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1

We analyze the dynamics of a spin-5

subsystem coupled to a spin chain. We simulate numerically the full

quantum many-body system for various sets of parameters and initial states of the chain, and characterize the
divisibility of the subsystem dynamics, i.e., whether it is Markovian and can be described by a (time-dependent)
master equation. We identify regimes in which the subsystem admits such Markovian description, despite the
many-body setting, and provide insight about why the same is not possible in other regimes. Interestingly,
coupling the subsystem at the edge, instead of the center, of the chain gives rise to qualitatively distinct

behavior.
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I. INTRODUCTION

The subject of open quantum systems (OQS) focuses on
the description of quantum systems coupled to a (typically
much larger) environment. In general, solving the time evo-
lution of the total system is out of reach due to the macro-
scopic number of environmental degrees of freedom and the
exponentially large Hilbert space. Instead one tries to obtain
an effective reduced description which involves the degrees
of freedom of the OQS only. In this context, the distinction
between Markovian and non-Markovian dynamics is a central
theme [1-3]. Originally, the former denoted situations that
allowed for the derivation of a “Markovian” master equation
[4]. This is a specific differential equation generating the
dynamics of the OQS that has the property of being “mem-
oryless” (Markovian), in the sense that the evolution of the
0QS at a given time depends only on its state at that time.

The same OQS perspective can be applied to study the
evolution of a subsystem in a closed many-body quantum
system. For instance, although the full system is in a pure
state, the computation of local observables requires only to
know the state of a (small) subsystem, for which the rest
of the system would play the role of environment. Again,
solving the long-time evolution of the full system is in general
out of reach due to buildup of entanglement, such that it
might be desirable to find an effective reduced description for
the subsystem (OQS) only. However, the standard Markovian
master equation derivation is based on weak coupling and
a separation of timescales between open system and envi-
ronment [5], two conditions that are generally not fulfilled
in the quantum many-body setup. It is thus interesting to
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analyze whether there are cases in which the dynamics still
admits a reduced description in this setting and, in case such
a description exists, whether it is Markovian.

In recent years a variety of non-Markovianity measures
have been put forward that go beyond the original Marko-
vianity conditions mentioned above and attempt to quan-
tify deviations from Markovian dynamics from a quantum-
information-theoretical perspective [6-30]. Two of the most
widely used are the one introduced by Breuer, Laine, and Piilo
[7,31] (BLP measure), which detects the nonmonotonicity of
the trace distance between pairs of states evolving in time,
and the more stringent one introduced by Rivas, Huelga, and
Plenio [8] (RHP measure), which detects nondivisibility of
the quantum channel mapping initial OQS states to their time-
evolved states. These measures are not equivalent, since there
exist cases which are characterized as BLP-Markovian but
RHP-non-Markovian [2-4,12,32]. For cases with Markovian
dynamics according to RHP, a Markovian reduced description
in the above sense exists; i.e., the (time-dependent) equation
governing the reduced dynamics does not explicitly depend on
past system states and is called the “time-dependent Marko-
vian” master equation [8,33]. We quantify non-Markovianity
by its robustness, as originally introduced for “snapshots”
of quantum evolution in Ref. [6] (and here generalized to
continuous evolution), i.e., how much noise can be added to
the dynamics before RHP Markovianity is recovered, thus
providing a physical interpretation.

In this paper we explore the above questions in the partic-
ular case of a spin (the OQS) coupled to an XY spin chain,
which plays the role of environment. In particular, we identify
regimes that allow for a description via a time-dependent
Markovian master equation and provide insight into what
prevents such a description. We consider two scenarios in
open-boundary conditions—(i) spin coupled to the center;
(ii) spin coupled to the first site—and we analyze different
initial states of the chain. In some particular cases (namely in
scenario (ii) [34], and for (i) in the thermodynamic limit [35]
when the chain is initially in the vacuum), an exact solution
is possible. In more general cases, we use tensor network
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methods [matrix product state (MPS) and matrix product
operator (MPO), as we are in 1D] to simulate the evolution
of the full system.

The initial state of the chain can be empty (i.e., in the
fermionic vacuum of the XY chain) or contain “excitations”
(if some of such modes are occupied). We find that while in
the first case, BLP and RHP Markovianity is equivalent, in
the second case, only the divisibility (RHP) measure detects
all the non-Markovianity appearing in regions of the param-
eter space. One possibility we explore to populate fermionic
modes in the initial environment state is using thermal states.
While low temperature induces additional non-Markovianity,
we find for scenario (i) that increasing the temperature grad-
ually removes the non-Markovianity until at high temperature
the dynamics is captured by a time-dependent Markovian
master equation. This applies even at the band edges where the
spectral density diverges, a scenario that is often associated
with strong non-Markovian behavior [36-39]. In contrast, in
scenario (ii) we find that any RHP non-Markovianity of the
vacuum case survives at all temperatures. We show that this
remarkable difference between the two cases can be antici-
pated from the different decay of the environment correlation
functions at high temperature in both cases.

The paper is structured as follows: We start in Sec. II
by introducing the non-Markovianity measures and the time-
dependent Markovian master equation. In Sec. III we present
the details of the model and the specific form the non-
Markovianity measure adopts in this model. We also discuss
the conditions that allow for the derivation of a standard
Markovian master equation. The section closes with a sum-
mary of our numerical methods. In Sec. IV we review the
analytically solvable case in which the spin is coupled to the
center of the chain initialized in the vacuum. In Sec. V we
introduce initial environmental excitations in this setup which
yields the main results of this paper. In Sec. VI we explore
the qualitatively different nature of the dynamics obtained by
coupling the spin to the first site in the chain and provide
insight into why the two scenarios differ so much with respect
to non-Markovianity. Finally, in Sec. VII we conclude and
summarize the main results.

II. QUANTIFYING NON-MARKOVIANITY

Over the past decade multiple inequivalent characteriza-
tions of non-Markovianity based on quantum-information
theory have been introduced [6-30]. In the next paragraphs
we review the measures that are relevant for the rest of our

paper.

A. Non-Markovianity robustness and time-dependent
Markovian master equation

We consider the set T of finite-dimensional, completely
positive (CP), trace-preserving, linear maps (quantum chan-
nels) 7 : My — M, from the space M, of d x d matrices
into itself. 7 is called divisible [33] if there exists a decom-
position 7 = 717, with 7; € T such that none of the 7; is a
unitary conjugation. 7 is called infinitesimally divisible if for
all € > 0 there exists a finite set of channels 7; € T such that

M ITi =1l < eand (i) T =[]; T

The time evolution of finite-dimensional quantum systems
is given by a one-parameter family of quantum channels,
known as a dynamical map, that maps the initial state of
the system, described by the density matrix p(0), to the
time-evolved state p(t) = T (t)[p(0)]. Denoting by T (f2, t;)
the map for the evolution from time #; to #,, we have, by
continuity, 7 (¢t + At) = T (t + At,t)T (¢) and thus

T+ At,t) =T+ AT @)~ . (1)

Iffor all € > O there is a finite A7 < € such that these maps are
CP for all ¢, T (¢) is infinitesimally divisible [7 (t + At,t) —
1 as Ar — 0]. Note that this condition is more restrictive than
mere infinitesimal divisibility of a snapshot of 7 (¢) at a given
time, since our decomposition needs to follow the dynamics
at all times. To be consistent with the recent literature we drop
the word “infinitesimal” and call the time evolution divisible
or (RHP [8]) Markovian if the above is true. Notice that for
T(t + At,t) to be defined unambiguously, T ()~ needs to
exist. Since 7 (¢t — 0) — 1, for ¢ small enough 7 (¢) will be
invertible. For later times, 7 (£) ™! may not exist, in which case
one lacks essential information as a consequence of being
blind to the environment part of the whole system. In that
case one can resort to pseudoinverse techniques [8,40]. For
the remainder of this paper At denotes a small (but finite) time
step.
We can represent the map by a matrix [33]

T(t)a s = tr(F] T (t)[Fs)), )

where {F,},—1.. 4 is an orthonormal basis in M,. We will
use the canonical basis {|7)(j|}; j=1,...s. In the rest of the paper
by T and dT we denote the matrix representations of 7 (¢) and
T(t + At,t), respectively, and omit their time dependence for
convenience. The density matrix can be written as a linear
combination of this basis with components (ij|p), where
(A, B) = tr(AB) is the Hilbert-Schmidt scalar product and
we identify |ij) <> |i)(j|. Given a map T on a d-dimensional
space, its Choi state [41,42] is

T" = d(T @ 1)[w],

where w is a maximally entangled state w = |w)(w|, |w) =
\/LE Zid=1 |ii) [6]. One has (ij|TT|kl) = (ik|T|jl). The map is
CPiff T" is positive semidefinite.

Divisibility is equivalent to p(¢) being a solution of a
time-dependent Lindblad (time-dependent Markovian) master
equation [8,33]:

dp .

— =L®)pl =ilp, H(1)]

dt

d*—1
+> m(r)(L,-(z)pL,T (t)—

i=1

LioL),
{,(r>2<t> p})’ )

where y; > 0 and L; are called rates and Lindblad operators
of the (time-dependent) Lindbladian £(¢), and H(t) = H(¢).
If the dynamics is described by a time-dependent Lindblad
master equation, the dynamical map 7 can be decomposed
into infinitesimal “pieces” dT = ¥, where L is the matrix
representation of L£(¢). Note that the corresponding Choi state
L' is Hermitian. We can now quantify nondivisibility of the
reduced dynamics by calculating how much log,, dT deviates
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from a valid Lindbladian. Following Ref. [6] this amounts
to checking whether (a) (log, dT)" is Hermitian and (b)
whether there exists a branch of the logarithm such that
] (logy, dT)'w, >0, where v, =1 — w is the projector
onto the orthogonal complement of the maximally entangled
state.

If dT is Hermiticity-preserving (a necessary condition for
it to be CP), its eigenvalues are either real or come in complex
conjugate pairs. The set of Hermitian logarithms of dT is
then parametrized by a set of integers m,, € Z, L,y = Ly +
2mi ZC m,. (P, — Ps), where Ly denotes the principal branch
and P, and P are projectors onto the eigenspaces associated
with a complex conjugate pair of eigenvalues A, and Az of dT.
We define Ay = o, Lo, and A, = 27iw, (P. — P)' 0. If
Lg and thus A( are Hermitian, the dynamics is Markovian iff
for any time there exists {m.} such that

Ag+ Y meA; > 0. (4)

If (4) is not satisfied during a given time step, adding
noise may remove the non-Markovianity. In [6] the non-
Markovianity is measured by its robustness, i.e., by the mini-
mum amount of isotropic noise p that achieves this:

/L:infI/L’}O:ElmeZC:AO+XC:mCAC+%]l 20}.
5)

L, — pnw, is then a valid Lindbladian. Note that if dT
has some real negative eigenvalue, L) is non-Hermitian and
log,dT cannot be made a valid Lindbladian by adding a
finite amount of noise. If dT is Hermiticity-preserving and
does not have real negative eigenvalues, we assign robust-
ness according to Eq. (5), otherwise u = oo. u > 0 at some
time implies that the evolution cannot be described with
a valid time-dependent Markovian master equation, which
is equivalent to nondivisibility. It is thus obvious that this
provides a necessary and sufficient criterion to decide about
Markovianity.

In practice we compute 7' at discrete times separated by
time steps Ar until a final time 75, = K Ar. We then compute
the minimum noise 1 required to make the nth time step
Markovian. In order to compute a non-Markovianity measure
for the whole evolution interval, we choose to average: & =
%Zle w™. We then use the normalized degree of non-
Markovianity [6]

N =1 —exp[r(l —d*)], (6)

where we have A € [0, 1] and the dynamics is Markovian
until time #5, iff A" = 0. We choose At sufficiently small such
that AV is converged with respect to the time step. Notice that
this non-Markovian measure depends on the final time #g,.
Note from Eq. (5) that « only depends on the most
negative eigenvalue of A)” + 3. m™MA™, where the m(" are
chosen in a way to minimize the magnitude of the most
negative eigenvalue. We can gain further insight into the
dynamics by looking at the full spectrum. We are interested

only in the nonzero eigenvalues )LE”) € R and corresponding
eigenvectors v € C* and define

GILPI = (v") (7)
R N ®)
(™) A

If yi(”), LE") exist, p((n + 1)At) can now be obtained by evolv-
ing p(nAt) for a time interval Ar with a differential equation
of the form of Eq. (3) with time-independent rates y, " and
operators Lf") [43]. In the limit At — O the time-dependent
equation can be recovered. This is a time-dependent Marko-
vian master equation if the rates are non-negative at all times.
If we denote the minimum rate and its corresponding operator
bY Ymin and Ly, respectively (omitting their time dependence
for convenience), we have

Vmin 2 O»

Verin < 0 ©)

0,
M =
{ _d]/min tr(L:nianin)v
and thus the measure is nonzero if any rate ever becomes neg-
ative. The rates contain the required robustness information
while providing additional insight into what kind of process is
responsible for making a given time step non-Markovian.

B. BLP measure

Another broadly used measure of non-Markovianity is the
BLP measure [7,31], which is based on the study of the time
behavior of the trace distance D between pairs of density
matrices evolving in time. For a pair p'? it is defined as
Dlp', p*] = 1 tr|p' — p?|. The idea is that since the trace
distance is contractive under CP maps, Markovian processes,
described by Markovian or time-dependent Markovian master
equations, cannot increase it during time evolution.

The rate of change of the trace distance is defined as
a(t, p"2(0)) = %D[pl(t), p%(t)]. The BLP measure is de-
fined as

NpLp = maxf o(t, p"*(0))dt. (10)
p"20) Jo>0

Notice that the definition involves a maximization over initial
pairs of states p2(0). A discretized version, in line with
our construction in the previous section, uses a summation
over time steps At, in which the trace distance has increased:
D(p'(t + A1), p%(t + At)] — D[p' (1), p*(t)] > 0. While the
BLP measure does not require knowledge of the dynamical
map, the maximization over initial states in general cannot be
performed exactly.

The trace distance allows for an immediate information-
theoretic interpretation in the sense that D[,ol, ,02] =1 if
the states are perfectly distinguishable while it is zero if
they are identical [44,45]. The BLP measure exploits this by
interpreting an increase of the trace distance as information
backflow from the environment into the system making the
states more distinguishable. Such a backflow is then identified
as non-Markovian as the time evolution of the states at that
time depends on information about the states that flowed
into the environment at previous times (“environment keeps
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memory”). We call the dynamics BLP-Markovian if such a
backflow never occurs, Ngrp = 0.

RHP (divisibility) implies BLP-Markovianity, but not the
other way round [2—-4,12,32]. In particular, the family of P-
divisible dynamics, for which 7 (¢ 4+ At, ) is positive, but not
necessarily CP, is BLP-Markovian [7,31].

III. SETUP, MODEL, AND MEASURE

As an open quantum system we consider a single spin-%
(S), coupled to a spin-chain environment (E) of length N
governed by a Hamiltonian of XY type:

N—1
He=Y

=1

|~

N
(0T +On00) + ) _hoy. (11
m=1

where o)/ (u € {x,y,z}) are Pauli operators acting on site
m and h is an external magnetic field in the z direction.
The system is coupled to the mgth spin of the chain via an
exchange interaction of strength €2,

Q
HSE = E(TXO';CLO —+ tyUr);lU)’ (12)
where t# are simply the Pauli operators acting on the spin.
Finally, the system Hamiltonian is

Hs = At"t7, 13)

where ¥ = 1(t* £ it?).

The environment is exactly solved in terms of diagonal
fermionic modes d; with energies E;, = 2J cos N”—L 4+ 2h (k =
1,...,N) [46]. In the continuum limit this gives an energy
band from 24 — 2J to 2h 4+ 2J with diverging density of states
at the edges. The field & acts like a chemical potential that
allows us to move the band up and down in energy; hence,
the detuning is defined as A, = A — 2h. We consider dif-
ferent initial states for the environment, corresponding either
to ground states at different magnetic fields or to thermal
equilibrium states.

A. Spin dynamics

Under the assumption of no initial system-environment
correlations, the dynamics of an OQS is given by the dynam-
ical map

T(O[p0)] = trg(e ™ [p(0) ® prle™), (14)

where p(0) and pg are the initial states of system and environ-
ment, respectively, and H is the total Hamiltonian. 7 (¢) can
be obtained using quantum process tomography [47], which
requires knowledge of p(¢) for a number of different initial
(pure) states p(0).

The total Hamiltonian H = Hg + Hg + Hgg conserves the
total spin along the z direction or, in terms of the fermion
operators of the chain, Nexe = ttt™ + Zk a’kT dy. In a slight
abuse of notation, we will refer to this conserved quantity as
the number of “excitations” in the full system. Furthermore,
we consider initial states of the environment which commute
with the total number of fermions. Thus, using Eq. (14), the

channel takes the following form,

a 0 0 c

|l 0o b 0 0
r= 0 0 b o (15)

l—-a 0 0 1-c¢

where a and ¢ are the excited-state populations at time ¢
for the open system initialized in the excited and ground
states, respectively, and b evolves the coherences: (e|p(?)|g) =
b{e|p(0)|g). We omit the time dependence of the channel el-
ements for notational convenience. Here we labeled the basis
elements i = e, g, corresponding to excited and ground states
of Hs. The block structure of T translates in a straightforward
way to dT.

Following the procedure explained in Sec. II and exploiting
the structure of d7T, we find the following. First, A, = 0,
which simplifies Egs. (4) and (5). Also, the eigenvectors v;
are independent of time and the reduced system dynamics
is described by the following time-dependent differential
equation:

d
£ iEsOp. T T+ (TP — p)

dt
+ n@)(tFpr — 3{z7TT, p}))
+ @) et = Hete, p), (16)
with 4
Ers(t) = Elm(logw b), (17
= L% jog 2C (18)
YD = 4ar 080 T
) = ac d ) c (19)
vl = a—c dt Ogloa’
(1—c)1—a) d 1—
=TT g 20
y3(t) 4—c dr 0g101_c (20)

where y;(¢) [48] is real (a and c take values between 0 and
1) and in Eq. (17) we take the principal branch. The coherent
part of the equation with the Lamb shift energy E g is obtained
after subtracting the dissipative part from log,, dT .

Since we identify non-Markovianity with the occurrence of
negative rates, in the following we focus on these expressions.
In particular, for a — ¢ > 0, the dynamics is non-Markovian
if the time derivative of at least one of the fractions inside the
logarithms is negative.

B. Conditions for deriving a Markovian master
equation for the spin

It is interesting to compare the previous constructions with
the usual steps followed in the quantum-optics formalism in
order to derive a Markovian master equation, which is a (time-
independent) Lindblad equation.

The standard derivation assumes a separation of timescales
between system and environment. In the simplest case, where
the system is coupled to a single environment operator R, the
environment timescale is characterized by the correlation time
7. after which the environment correlation function a(t) =
tr[pR(7)R(0)], with interaction picture operators R(1), has
decayed [5]. As an aside, by system timescale it is typically
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meant the timescale on which the system changes due to its
interaction with the environment. Thus, it depends on the
intensity of the system-environment coupling €2. The standard
derivation is valid if the following condition is satisfied [5]:

Qr. < 1. ey

This means that the coupling has a weak effect during the
correlation time of the environment fluctuations or, in other
words, the reduced system dynamics at a given time only
weakly depends on previous system states (Markovianity)
since the environment memory of those persists only on the
7. timescale [5].

We now discuss how the validity of the Markovian master
equation can be checked in our model. The typical starting
point for its derivation is to express the reduced system
dynamics by a specific integro-differential equation, which is
valid to second order in the coupling (Born approximation)
[1]. For our spin it reads [36]

dp(t)
dt

= i[p(1), Hs] — / dstrg ([Hse, [Hse (s),
0

—iHssp(

e t — )™ @ pel]), (22)

where X (t) = e~ /HstHet x oi(HsHHe)
To simplify this equation we use the Jordan Wigner trans-
formation to map the spin chain to free fermions: o, =

u;c;, where al. 2(o +i0]), u; = PLOVE l‘r‘f and ¢; are
fermionic operators. In this language the 1nteract10n Hamil-
tonian reads

Hsg = Quuy, (ttem, + Hee.). (23)

Equation (22) can then be rewritten as follows [1,49]:

df:) ilp(t), Hs]
+ Q2 fo t ds(at(s)e ™ [rTe s p(t — 5)e™s*, 1]
+ a ()M e p(t — 5)e™, ]+ He),
(24)
where
o (1) =trg [ e, gy (1), (1)), (25)
™ (t) =trg [ pEComyimyiim, (DED, ()] (26)

are the environment correlation functions in our model.

From Eq. (24) we see that if the kernels Re[a (¢ )e*4/] and
Re[a~ (t)e’®'] decay sufficiently fast, i.e., Q7. < 1, the inte-
grand has decayed before the coupling has had a significant
effect on the evolution of the spin such that we can replace
p(t — s) with its unperturbed evolution. The equation is then
time-local in the sense that it does not depend on the state of
the spin at previous times (“memoryless”) and can be further
manipulated until the Markovian master equation is obtained.

In Appendix D we show how to compute the correlation
functions for thermal and ground states of the chain. They can
be written a®(r) = Y r_, e+ aif(t) such that the kernels of

Eq. (24) are

N
Re[ai(t)eq:iAt] — Re |:Z eii(Ek At i([):| (27)

k=1

with o7 (¢) given in Egs. (D4) and (D5).

In certain regimes of our model, namely, when the envi-
ronment is initially in the vacuum or when the spin is coupled
to the first site my = 1, the string operator is the identity
Um, = 1, and the coefﬁcients adopt a time-independent form:

o™ = (W k> fi and oS~ = [Wj, £|*(1 — fi), where the N-
dlmensmnal matrix W transforms the fermion operators to
diagonal modes d; = Zl 1 Wi ici [46], and fi = T ﬁEk is the
Fermi-Dirac distribution. We labeled such cases “ns” for “no
string operator.”

In such case, we can check condition (21) using a self-
consistency argument. In the thermodynamic limit and going
to energy space W, — W,,(E), we introduce the spec-
tral density D(E) = |WmO(E)|2n(E) [1,36], where n(E) =
”\/ﬁ@QJ |E —2h|) is the density of states

[35]. We have o™ ()¢’ = [dE e E-2g™~(E) with
a™7(E) = D(E)[1 — f(E)], and an analogous expression for
a™*(r). Now the argument proceeds as follows. We assume
that o™*(E) is flat around A over an energy range set
by the characteristic frequency of the spin I' (e.g., dissipa-
tion rate). Within the integral over past times s, Eq. (24),
it can then be replaced by its value at A, and, using the
relation [ dE e =27 5(1) — 21]P1, where P denotes the
Cauchy principal value, we can replace the respective kernel
by 2 D(A)[1 — f(A)]é(t) [36]. Hence, under that assump-
tion, the spin dynamics is captured by the Markovian mas-
ter equation with dissipation rates '™+ = 27 QZD(A)f(A)
and '™~ = 27 2D(A)[1 — f(A)]. The self-consistency ar-
gument succeeds if

‘ da™*(E)

r«i, 28
oE < (28)

A

where we set I' = max(I"™%) [36].

C. Numerical method

A MPS for an open-boundary system of N sites with phys-
ical dimension d and local basis {|z)}d | 1s a state of the form

Wy =3¢ Al AYli, ..., iy), where Aly are D x D
matrices, except for the first and the last, which are 1 x D and
D x 1 vectors, respectively. The bond dimension D sets the
number of free parameters in the ansatz [50-52]. MPSs yield
good approximations to ground states of gapped, local Hamil-
tonians [53,54]. Efficient numerical algorithms exist to find
MPS approximations to ground states of much more general
situations, and also to simulate real-time evolution [55-59].
On the other hand, thermal states of local Hamiltonians can be
efficiently approximated by an analogous ansatz in the space
of operators [60—62], referred to as matrix product operators
(MPOs) [63,64].

We write the state of the full system as a MPS (if the
environment is initially in the ground state) or a MPO (in the
thermal case), and apply standard MPS methods [57,60] to
simulate real-time evolution. For convenience, we include the
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0
A;,/J

FIG. 1. Non-Markovianity for environment initially in the vac-
uum state, in the thermodynamic limit. The measure captures the
evolution until time f5,J = 20.

system in the myth site of the chain (which then has physical
dimension d?). The initial state is built as the tensor product
of the desired initial spin state and the MPS (resp. MPO)
approximation of the spin-chain state found with standard
MPS algorithms. In the thermal case, we evolve a purification
MPS [59,60,65], which ensures positivity of the evolved state.

Bond dimension, system size, and trotter step § were
chosen such that for the evolution times reported in the text
the results are converged. In particular, we used D < 200,
N =200, and § = 0.01.

IV. VACUUM INITIAL STATE

Let us consider that the spin is coupled to the center of the
chain, my = N/2. The simplest scenario for this setup is when
the chain is initialized in the fermionic vacuum pg = |0)(0|,
where d;|0) = O for all k. Note that |0) is equivalent to the
ground state if 7 > J (h < —J yields the same physics due
to particle-hole symmetry). Then the number of excitations in
the total system Ny is set by the initial system state and the
only sectors involved are those of zero and one excitations,
which are not mixed under the dynamics. We can write the
total system-environment state at any time as

(1) = [cg(m + Gt + Y Cu)d] } 2.0).  (29)
k

where C;(0) =0 and C,(t) = C,(0) does not evolve. The
dynamical map Eq. (15) in this particular case has ele-
ments a"* = |C,|?, b = C,, ¢** = 0. The expressions in
Egs. (18) to (20) thus simplify to y* = y,* =0 and
y3vac — _% 10g10 |Ce|2~

In this case, with at most one excitation present in the
whole system, the fermionic chain we consider is completely
equivalent to the bosonic one studied in Ref. [35], and the
analytical calculation of C, in the thermodynamic limit pre-
sented in that work is also applicable to our setup. We used
this result to obtain the non-Markovianity degree A/, which
we plot for a wide range of Hamiltonian parameters in Fig. 1.
We find a non-Markovian region for detunings A, around
the band edges with a width that increases with the coupling
strength. Note that for detunings in this region, condition
(28) for deriving a Markovian master equation is obviously
violated because the spectral density D(E) diverges at the
band edges. If we detune far outside the band |Aj;, £ 2J| > Q
the measure vanishes, which is what we expect because the
system effectively decouples from the environment and we

0
10 5
1 -1
0 | M
~ 102 5
Tm o 0 /\I\Annn
S} MR VU
107
—_Ay)J =2 -1
4| |=—=An/J=-18
10 —Ay/J =0
-2
0 20 40 60 0 20 40 60
tJ tJ

(a) (b)

FIG. 2. Time dependence of (a) |C,|*> (logarithmic scale) and
(b) y3* for environment initially in the vacuum state, in the ther-
modynamic limit, for /J = 0.4 at different A,. At the band edge
(black), close to the band edge (blue or dark gray), and at the band
center (orange or light gray).

have a closed quantum system with coherent dynamics and
thus y; = 0 in Eq. (16). In contrast, strong coupling induces
strong non-Markovian behavior because the model effectively
reduces to the one of the system coupled to a single spin [66].

We observe that the largest non-Markovianity is not at the
band edge, but slightly shifted inside. This is due to the fact
that at short times |C,|? reaches values close to zero, smaller
in this case than exactly at the band edge, leading to larger
magnitude y;%°, as shown in Fig. 2 [black and blue (dark gray)
lines].

For A, further inside the band, the system is more Marko-
vian, in line with a classification based on condition (28),
which is closer to being satisfied due to smaller values of the
spectral density and its derivative [67]. In the middle of the
band (A; = 0), until intermediate times, the time-dependent
|C,|> exhibits a monotonic decay, almost exponential, but
modulated by oscillations (clearly appreciated in ;) at a
frequency approximately equal to 2J [Fig. 2, orange (light
gray) lines]. The dynamics is captured by a time-dependent
Markovian master equation. Only when most of the popula-
tion has decayed (zJ ~ 25), monotonicity of |C,|? is broken
and the rate becomes negative. We focus on characterizing
the behavior at times before that happens and thus those late
times do not enter our calculation of A/. When the coupling
is increased while staying at the center of the band, the
oscillations become stronger (see Fig. 3) until they break the
monotonicity of |C,|* and the description of the dynamics
via a time-dependent Markovian master equation is no longer
possible.

As shown in [35] (and reviewed in Appendix A for
completeness), in the calculation of C, one identifies a number
of terms which we call resonant, edge, and bound-state
contributions, since intuitively they can be connected to the
overlap of the initial state |e, 0) with continuum eigenstates
of H close to A and close to 2h & 2J and with its two bound
states [68—70], respectively. C, is the result of summing up
these five contributions. The absolute square of each of these
contributions is either a monotonically decaying or a constant
function of time. Hence, the nonmonotonicity of |C,|? results
from cross terms between pairs of those contributions,
which oscillate with the difference of their corresponding
frequencies v. The different non-Markovianity behavior
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FIG. 3. (Early) time dependence of (a) |C,|*> and (b) vy for
environment initially in the vacuum state, in the thermodynamic
limit, at the band center (A, /J = 0) for different couplings.

obeys which contributions are important for a given choice of
parameters.

At short times, and for the detunings discussed above,
|C,|? is in general dominated by the exponentially decaying
resonant contribution [35]. If Ay, is close to the band edge, also
the corresponding edge (power-law decaying) and bound-state
(constant magnitude) contributions become important [35]
and give rise to non-Markovianity via cross terms and to the
incomplete decay of |C,|*> observed in Fig. 2(a) [black and
blue (dark gray) lines].

If A, is close to the middle of the band, the cross
terms between the resonant contribution (v, & 2h) and edge
and bound-state contributions (Ve+ ~ vp+ ~ 2h £ 2J) oscil-
late with a frequency approximately equal to 2J (Jv; —
Vet|, |V — vpt]). Their magnitude depends on the coupling
strength, so that only if this is strong enough [see Fig. 3,
pink (dark gray) lines] does non-Markovianity appear at short
times. However, at long times, non-Markovian behavior can
appear even for weak coupling. That at long times the dy-
namics cannot be described by a Markovian master equation,
which is a stricter criterion, is well known. There is always
a transition from exponential to power-law decay behavior
[5]. Here we identify this non-Markovianity at long times
with the relevant cross terms decaying exponentially only
with half the rate with which the absolute square of the
resonant contribution decays. The corresponding oscillations
thus dominate at long times [Fig. 2, orange (light gray) lines].
This is in fact a general feature of this model: no choice of
parameters results in perfect Markovianity at all times, as
for large enough times the constant contributions from bound
states at both edges always give a nonmonotonic behavior,
after the other (nonconstant) contributions have decayed. At
sufficiently long times, when the cross terms involving the
resonant contribution have decayed, cross terms involving
edge and bound-state contributions from opposite sides that
oscillate with a frequency approximately equal to 4J become
visible (|Ver — Ve—|, [Vex — Vo1, - .. ).

We may ask how much of the non-Markovian behavior
described here is detected by the BLP measure. It is in fact
easy to see (see Appendix B) that in the vacuum case, since we
have a — ¢ = |b|*> = |C,|?, information flows back in the sense
of BLP iff %|C6|2 > 0, and thus all (RHP) non-Markovian
behavior is detected by the BLP measure.

V. EXCITATIONS IN THE ENVIRONMENT

In order to investigate how the presence of excitations in
the environment affects the non-Markovianity analysis of the
previous section, we study two scenarios. On the one hand, we
consider the environment in a thermal state, for a chain that
has the fermionic vacuum as ground state, 2z = J. This allows
us to recover the previous case in the limit of low temperature
BJ — 00. On the other hand, by tuning the parameter /4, the
ground state of the chain can be chosen to contain the desired
number of occupied modes. For these two types of thermal
states, the dynamical map is still of the form of Eq. (15), but
it is no longer determined by a single parameter. Instead, y,
and y,, given by the general expressions in Egs. (18) and (19)
do not vanish, and can now become negative and give rise to
non-Markovianity. In this case, no analytical (exact) solution
is available, and the dynamical map is computed using tensor
network techniques.

A. A few excitations induce (new) non-Markovianity

Thermal and ground states with few excitations correspond
to populating the lower edge of the band, which can be
achieved, respectively, by a low temperature (8J > 1) or
suitable chemical potential (0 < 1 — h/J < 1). In the rest of
this section, we consider the cases 7 =J at 8J = 10 and
h =0.95J at BJ — oo (ground state).

For A, =0, i.e., in the middle of the band, we observe
that the map parameter a varies very little with respect to
the vacuum case (see Fig. 4), which is not surprising, as the
only excitations in the system are far off-resonant, close to
the lower band edge. However, we obtain a contribution to
non-Markovianity at short times from y,. This originates from
the monotonicity-breaking oscillations of ¢, clearly observed
in Figs. 4(a) and 4(b), which exhibit approximately the same
frequency as the ones of a. As we argue in Appendix A, for
the case of a single initial excitation in the environment, we
may expect that the time dependence of the ¢ component of
the dynamical map is determined by the same frequencies that
appear in the vacuum case [71], and that its oscillations may
break monotonicity already at early times since the resonance
contribution does not have the same dominating effect it has
on a**°. Numerically, we find that this signature of the cross
terms between resonant, edge, and bound-state contributions
seems to explain qualitatively also the case of few excitations.

Next we consider setups in which the detuning is chosen
close to the lower band edge, for which the non-Markovianity
was large in the vacuum case. We observe that in this case,
the crossing of a and c results in vanishing denominators in
Eqgs. (18) to (20), such that the rates diverge and change sign
(see Fig. 5). The non-Markovianity in this case is thus more
dramatic. Looking at Eq. (18), we notice that the early-time
non-Markovianity (y; < 0) is due to |b|* decaying similarly
while a — ¢ decays faster than the respective values in the
vacuum case.

It is interesting to notice that this nondivisibility at early
times, corresponding to the divergence of y, is not witnessed
by the BLP measure. As shown in Appendix B, there is no
information backflow in the sense of BLP when a — ¢ > 0,
%(a —¢) <0, and %|b|2 < 0. These conditions are in fact
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FIG. 4. Time dependence of the channel elements (above) and
rates (below) at the band center (A,/J =0) for Q/J = 0.4: (a),
(c) Environment initially in thermal state with gJ =10 (h =J).
(b), (d) Environment initially in the ground state for & = 0.95J.
For reference we plot the vacuum values as dotted lines [see also
Fig. 3, orange (light gray) lines]. Insets: Fermi-Dirac distribution
f(E) (orange or light gray) from lower to upper band edge. The value
of Ay/J is indicated as a vertical black line.

satisfied in this setup, until the time when a and ¢ cross. They
are also satisfied in the setup discussed in the previous para-
graph, for A, =0, so that most of the new non-Markovian
phenomena induced by a few excitations in the environment
are not detected by BLP.

B. High temperature leads to Markovian dynamics

We may ask how the picture changes with an increasing
number of excitations in the environment, either due to a
higher temperature or to a lower chemical potential. First of
all, we observe that for thermal states at a higher temperature
[see Figs. 6(a) and 6(c)] and for ground states at a lower
chemical potential [see Figs. 6(b) and 6(d)] the crossing of
a and ¢ described above does not take place. On the other
hand, when, for the ground-state case, we set the detuning at
the Fermi level, we get a crossing [see insets in Figs. 6(b) and
6(d)]. Together, these observations suggest that the occurrence
of the crossing phenomenon, which is always accompanied
by diverging non-Markovianity, is linked to the Fermi-Dirac
distribution f(E) changing sharply across A, (compare insets
in Figs. 5 and 6).

In Fig. 6(c) we can also observe how the increased tem-
perature smooths out non-Markovian effects either introduced
by a few excitations (Fig. 5) or already present in the vacuum

10
tJ

(d)

20

FIG. 5. Time dependence of the channel elements (above) and
rates (below) close to the lower band edge for 2/J = 0.4: (a),
(¢) Ay/J = —1.8 for environment initially in thermal state with
BJ =10 (h =J). (b), (d) A,/J = —1.9 for environment initially in
the ground state for 7 = 0.95J. For reference we plot the vacuum
values as dotted lines. Insets: Fermi-Dirac distribution f(E) (orange
or light gray) across lower quarter of the band. The value of A;/J is
indicated as a vertical black line.

scenario (dotted line). It turns out that it is possible to obtain
entirely Markovian dynamics if one chooses a high enough
temperature. This is illustrated in Fig. 7 where we plot the
transients of the channel elements and rates for system ener-
gies close to the band edge (A, = —1.8J, left panels) and at
the band center (A, = 0, right panels) at high temperature.
We observe that the time dependence of the channel elements
is monotonic and that the rates are positive for the times we
can access with our simulations.

One might ask whether this Markovian behavior may be
anticipated in the sense that condition (21) for deriving the
Markovian master equation is satisfied at high temperature.
Using the explicit expression Eq. (D4), we compute one of
the kernels Eq. (27) for 8J = 0.05 (see Fig. 8), and find that it
decays rapidly to zero (at such high temperature the other one
behaves qualitatively the same). Remarkably, the environment
correlation time 7. is essentially the same at the center and
the edge of the band, although the corresponding spectral
densities are very different (diverges for the latter), and, in
the literature, the flatness of the spectral density is often
associated with short correlation times [36-39]. At infinite
temperature we can write a closed form for the correlation
functions: a* (r) = Le*?¢=/""" [72]. Their superexponential
decay confirms that at high temperatures and small enough
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FIG. 6. Time dependence of the channel elements (above) and
rates (below) close to the Fermi level for Q/J = 0.4: (a), (c) A,/J =
—1.8 for environment initially in thermal state with fJ = 3 (h = J).
(b), (d) Ap/J = —1.9 for environment initially in the ground state
for h = 0.75J. For reference we plot the vacuum values as dotted
lines. Insets: Fermi-Dirac distribution f(E) (orange or light gray)
across lower quarter of the band. The value of A, /J is indicated as
a vertical black line. In (b), (d) we show an additional pair of insets
illustrating the case A, /J = —1.5 (at the Fermi level).

(but still intermediate) coupling strength (which sets the sys-
tem timescale), the Markovian master equation becomes a
valid description at all detunings [73].

In summary we found in this section that while a few
initial excitations, e.g., the ones present at small temperature,
introduce a number of new non-Markovian features (early-
time negative y, for Aj, deep within the band and early-time
diverging negative y; for A; close to the lower band edge),
these phenomena get smoothed out together with any non-
Markovian features already present in the vacuum case as one
increases the temperature to large values such that, at high
temperature, we obtain divisible dynamics. We found that this
high-temperature Markovianity could already be anticipated
from the observation that the conditions for deriving the
Markovian master equation are satisfied at intermediate cou-
plings. The Markovianity at high temperatures is nevertheless
not a completely general effect, as we discuss in the next
section.

VI. EXACTLY SOLVABLE SETUP

If the system is coupled to the first site of the chain
(mp = 1), the full model can be solved analytically, as it can

FIG. 7. Time dependence of the channel elements (above) and
rates (below) for environment initially in a high-temperature state
(BJ =0.05, h =J) for 2/J = 0.4: (a), (c) Close to the lower band
edge (A,/J = —1.8). (b), (d) At the band center (A,/J = 0). For
reference we plot the vacuum values as dotted lines. Insets: Fermi-
Dirac distribution f(E) (orange or light gray) from lower to upper
band edge. The value of A,/J is indicated as a vertical black line.
Note that in the band center case we show the results only for shorter
times. This is due to the sensibility of the rates to truncation errors as
a — ¢ becomes small.

be mapped to a quadratic fermionic Hamiltonian. Using the
exact solution, we analyze here the divisibility properties of
this setup, and compare them with the case discussed in the
previous sections. Notice that the non-Markovianity in this
scenario was already studied in Ref. [34], with the chain
initially in a ground state, but with a focus on the (less

Re (a*(t)e ™)

-0.1

-0.2

FIG. 8. One of the kernels Eq. (27) for environment initially in a
high-temperature state (8J = 0.05, h = J). We plot the band center
(A/J = 0) and lower band edge (A, /J = —2) cases.
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strict) BLP measure, which in some cases gives a qualitatively
different picture.

The dynamical map is still of the form of Eq. (15) and we
compute explicit expressions for its elements using Gaussian
methods for free fermions (see Appendix C). We find that
in this case a — ¢ is the same for any environment initial
state that is a ground state with different & or any other
thermal state, i.e., a — ¢ = a**°. Thus, differently from the
setup considered in the previous section, introducing a few
excitations cannot affect the non-Markovianity dramatically
[see Egs. (18) to (20)]; in particular, the crossing between a
and ¢ cannot happen. Also, a — ¢ = |b|? for the environment
initial states we consider, which implies y; = 0, Eq. (18).

Under these conditions, information backflow in the sense
of BLP is equivalent to having (%(a —¢) > 0 (see Appendix
B). Thus, BLP-Markovianity is independent of such environ-
ment states and it is enough to check the simplest one, i.e.,
the vacuum (ground state for 2 > J). For this particular case
BLP-Markovianity and divisibility turn out to be equivalent,
and reduce to the condition [%avac < 0 V¢, in accordance with
what we found in Sec. IV. Thus, for fixed parameters Aj,/J
and €2/J, nondivisibility in the vacuum case implies BLP-
non-Markovianity (and hence nondivisibility) independently
of the considered environment states. This is in contrast to the
setup discussed in the previous section; in particular, it is not
possible to obtain Markovian dynamics at high temperatures
if the corresponding vacuum case is nondivisible.

It is interesting to compare the predictions based on the be-
havior of the high-temperature environment correlation func-
tions for both setups. In Appendix E we show that (at infinite
temperature, where they can be obtained in closed form) while
in the previous case, with its superexponentially decaying
correlation functions, the derivation of the Markovian master
equation is valid at all detunings if % <« 1, in the present case

(~t’%) this is only true at detunings away from the band edges
| £2— %| > % If we move the coupling site into the chain,
our numerics show the power-law decay getting steeper as
~¢"i+2 (Appendix D).

The simple expression for the BLP measure in this setup
allows us to reproduce one of the main results of [34]: for each
value of the coupling 2/J < 1 there is a specific detuning
Ap=2J — 972 for which the BLP measure is identically zero
for any of the environment initial states we consider. We refer
to this situation as the BLP-Markovian point. For any other
set of parameters the measure is different from zero, with the
largest non-Markovianity occurring at the center of the band
(Ap =0) [34].

The divisibility of the channel, on the contrary, depends
on the initial state of the environment. In general, ¢ does
not vanish, and the evolution may be nondivisible, even for
the detuning set at the BLP-Markovian point. This is shown
explicitly in Fig. 9: for A, /J = 1, the BLP-Markovian point at
coupling strength €2/J = 1, and an initial state different from
the vacuum, the rate y» becomes negative at some times.

On the other hand, for any other parameters and any of
the considered initial states, since the BLP measure is always
nonzero, the channel is not divisible. However, it is interesting
to analyze the time dependence of this non-Markovianity. For
the most non-Markovian setup (A, = 0), shown in Fig. 10,

0.8

0.6

0.4

0.2

FIG. 9. Time dependence of (a) channel elements and (b) rates
at a BLP-Markovian point (A, /J = 1) in the my = 1 model and for
environment initially in the ground state for 7 = —% (©/J =1).For
reference we plot the vacuum values as dotted lines. Inset: Fermi-
Dirac distribution f(E) (orange or light gray) from lower to upper
band edge. The value of A;/J is indicated as a vertical black line.

we find that the dynamics (in the vacuum case) is indeed
divisible according to our measure until intermediate times.
The BLP-non-Markovianity arises only from the late times
(tJ Z 40), when the population has decayed so much that the
oscillations break monotonicity of a**°. This is analogous to
our observation in Sec. IV [see Fig. 2, orange (light gray)
lines], in which we obtain large non-Markovianity contribu-
tions from late times because a vanishing population leads to
diverging y;*.

A significant difference between this setup and the one dis-
cussed in the previous sections is that, as shown in Ref. [34],
in the case of the system coupled at the beginning of the chain,
there is a single bound state of the interacting Hamiltonian for
Q/J < 1.5,andonlyif |Ay| = 2J — 972 Although the analyti-
cal calculation of Sec. IV (see also Appendix A) is not directly
applicable to this setup, we observe that the oscillations of a**
at early times (during the exponential transient) and at late
times still have a frequency approximately equal to 2/ and 4J,

vac
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FIG. 10. Time dependence of channel element and rate at the
center of the band (A,/J = 0) in the my = 1 model and for en-
vironment initially in the vacuum state (2/J = 0.4). (a) a"* in
logarithmic scale. (b) 3, where we skipped a time interval in the
figure (denoted by dots) and in the late times we projected positive
values to zero for clarity.
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FIG. 11. Time dependence of channel element and rate at dif-
ferent A; in the my = 1 model and for environment initially in the
vacuum state (2/J = 1). (a) " in log-log scale. (b) y3*.

respectively (see Fig. 10), suggesting that they still originate
in cross terms involving resonant and edge contributions.

As the detuning is shifted closer to the edge of the band,
we observe that a**® decays as a power law modulated by
damped oscillations, until, at the BLP-Markovian point, they
do not break monotonicity anymore (Fig. 11). This suggests
a competition between the cross term involving both edge
contributions on the one hand and the monotonic power-law
decay of the absolute square of the relevant edge contribution
on the other hand (for detunings A, < 2J — 972). Generalizing
from the previous setup, the decreasing relevance of the
oscillations toward the (upper) band edge is what we expect
because the magnitudes of the upper and lower edge contri-
butions increase and decrease [35]. For detunings beyond the
BLP-Markovian point (A, > 2J — Q72) we have a bound state,
and cross terms will always break monotonicity of a'* at
some times (see, e.g., Fig. 11, dotted line). Finally, for 2/J >
1, even at A, =2J — 977 the cross term involving both edge
contributions is still strong enough to break monotonicity of
a** (see Fig. 12). Thus, at a fixed coupling strength, a region
(in Ap) without bound states is necessary (but not sufficient)
for the existence of BLP-Markovian points, and such a region
can only exist if the spectral density does not diverge at the
band edges (Appendix A).
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FIG. 12. Time dependence of channel element and rate at dif-
ferent A; in the my = 1 model and for environment initially in the
vacuum state (2/J = 1.2). (a) a"° in log-log scale. (b) ;3.

In the previous section and in Appendix A we argued
that signatures of single-excitation physics survive in the
characteristic frequencies that modulate the channel elements,
also in the setups with few excitations. The my = 1 model
provides an extreme example of this where these frequencies
are present in setups with an arbitrary number of initially
populated fermionic modes since a — ¢ does not depend on
the initial state of the environment, as far as it commutes with
the total number of excitations.

Notice that the BLP-Markovian points are located quite
close to the band edge, where the standard derivation of
the Markovian master equation is not valid as discussed in
Appendix E [74]. Still, in the vacuum case, they are captured
by a time-dependent Markovian master equation at all times.

VII. CONCLUSION

In this work we have explored the dynamics of a single spin
coupled to a quantum spin chain, when considered as an open
quantum system. We have used a simulation of the real-time
evolution of the whole system to compute the dynamical map
that governs the evolution of the spin, and to characterize and
measure its non-Markovianity. We have identified situations,
determined by the parameters of the system (coupling and
detuning) and the initial state of the chain, in which the
dynamics of the spin, at least until intermediate times, admits
a description in terms of a time-dependent Markovian master
equation; i.e., the map is divisible. Some of these scenarios
occur in regimes that do not allow a standard derivation of the
master equation.

We studied two scenarios. In the first one, we couple
the spin to the center; in the second, to one edge of the
environment chain.

In the first case, and when the chain is initialized in the
vacuum, we find a Markovian parameter region when the
detuning of the spin is deep within the band of the single-
particle spectrum of the environment and the coupling is small
to intermediate. This is in line with a characterization based on
the validity of the standard derivation of the master equation
[35]. Setting the detuning close to the band edges produces
strong non-Markovian effects, as does a strong coupling.

If the initial state of the chain contains a few excitations
close to the lower band edge, the scenario changes: the Marko-
vian regions disappear and the non-Markovianity close to
the edge increases dramatically. The latter effect persists also
beyond a few excitations if one initializes the environment in a
filled Fermi sea and sets the detuning close to the Fermi level.
On the other hand, a high-temperature initial state of the chain,
which introduces a large number of excitations evenly spread
across the spectrum, results in Markovian behavior, even for
detunings close to the band edges (where the spectral density
diverges).

In the exactly solvable case of the chain initialized in the
vacuum, the Markovian or non-Markovian character of the
map can be completely explained in terms of the eigenstates
of the full Hamiltonian and how they contribute to the scat-
tering amplitude. In particular, non-Markovianity obeys the
presence of sufficiently strong cross terms between different
contributions. A qualitatively similar picture holds in the case
of a few initial excitations.
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In the second case, when the spin is coupled to the edge
of the chain, the problem is exactly solvable. A remarkable
difference to the first case is that, if the chain is initialized
in the vacuum, there are points in parameter space that are
Markovian at all times. We explained this phenomenon with
the cross term argument above and found that a nondiverging
spectral density at the band edges is paramount to the exis-
tence of such points. Another difference from the first case is
that while any Markovianity still disappears on introducing
a few excitations, a dramatic increase of non-Markovianity
does not occur. Finally, high temperature does not impose
Markovian dynamics. Instead, any non-Markovianity of the
vacuum case survives at all temperatures. At high temperature
this is in stark contrast to the Markovianity of the first case, but
is consistent with the behavior of the environment correlation
functions that we have computed, which, while showing a
superexponential behavior inducing Markovianity in the first
case, are characterized by a power-law behavior for the second
case, ruling out the standard derivation for detunings close
to the band edges. The decay of the correlation functions
becomes steeper as the position of the coupling is moved away
from the edge of the chain.

We define Markovianity as divisibility of the evolution, but
we can also compute other nonequivalent non-Markovianity
measures. In particular, we have compared the results to
the widely used BLP measure, less restrictive, which detects
neither the non-Markovianity deep within the band nor the
early-time onset of the dramatic non-Markovianity close to
the lower band edge, when few excitations are present in the
environment.
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APPENDIX A

In Ref. [35] the amplitude C,(t) was explicitly computed
for the case of an emitter coupled to a bosonic tight-binding
chain, which, in the thermodynamic limit, is equivalent to our
model with my = N/2 in the vacuum case. This is done by
expressing the amplitudes as

C _ b wdEGlf'N —iEt Al
«(t) = Tl o (E +i07)e™™, (A1)

where o € {e, k}, and using the structure of singularities in the
complex energy plane of the retarded Green’s functions

1
6= X v
Q

(z—Elz—A—-Z.()I

(A2)

Gr(z) = (A3)

with the self-energy
QZ
J@=2n? —4J?
The = sign depends on whether Re(z — 2h) 2 0.
In particular it was found that C.(¢) can be decomposed

into a sum of contributions (roughly) due to different parts of
the interacting spectrum

CHy= Y A+ Y

a=UE,LE p=UBS,LBS,RS

Ye(z) =%

(A4)

Rge ", (A5)

where we chose labels representing the parts close to the
(upper, lower) band edge (UE, LE), close to resonance A
(RS), and close to the upper and lower bound states [68]
(UBS, LBS) of the interacting spectrum.

If we consider that the environment in the initial state con-
tains a single excitation, the channel element ¢ from Eq. (15)
can be computed as [75]

¢ = (e, 0l df|g, 0)]* = |CL(1)I%, (A6)

such that, following Ref. [35], its behavior will be determined
by the singularities of Eq. (A3).

In the (large) finite case the resonance and edge contribu-
tions in Eq. (AS) correspond to terms that are dominated by a
sum over terms | (ii|e, 0)|>¢ & running over (scattering [68])
states |1) close to resonance A and close to the band edges, re-
spectively (H |ii) = E,|i)). The bound-state contributions are
simply |(BS¥|e, 0)|Ze’iEBSi’. With this intuitive picture one
can anticipate that these contributions oscillate with frequen-
cies v approximately given by A (v, & A), the band edges
(Vex = 2h £ 2J), and the bound-state energies (Vp+ = EBS:t),
respectively, which we confirm by explicit computation. The
magnitudes of the contributions decay exponentially (RS),
with a power law (UE, LE), or are constant (UBS, LBS) [35].

Strictly, the resonance and bound-state contributions stem
from singularities in G.(z). In [68] it was proven that if
Im[Z,(z)] diverges at the band edge, where it is proportional
to the spectral density D(E) [35], there always exists a pole
associated with a bound state. This is the case when my = %,
where the spectral density is proportional to the (diverging)
density of states; otherwise it is not necessarily the case [76].

These singularities are still present [77] in Gi(z):

Gel2) = Q(L - Ge<z>) : (A7)

z—Ex Ex—A—-%.(2)
which has an additional pole corresponding to the free prop-
agator of the mode k, leading to a constant-magnitude free-
propagator contribution (oscillating with frequency vy = Ey)
to Ci(¢). If the initial environment excitation is close to the
lower band edge (E; =~ 2h — 2J), we thus expect to have
terms in Ci(¢) that oscillate with frequencies similar to those
in C,(¢), but since |Cx(0)|> =0, in this case the resonant
contribution cannot be dominating all the other contribu-
tions [78]. This is the mechanism behind the early-time non-
Markovianity (at Ay = 0) in Sec. V A.

Figure 13 illustrates this for a finite chain as studied in our
paper. We set the initial state to d;, lg, 0), i.e., the environment
contains a single excitation in the lowest-energy mode, and
compute ¢ with exact diagonalization, which, in this case, can
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FIG. 13. Time dependence of ¢ at the band center (A,/J = 0).
(a) Environment initially in state |¥(0)) = d;;|g, 0) for 2/J =0.4
and N = 50 (solid line), N =200 (dashed line). Inset: N = 50
and ©/J = 0.85 (dotted line), Q2/J = 0.4 (solid line and scaled by
factor 6). (b) Environment initially in ground state (h/J = 0.995) for
Q/J = 0.4 and N = 50 (solid line), N = 100 (dotted line), N = 200
(dashed line).

be done efficiently since the dynamics is restricted to the one
excitation sector. At the band center (A, = 0), we find that
the frequency of the oscillations is approximately equal to 2J
(Jvr = Vex|, [Vr — vo+|, |vr — v¢|) and that this feature is stable
upon increasing the chain length (upper panel). Also, in the
inset, we observe that there is a transition after which the
frequency is approximately equal to 4J (|Vey — Ve—|, Vet —
Vp—|, [Vetr — V|, .. .). These two frequencies are characteristic
of the interplay between these contributions. The frequency
survives in the few-excitations case (bottom panel), where an
increasing number of excitations is obtained by initializing
longer chains in their ground state at fixed chemical potential.

Figure 14 illustrates the importance of the free-propagator
contribution, since for the case that the environment in the
initial state contains a single excitation somewhere within the
band, the frequency of the oscillations of the component c is
approximately given by |v; — v¢|. Looking more carefully at
the oscillations in Fig. 4(b), we find that their frequency lies
somewhere between the highest occupied mode (at the Fermi
level E;, = 2h — 1.9J) and the lowest occupied mode (at the
lower band edge E; = 2h — 2J).

In the my = 1 model of Sec. VI we find that a — ¢ = a**° is
independent of the environment initial state and can thus show
no signature of the free-propagator contributions. This means
that beyond the vacuum case, free-propagator contributions
must also contribute to a such that their effect cancels out in
a—c.
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FIG. 14. Time dependence of ¢ in the band center (A,/J = 0)
for environment initially in the state |¥(0)) = d,j lg, 0), for Q/J =
0.4. We have N = 50 and E; = 2h — 2J (solid line), Ex =2h —J
(dashed line).

We remark that the presence of oscillations due to free-
propagator contributions is independent of the existence
of bound states and band edges, and should induce non-
Markovianity also in unstructured environments (constant
spectral density) if few initial excitations are present.

APPENDIX B

We prove here two statements.

Statement 1. There is no information backflow as charac-
terized by BLP during time intervals where the conditions
a—c>0,%@a—c)<0,and £ b < 0 are all satisfied.

Proof. The density matrix of a spin can be written as p =
%(1 + vi0* 4+ v,07 + v30°), where v; are real numbers. We
then have for the trace distance between two spin states

o1
lp—pl =7

3
5 | D= (B1)
i=1

Information backflow (% o — p|1 > 0 at a given time implies

3
D (i = B)( — ;) > 0, (B2)

i=1

where the dot denotes the time derivative. The state re-
sulting after the application of the channel Eq. (15) on
an initial state p(0) [with p;;(0) = (ij|p(0))] has parame-
ters vy = 2Re[bp10(0)], v, = 2Im[bp;p(0)], and v3 = 2(a —
¢)poo(0) + 2¢ — 1. Condition (B2) then reads

0 <4Re[b(010(0) — p10(0)] Re[b(p10(0) — B10(0))]
4+ 4Im[b(p10(0) — p1o(0)1IM[b(p10(0) — p1o(0))]
+ (@ — é)4(a — ) po(0) — poo(0)]*. (B3)

This reduces to

d|b|? y
0 < —=[21p10(0) = P1o(0)*]
+ (@ — &)N4a — ) (poo(0) — poo(0))°1, (B4)
and since the expressions in square brackets are positive if
2
a — ¢ > 0, at least one of the expressions % and a — ¢ must

be positive and the statement is proved.
Statement 2. For cases where a — ¢ = |b|> the BLP mea-
sure is nonzero iff j—t(a — ¢) > 0 at some time.
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Proof. We note that if a — ¢ = |b|?, condition (B4) reduces

to
0 < (@ —¢)(21p10(0) — p10(0)|* + 4[bI*[00(0) — Poo(0)]*)
(B5)
= a—¢>0, (B6)

such that the direction “BLP measure nonzero = j—[(a —
c) > 0 at some time” is proved.

To prove the other direction we choose the initial pair
p(0) = |e)(el, p(0) = |g)(g|. Taking into account the general
structure of the channel Eq. (15), we have vy = v, = 7 =
¥, = 0 at all times and thus

dl pl -1 I |

di p—ph= 2d v3 — U3
= EE"'[’)OO(O) — Poo(0)] + c[p11(0) — p11(0)]|
-1 dl l. (B7)
= 2 dr a Cc

Hence, since a — ¢ > 0, we find that @ — ¢ > 0 at some time
implies that the trace distance is increasing (BLP measure
nonzero) and the statement is proved.

APPENDIX C

Here we give the concrete expressions of the channel
elements in the case of the spin coupled to the edge of the
chain (Sec. VI).

The total system can be mapped to the free-fermion Hamil-
tonian:

H =Q(&l& +He.) + Aghg

+JY @, 6+ He) + 2h Z e, (€

i=1 i=1

with real-space fermionic operators & = e PR LrH %o,
where o = 1§ are the spin operators on the subsystem.

The channel elements of Eq. (15) can be written in terms
of the Heisenberg picture fermionic operators as follows:

a(t) = 1 — (@ (0)& (1), (C2)
c(t) =1 — () 1)), (C3)
b(t) = (@o(t))s + i{G0(1))y+, (C4)

where [ € {e, g, x+, y+} denotes the global initial state
II){I| ® pr and we have defined |x+)= f(le)+|g))

y+) = f(|e) + i|g)). Note that in contrast to fundamental
fermion models we can have (&p) # O since the Oth mode
corresponds to the spin subsystem. The parity (of Nexc) is
nevertheless conserved, such that if one starts with a superpo-
sition in the spin, one can solve each sector independently and
then add them up, where in each of the calculations (¢y) = 0.
These expectation values can be computed exactly.

We write down the Heisenberg equation of motion

d
i GO (O] = &0 (), H]

=Y [Hac(1)Eh @) — &)ef (tyHi]. (CS)
l

where H is the real, symmetric, N + 1-dimensional tridiag-
onal matrix in H = ZZ’:@ 5?7{[ ;€¢j. Taking the expectation
value with respect to global initial state / on both sides and
defining, for each initial state, a matrix M! (1) = (@@ )Ej (IR
we get the matrix equations:

M (1) = [H, M ()]. (C6)

Analogously we define Sl.’ (t) = (¢;(¢)); and get the vector
equations:

i0,&' (1) = HE' (). (&7))
Thus, to find M!'(t) = e "M (0)e'™ and &'(t) =
e~ £1(0) and solve Egs. (C2) to (C4) we compute the initial

conditions M’ (0) and £/ (0). Since our initial states are product
states, the initial matrices M’(0) can be written as a direct

sum M'(0) = M% & Mg with M§ = 0, M§ = 1. Correspond-

ingly, we write the initial vectors as a direct sum £/(0) =
+ =i 1

gl @&p with &5 =1, £ = 51 We have ME=M,

where HE is the real, symmetric, N-dimensional tridiagonal
matrix corresponding to the environment Hamiltonian Hy =
Y & HEE;. Also, &F = 0.

The dlfference a — ¢ is independent of the environment
initial state:

a—c=Mgt) - Mgy(t) = (e ™o, (C8)

where in our convention Xy, denotes the first matrix element
of an N + 1-dimensional matrix X with matrix indices running
from O to N. Similarly,

b= (eiirm )00, (€9

and thus |h|> = a — c¢. This immediately implies that y; = 0
[see Eq. (18)].

APPENDIX D

In this Appendix we provide an explicit scheme for eval-
uating the environment correlation functions of our model
[defined in Egs. (25) and (26)]. We express them as a sum over
Gaussian operator terms that can be computed efficiently.

The chain Hamiltonian can be written as Hp =
Zl Y. lclH .c; with the real, symmetric, N-dimensional tridi-

agonal matrix HX = WAW, where Wy, = ‘/NLHsm(”—kJ)

N+
and Ay, = SggEy. With pp = T we have
at (@) =tr (pEcLOumoe_iHEtumocmoeiHEt)
7z .
= (Gel, e ™ c,ny), (D1)

where we transformed the first exponential via a unitary
conjugation with U0, and we introduced the Gaussian op-
erator G = 2" with 7 = tr(e~#~VHe). We have H.. =
o Z'HE c¢j with HE' = VHEV, where V;; = —§

,'jlfi<
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mo and V;; = §;; otherwise. Defining U = VW, Eq. (D1)
reduces to

o)=7 > € Uy U tr (Ge ™ DB el el ),
k,n
(D2)

with fermionic operators ¢; = ) ; Ujicj. Following analogous
steps for o~ (¢), we can finally write

at(t) = Z B G E (1), (D3)
k
with

W 0= 5 Y Uny gt (G EE ), D4y
n
Ol]: (t) = Z Z U’”o,kUmo,n [Skn tr (Geil[ X EfCiTCi)

—tr (Ge™" Y E”‘"/’T"'/’c;,]hc,i)]. (D5)

The traces involving the Gaussian operator in Eqs. (D4)
and (D5) can be calculated exactly as shown in Appendix D
of [79], the only required ingredient being the N2-dimensional
(complex) matrix I'y = tr(GC’C”L), where we introduced the

vector C' = (¢}, ..., cy, c’IT, el chT)T. In our case it has the
block-diagonal form
1

We compute Eq. (D3) numerically for a (finite) N chosen such
that the result is converged in system size.

APPENDIX E

Here we illustrate a complementary perspective to the
Markovianity discussion of Sec. III B for the two scenarios
studied in this paper, (i) mo = N/2 and (ii) my = 1, at infinite
temperature in the thermodynamic limit, where we have exact
(closed) expressions for the correlation functions available:

O(+(1)(t) — e+i2hte—.]2t2’ (El)

1
2
J1(2J1)

at () = gtidht
2Jt

, (E2)

where Eq. (E1) was taken from Ref. [72], and Eq. (E2)
was derived using W, x =,/ NLH sin(Z&™0) J(x) is a Bessel

N+1
function of the first kind. Limiting the discussion to the first
dissipative term of Eq. (24) (at infinite temperature the other
term follows analogously), for (i) we find

t
lim dsatV()e gt — 5
dim [ dsat et~ 5)

1 e 22 : o
- Eg(;) / dse ™S 71, (E3)
0

where g(x) is a function changing on a timescale characterized
by %, and T is the characteristic frequency of the spin (e.g.,
decay rate), which in our model is set by the coupling strength
Q. Thus for small enough coupling, g <« 1, the Markovian
master equation is valid at all detunings A,.

For (ii) we can write, using the asymptotic form of the

2 an bid
=cos(x — 5 — 7)),

Bessel functions lim,_, o J, (x) = ol 7}

t
lim dsat@(s)e Mgt — 5)

r/J—0 Jo
QI A
=g(t)/ ds TS v
0 2Js
+ L tds gt — $)(Js)"? (e”(ZJ_A")Se_%”i
4m Ju

+ e—i(ZH—A/,)xe%ni), (E4)

where } <Lh K % For detunings far enough away from

the band edges | =2 — %| > 5 the second integral can be
neglected, and the Markovian master equation is valid. At the
band edges, where the oscillations are too slow to kill the
integral, the slow power-law decay violates the Markovian
approximation at any I' > 0.

We thus find that while deep within the band and at small
enough coupling the dynamics is captured by the Markovian
master equation in both cases, the underlying mechanism is
completely different: superexponentially decaying correlation
functions in (i); rapid oscillations of the correlation functions
in (ii). The self-consistency condition (28) is blind to what is
the fundamental origin of its validity. Too close to the band
edges (| £2 — %| » 5) the Markovian master equation is
only valid for (i) (at small enough coupling).
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