 kyr cycles [4043]. In a number of geological records, 

particularly those from Eastern Asia, the 100-kyr cycles date to between ~1.2 to ~0.70.6 Ma 

[4043] (Supplementary Note 5). This variability was accompanied by a series of global or 

regional palaeoclimatic and palaeoenvironmental changes, such as increases in aridity and 

monsoonal intensity and decreases in sea surface temperatures in the North Atlantic and tropical-

ocean upwelling regions [40]. The complex environmental fluctuations in northern parts of East 
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Asia included strengthened winter monsoons, weakened summer monsoons, and strengthened 

aridity in high-latitude areas [4448].  

Early Pleistocene hominin populations of northern China, including the Nihewan Basin, would 

have experienced climatic changes and environmental shifts caused by the MPT. This included a 

stepwise southerly migration of the Mu Us desert, C4 plant expansions in the Loess Plateau, 

changes in vegetation communities moving towards more open mixed forests and woodlands 

(Fig. 4b), and the extinction and extirpation of a number of mammalian species [44,45,4750]. In 

the Nihewan Basin, environmental changes are recorded at Donggutuo and Cenjiawan, with a 

shift towards more open grass steppe with mixed forests and woodlands [51,52]. At Donggutuo 

and at the fossiliferous site of Shanshenmiaozui, the number of grassland mammalian fauna 

increased at ~1.21.1 Ma, whereas warm and humid adapted species went extinct (e.g., Leptobas 

stenometopon, Hesperotherium) [53]. During the onset of the MPT, however, changes in 

temperatures and their oscillations were not as extreme as later periods, perhaps stimulating 

innovations in early hominin toolkits and signaling behavioural responses to ecosystem changes 

at Cenjiawan and Donggutuo. The production of a variety of retouched tool types (e.g., scrapers, 

denticulates, notches, borers, pointed tools) at these sites indicates diverse activities (i.e., 

scraping, cutting, piercing), perhaps linked with the processing of animal and plant foods as 

found in other early archaeological sites of Africa and Asia [54,55]. The ability of hominins to 

adapt to environmental conditions brought on by the MPT are not only recorded in high-latitude 

China as archaeologists have also related climatic shifts in this period with dispersal events, 

novel behaviours and changes in lithic technology [12,13,56]. 
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From ca. 1.11.0 Ma and towards the end of MPT, site numbers and artefact densities declined 

dramatically in the Nihewan Basin with only rare finds at Maliang, and between ~0.80.4 Ma, 

there is a gap in the archaeological record [24], coincident with longer and harsher cold periods 

(Fig. 4d1). Though sites are present in China between ~0.70.3 Ma (Fig. 4d2), they are either in 

the southern latitudes (e.g., Chenjiawo, Dali) or in caves (e.g., Zhoukoudian), with some 

evidence for fire use [5760]. Towards the end of the MPT, at ca. 0.90.8 Ma, the first signs of 

large cutting tool assemblages appear at Yunxian (Xuetangliangzi) and in the Bose Basin [22,61], 

and in case of the latter, novel stone tool using behaviours are thought to relate to ecosystem 

changes [22]. After the MPT, archaeological data is poorly represented in the Nihewan Basin and 

in North China, perhaps as a reflection of high seasonality in colder climates [14], whereas in 

lower latitudes of central and southern China, Middle Pleistocene hominin sites are present 

[58,62,63], suggesting the presence of habitable environments and the sustained survival of 

hominin populations. After a long hiatus of occupation, the oldest Middle Pleistocene site of the 

Nihewan Basin is Hougou, dated to ca. 395 ka, indicating the reappearance of hominins, and 

showing the use of unidirectional core reduction and the irregular production of retouched tools 

[64,65], representing a novel lithic assemblage, and perhaps indicating the loss of earlier 

technological innovations.   

On the whole, the lithic industries between 1.1 to 0.3 Ma  across China show considerable 

diversity and variation in core reduction strategies, ranging from relatively simple to more 

advanced flaking procedures (i.e., cores with few flake removals, wedge-shaped cores) and in 

tool production (large bifacial and unifacial cutting tools, frequency of retouched flakes). While 

innovations are present, there is no clear sign of a consistent, unilinear technological evolution in 
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tool-making, suggesting that behavioural and adaptive responses to environmental and ecological 

conditions are responsible for lithic assemblage formation.  

A question may be posed as to whether technological innovation and adaptive changes 

correspond with biological evolution, such as hominin brain size increase. Fig. 4c illustrates that 

hominin brain sizes generally increase from the Early to Middle Pleistocene on an 

intercontinental level [6669]. Although brain size increases are recorded after the MPT, 

considerable variations occur in the Middle Pleistocene [6971]. In China, a trend for increasing 

brain size is notable between the Gongwangling Homo erectus cranium, dated to 1.61 Ma [72], 

with a cranial capacity of 780 cc [70], and finds at Zhoukoudian, with cranial capacities ranging 

widely between 850 to 1225 cc at ca. 0.77 Ma [70] (Supplementary Table 7). Unfortunately, 

however, no measurable fossil crania are available in China between the critical threshold 

between 1.61 to 0.77 Ma. It could be noted, however, that stone innovations in the Nihewan 

Basin at Cenjiawan and Donggutuo at ~1.11.0 Ma do not necessarily coincide with larger brain 

sizes based upon cranial data outside China (Fig. 4c). It is difficult to correlate brain size trends 

with changes in lithic technology, other than noting that large cutting tool innovations at ca. 0.8 

Ma in southern China coincide with the larger brain sizes represented at Zhoukoudian, though no 

necessary connection can be drawn. It is also worthwhile to point out that selection for larger 

brain sizes are not indicated in the later Middle Pleistocene of China, as Dali is recorded as 1160 

cc at 0.30.26 Ma, and Hualongdong is recorded as 1150 cc at 0.3 Ma [73] (Supplementary 

Table 7). The most significant wholesale changes in lithic technology and material culture occur 

in the Late Pleistocene, when brain size increases are recorded at Xuchang (1800 cc) at 125105 

ka and in the Zhoukoudian Upper Cave (12901500 cc) at ca. 35 ka (Supplementary Table 8).  
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Unfortunately, at this point in time, it remains difficult to disentangle the relationships between 

the MPT and biological and cultural evolution until additional fossils are discovered.  

In sum, at ca. 1.1 Ma the inhabitants in the Nihewan Basin lived under a changeable and unstable 

environment, experiencing strengthened aridification [44,48]. As climatic variability produced 

ecological changes, including landscape alterations and faunal turnovers, novel technological 

innovations may have provided some selective benefits to early hominin populations in the 

Nihewan Basin. The unstable environmental conditions at the onset of the MPT provides a good 

example of the adaptive versatility of hominins in China during the Early Pleistocene, 

contrasting with the notion of long-lasting conservative behaviours and undifferentiated 

technologies across the Pleistocene. Yet, the increasingly harsh and oscillating climatic 

conditions of the MPT likely undermined sustained population in North China, illustrating that 

technological and cultural solutions did not always overcome environmental challenges.  
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The detailed methods and materials are available as Supplementary Data. 
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Figure 1. Nihewan Basin, China. (a) The Nihewan Basin, located in northern China. (b) The Yellow 

River is a major river system in north China. The Qinling Mountains are the traditional dividing line 

between north and south China. The Nihewan Basin occurs at the northern edge of the Loess Plateau. (c) 

The location of key Nihewan Early Pleistocene sites mentioned in the text, Cenjiawan (CJW), Majuangou 

(MJG), Donggutuo (DGT) and Xiaochangliang (XCL). (d) Palaeomagnetic chronology of key 

archaeological sites in the Nihewan Basin and the earliest site of Shangchen (SC, Lantian) within the 

framework of the geomagnetic polarity timescale [25, 26]. K, Kamikatsura; S, Santa Rosa; J, Jaramillo; P, 

Punaruu; C, Cobb Mountain; O, Olduvai. 
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Figure 2. Refitting groups from Cenjiawan showing reduction sequences. (a) Refitting group a (6 items), 

a two-directional (vertical) refitting group on a chert nodule. (b) Refitting group b (6 items), a two-

directional (opposite) refitting group on a chert nodule. (c) Refitting group c (4 items), a three-directional 

refitting group on a chert nodule. (d) Refitting group d (8 items), a four-directional refitting group on 

argillaceous siltstone. 
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Figure 3. Lithic technology comparisons of three Early Pleistocene sites in the Nihewan Basin: 

Xiaochangliang (XCL), Donggutuo (DGT), Cenjiawan (CJW). (a) The relative frequency of freehand 

hard hammer percussion (FHHP) and bipolar percussion (BP) flakes. (b) Flake size ranges (in mm). (c) 

Flake attributes according to Toth types [37]. (d) Striking platform types on flakes. (e) Tools blank types. 

(f) Comparisons of average maximum retouch extent, retouch depth and tool length.  
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Figure 4. Synthesis of ecological, biological and lithic data from the Early to Late Pleistocene (the light 

red horizontal bar denotes the MPT). (a) Global climate change based on the benthic δ18O stack LR04 

[42]. (b) Vegetation history of the North China Plain based on pollen analysis [53]. (c) Hominin brain size 

estimates for Africa and Eurasia [69] (numbers represent key fossils from China, Supplementary Table 7; 

*Homo heidelbergensis is considered to include Middle Pleistocene populations in Africa and Europe, 

while the Asian fossils at this time are difficult to group, thus the term mid-Pleistocene Homo
 
[62] is 

sometimes used). (d1) Lithic changes through the time in the Nihewan Basin, showing the frequency of 

lithic artefacts across different time periods (dark green bars). (d2) Key lithic changes across China as 

discussed in main text. 
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