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Layer-resolved absorption of light in arbitrarily anisotropic heterostructures
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We present a generalized formalism to describe the optical energy flow and spatially resolved absorption
in arbitrarily anisotropic layered structures. The algorithm is capable of treating any number of layers of
arbitrarily anisotropic, birefringent, and absorbing media and is implemented in an open-access computer
program. We derive explicit expressions for the transmitted and absorbed power at any point in the multilayer
structure, using the electric field distribution from a 4 × 4 transfer matrix formalism. As a test ground, we
study three nanophotonic device structures featuring unique layer-resolved absorption characteristics, making
use of (i) in-plane hyperbolic phonon polaritons, (ii) layer-selective, cavity-enhanced exciton absorption in
transition-metal dichalcogenide monolayers, and (iii) intersubband-cavity polaritons in quantum wells. Covering
such a broad spectral range from the far infrared to the visible, the case studies demonstrate the generality and
wide applicability of our approach.
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I. INTRODUCTION

The absorption of light in thin layers of strongly
anisotropic materials has received enormous attention since
the dawn of two-dimensional (2D) materials and their het-
erostructures [1]. Tremendous progress has been reported
using 2D materials for numerous nanophotonic applications
such as hybrid graphene-based photodetectors [2,3], opto-
electronic [4,5] and photovoltaic [6,7] devices employing
transition-metal dichalcogenide (TMDC) monolayers, en-
hanced light-matter interaction using photonic integration
with optical cavities [8,9], approaches toward TMDC-based
nanolasers [10,11], hyperlensing [12,13] based on hyperbolic
polaritons [14], biosensing [15], and thermoelectric applica-
tions using black phosphorus (BP) monolayers [16,17]. In
light of these thriving developments and the great potential
entailed in nanophotonic technology, a robust and consistent
theoretical framework for the description of light-matter in-
teraction in layered heterostructures of anisotropic materials
is of central importance.

In order to understand, analyze, and predict the optical re-
sponse of multilayer structures, the transfer matrix formalism
has proven to be of great utility [18–20]. In isotropic layered
media, a 2 × 2 transfer matrix fully describes any light-matter
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interaction, and with knowledge of the local electric and
magnetic fields, the optical power flow can be described by the
Pointing vector S [21,22]. However, what already proves intri-
cate in isotropic multilayers becomes even more cumbersome
when the materials are uniaxial or even biaxial, requiring a
4 × 4 transfer matrix formalism [23–25], as is the case for
many state-of-the-art nanophotonic materials like hexagonal
boron nitride (hBN) [26], molybdenum trioxide (MoO3) [27],
or BP [28]. In consequence, to the best of our knowledge,
previous approaches aiming at the analytical computation of
light absorption in anisotropic multilayers are restricted to
special cases [29–32], whereas a fully generalized formalism
applicable to any number of layers of media with arbitrary
permittivity has not been proposed so far.

In this work, we derive explicit expressions for the
layer-resolved transmittance and absorption in stratified het-
erostructures of arbitrarily anisotropic, birefringent, and ab-
sorbing media, using the electric field distribution provided
by our previous transfer matrix formalism [25,33]. Our algo-
rithm is numerically stable, yields continuous solutions, and
is implemented in an open-access computer program [34,35],
enabling a robust and consistent framework that is capable of
treating light of any polarization impinging at any incident
angle onto any number of arbitrarily anisotropic, birefringent,
and absorbing layers. To demonstrate the capabilities of our
algorithm, we present and discuss simulation results for three
nanophotonic device structures, featuring several phenomena
such as azimuth-dependent hyperbolic phonon polaritons in
a MoO3 / aluminum nitride (AlN) / silicon carbide (SiC)
heterostructure, layer-selective exciton absorption of molyb-
denum disulfide (MoS2) monolayers in a Fabry-Pérot cavity,
and strong light-matter coupling between a cavity mode and
an epsilon-near-zero (ENZ) mode in a doped gallium nitride
(GaN) multi-quantum-well system. Section II summarizes the
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transfer matrix framework that is used to calculate the electric
field distribution and the momenta of the eigenmodes in an
anisotropic multilayer system. Based on this theory, Sec. III
introduces the calculation of the layer-resolved transmittance
and absorption. In Sec. IV, the simulation results are pre-
sented.

II. TRANFER MATRIX FRAMEWORK

The 4 × 4 transfer matrix formalism comprising the cal-
culation and sorting of the eigenmodes and the treatment
of singularities (Sec. II A), the calculation of reflection and
transmission coefficients (Sec. II B), and of the electric fields
(Sec. II C) is based on our previous work [25], and therefore is
here only briefly summarized in order to provide the necessary
framework for the calculation of the layer-resolved absorption
(Sec. III).

A. Matrix formalism

The incident medium is taken to be nonabsorptive with
isotropic (relative) permittivity εinc, while all other media can
feature absorption and fully anisotropic (relative) permittivity
tensors ε̄. Each permittivity tensor ε̄i of medium i with princi-
ple relative permittivities in the crystal frame εx, εy, and εz can
be rotated into the laboratory frame using a three-dimensional
coordinate rotation matrix [24] (Eq. (2) in Ref. [25]). In the
following, media with a diagonal permittivity tensor in the
laboratory frame are referred to as nonbirefringent, while
media with a permittivity tensor that features nonzero off-
diagonal elements is called birefringent. Furthermore, all me-
dia are assumed to have an isotropic magnetic permeability
μ.

The coordinate system in the laboratory frame is defined
such that the multilayer interfaces are parallel to the x-y
plane, while the z direction points from the incident medium
toward the substrate and has its origin at the first interface
between incident medium and layer i = 1. The layers are
indexed from i = 1 to i = N , and the thickness of each layer
is di. Furthermore, i = 0 refers to the incident medium and
i = N + 1 to the substrate. The plane of incidence is the x-z
plane, yielding the following wave vector �ki in layer i:

�ki = ω

c
(ξ, 0, qi ), (1)

where ω is the circular frequency of the incident light, c is the
speed of light in vacuum, ξ = √

εinc sin(θ ) is the in-plane x
component of the wave vector which is conserved throughout
the entire multilayer system, θ is the incident angle, and qi is
the dimensionless z component of the wave vector in layer i.

In any medium, the propagation of an electromagnetic
wave is described by exactly four eigenmodes j = 1, 2, 3, 4
with different z components qi j of the wave vector. These four
qi j can be obtained for each medium i individually by solving
the eigenvalue problem of a characteristic matrix � (Eq. (11)
in Ref. [25]), as has been derived originally by Berreman [23].
However, for media with highly dispersive permittivities, the
four obtained eigenvalues qi j and their related eigenmodes
can switch their order as a function of frequency, and thus
have to be identified in an unambiguous manner. Following
Li et al. [36], the modes are separated into forward- and

backward-propagating waves according to the sign of qi j (Eq.
(12) in Ref. [25]). We assign the forward-propagating (trans-
mitted) waves to be described by qi1 and qi2, and the backward
propagating (reflected) waves by qi3 and qi4. Furthermore,
each pair is sorted by the polarization of the corresponding
mode, utilizing the electric fields given by the eigenvectors
�i j (Eq. (13) in Ref. [25]). In nonbirefringent media, the
two modes are separated into p-polarized (qi1 and qi3) and
s-polarized (qi2 and qi4) waves by analyzing the x component
of their electric fields. For birefringent media, on the other
hand, the sorting is realized by analyzing the x component
of the Poynting vector �Si j = �Ei j × �Hi j , and the modes are
separated into ordinary (qi1 and qi3) and extraordinary (qi2 and
qi4) waves [25].

In the case of nonbirefringent media, the four solutions qi j

become degenerate, leading to singularities in the formalisms
of previous works [23,24,37]. To resolve this problem, we
follow the solution presented by Xu et al. [38]. Using the
appropriately sorted qi j , obtained as described above, the
eigenvectors �γi j of the four eigenmodes in each layer i are

�γi j =
⎛
⎝γi j1

γi j2

γi j3

⎞
⎠, (2)

with the values of γi jk given by Xu et al. [38] (Eq. (20) in
Ref. [25]), and k = 1, 2, 3 being the x, y, and z components of
�γi j . Furthermore, �γi j has to be normalized:

�̂γi j = �γi j

|�γi j | . (3)

We note that this normalization is essential to ensure a cor-
rect calculation of the cross-polarization components of the
transfer matrix. The normalized electric field eigenvectors �̂γi j ,
being free from singularities, replace the eigenvectors �i j for
all further calculations in the formalism.

At each interface, the boundary conditions for electric
and magnetic fields allow to connect the fields of the two
adjacent layers i − 1 and i. Formulated for all four modes
simultaneously, the boundary conditions are

Ai−1 �Ei−1 = Ai �Ei, (4)

where Ai is a 4 × 4 matrix calculated from the eigenvectors
γi jk [38] (Eq. (22) in Ref. [25]), and �Ei is a dimensionless four-
component electric field vector containing the amplitudes of
the resulting electric fields of all four modes. In the following,
we refer to �Ei as the amplitude vector, and its components are
sorted as follows:

�E ≡

⎛
⎜⎜⎝

E p/o
⇒

Es/e
⇒

E p/o
⇐

Es/e
⇐

⎞
⎟⎟⎠, (5)

where ⇒ (⇐) stands for the forward-propagating, transmitted
(backward-propagating, reflected) modes, and p, s refer to the
p- and s-polarized modes in nonbirefringent media, while o, e
indicate the ordinary and extraordinary modes in birefringent
media. By multiplying Ai−1

−1 on both sides of Eq. (4), we
find the implicit definition of the interface matrix Li, which
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projects the amplitude vector in medium i onto the amplitude
vector in medium i − 1:

�Ei−1 = Ai−1
−1Ai �Ei ≡ Li �Ei. (6)

For the transition between two birefringent or between two
nonbirefringent media, the projection of a wave of one par-
ticular polarization in layer i only yields a finite amplitude in
layer i − 1 of the mode of same polarization, i.e., s/e ↔ s/e
and p/o ↔ p/o. For the transition between a birefringent and
a nonbirefringent medium, on the other hand, the interface
matrix Li projects a mode of one particular polarization in
layer i onto both polarization states in layer i − 1. This cross-
polarized projection occurs because in birefringent media,
the in-plane directions of the ordinary and extraordinary
eigenmodes are rotated ( �= nπ , n ∈ N0) with respect to the
directions of the p- and s-polarized eigenmodes in the non-
birefringent medium.

The propagation of all four eigenmodes through layer i is
described by the propagation matrix Pi [24]:

Pi =

⎛
⎜⎜⎝

e−i ω
c qi1di 0 0 0
0 e−i ω

c qi2di 0 0
0 0 e−i ω

c qi3di 0
0 0 0 e−i ω

c qi4di

⎞
⎟⎟⎠, (7)

where the rotation of polarization in birefringent media arises
due to a phase difference that is accumulated during propa-
gation through the medium, because of different propagation
speeds of the ordinary and extraordinary modes (qi1 �= qi2 and
qi3 �= qi4).

The transfer matrix Ti of a single layer i is defined as

Ti = AiPiAi
−1, (8)

and the full transfer matrix � of all N layers is

� = A0
−1

(
N∏

i=1

Ti

)
AN+1, (9)

where A0
−1 (AN+1) ensures the correct mode projection be-

tween the multilayer system and the incident medium (sub-
strate).

B. Reflection and transmission coefficients

The full transfer matrix � projects the amplitude vector in
the substrate �E+

N+1 onto the amplitude vector in the incident
medium �E−

0 :

�E−
0 = � �E+

N+1, (10)

where �E−
i−1 and �E+

i denote the fields on both sides of the
interface between layer i − 1 and i, respectively. Following
the equations presented by Yeh [24], the transmission (t) and
reflection (r) coefficients for incident p- or s-polarization can
be calculated in terms of the matrix elements of � as follows:

rpp = 	31	22 − 	32	21

	11	22 − 	12	21
, tp(p/o) = 	22

	11	22 − 	12	21
, (11)

rss = 	11	42 − 	41	12

	11	22 − 	12	21
, ts(s/e) = 	11

	11	22 − 	12	21
, (12)

rps = 	41	22 − 	42	21

	11	22 − 	12	21
, tp(s/e) = −	21

	11	22 − 	12	21
, (13)

rsp = 	11	32 − 	31	12

	11	22 − 	12	21
, ts(p/o) = −	12

	11	22 − 	12	21
, (14)

where the subscripts refer to the incoming and outgoing
polarization states, respectively. The transmission coefficients
describe the transmitted electric field amplitude into p- and
s-polarized states in the case of a nonbirefringent substrate
and into the ordinary and extraordinary eigenstates in the case
of a birefringent substrate. We note that the indices of � differ
from the equations reported by Yeh [24] in order to account
for a different order of the eigenmodes in the amplitude vector
[Eq. (5)].

C. Electric field distribution

Employing the interface and propagation matrices Li and
Pi, respectively, an amplitude vector can be projected to any
z point in the multilayer system (please note the published
erratum that corrects the calculation of the electric field distri-
bution in our original work [33]). However, due to the rotation
of polarization in birefringent media and thus the mixing of
polarization states, in general, the cases of incident p and s
polarization have to be treated separately. As a starting point,
the transmission coefficients can be utilized to formulate the
amplitude vector �E+

N+1 for either p- or s-polarized incident
light in the substrate at the interface with layer N as follows:

( �E+
N+1)p in =

⎛
⎜⎜⎝

E p/o
⇒

Es/e
⇒

E p/o
⇐

Es/e
⇐

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

tp(p/o)

tp(s/e)

0
0

⎞
⎟⎟⎠,

( �E+
N+1)s in =

⎛
⎜⎜⎝

E p/o
⇒

Es/e
⇒

E p/o
⇐

Es/e
⇐

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ts(p/o)

ts(s/e)

0
0

⎞
⎟⎟⎠,

(15)

where the reflected (⇐) components are set to zero, since
no light source is assumed to be on the substrate side of the
multilayer system. Furthermore, in order to obtain the electric
field amplitudes as a function of z, the propagation through
layer i is calculated by means of the propagation matrix Pi:

�Ei(z) = Pi(z) �E−
i

=

⎛
⎜⎜⎝

e−i ω
c qi1z 0 0 0
0 e−i ω

c qi2z 0 0
0 0 e−i ω

c qi3z 0
0 0 0 e−i ω

c qi4z

⎞
⎟⎟⎠�E−

i ,
(16)

with 0 < z < di being the relative z position in layer i. Starting
from �E+

N+1, the interface matrices Li and propagation matrices
Pi subsequently propagate the amplitude vector toward the
incident medium. In the reverse direction, the inverse prop-
agation matrix PN+1

−1 allows us to calculate the �E fields in
the substrate. As a result, the four mode amplitudes E p/o

⇒ , Es/e
⇒ ,

E p/o
⇐ , and Es/e

⇐ are obtained as a function of z within each layer.
In order to obtain the three components Ex, Ey, and Ez

of the electric field for each of the four modes j, the

165425-3



PASSLER, JEANNIN, AND PAARMANN PHYSICAL REVIEW B 101, 165425 (2020)

four mode amplitudes have to be multiplied with their respec-
tive eigenmode vector �̂γi j [Eq. (3)]. This yields for the electric
fields �E of the four modes for each layer i, as a function of z,
and for either p- or s-polarized incident light:

( �E p/o
⇒ )p/s in = (E p/o

⇒ )p/s in

⎛
⎝γ̂i11

γ̂i12

γ̂i13

⎞
⎠, j = 1,

( �E s/e
⇒ )p/s in = (Es/e

⇒ )p/s in

⎛
⎝γ̂i21

γ̂i22

γ̂i23

⎞
⎠, j = 2,

( �E p/o
⇐ )p/s in = (E p/o

⇐ )p/s in

⎛
⎝γ̂i31

γ̂i32

γ̂i33

⎞
⎠, j = 3,

( �E s/e
⇐ )p/s in = (Es/e

⇐ )p/s in

⎛
⎝γ̂i41

γ̂i42

γ̂i43

⎞
⎠, j = 4, (17)

where we have omitted the index i and the z dependence for
the sake of readability. The full electric field �Ei(z) for either
p- or s-polarized incident light in layer i at point z is given by
the sum of all four electric field vectors:

�Ei(z) = �E p/o
⇒,i(z) + �E s/e

⇒,i(z) + �E p/o
⇐,i(z) + �E s/e

⇐,i(z). (18)

The in-plane components of the sum, Ex and Ey, are continu-
ous throughout the entire multilayer structure, as it is required
by Maxwell’s boundary conditions.

III. LAYER-RESOLVED TRANSMITTANCE
AND ABSORPTION

The total reflectance R of the multilayer system for a
given ingoing and outgoing polarization a and b, respectively,
can be readily calculated from the corresponding reflection
coefficient [Eqs. (11)–(14)]:

Rab = |rab|2, a, b = p, s. (19)

The transmittance T , which is the transmitted power into the
substrate, on the other hand, in general is not given by the
electric field intensity T �= |t |2 (except for the special case if
the substrate is vacuum, ε = 1). Instead, T can be calculated
from the time-averaged Poynting vector �S [39–41], which
describes the direction and magnitude of the energy flux of
an electromagnetic wave at any point z in the structure:

�Si(z) = 1

2
Re[ �Ei(z) × �H∗

i (z)]. (20)

The full electric field �E (for incident polarization a) as a
function of z in each layer i was calculated in the previous
section [Eq. (18)], and the full magnetic field �H is obtained as
follows using Maxwell’s equations:

�Hi(z) = 1

ωμi

[�ki1 × �E p/o
⇒,i(z) + �ki2 × �E s/e

⇒,i(z)

+ �ki3 × �E p/o
⇐,i(z) + �ki4 × �E s/e

⇐,i(z)
]
, (21)

where �ki j are the wave vectors in layer i of the four modes j;
see Eq. (1). Because �E and �H are known in each layer i and as

a function of z from the transfer matrix formalism, the Poynt-
ing vector can be evaluated likewise, yielding �Si(z), which
will be used in the following to calculate the transmittance
and absorption at any point z in the multilayer system.

It is important to note that while �E and �H can be calculated
for each of the four modes j individually, this mode separation
in general—specifically, in the case of birefringent media—is
not possible for the Poynting vector �S . In other words, in
birefringent media, the sum of the Poynting vectors of the four
modes is not equal to the Poynting vector calculated from the
total fields �E [Eq. (18)] and �H [Eq. (21)]. The difference arises
because in birefringent media, �E �⊥ �H. Therefore, the cross
products �E × �H between different modes j are no longer zero.
For the correct calculation of the Poynting vector in birefrin-
gent media, it is thus necessary to calculate the cross product
of the total fields �E and �H, as shown in Eq. (20). Interestingly,
this means that the energy flux in birefringent media cannot
be split up into the ordinary and extraordinary eigenmodes
but has to be considered as a single quantity. In the following,
we therefore discuss the transmittance and absorption for s- or
p-polarized incident light without differentiating between the
eigenmodes anymore.

An exception is the incident medium, which is set to be
isotropic. Here, the Poynting vector can be calculated for each
mode individually, and for the purpose of normalizing the
transmitted power, we calculate the Poynting vector of the
incident light �Sinc (in layer i = 0 at position z = 0) for either
p or s polarization as follows:

�S p
inc = 1

2 Re
[ �E p

⇒,0(0) × (�k01 × �E p
⇒,0(0)

)∗]
,

�Ss
inc = 1

2 Re
[ �E s

⇒,0(0) × (�k02 × �E s
⇒,0(0)

)∗]
. (22)

In a stratified multilayer system, the transmitted energy is
given by the z component of the Poynting vector. Thus, we
note that alternatively to Eq. (19), the reflectance R can be
calculated from the Poynting vector:

Rab = −Sb
refl,z

Sa
inc,z

, (23)

where the minus sign accounts for the negative z direction of
the reflected light. Sb

refl,z is the z component of the Poynting
vector of the reflected light of polarization b = p, s (in layer
i = 0 at position z = 0) given by

�S p
refl = 1

2 Re
[ �E p

⇐,0(0) × (�k03 × �E p
⇐,0(0)

)∗]
,

�Ss
refl = 1

2 Re
[ �E s

⇐,0(0) × (�k04 × �E s
⇐,0(0)

)∗]
. (24)

As discussed above, for anisotropic media, a separation of the
energy flow into the different eigenmodes of polarization b is
not generally possible. Therefore, all following equations cal-
culate the total transmittance or absorption for the respective
incident polarization a.

The transmittance T into the substrate i = N + 1 at the
interface with layer N for incident light of polarization a is
given by

T a = Sa
N+1,z(D)

Sa
inc,z

, (25)
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FIG. 1. Layer-resolved absorption calculations of two simple test structures. (a) Sketch of the TMDC heterostructure comprising
monolayers of WSe2, MoS2, and WS2 [42] separated by hBN monolayers on a 140-nm-thick SiO2 film on a Si substrate. (b) Reflectance
(black line) and transmittance (blue line) spectra of the system at visible wavelengths and at an incident angle of 60◦ for s-polarized incident
light. (c) Layer-resolved absorption spectra of the TMDC monolayers (colored lines), revealing their respective contribution to the overall
absorption spectrum (gray line). (d) Sketch of the polar dielectric heterostructure comprising 100-nm-thin GaN, AlN, and SiC films on a Si
substrate. (e) Reflectance and transmittance spectra and (f) layer-resolved absorption spectra of the second system, enabling identification of
the absorbing layer for each of the six absorption lines.

where D = ∑N
i=1 di is the thickness of the multilayer system.

The full z dependence of the transmittance can be evaluated
by using the z component of the Poynting vector Si,z(z) at a
certain z position in layer i:

T a
i (z) = Sa

i,z(z)

Sa
inc,z

. (26)

With this, the absorption A of the entire multilayer system,
that is, up to the last interface between layer N and the
substrate, is given by

Aa = 1 − Ra − T a, (27)

and the z-resolved absorption Ai(z) in each layer i is

Aa
i (z) = 1 − Ra − T a

i (z), (28)

where Ra = Rap + Ras is the total reflectance. Note that
Eq. (28) describes the total absorption starting from z = 0 at
the first interface up to the specified position z in layer i. The
layer-i-resolved absorption, on the other hand, is given by

Aa
i = T a

i (d1...i−1) − T a
i (d1...i−1 + di )

= Aa
i (d1...i−1 + di ) − Aa

i (d1...i−1),
(29)

where d1...i−1 = ∑i−1
i=1 di is the thickness of all layers through

which the incident light has propagated before reaching the
layer i.

Before we study three nanophotonic device structures in
the following section, we calculate the layer-resolved absorp-
tion for two simple test structures in Fig. 1. The first is a typ-
ical TMDC heterostructure, comprising monolayers of tung-
sten diselenide (WSe2), MoS2, and tungsten disulfide (WS2)
sandwiched between hBN monolayers [sketched in Fig. 1(a)],
where each TMDC monolayer features individual exciton ab-
sorption lines. In Fig. 1(b), the reflection and transmittance of

the entire structure is plotted, and Fig. 1(c) shows the absorp-
tion spectra of each TMDC monolayer. The total absorption
[gray line in Fig. 1(c)] obtained from the reflectance and trans-
mittance spectra [Eq. (27)] exhibits three indistinguishable
absorption features, whereas the layer-resolved absorption
calculations unravel the absorption spectrum, allowing us to
identify the contribution of each TMDC monolayer.

In Figs. 1(d)–1(f), we show the absorption in a polar dielec-
tric heterostructure of SiC, AlN, and GaN thin films on a Si
substrate probed at infrared (IR) frequencies. Polar dielectric
crystals feature an IR-active transverse optical (TO) phonon
mode, where light is predominantly absorbed, whereas the
longitudinal optical (LO) phonon mode is not IR active and
thus featureless in a bulk crystal. Thin films, on the other
hand, support the so-called Berreman mode in proximity to
the LO frequency, leading to a strong absorption feature
for p-polarization at oblique incidence [43–46]. Thus, the
reflectance and transmittance spectra [Fig. 1(e)] of the polar
dielectric heterostructure are of complicated shape, exhibiting
six different features arising from the three different polar
crystal thin films. The layer-resolved absorption calculations
split these features into three spectra with two absorption
peaks each [Fig. 1(f)], allowing us to identify the respective
polar crystal thin film that leads to the absorption at its
respective TO and LO frequencies.

IV. SIMULATIONS OF NANOPHOTONIC DEVICES

The transfer matrix formalism and the calculation of the
layer-resolved absorption and transmittance presented in the
previous section can be applied for any wavelength and any
number of layers, consisting of birefringent or nonbirefrin-
gent media described by an arbitrary permittivity tensor ε̄i.
As case studies, in this section we describe three selected
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nanophotonic device structures. The first example discusses
the hyperbolic phonon polaritons arising in a MoO3/AlN/SiC
system excited evanescently at far-IR wavelengths, highlight-
ing the potential of the formalism for nanophotonic studies in
stratified media. The second example describes the free-space
response in the visible of a van der Waals heterostructure of
monolayers of MoS2 embedded in a hBN matrix, featuring
layer-selective absorption of the MoS2 excitons. Finally, the
third example calculates the mid-IR absorption of strongly
coupled modes formed from intersuband plasmons in multi-
quantum wells embedded in an optical cavity.

A. Hyperbolic phonon polaritons in MoO3/AlN/SiC

Polar crystals such as MoO3, AlN, and SiC support surface
phonon polaritons (SPhP) at frequencies inside their rest-
strahlen region between the TO and LO phonon frequencies
[48]. On smooth surfaces, SPhPs can be excited via prism cou-
pling in the Otto geometry [49,50] as illustrated in Fig. 2(a),
where the air gap width dgap governs the excitation efficiency
and the incident angle θ defines the in-plane momentum of
the launched SPhP [51]. The system we investigate here is
a multilayer heterostructure comprising an MoO3 and AlN
film on a SiC substrate. Employing the presented transfer
matrix formalism, the layer-resolved absorption Ai of such
a structure can be calculated as a function of incident angle

θ , incident frequency ω, layer thicknesses di, and azimuthal
angle 
 of the sample.

The absorption in the MoO3, AlN, and SiC layers as a
function of ω and 
 and for fixed θ and di is shown in
Figs. 2(d)–2(f). The reflectance of the entire system is plotted
in Fig. 2(c). As required by energy conservation, the sum
of the absorbed power in the three polar crystals equals the
attenuated power visible as absorption dips in the reflectance.
However, while the reflectance only yields the total absorp-
tion, the layer-resolved calculations allow us to identify the
exact position of a power drain in a multilayer system.

In particular, the MoO3/AlN/SiC heterostructure features
several sharp absorption lines at 660, 800, 920, and 980 cm−1

that are mostly independent of 
, and one prominent absorp-
tion line that strongly varies with 
, indicating that the latter
depends on in-plane anisotropy (εx �= εy) while the former do
not. In the multilayer sample, only the MoO3 layer exhibits
in-plane anisotropy, while AlN and SiC are c-cut uniaxial
crystals [principle relative permittivities εx, εy, and εz are
shown in Fig. 2(b)]. Indeed, the 
-dependent feature is mostly
absorbed in the MoO3 layer. This feature is the hyperbolic
phonon polariton (hPhP) supported in the MoO3 thin film
arising in the in-plane reststrahlen bands of MoO3. Its tun-
ability in frequency arises from the large in-plane anisotropy
of MoO3, which leads to a 
-dependent effective permittivity
sensed by the hPhP upon azimuthal rotation.
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Notably, below the SiC TO frequencies (≈800 cm−1), a
significant part of the hPhP leaks into the SiC substrate,
while above ωSiC

TO the mode is mostly confined to the MoO3

layer. The high confinement above ωSiC
TO occurs because of the

negative permittivity in the SiC reststrahlen band, while below
ωSiC

TO , the mode can penetrate the substrate. Interestingly, this
mode penetration happens across the AlN layer, where only
a small part of the mode is absorbed. Since AlN features
its reststrahlen bands across the entire frequency range of
the hPhP supported by the MoO3, and thus evanescently
attenuates all modes, the hPhP appears to tunnel through the
AlN layer to be absorbed by the SiC substrate.

The multilayer system presented here only scratches the
surface of various possible material configurations and com-
positions that can potentially be employed for tailoring sur-
face and interface polariton resonances [20,52–57]. In par-
ticular, the emerging field of volume-confined hyperbolic
polaritons [14,20,58,59], enabled by the anisotropic permit-
tivity of the supporting media, holds great potential for future
nanophotonic applications, such as subdiffraction imaging
and hyperlensing [12,13]. Providing the full layer-resolved
absorption, our algorithm paves the way to predict and study
hyperbolic polariton modes in any anisotropic stratified het-
erostructure.

B. Layer-selective absorption of MoS2 excitons
in a Fabry-Pérot cavity

TMDC monolayers such as MoS2 feature strong exciton
resonances at visible frequencies [42,47]. By inserting these
monolayers into van der Waals heterostructures forming a
Fabry-Pérot cavity, the light-matter interaction enabled by
the TMDC exciton can be strongly enhanced [60]. Here, we
embed two MoS2 monolayers into a dc = 1.9–2.4-μm-thick
hBN cavity with a SiO2 back-reflector on a Si substrate [61],
as sketched in Fig. 3(a). Employing the presented formalism,
the absorption Ai in the two MoS2 monolayers as a function
of photon energy and cavity thickness dc can be calculated.

In the photon energy range of 1.7–2.2 eV, MoS2 features
two excitons (A and B) at ≈1.9 and ≈2.1 eV. These excitons
are apparent as resonance peaks in the isotropic relative
permittivity plotted in Fig. 3(b) and resulting in peaks in an
absorption spectrum. However, the Fabry-Pérot cavity creates
a static modulation of the electric field enhancement with
peaks and nodes as a function of the z position, and thus the
resulting absorption in a MoS2 monolayer not only depends
on the photon energy, but also sensitively depends on the z
position of the MoS2 monolayer in the cavity. Taking advan-
tage of this field modulation, we place one MoS2 monolayer
(layer 4) at the center of the cavity where the cavity modes
alternate between node and peak with maximal amplitude, and
the other MoS2 monolayer (layer 2) in close proximity where
the cavity features a node when there is a peak in the center,
and vice versa.

The cavity modes yield the periodic modulation in pho-
ton energy and cavity thickness dc that can be seen in the
reflectance (transmittance) maps shown in Figs. 3(f) and 3(g)
[Figs. 3(l) and 3(m)], for incoming s- and p-polarized light,
respectively. The different modulation contrast for Rs and Rp

(T s and T p) arises from the large incident angle of θ = 70◦,

which was chosen to optimize the absorption As in the MoS2

monolayers for s-polarized incident light. For smaller incident
angles, the differences for s- and p-polarization decrease, but
with a reduction in the absorption As.

In Figs. 3(h) and 3(i) [Figs. 3(j) and 3(k)], the absorption
for s- and p-polarized incident light in the first MoS2 mono-
layer, As,p

2 (second MoS2 monolayer, As,p
4 ), is shown. Due to

the choice of the z positions of the two MoS2 monolayers,
each film is sensitive to only every second cavity mode, where
layer 2 (first MoS2 monolayer) absorbs those modes that are
not absorbed by layer 4 (second MoS2 monolayer). In addition
to the absorption modulation imposed by the cavity, the A
and B excitons of MoS2 yield two absorption features at
their respective energies, marked by dotted vertical lines in
Figs. 3(h)–3(k). For the optimized case of s-polarized incident
light, the MoS2 monolayers reach cavity-enhanced absorption
values of up to 20% at both exciton energies. At a cavity
thickness of dc = 2.15 μm for s polarization, layer 2 only
absorbs at the energy of exciton A, while in layer 4, absorption
only occurs at the energy of exciton B. This layer-selective
absorption is further illustrated in the absorption spectra (solid
lines) for a fixed cavity thickness of dc = 2.15 μm shown in
Figs. 3(d) and 3(e) for s- and p-polarized light, respectively.
For both polarizations, a high contrast between the two layers
at each exciton absorption line is achieved, yielding efficient
layer selectivity.

Finally, we compare these results obtained for an isotropic
permittivity model [42] with the same calculations performed
for an anisotropic model of MoS2 [47]. In Fig. 3(c), the
in-plane (εx,y) and out-of-plane (εz) permittivity values taken
from Funke et al. [47] are plotted. While εx,y are qualitatively
the same as the values from Jung et al. [42] [Fig. 3(b)],
εz differs strongly, taking the almost constant value of εz =
1 + 0 i. Even though the difference in εz is substantial, the
absorption spectra shown in Figs. 3(d) and 3(e) (dashed
lines) are qualitatively identical to the spectra calculated from
an isotropic permittivity model (solid lines). This confirms
that spectroscopic measurements of TMDC monolayers are
mostly insensitive to their out-of-plane permittivity [42], with
the exception of cases where εz features a zero crossing, the
so-called epsilon-near-zero frequency, giving rise to drastic
optical responses such as enhanced higher harmonic gener-
ation [45,62,63]. However, this is not the case for MoS2, and
therefore the spectra are almost identical.

In this example, the layer-resolved absorption calculations
from our algorithm provide the essential information for sim-
ulating the layer-selective exciton absorption and optimizing
the system parameters. In the thriving field of 2D nanopho-
tonics featuring TMDC van der Waals heterostructures, where
structures are optimized for maximal light harvesting [6,7],
optoelectronic devices [4,5], or nanolasers [10,11], such layer-
resolved absorption calculations promise to be of essential
importance. Because of the generality of the presented algo-
rithm, the light-matter interaction in any 2D heterostructure
can be readily investigated, highlighting the broad applicabil-
ity of our approach.

C. Strong coupling in a multi-quantum-well–cavity system

Doped semiconductor quantum wells (QWs) support tran-
sitions between consecutive quantum-confined electronic

165425-7



PASSLER, JEANNIN, AND PAARMANN PHYSICAL REVIEW B 101, 165425 (2020)

0

1

0
0.1
0.2

0
0.1
0.2

0

1

A B A B

d  = 2.15 μmc

s-
po
la
ri
za
tio
n

0
0.04

0
0.04

0

1

0

1

d  = 2.15 μmc

MoS2 MoS2
layer 2 layer 4

p-
po
la
ri
za
tio
n

A B

MoS2

10

20

30

0

10

20

0

Pe
rm

itt
iv

ity
 ε

1.7 1.8 1.9 2.0 2.1 2.2
Photon Energy (eV)

εz

εx,y

εx,y,z

A
bs

or
pt

io
n

1.7 1.8 1.9 2.0 2.1 2.2
Photon Energy (eV)

Re[ ]ε
Im[ ]ε

(b)

hBN

0.465 d

70°

MoS2

0.6 nm

SiO2

Si

0.035 d
0.5 d

140 nm
z

x

(a)

c c
c

1 5

(d)

(c) (e)

1.7 1.8 1.9 2.0 2.1 2.2
Photon Energy (eV)

1.7 1.8 1.9 2.0 2.1 2.2 1.7 1.8 1.9 2.0 2.1 2.2 1.7 1.8 1.9 2.0 2.1 2.21.9

2.0

2.1

2.2

2.3

1.9

2.0

2.1

2.2

2.3

C
av

ity
 T

hi
ck

ne
ss

 d
  (

μm
)

c

Reflectance Absorption Transmittance
(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Funke et al.

Jung et al.

p-pol

s-pol

0
0.02
0.04
0.06
0.08

0

0.1

0.2

30

3 62 4

Jung et al.

Funke et al.

1st MoS2

(layer 2)

d  = 2.15 μmc

d  = 2.128 μmc

monolayer

2nd MoS2

(layer 4)
monolayer

FIG. 3. Cavity-enhanced exciton absorption in MoS2 monolayers. (a) Structure of the Fabry-Pérot cavity. A 140-nm-thin SiO2 film on
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all plotted as a function of the incident photon energy and the cavity thickness dc.

levels, called intraband or intersubband (ISB) transitions.
Contrary to interband transitions, ISB transitions do not only
depend on the band-gap properties of the semiconductor but
also on the electronic confinement inside the QWs, and thus
offer a great frequency tunability by changing the width and
the doping level inside the QW. They play a major role in
semiconductor optic devices operating in the IR where semi-
conducting materials with a suitable band gap are lacking, and
are the building block of quantum well IR photodetectors [64]
and quantum cascade lasers [65]. They also offer a practical
platform to study the optical properties of dense confined elec-
tron gases [66], which notably led to the demonstration of the
strong [67,68] and ultrastrong light-matter coupling regimes
[69,70]. It is remarkable that such fundamental electrody-

namical phenomena are directly observable on semiconductor
devices [71–73]. One peculiar aspect of these ISB transitions
is that they only couple to the component of the electric field
along the confinement direction of the QW structure. Hence,
the optical properties of a doped QW can be described by an
effective permittivity tensor with different in-plane (εx,y) and
out-of-plane (εz) values, which has been realized by several
permittivity models [74–77]. The description of light prop-
agation in stratified anisotropic media containing such QWs
requires a complex formalism, such as the transfer matrix
method the here-presented algorithm builds on Ref. [25].

We focus here on an existent experimental configuration
to further demonstrate the potential of our formalism for the
case of strong light-matter coupling between a cavity mode
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FIG. 4. Strong coupling between an ENZ mode in a MQW superlattice and a cavity mode. A 1-μm-thick GaN cavity is formed between an
Au mirror and a 500-nm-thick doped GaN slab on a GaN substrate (top sketch). The doped GaN slab acts as a low-index mirror. (a) Simulated
reflectance Rp of the cavity mode showing its dispersion relation as a function of the angle of incidence θ inside the GaN substrate. [(b), (c)]
Layer-resolved absorption Ap inside the doped GaN slab and in the Au mirror, respectively. (d) Calculated reflectance Rp of the 1-μm-thick
cavity partially filled with a doped GaN/AlGaN MQW superlattice (see bottom sketch), featuring an electronic excitation at ≈2030 cm−1

(white dotted line). The strong light-matter coupling between the cavity mode and QW resonance leads to an avoided crossing and the
emergence of two polariton branches. [(e)–(g)] Layer-resolved absorption Ap inside the doped GaN mirror, the superlattice, and the Au
mirror, respectively. (h) Real part of the permittivity of the isotropic layers forming the cavity. (i) Real part of the different components of the
permittivity tensor of the doped GaN QW and of the AlGaN barrier, showing the ENZ mode frequency of the QW at ≈2030 cm−1.

and a collective intersubband excitation in a multi-quantum
well (MQW) superlattice. The system is composed of a GaN
cavity formed by a 500-nm-thick, Si-doped GaN slab and a Au
mirror, as sketched at the top of Fig. 4. The doped GaN layer
is modeled using the Drude model and acts as a low-index
mirror. The two mirrors are separated by a 1-μm-thick GaN
spacer, forming an empty cavity. The system sustains a guided
transverse magnetic (TM) mode, where the electric field is
confined mostly between the two mirrors and its out-of-plane
component is maximal near the Au mirror. This guided mode
can be probed in a reflectance experiment, as discussed in
the following. In order to probe large internal angles of
incidence experimentally, the sample has to be prepared in a
prism shape, for example, by cleaving the incident GaN layer
facets. The calculated p-polarized reflectance Rp is shown
in Fig. 4(a), evidencing the dispersion relation of the cavity
mode with varying incidence angles inside the GaN substrate.
The layer-resolved absorption spectra as a function of the
angle of incidence for this system are reported in Figs. 4(b)
and 4(c) and reveal that absorption occurs mostly in the doped

GaN mirror. Notably, for an internal incidence angle of 48◦
at the guided mode frequency, all the light is dissipated in the
mirrors, leading to a minimum of zero reflectance in Fig. 4(a).

We now turn to the system’s response when the cavity is
partially filled with a MQW structure [Figs. 4(d)–4(g)]. The
superlattice is composed of 20 repetitions of a 3-nm-thick
GaN QW, Si-doped with a concentration of 2 × 1013 cm−2

and 21 lossless 10-nm-thick Al0.26Ga0.74N barriers. Since the
guided mode is a TM mode, it naturally provides a component
of the electric field along the z direction for nonzero angles of
incidence, which fulfills the ISB transition selection rule. In
order to maximize the coupling between the ISB transition
in the MQW and the cavity mode, the superlattice is placed
where the z component of the electric field is the largest,
that is just below the Au mirror, as shown at the bottom
of Fig. 4. The QW dielectric tensor is modeled using a
semiclassical approach [75]. We selected the QW dimension
and doping level in a way that it sustains a strong, collective
electronic excitation known as an intersubband plasmon [66].
The components of the real part of the dielectric permittivity
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tensor of all the layers are presented in Figs. 4(h) and 4(i).
Note that while the ISB transition in the quantum well has
a resonance frequency of ≈1600 cm−1, the Coulomb interac-
tion between the QW electrons results in an ENZ mode at
≈2030 cm−1, marked by the dotted line in Fig. 4(i). The ENZ
mode dominates the optical response of the QWs.

We show in Fig. 4(d) the calculated reflectance Rp of the
cavity containing the MQW. The white dotted line shows the
ENZ frequency. A clear anticrossing can be seen between
the cavity mode and the ENZ resonance, which is charac-
teristic of the strong light-matter coupling regime, resulting
in two polariton branches. The minimal separation between
the two branches amounts to a vacuum Rabi splitting 2�R =
200 cm−1. The layer-resolved absorption spectra as a function
of the angle of incidence are shown in Figs. 4(e)–4(g) for
the GaN mirror, the MQW superlattice, and the Au mirror,
respectively. When the cavity mode is far detuned from the
ENZ frequency, the absorption occurs mostly in the two
mirrors, and especially in the GaN mirror, as for the empty
cavity case. The situation changes dramatically when the
cavity mode is tuned near the ENZ frequency. The absorption
then mostly occurs in the MQW. It is, however, important to
note that the absorption is maximal at the frequencies of the
two polaritons and not at the ENZ frequency, as it would occur
in the case of a weak coupling between the cavity mode and
the QW resonance. For an internal incidence angle of 48◦, the
maximum absorption inside the MQW stack is now 0.5 at each
of the frequencies of the two polaritons.

The algorithm presented here thus allows us to directly
calculate the light absorption in the complex case of a doped
MQW superlattice strongly coupled to a cavity mode. In
addition to the known features, such as the avoided crossing
in the angle-dependent reflectance spectrum, we can directly
calculate the absorption inside the MQW active region, which
can be usefully linked to the detected photocurrent in the
perspective of using such structures in photodetector devices
[67,71,73].

V. DISCUSSION

We have presented three nanophotonic devices based on
anisotropic multilayer structures made from metals, polar
dielectrics, and TMDC monolayers, covering incident wave-
lengths from the far-IR up to the visible. Our formalism
allows us to calculate the transmittance and absorption in any
layer, giving unprecedented insight into the physics of light
propagation in anisotropic, and even birefringent, stratified
systems.

In recent years, the field of nanophotonics has intensely
investigated the optical response of two-dimensional (2D) het-
erostructures. A particularly thriving subject has been polari-
tonic excitations, which can be supported by a broad variety
of systems including slabs of metals, doped semiconductors,
polar dielectrics, 2D materials such as TMDC monolayers,
and their stratified heterostructures [17,54,78]. Key features of
polaritons for nanophotonic technologies are their high spatial
confinement and field enhancement, which are driven by the
particular design of the multilayer materials, stacking order,
and layer thicknesses. Potential applications of such systems
range from sensing [79,80] and solar cells [81], over optoelec-

tronic devices [3] and beam manipulation via metamaterials
[82], to waveguiding [56,83], and ultrafast optical components
[45,84]. However, due to the lack of a general formalism,
the optical response of these polaritonic multilayer systems is
often either approximated by effective, isotropic permittivity
models [85–87] or described by specifically derived formulas
[29–32]. Our generalized formalism allows for a precise,
layer-resolved study that includes any isotropic, anisotropic,
or even birefringent response of any number of layers, and
thus holds great potential for the prediction and analysis of
polariton modes in stratified heterostructures.

This is especially relevant for systems where one or more
materials feature anisotropic permittivity with spectral regions
of hyperbolicity where the principle real permittivities have
opposite signs, such as hBN or MoO3. Recently, these hyper-
bolic materials have attracted increasing interest [14,20,58,59]
due to the existence of hyperbolic polaritons, featuring novel
properties for nanophotonic applications such as subdiffrac-
tion imaging and hyperlensing [12,13]. Because of the strong
anisotropy of these systems, an effective permittivity approach
is not purposeful. Here, our formalism provides the essential
theoretical framework that is necessary to model, predict, and
analyze the optical response of such hyperbolic heterostruc-
tures, as we have discussed using a MoO3/AlN/SiC system
as an example (Fig. 2). Providing the full layer-resolved
information about the field distribution and power flow of
the excited polaritons, our method allows us to readily and
concisely model and study hyperbolic polariton modes in any
anisotropic stratified heterostructure.

Furthermore, the layer-resolved absorption formalism pro-
vides a description for designing optoelectronic devices such
as detectors, for which the photoresponse is linked to the light
absorption solely in the active region of the device. In the case
of the MQW system, optimizing the overall light absorption
by minimizing both the reflectance and transmittance of the
system would not be sufficient to model the performances
of a photodetector in the strong light-matter coupling regime
[71,73]. Unfortunately, these are the only quantities that can
be probed in a reflectance experiment. Calculating the layer-
resolved absorption in the structure allows us to optimize
the cavity and MQW design, aiming at minimizing the light
absorption in the cavity mirrors while maximizing the ab-
sorption in the MQW. This is well shown in Figs. 4(e) and
4(f), where we can see that the light is preferably dissipated
in either the doped GaN mirror or the MQW superlattice
depending on the detuning between the cavity mode and the
QW resonance. This behavior cannot be deduced only from
the reflectance measurement simulated in Fig. 4(d). Fitting
experimental reflectance data using our formalism [25] would
allow us to retrieve the amount of light dissipated inside
the active region only from the experimentally observable
quantities and to estimate figures of merit such as the quantum
efficiency of the device. The present method thus provides
a convenient way to model and optimize complex, optically
anisotropic heterostructures for optoelectronic devices.

VI. CONCLUSION

In this work, we have derived explicit expressions for
the calculation of the layer-resolved transmittance and

165425-10
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absorption of light propagating in arbitrarily anisotropic,
birefringent, and absorbing multilayer media. The algorithm
relies on the electric field distribution computed from a 4 ×
4 transfer matrix formalism [25,33], yielding a robust and
consistent framework for light-matter interaction in stratified
systems of arbitrary permittivity, which is implemented in
an open-access computer program [34,35]. As case studies,
we applied the algorithm to simulations of three nanopho-
tonic device structures featuring hyperbolic phonon polari-
tons in a polar dielectric heterostructure, MoS2 excitons
in a Fabry-Pérot cavity, and ENZ resonances in a cavity-
coupled multi-quantum well, where we observed azimuth-
dependent hyperbolic polariton tunneling, layer-selective ex-

citon absorption, and strong coupling between ENZ and
cavity modes. Allowing for a detailed analysis of the layer-
resolved electric field distribution, transmittance, and ab-
sorption of light in any multilayer system, our algorithm
holds great potential for the prediction of nanophotonic
light-matter interactions in arbitrarily anisotropic stratified
heterostructures.
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