Inducing Synergy in Bimetallic RhNi Catalysts for CO2 Methanation by Galvanic Replacement

Yuan Wang,^{*a,b,c*} Hamidreza Arandiyan,^{*d*} * Stuart A. Bartlett,^{*d*} Annette Trunschke,^{*c,**} Hongyu Sun,^{*e*} Jason Scott,^{*a,**} Adam F. Lee,^{*f,**} Karen Wilson,^{*f*} Thomas Maschmeyer,^{*d*} Robert Schlögl,^{*c*} and Rose Amal^{*a*}

Dr. Yuan Wang, A/Prof. Jason Scott, and Prof. Rose Amal

^aParticles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia

Dr. Yuan Wang

^bSchool of Chemistry, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia

Dr. Annette Trunschke, Dr. Yuan Wang and Prof. Robert Schlögl ^cInorganic Chemistry Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

Dr. Hamidreza Arandiyan, Dr. Stuart A. Bartlett, and Prof. Thomas Maschmeyer

^dLaboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney 2006, Australia

Dr. Hongyu Sun

^eDepartment of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark

Prof. Karen Wilson, and Prof. Adam F. Lee

^fSchool of Science, Royal Melbourne Institute of Technology University, Melbourne, VIC 3000, Australia

* Corresponding authors E-mail address: <u>hamid.arandiyan@sydney.edu.au</u> (H.A.), <u>adam.lee2@rmit.edu.au</u> (A.F.L.) <u>jason.scott@unsw.edu.au</u> (J.S.), <u>trunschke@fhi-berlin.mpg.de</u> (A.T.)

S1. Catalyst characterisation

S1.1. X-ray diffraction (XRD)

XRD analyses were performed on a PANalytical Empyrean II diffractometer with Cu K α radiation ($\lambda = 0.15406$ nm) at 45 kV and 40 mA to identify the crystal phases and to analyse lattice parameters. Scattering intensity was recorded in the range of 30° $< 2\theta < 90^\circ$ for all of the samples with a 2 θ step of 0.03° and a count time of 2 s per step. Diffraction patterns were indexed to JCPDS (Joint Committee on Powder Diffraction Standards) files.

S1.2. Field-emission high-resolution transmission electron microscopy (FE-HRTEM) and high-angle annular dark-field - scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (HAADF-STEM-EDS)

FE-HRTEM images, as well as the selected-area electron diffraction (SAED) patterns, were obtained on a Philips CM200 apparatus. To determine the detailed surface structure, HAADF-STEM-EDS images were taken on a JEOL JEM-ARM200F STEM.

S1.3. BET surface area and N₂ adsorption-desorption isotherm

The surface areas and pore size distributions of the samples were obtained using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The N₂ adsorption-desorption isotherms, surface areas, and pore parameters of the samples were determined via N₂ adsorption at -196 °C on a Micrometric Tristar 3030 adsorption analyser. Before the measurement, the samples were degassed at 150 °C for 3 h.

S1.4. H₂ temperature-programmed reduction (H₂-TPR)

H₂-TPR experiments were performed on a Micromeritics Autochem II apparatus equipped with a TCD detector. The experiments were conducted with approximately 50 mg of sample. The samples were initially flushed with an argon flow of 40 mL/min as the temperature was increased to 150 °C at a ramp rate of 10 °C/min. The samples were kept at this temperature for 30 min to remove moisture after which they were cooled to 50 °C. Then, the reducing gas (10 % H₂ in Ar) was introduced at a flow rate of 40 mL/min and the sample was heated at a ramp rate of 10 °C/min to 900 °C. The variation in H₂ concentration of the effluent gas stream was monitored online by the TCD.

S1.5. X-ray photoelectron spectroscopy (XPS)

XPS was used to determine the Rh 3d binding energies (BEs) of surface species. The analyses were performed on a Thermo Scientific, UK (model ESCALAB250Xi) using Mg K α (hv = 1486.68 eV) as the excitation source with 150 W power (13 kV x 12 mA). Samples were reduced at 400 °C for 1 h prior to XPS analysis to mimic the activation protocol employed for CO₂ methanation; however, they were subsequently air-exposed for 3-5 days awaiting transfer to the spectrometer chamber. Sample were then outgassed (0.5 h) in the preparation chamber before being analysed in the analysis chamber. The BE values of Rh 3d were calibrated against the C 1s signal (BE = 284.6 eV for adventitious hydrocarbon) of carbon.

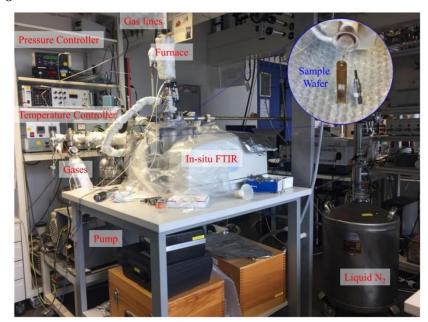
S1.6. Inductively coupled plasma mass spectroscopy (ICP-MS)

The actual loadings of Rh and Ni on the alumina support were measured by a Perkin Elmer OPTIMA 7300 ICP-MS. Samples were digested using aqua regia solution.

S1.7. X-ray absorption spectroscopy (XAS)

Rh K-edge X-ray absorption experiments were conducted at the Australian Synchrotron at the XAS beamline, collected in fluorescence mode using a 36 element Ge fluorescence detector. Samples were diluted with boron nitride and mounted using Kapton tape inside a He purged cell held at room temperature. Sample spectra were collected up to $k = 15 \text{ Å}^{-1}$ in parallel with a Rh foil reference. Data analysis was performed using the IFEFFIT software packages Athena and Artemis.

S2. Calculation of Rh dispersion:


The dispersion of a spherical, close-packed metal nanoparticle (NP) can be estimated from the particle size and atomic radius of constituent atoms according to the equation below: [1, 2]

Dispersion
$$= \frac{N_S}{N_T} = \frac{R^3 - (R - \sqrt{3}r)^3}{R^3}$$

where R is the NP radius from HRTEM and r the atomic radius (lattice parameter: Rh = 3.80 nm; Ni = 3.52 nm). For RhNi/Al₂O₃ (GR), all the Rh appears to reside in a monolayer shell and hence the Rh dispersion is assumed to be 100 %. For Rh/Al₂O₃ the Rh dispersion is 70.3 %. For RhNi/Al₂O₃ (CR), the overall Rh:Ni atomic ratio is 0.91:1.79, and assuming the nanoparticles comprise a bulk substitutional alloy, Vegard's Law predicts a mean lattice parameter of 3.61 nm, and hence a total metal dispersion of 59 %; assuming a common surface and bulk Rh:Ni atomic ratio, the Rh dispersion is then 20 %. Note that CO and H₂ strongly chemisorb over Rh and Ni, and hence conventional chemisorption methods using these adsorbates would only provide the same information for the bimetallic catalysts as can be obtained by TEM analysis, i.e. the total metal dispersion.

Dispersions were used to calculate the turnover frequency (TOF) according to the following equation:

- TOF = mols CO_2 converted.s⁻¹/ mols surface Rh
 - = mols CO₂ converted.s⁻¹ / [(Dispersion × Rh loading (wt%) × catalyst mass)/ 100 × Molar mass Rh]
 - = mols CO₂ converted.s⁻¹ / [(Dispersion × Rh loading × 0.05)/ 102.9]

S3. Experimental configuration and results

Fig. S1. Configuration of FTIR for low temperature CO adsorption.

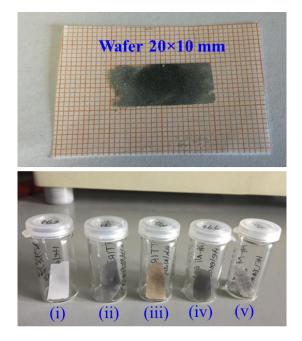


Fig. S2. Photos of sample wafers prepared for FTIR.

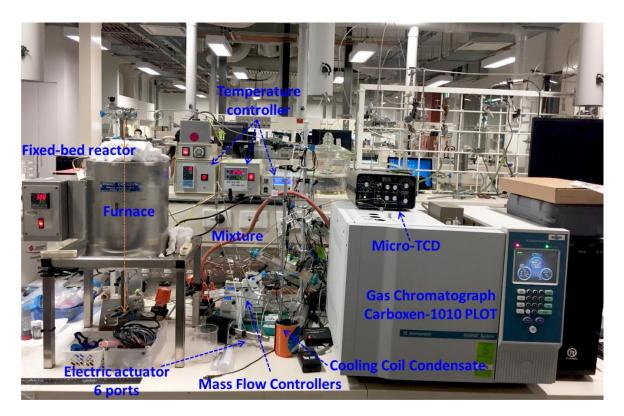


Fig. S3. Photograph of microreactor configuration for catalyst activity assessment.

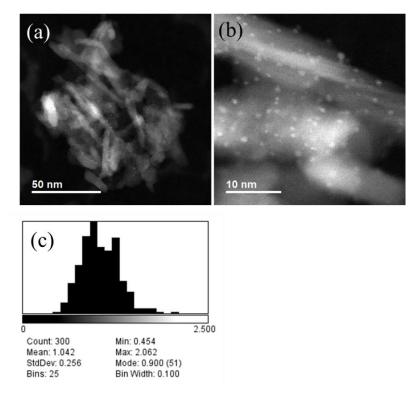
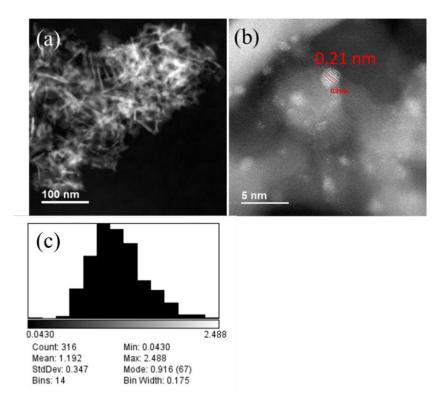
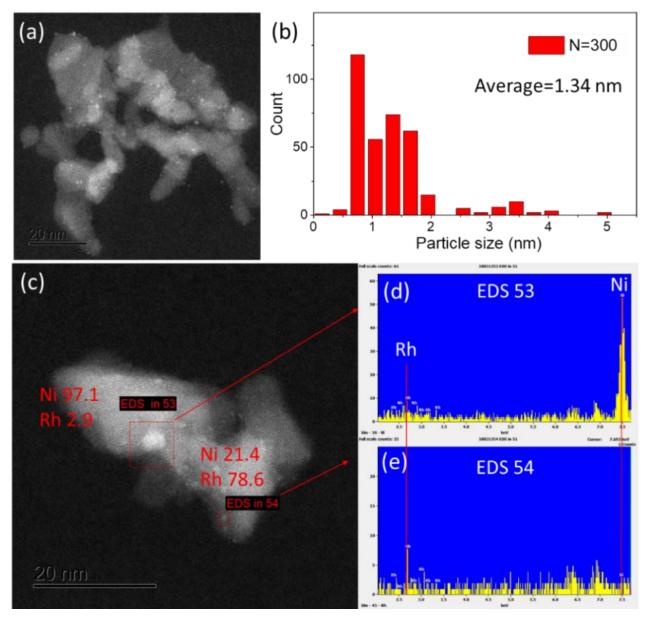
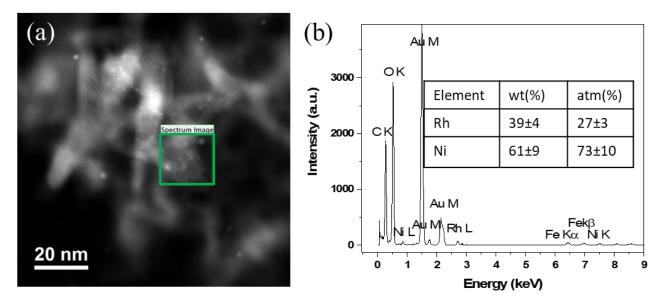


Fig. S4. (a-b) HAADF-STEM images and (c) nanoparticle size distribution for Rh/Al₂O_{3.}

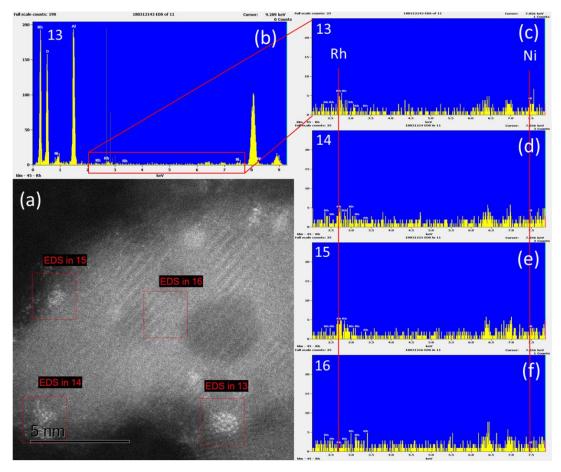

Fig. S5. (a-b) HAADF-STEM images and (c) nanoparticle size distribution for RhNi/Al₂O₃ (GR).

Fig. S6. (a) HAADF-STEM image, (b) nanoparticle size distribution, (c) HAADF-STEM image, and (d-e) EDS spectra extracted from red square in (c) for RhNi/Al₂O₃ (CR) sample.

Fig. S7. (a) HAADF-STEM image and (b) EDS spectra and elemental (Rh, Ni) map for RhNi/Al₂O₃ (GR). Green square highlights sample region where EDS analysis was performed.

Fig. S8. (a) HAADF-STEM image and (b-f) EDS spectra of individual nanoparticles for RhNi/Al₂O₃ (GR). Numbers 13-16 in the EDS spectra refer to corresponding red squares in STEM image.

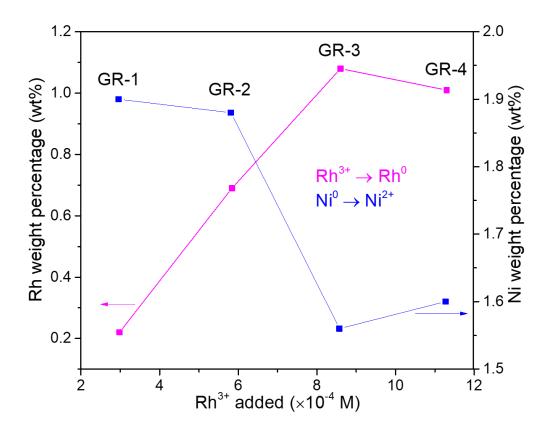
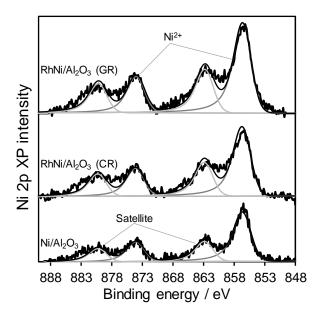



Fig. S9. Rh and Ni loadings versus concentration of Rh³⁺ precursor in the synthesis of RhNi GR catalysts.

Fig. S10. Ni 2p XP spectra of Ni/Al₂O₃, RhNi/Al₂O₃ (GR) and RhNi/Al₂O₃ (CR). Spectra fitted with common lineshape, FWHM and binding energies.

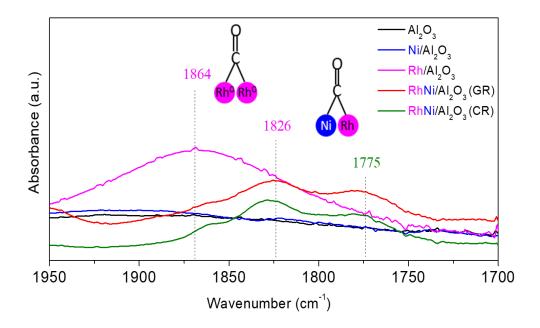
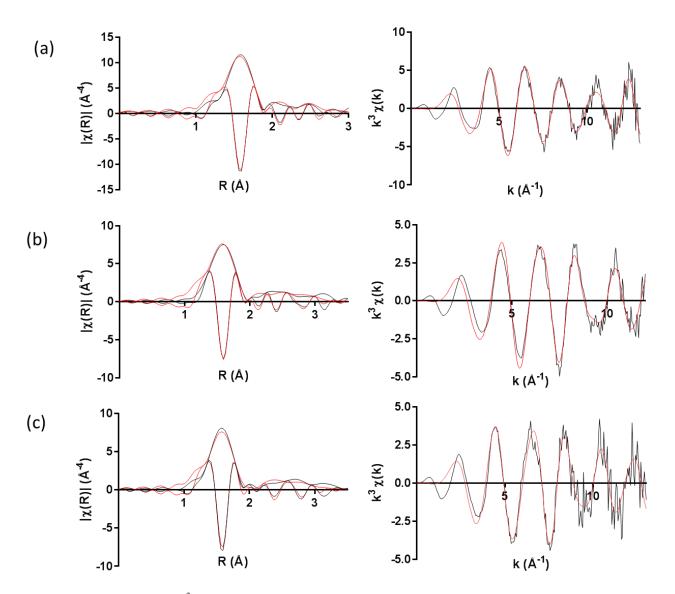
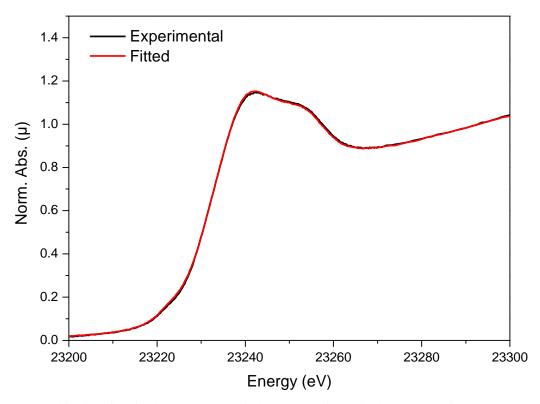




Fig. S11 FTIR spectra following CO saturation and purging with 40 mbar He at -196 °C.

Fig. S12. (left) Rh K-edge k^3 -weighted EXAFS signal, and (right) corresponding Fourier transforms, fitted using parameters in **Table 2** for (a) fresh RhNi/Al₂O₃ (GR), (b) post-reaction RhNi/Al₂O₃ (GR), and (c) Rh/Al₂O₃. Black lines represent experimental data and red lines are fits.

Fig. S13. Linear combination fit of edge-step normalised XANES of RhNi/Al₂O₃ (CR). Fitted XANES spectrum is a superposition of 25 % RhNi/Al₂O₃ (GR) and 75 % Rh/Al₂O₃.

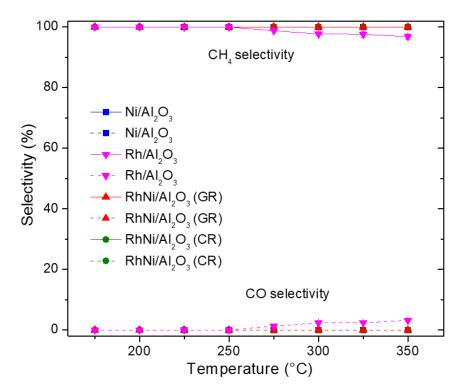
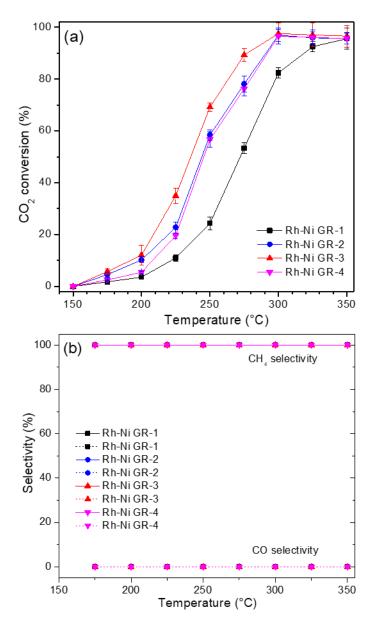
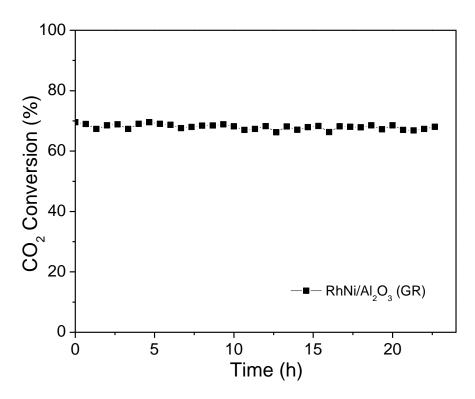




Fig. S14. CH₄ and CO selectivity during CO₂ methanation over Ni/Al₂O₃, Rh/Al₂O₃, RhNi/Al₂O₃ (GR), and RhNi/Al₂O₃ (CR).

Fig. S15. Effect of Rh precursor concentration on (a) CO_2 conversion versus reaction temperature, and (b) CH_4 and CO selectivity during CO_2 methanation over RhNi/Al₂O₃ catalysts prepared by galvanic replacement.

Fig. S16. CO₂ conversion versus time on-stream during methanation over RhNi/Al₂O₃ (GR). Reaction conditions: 250 °C; reactant gas mix = 5% CO₂, 20% H₂, 75% N₂; total flow rate = 40 mL/min; GHSV = ca. 48,000 mL/(g h).

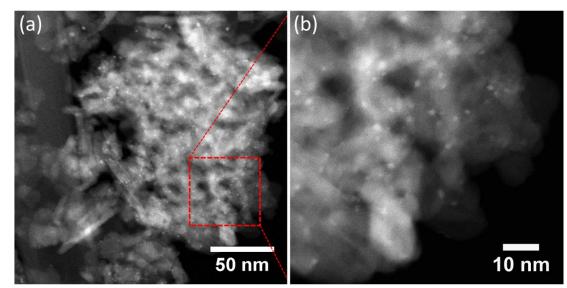
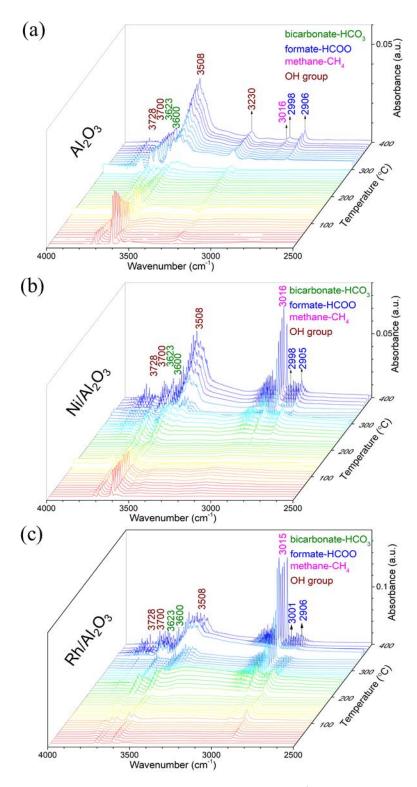



Fig. S17. (a, b) HAADF-STEM images of post-reaction RhNi/Al₂O₃ (GR) from the stability test in Fig. S16.

Fig. S18. In-situ DRIFTS spectra in the wavenumber rage from 4000 to 2500 cm⁻¹of (a) Al_2O_3 , (b) Ni/Al_2O_3 , (c) Rh/Al_2O_3 for CO_2 methanation from 30-400 °C (CO_2 :H₂:Ar=2:8:30, 40 mL/min total).

ICP-MS results in **Table S1** quantify the elemental compositions of catalysts. With increasing Rh³⁺ precursor concentration during the GR process, the Rh loading increased from 0.22 wt% (for RhNi GR-1) to 1.08 wt% (for RhNi GR-3); further increases in the Rh³⁺ precursor concentration did not increase the Rh loading (RhNi GR-4, 1.01 wt%) indicating that the maximum loading attainable by GR was 1 wt% Rh. The decrease in Ni concentration for RhNi GR-1, 2, and 3 is a consequence of the galvanic replacement process in which Rh³⁺ ions exchange for metallic Ni atoms. The similar Ni concentrations of RhNi GR-3 and 4 reflects their similar Rh loadings. Since RhNi GR-3 possessed the highest Rh loading it was selected for detailed investigation in this work. For simplicity, RhNi GR-3 is referred to as RhNi/Al₂O₃ (GR) within the main text.

Catalyst	Preparation method ^a	Weight percentage from ICP-MS		Specific surface area	Rh:Ni molar ratio	
		Ni (wt%)	Rh (wt%)	$(m^2 g^{-1})$		
Ni/Al ₂ O ₃	CR	1.89	-	177	-	
Rh/Al ₂ O ₃	CR	-	1.18	174	-	
RhNi/Al ₂ O ₃ (CR)	CR	1.79	0.91	197	0.29	
RhNi GR-1	GR	1.90	0.22	167	0.07	
RhNi GR-2	GR	1.88	0.69	165	0.21	
RhNi GR-3 = (RhNi/ Al ₂ O ₃ (GR))	GR	1.56	1.08	160	0.39	
RhNi GR-4	GR	1.60	1.01	162	0.36	

Table S1. Preparation method, weight percentage of Ni and Rh, specific surface area, Rh:Ni molar ratio for Ni/Al₂O₃, Rh/Al₂O₃, Rh/Al

^aCR = chemical reduction; GR = galvanic replacement.

	Duran and in a set had	Reaction temperature	TOF ^a	Ref.
Catalyst	Preparation method	(°C)	(s ⁻¹)	
RhNi/Al ₂ O ₃ (GR)	galvanic replacement	250	2.8× 10 ⁻³	Current study
RhNi/Al ₂ O ₃ (CR)	chemical reduction	250	6.5× 10 ⁻³	Current study
Rh-Al ₂ O ₃	impregnation	267	1.6× 10 ⁻³	[3]
Rh-SrTi _{0.7} Fe _{0.3} O _{3-δ}	impregnation	267	1.0× 10 ⁻³	[3]
$Rh\text{-}La_{0.6}Sr_{0.4}FeO_{3\text{-}\delta}$	impregnation	267	1.1× 10 ⁻⁴	[3]
Mesoporous Rh	template-assisted wet	450	5.0× 10 ⁻³	[4]
	chemical reduction		(inert <350 °C)	
Non-porous Rh		450	1.3× 10 ⁻³	[4]
	wet chemical reduction		(inert <350 °C)	
Rh-Ni/3DOM LAO	in-situ H ₂ reduction	250	6.7× 10 ⁻⁴	[5]
Rh/3DOM LAO	chemical reduction	250	2.8× 10 ⁻⁴	[5]

Table S2. Comparative catalytic activity of Rh catalysts for CO₂ methanation.

^aSpecific activity (based on CO₂ conversion) normalised per surface Rh atom.

References

[1] J. He, I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi, N. Toshima, Facile fabrication of Ag–Pd bimetallic nanoparticles in ultrathin TiO₂-gel films: nanoparticle morphology and catalytic activity, J. Am. Chem. Soc., 125 (2003) 11034-11040.

[2] X. Yu, J. He, D. Wang, Y. Hu, H. Tian, Z. He, Facile controlled synthesis of Pt/MnO₂ nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde, J. Phys. Chem. C, 116 (2012) 851-860.

[3] R. Thalinger, T. Götsch, C. Zhuo, W. Hetaba, W. Wallisch, M. Stöger-Pollach, D. Schmidmair, B. Klötzer, S. Penner, Rhodium-catalyzed methanation and methane steam reforming reactions on rhodium-perovskite systems: metal-support interaction, ChemCatChem, 8 (2016) 2057-2067.

[4] H. Arandiyan, K. Kani, Y. Wang, B. Jiang, J. Kim, M. Yoshino, M. Rezaei, A.E. Rowan, H. Dai, Y. Yamauchi, Highly selective reduction of carbon dioxide to methane on novel mesoporous Rh catalysts, ACS Appl. Mater. Interfaces, 10 (2018) 24963-24968.

[5] H. Arandiyan, Y. Wang, J. Scott, S. Mesgari, H. Dai, R. Amal, In situ exsolution of bimetallic Rh-Ni nano-alloys: highly efficient catalyst for CO₂ methanation, ACS Appl. Mater. Interfaces, 10 (2018) 16352-16357.