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ABSTRACT Tensor networks have found a wide use in a variety of applications in physics and computer
science, recently leading to both theoretical insights as well as practical algorithms in machine learning.
In this work we explore the connection between tensor networks and probabilistic graphical models, and
show that it motivates the definition of generalized tensor networks where information from a tensor can
be copied and reused in other parts of the network. We discuss the relationship between generalized tensor
network architectures used in quantum physics, such as string-bond states, and architectures commonly used
in machine learning. We provide an algorithm to train these networks in a supervised-learning context and
show that they overcome the limitations of regular tensor networks in higher dimensions, while keeping
the computation efficient. A method to combine neural networks and tensor networks as part of a common
deep learning architecture is also introduced. We benchmark our algorithm for several generalized tensor
network architectures on the task of classifying images and sounds, and show that they outperform previously
introduced tensor-network algorithms. The models we consider also have a natural implementation on a
quantum computer and may guide the development of near-term quantum machine learning architectures.

INDEX TERMS Boltzmann machines, graphical models, machine learning, quantum circuits, string-bond
states, supervised learning, tensor networks, tensor-train.

I. INTRODUCTION
Tensor networks, which factorize a high-order tensor into
a network of low-order tensors, have found a wide use
of applications from quantum physics [1], [2] to machine
learning [3], [4]. They can be used to compress weights
of neural networks [5]–[8], to study model expressivity
[9]–[14] or to parametrize complex dependencies between
variables [15]–[18]. Recently, they have also attracted atten-
tion in the context of quantum machine learning [19], [20]:
there has been much interest in understanding how low-
depth quantum circuits that can be implemented on near-
term quantum devices may be useful in machine learning
[21]–[26], and tensor networks are a natural tool to perform
the classical simulation of such algorithms [14], [27], [28].
Tensor networks that can be efficiently contracted on classical
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computers thus provide a unique platform to benchmark and
guide the development of new quantum machine learning
architectures.

In this work, we explore the relationship between tensor
networks and more common machine learning architectures,
in particular probabilistic graphical models. We define gen-
eralized tensor networks which connect the two frameworks.
These networks rely on the copy and reuse of local tensor
information. Unlike regular tensor networks, they can be
defined in complex geometries while remaining efficient to
contract as long as an appropriate hierarchical order can
be defined. We apply several variants of generalized tensor
networks to image classification and environmental sound
recognition and compare their performance, concluding that
generalized tensor networks typically perform better than
tensor networks alone.

Since they use several copies of the data inputs, general-
ized tensor networks share some structure with convolutional
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neural networks (CNN) [29], [30], while having direct con-
nections to restricted Boltzmann machines (RBM) [31], [32].
Examples of such networks that have been used in quan-
tum physics include string-bond states (SBS) [33], [34] (that
generalize matrix product states (MPS)/tensor-trains [35]) as
well as entangled plaquette states (EPS) [36]–[38]. Partic-
ular generalized tensor networks with tree structures have
also been used to study the expressivity of deep learning
models [10], [39].

We introduce an algorithm for performing supervised
learning with generalized tensor networks, which com-
bines stochastic gradient descent with previously introduced
approaches for tensor networks. This framework general-
izes works based on regular tensor networks such as MPS
[16], [17], [40], [41] or tree tensor networks [42]. It has
the advantage that more complex structures can be formed
while keeping the computation efficient. This is especially
useful for data that possesses some geometrical structure in
more than one dimension, such as images. We emphasize
that the algorithm does not need to rely on any Monte Carlo
techniques, unlike in quantum physics, where generalized
tensor networks can only be optimized in combination with
computationally expensive Monte Carlo sampling. In partic-
ular the cost of optimizing a SBS is only a constant factor
times the cost of optimizing a MPS, but SBS are much more
flexible in higher dimensions and can interpolate between a
MPS and a restricted Boltzmann machine.

We discuss how real-valued data can be used in conjunction
with tensor networks and suggest to learn the relevant tensor
features of real data as part of the network. Inspired by deep
network architectures, we also propose two ideas to combine
neural networks and tensor networks. In the first case we use
a neural network to extract features from the data in order to
feed them into a tensor network, in the second we combine
generalized tensor networks and neural networks in the same
deep network architecture.

We benchmark our algorithms for several generalized ten-
sor network architectures on different data sets [43]–[45]. For
image classification, we find that generalized tensor networks
outperform previously introduced tensor-network algorithms
based onMPS or trees while keeping a small dimension of the
tensors. In the context of environmental sound recognition,
we find that MPS and SBS deliver comparable performance.
This shows that SBS should also be used along with MPS
when considering one-dimensional data, especially in the
presence of long-range correlations. Furthermore theymay be
applied in other settings such as natural language processing.

The network architectures we consider have a natural
implementation on a quantum computer, which shows that
simple quantum circuits that can be simulated classically can
already achieve a good performance in supervised learning.
It is still an open question whether quantum circuits that
cannot be simulated classically will provide an advantage
over classical machine-learning techniques. The networks
we introduce may thus serve as a natural tool to test the
performance and guide the development of such circuits.

II. GRAPHICAL MODELS AND GENERALIZED TENSOR
NETWORKS
We first review definitions of probabilistic graphical models
and tensor networks, discuss their relationship and show that
the two frameworks can be connected through the definition
of generalized tensor networks in which parts of the network
can be copied and reused. Examples of generalized tensor
networks which have been successfully used in quantum
physics are introduced, and their connection to more common
machine-learning architectures is discussed.

A. GRAPHICAL MODELS
Let us consider a set of discrete random variables
X = {X1, . . . ,XN } taking values x = (x1, . . . , xN ) and a
data set of samples from these variables D = {d1, . . . ,d|D|}.
Inferring the underlying probability distribution p(x) can be
done by maximizing the log-likelihood

L =
|D|∑
i=1

log p(di). (1)

A common choice of parametrized models for p are graphical
models [46], which correspond to a factorization of the proba-
bility distribution over a graph. Consider a graphG = (V ,E),
where V is a set of vertices, E a set of edges between these
vertices (each e ∈ E is a pair of elements in V) and cl(G) is the
set of maximal cliques of the graph. An undirected graphical
model or a Markov random field defines a factorization of the
joint probability of all random variables as

p(X = x) =
1
Z

∏
C∈cl(G)

φC (xC ), (2)

where xC are the values of the variables in clique C , φC are
the clique potentials which are positive functions and Z is
the partition function that ensures normalization of the prob-
ability (Fig. 1a). Graphical models can be converted to factor
graphs [47] defined on a bipartite graph of factors and vari-
able vertices: one factor node fC is created for each maximal

FIGURE 1. (a) Undirected graphical model with three maximal cliques
depicted in colors (b) Corresponding factor graph (c) Factor graph with
hidden units in orange that are marginalized (d) Equivalent tensor
network, which is a Matrix Product State.
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clique and the factor is connected to the variables in the corre-
sponding clique (Fig. 1b). The factorization of the probability
distribution still reads

p(X = x) =
1
Z

∏
C

fC (xc), (3)

and inference can be performed through belief propagation
and the sum-product algorithm on factor graphs. To increase
the set of distributions which can be represented we can
add additional dependencies by introducing ancillary hidden
variables (which are unobserved, that is their values are not
supplied in the data) H = {H1, . . . ,HM } (Fig. 1c). The
resulting probability distribution is obtained bymarginalizing
these hidden variables, giving

p(X = x) =
1
Z

∑
h

∏
C

fC (xC ,hC ). (4)

B. TENSOR NETWORKS
Tensor networks are factorizations of tensors (multi-
dimensional arrays) into a network of smaller tensors. This
network admits a graphical notation, depicted in Fig. 2, in
which boxes represent tensors and legs coming out of these
boxes represent tensor indices. A leg joining two tensors
represents a sum (contraction) over a joint index, such that
the resulting tensor is a sum over joint indices of products of
tensors. A simple example is a matrix factorization, in which
a matrix is factorized in a product of two matrices. More
formally, we consider a graph G = (V ,E) where we add to
E edges containing only one vertex. These will correspond
to open legs in a tensor-network graphical representation.
We denote E ′ the subset of E containing edges that connect
two vertices. We associate an integer size De called the bond
dimension to each edge and define a tensor Tv ∈ ⊗e∈vRDe

for each vertex v ∈ V , with indices associated with the edges
of this vertex. A tensor-network state is defined by summing
over indices on all edges in the graph that connect two tensors.
The resulting contracted tensor network is a tensor indexed by

FIGURE 2. Graphical notation for tensor networks : (a) vector, (b) matrix,
(c) order 3 tensor, (d) vector-matrix multiplication (e) matrix-matrix
multiplication (f) matrix-tensor contraction.

the indices of the open legs, denoted as x = (x1, . . . , xN ):

Tx =
∑
e∈E ′

∏
v

Tv. (5)

A particular case are one-dimensional matrix product
states (MPS) (Fig. 1d), also known as tensor-trains [35],
which decompose a tensor as

Tx1,...,xN =
∑
e∈E ′

Ax1e1A
x2
e2,e3A

x3
e3,e4 · · ·A

xN
eN , (6)

where, for fixed value of x, Ax1 and AxN are vectors, and Axj ,
j = 2, . . . ,N −1 are matrices. On a closed chain, also known
as tensor ring [48], the corresponding decomposition is

Tx1,...,xN = Tr

 ∏
j=1,...,N

Axj

 , (7)

where all Axj are matrices, and the dimension of these matri-
ces is the bond dimension. Generalizations to trees and lat-
tices in higher dimensions have also been studied.

C. TENSOR NETWORKS AND GRAPHICAL MODELS
DUALITY
Consider a graphical model given as a factor graph in the
special case where each hidden variable is connected to two
factors, and each visible variable connected to one factor, as
is the case in Fig. 1c. Because all the variables are discrete,
each factor fC is a non-negative function of discrete variables
to which it is connected. It can therefore be written as a tensor
FC,xC ,hC with non-negative entries indexed by the variables
xC and hC to which it is connected. The factor graph then
defines a probability mass function over the visible variables
that can be represented by a non-negative tensor Px satisfying

Px =
∑
h

∏
C

FC,xC ,hC . (8)

By comparing this expression with (5), we see that this prob-
ability mass function can be interpreted as a tensor-network
state. Marginalization of a hidden variable corresponds to
contracting the indices of the different factors connected to
this variable, as indicated by the orange lines in Fig. 1d,
and the visible variables correspond to the open legs of
the tensor network. In the following we will refer to these
open legs that correspond to visible variables or data inputs
as the inputs of the tensor network. Probabilistic graphical
models with discrete variables are therefore tensor networks
of non-negative tensors. This connection has been previously
observed in particular models [49]–[52], and [53] provides
a more detailed analysis of this duality on hypergraphs.
The fact that graphical models rely on non-negative tensors,
whereas tensor networks are usually studied in the context of
real (or complex) elements, has important consequences for
the optimization algorithms. Graphical models can be used
in conjunction with expectation-maximization algorithms,
which rely on the computation of conditional probabilities
over a subset of the variables. In general, tensor networks
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cannot use the same algorithms, since they do not have
the same probabilistic interpretation. However, they can use
other powerful optimization algorithms, such as the density
matrix renormalization group (DMRG). These algorithms
can rely on the singular-value decomposition of real and
complex matrices, without the constraint of non-negativity.
A comparison of the expressive power of non-negative tensor
networks and real or complex tensor networks in the context
of probabilistic modeling has been performed in [14].

D. DUALITY WITH COPY TENSORS
Consider now the case of a probabilistic graphical model
where one hidden variable is connected to several factors, as
in Fig. 3a. To write the resulting probability mass function as
a tensor network, we need to sum over the values of the hidden
variable, which corresponds to summing over the value of
the corresponding index which appears in several tensors.
To represent this operation as a simple tensor network, we
introduce a copy tensor δ with a number of indices corre-
sponding to the number of factors connected to the hidden
variable (each index can take as many values as the hidden
variable), and such that δ is equal to one if all indices take
the same value, and zero otherwise [54], [55]. In the case of
Fig. 3a, δ is an order-3 tensor such that δijk = 1 if i = j = k
and δijk = 0 otherwise.We represent this tensor as a red dot in
graphical representation. By inserting this copy tensor in the
tensor network and connecting it to the corresponding factors,
we obtain that the probability mass function defined by the
graphical model can be represented by a tensor network, as
in Fig. 3b.

FIGURE 3. (a) Factor graph with one hidden variable connected to several
factors (b) Equivalent tensor network with copy tensor (c) Factor graph
with visible variables connected to several factors (d) Equivalent tensor
network (e) Corresponding tensor network if the visible variables have
fixed input values.

The same procedure can be used if a visible variable is
connected to several factors, as in Fig. 3c and Fig. 3d. Note
that when computing the probability of inputs x, the visible
variables take specific given values. In this case contracting
an input with a copy tensor will give the same result as fixing
the value of all legs connected to the copy tensor to the
input value and contracting the rest of the tensor network,
as in Fig. 3e.

E. APPLICATION TO RESTRICTED BOLTZMANN MACHINES
One class of probabilistic graphical model which has the
property that visible and hidden variables are connected to
several factors are restricted Boltzmann machines (RBM)
[31], [32]. They are defined on a bipartite graph with vis-
ible variables X and hidden variables H (Fig. 4a), so each
visible variable is connected to each hidden variable. The
connections between variables on this graph take the form
of Ising interactions and the probability distribution of joint
variables is

p(x,h) =
1
Z
eH(x,h), (9)

where the Hamiltonian H is a classical Ising Hamiltonian
defined as (we omit here the bias terms for simplicity)

H =
∑
i,j

wijhixj. (10)

In the case where both visible and hidden variables are binary
valued, the resulting probability distribution once the hidden
variables have been marginalized is

p(x) =
1
Z

∑
h

eH(x,h), (11)

=
1
Z

∏
i

(1+ e
∑

j wijxj ). (12)

Let us represent the corresponding factor graph, and associ-
ated tensor network. The cliques of the graph are all pairs of
visible and hidden variables, for which there is an associated
factor, which is a non-negative tensor, f (xj, hi) = ewijhixj .

FIGURE 4. (a) Restricted Boltzmann machine (RBM) (b) Corresponding
tensor network (c) Corresponding tensor network when the input values
are fixed and the input copy tensors contracted (d) Same tensor network
with a reordering of the inputs and tensors.
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By inserting a copy tensor at the position of the hidden
variables, as well as of the input variables, we obtain the
tensor network representation of the RBM in Fig. 4b [55].

F. RELATIONSHIP WITH MODELS USED IN QUANTUM
PHYSICS
If we look at the graph for the tensor network equivalent to the
restricted Boltzmann machine in Fig. 4b, we observe that this
graph has many loops. Nevertheless, one can efficiently and
exactly compute p(x) for arbitrary size using (12). This comes
from the fact that if we fix the values of the input variables
and contract the copy tensors connected to the inputs, then
the corresponding tensor network has no loops, as depicted
in Fig. 4d.

Particular architectures of tensor networks satisfying the
same property are tree tensor networks with copied inputs
[10], [39]. Other examples of such networks have been used
in the quantum physics community. The simplest example
are entangled plaquette states (EPS) [36]–[38], also known
as correlator product states, in which the tensor network
is defined as a product of smaller tensors on overlapping
clusters of variables:

Tx1,...,xN =
P∏
p=1

T
xp
p , (13)

where a coefficient T
xp
p is assigned to each of the 2np (for

binary variables) configurations xp of the variables in clus-
ter p. Because the clusters overlap, the value of each vari-
able is copied to all the tensors in which it is included
(Fig. 5d). A sparse or short-range RBM is a special case of
EPS [51], [52], in which the tensor T

xp
p takes the particular

form (1+ e
∑

j wpjxj ), where the sum is limited to the variables
in each cluster.

FIGURE 5. (a) Restricted Boltzmann machine (RBM) consisting of visible
and hidden variables (b) String-bond state with 1D geometry generalizing
RBM. The legs corresponding to contracted indices in each MPS are
depicted in orange for visibility. (c) Short-range RBM with local
connections between visible and hidden variables (d) Entangled
plaquette state (EPS) generalizing the short-range RBM.

Another example are string-bond states (SBS) [33], [34],
defined by placing MPS over strings (each string s is an
ordered subset of the set of variables) on a graph which does
not need to be a one-dimensional lattice. The resulting tensor
network is

Tx1,...,xN =
∏
s

Tr

∏
j∈s

A
xj
s,j

 . (14)

The value of each visible variable is copied and sent to
different MPS (Fig. 5b). It was shown in [52] that a RBM
is a special case of SBS for which each string is associated
with a hidden variable and covers all visible variables, and
the matrices are taken to be

A
xj
s,j =

(
1 0
0 ewsjxj

)
. (15)

SBS thus provide a generalization of RBM that is naturally
defined for discrete variables of any dimension and can intro-
duce different correlations through the use of higher dimen-
sional and non-commuting matrices. Since SBS also include
a MPS as a particular case, they provide a way to interpolate
between a MPS (large bond dimension, only one string) and
a RBM (bond dimension 2, diagonal matrices, many strings).
Note that a product of SMPS of bond dimensionD is anMPS
with bond dimension DS , so restricted Boltzmann machines
can be written as MPS of large bond dimension but with
diagonal matrices.

G. GENERALIZED TENSOR NETWORKS
1) INPUT FEATURES FOR TENSOR NETWORKS
In many cases of interest, data is not discrete, but instead
given in the form of real numbers. In order to train tensor
networks to perform machine learning tasks on such data,
it has been suggested to define feature vectors from the
data, and then to contract these feature vectors with a tensor
network to define a function of the inputs [16], [17]. Consider
for example input data given as real numbers {x1, . . . , xN } and
define feature vectors

vi =
(
1
xi

)
. (16)

Now it is possible to use a tensor network to define a function
of the inputs by contracting these vectors with the open legs
of a tensor network, as depicted in Fig. 6 in the case of aMPS.

FIGURE 6. MPS with feature vectors as inputs.
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2) COPY OPERATION WITH VECTOR INPUTS
We would like to extend the previous results that use copy
tensors to copy the inputs of the tensor network, allowing
to efficiently contract complex tensor networks when the
inputs are given. This idea that input data may be copied is
also used in other machine learning architectures, such as for
example Convolutional Neural Networks (CNN): a convolu-
tional layer applies several filters to local clusters of input
variables. In order to apply different filters to the same input
data, this data needs to be copied and fed to the different
parts of the neural network. In the case of tensor networks,
we face the problem that copy tensors can only be used to
copy discrete inputs [39]. Placing copy tensors as the input
of the tensor network will therefore not have the expected
effect.

For these reasons we introduce a different notion of copy,
that we call the copy operation, that allows to copy real
vectors. We will call the models that use this feature gen-
eralized tensor networks, to distinguish them from tensor
networks with copy tensors, and we will restrict ourselves
to the special cases in which these networks can be effi-
ciently contracted as long as the inputs have fixed val-
ues. In the special case where the copy only takes place
at the level of the input variables, and that these variables
are discrete, then these networks will coincide with ten-
sor networks that use a copy tensor at the level of the
input legs.

We graphically depict the copy operation through a red
dot between edges of the graph and an arrow which marks
the incoming edge. The copy operation takes a vector as
input, and it outputs two identical copies of it (Fig. 7). This
operation is equivalent to having two copies of the input
contracted with the rest of the tensor network, and we depict
this fact by using the same colors for the same tensors. In the
case were the input is a discrete variable, we define the copy
operation so that it has the same effect as the copy tensor that
simply copies this variable.

More generally, we can use this property to define com-
plex generalized tensor networks where the copy operation is
used at different places in the network. The resulting tensor
networks are well defined if they can be expressed as a tensor
network using several times the same tensor. Generalized
tensor networks are therefore tensor networks that use weight
sharing between some tensors, and such that several copies
of the inputs may be used. In Fig. 7 we provide examples of
such a mapping to clarify the definition of generalized tensor
networks.

3) ARCHITECTURES USED IN THIS WORK
The previous examples of EPS and SBS can be straightfor-
wardly extended to generalized tensor networks by replacing
the copy tensors as inputs by copy operations, so that they
can be used with feature vector inputs. More generally, one
can think of complex networks built using the copy operation
for gluing different networks together. In practice, we will
consider the following network architectures, in the case

FIGURE 7. (a) Copy operation of a vector input Ai , resulting in a new
tensor Bij = Ai Aj (b), (c) and (d) : Mapping of generalized tensor
networks with copy operation to tensor networks with weight sharing
(indicated by the same colors of the tensors) and copied input vectors or
discrete inputs. (e) This representation is not defined because the copy
operation only applies to vectors.

where the inputs have a two-dimensional geometry, such as
images:

• EPS with 2 × 2 overlapping plaquettes with weight
sharing such that the tensor for each plaquette is the same
(Fig. 8a).

• SBS defined with horizontal and vertical strings cover-
ing the 2D lattice (Fig. 8b). We will denote this kind
of SBS as 2D-SBS. Correlations along one of the two
dimensions can be captured in the corresponding MPS,
and more complex correlations are included through the
overlap of the different strings.

• SBS consisting of 4 strings, each covering the whole lat-
tice in a snake pattern, but in a different order (Fig. 8c).
We denote these SBS as snake-SBS. They have the
advantage, compared to a MPS, that two nearest neigh-
bours variables always appear next to each other in one
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FIGURE 8. Possible geometries of generalized tensor networks in 2D:
(a) EPS. (b) 2D-SBS consisting of horizontal and vertical overlapping
strings. (c) Snake-SBS consisting of 4 overlapping strings in a snake
pattern.

of the 4 strings, thus rendering the capture of strong local
correlations efficient. More complex string geometries
could be considered, and the choice of string could be
itself learned with a RBM.

• EPS with an extra output leg in each plaquette, and such
that the outputs are copied and taken as input into a SBS
(Fig. 9). The input variables are first copied and fed into
overlapping clusters parametrized by tensors. The output
leg of each of these tensors is a vector which is copied a
few times. Each of these copies can then be contracted
with the open legs of a different MPS, forming together

FIGURE 9. EPS-SBS consisting of a first layer of EPS, followed by a copy
operation and a second layer of SBS.

a SBS. In 2D, we choose 2 × 2 overlapping plaquettes
in the first layer, and 4 strings forming a snake-SBS
in the second layer. In the following we will call this
generalized tensor network EPS-SBS.

These are simple examples of generalized tensor networks
inspired from models invented in quantum physics to capture
correlations on 2D lattice systems. More complex networks
based on trees or hierarchical designs with more than two
layers can also be constructed in the same way.

We note that there is a relationship between EPS and one
layer of a CNN : in the case of discrete inputs, there is a finite
number of possible different filters that are applied in a CNN.
If we represent the local convolutional operation as a function
from discrete inputs, then this function can be represented as
a tensor. The fact that convolutional filters are applied with a
small stride over an input image corresponds to the overlap of
the plaquettes in an EPS, and so EPS correspond to the first
layer of a CNN applying all possible filters on discrete inputs.

These generalized tensor networks have the advantage,
compared to standard tensor networks, that they can be easily
defined in arbitrary dimension and geometry while remaining
efficient to contract, as long as the input is fixed. This is
in contrast to a 2D tensor network previously introduced
in physics known as projected entangled pair states [56],
which is naturally defined in higher dimensions, but cannot
be contracted exactly efficiently. In particular, 2D-SBS form
a subclass of projected entangled pair states that remains
efficient to contract.

Another advantage of generalized tensor networks is that
they can represent some functions with fewer parameters
than regular tensor networks without copy tensors. Indeed,
tensor networks such as MPS or tree tensor networks satisfy
a constraint known as area law, which implies that they
will require a number of parameters that is exponential in
the number of variables to represent functions not satisfying
this constraint, whereas generalized tensor networks such as
SBS or RBM can represent some of these functions with a
polynomial number of parameter [39], [57].

III. SUPERVISED LEARNING ALGORITHM
Graphical models are often used in conjunction with unsuper-
vised learning algorithms, since they are designed to repre-
sent probability distributions. In particular cases it is possible
to compute the normalization Z , which gives exact access
to the likelihood and makes maximum likelihood estimation
tractable. This is possible for graphical models and tensor
networks on trees and has led to an algorithm for generative
modeling with MPS [14], [40]. In the more general case,
which includes RBM, the normalization Z cannot be com-
puted efficiently. Approximate algorithms relying on Monte
Carlo sampling can then be used, such as contrastive diver-
gence [32], [58]. Generalized tensor networks suffer from the
same issue, whichmakes unsupervised learning computation-
ally expensive. Since these networks correspond to quantum
states, it might be possible to implement them on a quantum
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computer and sample from them efficiently. In this work we
focus instead on supervised learning, where access to the
normalization Z is not necessary. In this section we discuss
howRBMcan be used for supervised learning, and generalize
the corresponding algorithm to tensor networks.

A. SUPERVISED LEARNING WITH RESTRICTED
BOLTZMANN MACHINES
We first review how RBM can be used to perform supervised
learning, in a classification setting [59], [60]. Given labelled
training data D = {(xi, yi)}, where the yi take discrete values
corresponding to different classes, a RBM can be used to
approximate the joint probability distribution of the variables
and labels:

p(x, y) =
1
Z

∑
h

eH(x,h,y) (17)

In such a model, the label is seen as an additional visible vari-
able (Fig. 10a), possibly encoded in a one-hot representation
to use only binary units. Training such a generative model can
be done by maximizing the log-likelihood of the data. Since
the likelihood is intractable, because the partition function Z
cannot be efficiently computed, such a training can be done
through approximate algorithms such as contrastive diver-
gence. In supervised learning, one is interested in computing
the conditional distribution

p(y|x) =
p(x, y)∑
yj p(x, yj)

, (18)

which can be computed exactly when the number of classes
is small enough, since the two partition functions cancel.
The label predicted by the model for new data xi is the
label maximizing p(y|xi). Since one is ultimately interested in
classification performance, it can be advantageous to directly
optimize p(yi|xi), which leads to a cost function to minimize

Ldiscriminative = −

|D|∑
i=1

log p(yi|xi), (19)

whose gradient can be computed analytically. A RBM can
moreover be trained in a semi-supervised way, by using a
combination of discriminative and generative training.

B. SUPERVISED LEARNING WITH GENERALIZED TENSOR
NETWORKS
To generalize the discriminative training of RBM to general-
ized tensor networks, we would like to approximate the joint
probability distribution of the variables and labels as a tensor
network:

p(x, y) ∝ GTN(x, y), (20)

where GTN(x, y) is the function resulting of the contraction
of a generalized tensor network with the inputs features and
with the discrete label variable. More specifically, in the case
of discrete variables the variables x and y fix the values of the
open legs of the generalized tensor network, and the whole

FIGURE 10. (a) A classification RBM turns the label into an additional
visible unit. (b) The same procedure can be defined for a SBS by adding a
node corresponding to the label, and corresponding tensors which
connect it to the rest of the tensor network. (c) Generalized tensor
networks can be combined with additional layers of neural networks. For
example an EPS output is a tensor that can be combined with a linear
classifier.

network is contracted, resulting in a scalar. In the case of input
variables that are feature vectors, each vector is contracted
with the corresponding open leg of the tensor network. In
order for the cost function to be well defined, the result of
the network contraction should be positive. This can be done
by ensuring that the tensor elements are positive, as in a
RBM or graphical model, or by choosing instead p(x, y) ∝
(GTN(x, y))2, which corresponds to a Born machine [14],
[61], [62], or p(x, y) ∝ eGTN(x,y). In the following we will
adopt this last choice, for which training is found to be more
efficient.The label is now seen as the index of one tensor.
Since it is discrete, there is no need to use a one-hot represen-
tation and one can simply enlarge the dimension of the leg of
a tensor to accommodate for the number of possible classes
(Fig. 10b). We then define, by analogy with the graphical
model case,

p(yk |xi) =
eGTN(xi,yk )∑
yj e

GTN(xi,yj)
, (21)

which can be seen as a softmax function applied to the
different outputs of the tensor network contraction, and the
cost function is again chosen to be a cross-entropy loss

Ldiscriminative = −

|D|∑
i=1

log p(yi|xi). (22)
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The gradient of the cost function can then be expressed as a
function of GTN(xi, yj) and its derivatives, since

∂ log p(yi|xi)
∂w

=
∂GTN(xi, yi)

∂w
−

∑
yj

p(yj|xi)
∂GTN(xi, yj)

∂w
.

(23)

GTN(xi, yj) can be computed exactly by fixing the value
of the input units and labels and contracting the network.
We note that in general we can contract the whole network
without the labels, and perform the contraction for the differ-
ent labels as a last step. Contraction of the whole network for
different labels thus only adds a small cost (which depends on
the shape of the network) to the contraction of the network
without labels. We observe that from the point of view of
supervised learning there is no essential difference between
SBS and MPS in terms of the optimization algorithms: the
cost of optimizing a SBS is only a constant factor (the number
of strings) more expensive than for a MPS. This is unlike in
quantum physics whereMonte Carlo sampling is necessary to
optimize a SBS. To further regularize the tensor network, we
randomly drop tensor elements to 0 with probability δ during
training, following the procedure in [17].

So far we have constructed tensor networks which, when
an input and a label is given, have no open legs. We can also
construct networks with open legs and use tensor networks in
combination with other machine learning techniques. In this
case the tensor network maps the input to a tensor which can
for example be used as input in a neural network. In the case
of EPS where each tensor over overlapping plaquettes has
an open leg, an input is mapped to a tensor with an extra
dimension as output. The simplest way to combine EPS with
other neural networks is to place a linear classifier on top
of the EPS (Fig. 10c). The backpropagation algorithm used
to compute derivatives of the neural network is in this case
combined with the algorithm for computing derivatives of a
tensor network, and the joint network can be optimized using
stochastic gradient descent. More complex combinations of
tensor networks and neural networks may be defined in the
same way.

IV. LEARNING FEATURE VECTORS OF DATA
In this section we explore several strategies that can be used
to deal with data that is not discrete. We suggest to learn
relevant tensor features as part of the tensor network and
discuss how tensor features can also be learned as part of a
deep learning architectures which combines a neural network
extracting features with a tensor network.

A naive way of applying tensor networks with real data
would be to discretize data or use its binary representation.
This is not a suitable approach, because that would amount
to dramatically increasing the size of the data, rendering
learning very slow, and it would also lead to large tensor net-
works prone to overfitting. Another approach, as suggested
by [16] and [17], is to map the real data to a higher dimen-
sional feature space. Each variable is first independently

FIGURE 11. (a) Real inputs Xi are mapped to a feature vector (here with
length two). This vector can then be used as input to a generalized tensor
network by contracting it with the open legs of the generalized tensor
network. (b) Feature tensors can compress the discretized representation
of the inputs Xi to a smaller dimensional space. These tensors can share
weights and can be learned as part of the tensor network.

mapped to a vector of length (at least) two in order to be
contracted with the open legs of the tensor network (Fig. 11a).
Choices of feature maps that have been used include

x →
(
1
x

)
or

cos(
π

2
x)

sin(
π

2
x)

 , (24)

and generalizations to higher dimensions. A choice which
is suitable with our algorithm, assuming that the data is
normalized between 0 and 1, is to use

x →

cos2(
π

2
x)

sin2(
π

2
x)

 , (25)

because this ensures that the vectors are positive and the
normalization prevents numerical instabilities.

These choices however put severe limitations to the func-
tions that can be learned. Indeed, the data set with just two
variables presented in Fig. 12a cannot be separated by a MPS
of bond dimension 2 with one of these feature choices, since
the boundary decision will be a polynomial of degree two of
the features. Nevertheless, a different feature choice could
distinguish the two classes, even with bond dimension 2.
We therefore suggest to learn the appropriate features as part
of the learning algorithm. This can be done by parametrizing
the feature functions and learning them at the same time as
the rest of the network. To be able to use a purely tensor
network algorithm, we can parametrize these functions using
a tensor network. In the simplest case, we discretize the real
data and use a tensor to compress the large dimensional
input into a smaller dimensional vector of suitable length,
as shown in Fig. 11b. This tensor can be learned as part of
the whole tensor network and prevents the size of the rest
of the tensor network to increase when the discretization
size changes. The feature tensor can be the same for all
variables, for example image pixels, but can be different in
the case where the variables are of different nature. Using this
procedure, a MPS of bond dimension 2 is able to get perfect
accuracy on the data set presented in Fig. 12a. Here the two
variables X1 and X2 are continuous between 0 and 1. Each
of these variables is discretized into a variable that can only
take 16 different values between 0 and 1. A tensor T of size
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FIGURE 12. (a) Dataset with two features X1 and X2 and two classes
(depicted in different colors) that cannot be learned by a MPS of bond
dimension 2 with the feature choice in (25). (b) Two normalized features
learned by a tensor while classifying the previous data set with a MPS of
bond dimension 2. The features have been discretized in 16 intervals.
Using this choice of features the MPS can classify the data set perfectly.

16×2 then represents the tensor feature map. We represent in
Fig. 12b the result TXi of the contraction between the discrete
representation of Xi and the feature tensor T . This represents
the two features that the network has learned, and corresponds
to the functions that could have been used in the feature map
in (24). We note that starting from random features on more
complex data sets makes learning difficult, but the feature
tensor can be pretrained using a linear classifier, before being
trained with the rest of the network.

FIGURE 13. (a) Choice of two features in (25) for an input taking real
values between 0 and 1. (b) Two normalized features learned by a tensor
with output dimension 2 combined with a snake-SBS classifying the
MNIST data set. The input features x are the greyscale value of pixels,
normalized between 0 and 1 and discretized in 16 intervals.

In comparison, we also show in Fig. 13b the features
learned while classifying MNIST with greyscale pixels and
a snake-SBS (see Section V). These features are not very dif-
ferent from the choice in 25, and we could not distinguish per-
formancewith this choice or with learned features on this data
set. We expect however that this procedure will be necessary
for more complex data sets which are not easily approximated
by a binary function. Moreover the size of the feature vector
provides a regularization of the model, and higher sizes might
be necessary for more complex data sets. More generally this
tensor could be itself represented with a small tensor network,
to prevent the number of parameters to increase too much
with a very small discretization interval. It is interesting to
note that the features learned in our examples are almost
continuous even if we use smaller discretization intervals.
This means that two real inputs that are close to each other
will lead to the same predictions by the network, a property
which is in general not true if we simply discretize the inputs
and use a larger tensor network. Our approach of learning

the features as part of the tensor network may be especially
relevant in the context of quantum machine learning, where
the tensor network is replaced by a quantum circuit and it
might be suitable to have the full network as part of the same
quantum machine learning architecture.

As an alternative way of choosing the features, we can
combine the feature choice with other machine learning tech-
niques. If the input data represents images, it is a natural
choice to use Convolutional Neural Networks as feature
extractors, since these have been highly successful for image
classification. CNN consist in convolution filters, which use
convolutional kernels to transform an image into a set of fil-
tered images, and pooling layers which downsize the images
(Fig. 14). The resulting features preserve a form of locality.
Therefore it is natural to consider the vector of applied filters
associated with each location in the image as a feature vec-
tor that can be used in conjunction with generalized tensor
networks. The CNN and the tensor network can be trained
together, since the derivatives of the tensor network can be
used in the backpropagation algorithm which computes the
gradient of the cost function.

FIGURE 14. Using Convolutional Neural Networks as feature vector
extractors from real data: the output of the CNN is seen as an image with
a third dimension collecting the different features. For each pixel of this
image, the vector of features is contracted with the open legs of a tensor
network.

V. NUMERICAL EXPERIMENTS
We test the generalized tensor network approach on the task
of image classification, where a natural two-dimensional
geometry that can be reflected in the architecture of the
tensor network is present, as well as on the task of urban
sound recognition, where the time dimension provides a one-
dimensional geometry.

A. IMAGE CLASSIFICATION
We first consider the MNIST data set [44], which consists
of 28 × 28 greyscale images of digits. There are 10 classes
and we adopt a multiclass classification procedure in which
one tensor of the tensor network is parametrized by the ten
possible labels. The original training set is split into training
and validation sets of 55000 and 5000 examples and the per-
formance of the different models is evaluated on the test set of
10000 examples. We consider the following generalized ten-
sor networks: a snake-SBS with 4 strings (Fig. 8c), a 2D-SBS
(Fig. 8b), an EPSwith a 2×2 translational-invariant plaquette
combined with a linear classifier, (Fig. 10c), an EPS-SBS
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FIGURE 15. Examples of images from the MNIST (a) and fashion MNIST
(b) data set.

with translational-invariant plaquette combined with a snake-
SBS (Fig. 9) and a CNN-snake-SBS which uses a 1-layer
CNN as input features (Fig. 14). The CNN considered here
uses a convolutional layer applying 6 5 × 5 filters (stride 1)
with ReLU activation function and a pooling layer perform-
ing max pooling with a 2 × 2 filter. All other networks use
the choice of features presented in (25) and the greyscale
values are normalized between 0 and 1. We compare the
performance of these networks with a MPS [16] and a RBM
(the number of hidden units of 250, 500, 750 or 1000 is
taken as a hyperparameter). All networks use a batch size of
20 examples and hyperparameters such as the learning rate α
and the regularization rate δ are determined through a grid
search while evaluating the performance on the validation
set. Best performance is typically achieved with α = 10−4,
δ = 0.95 and a hundred epochs of training.

FIGURE 16. Test set accuracy of different generalized tensor networks on
the MNIST data set.

The test set accuracy, presented in Fig. 16, shows that even
with a very small bond dimension generalized tensor network
are able to accurately classify the data set. Their performance
is significantly better than that of a tree tensor network [42]
or a MPS trained in frequency space [41], and while a MPS
can also achieve 99.03% accuracy with a bond dimension
of 120 [16], the cost of optimizing very large tensors has
prohibited the use of this method for larger problems so
far. The snake-SBS with bond dimension larger than 6 has
also better performance than a RBM. Since the snake-SBS
provides an interpolation between RBM andMPS, the choice

of number of strings and geometry can be seen as addi-
tional parameters which could be tuned further to improve
over the performance of both methods. All networks have
a training set accuracy very close to 100% when the bond
dimension is larger than 6, and we expect that better reg-
ularization techniques or network architectures have to be
developed to significantly increase the test set performances
obtained here. We also optimized a snake-SBS with positive
elements (by parametrizing each element in a tensor as the
exponential of the new parameters), which is a graphical
model. Using the same algorithm, wewere not able to achieve
better performance than 93% classification accuracy with
bond dimensions up to 10. This shows that while having a
structure closely related to graphical models, tensor networks
may provide different advantages.

TABLE 1. Test set accuracy of generalized tensor networks and other
approaches [43] on the fashion MNIST data set.

We then turn to the fashionMNIST data set [43], consisting
of 28 × 28 greyscale images of clothes. While having the
same size as the original MNIST data set, it is significantly
harder to classify. We report the best accuracy obtained with
different generalized tensor networks with bond dimension
up to 10 in Table 1. It is found that these networks, while
not state-of-the-art, are competitive with other approaches
such as Support Vector Machines, AlexNet and GoogLeNet
Convolutional Neural Networks or a multilayer perceptron
neural network, which is encouraging considering the poten-
tial improvements in terms of network architecture or training
algorithms. Advantages in favor of the use of tensor networks
are the adaptive choice of hyperparameters such as the bond
dimension [16], as well as the good theoretical understanding
of their properties [2], but improvements are still needed
before practical use in large-scale supervised learning.

B. ENVIRONMENTAL SOUND CLASSIFICATION
So far we have considered black and white images, but it
is also interesting to study how generalized tensor networks
could be used for other types of data. In the following we
consider the task of classifying environmental sounds. The
UrbanSound8K data set [63] is a collection of 8732 audio
clips (4s or less) divided into 10 classes of urban sounds: air
conditioner, car horn, children playing, dog barking, drilling,
engine idling, gun shot, jackhammer, siren and street music.
The data set is divided into 10 folds and we use folds 1-9
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FIGURE 17. From the raw audio signal, Mel-frequency cepstral
coefficients (MFCCs) are extracted over short overlapping windows,
resulting in a sequence of high dimensional vectors. These vectors are
taken as input to a generalized tensor network.

FIGURE 18. Training and testing accuracy of a MPS and a SBS with 4
strings on the UrbanSound8K data set. The density of parameters is the
total number of parameters divided by 174 (the length of the strings).

for training and fold 10 for testing. The one-dimensional
structure of sounds allows us to compare MPS and SBS with
the same 1D string geometry. Preprocessing of the data takes
place as follows : clips shorter than 4s are repeated to reach
a fixed length of 4s. The first 13 Mel-frequency cepstral
coefficients (MFCCs) are extracted for each clip (sampled at
22050Hz) using a window size of 2048 and hop length of 512,
resulting in a sequence of length 173 and dimension 13
(Fig. 17). The corresponding 13-dimensional vectors are used
as input feature vectors for the tensor network, and the time
dimension of the sequence corresponds to the 1-dimensional
structure of the MPS, or the strings of the SBS. Note that we
do not perform any data augmentation nor split the training
examples to enlarge the size of the data set, since we are
interested in comparing MPS and SBS, rather than achieving
the best possible accuracy on this data set. The training and
testing accuracies are reported in Fig. 18 for a MPS with
bond dimension up to 10 and a SBS with 4 strings and bond
dimension up to 5. Since we are interested in comparing the
expressivity of the different networks, no regularization is
used and training is performed until the training accuracy
does not improve anymore. Note that a MPS with bond
dimension D has as many variational parameters as a SBS
with 4 strings and bond dimension D/2.
We observe that the SBS has slightly higher training

accuracy than a MPS with larger bond dimension and the

same number of parameters. The test set performance is not
significantly different between distinct architectures and in
both cases we find that a lot of overfitting has taken place,
which is not surprising given the small number of training
examples. Higher accuracies have been reported with other
methods on the same data set. For example Convolutional
Neural Networks can reach above 70% test set accuracy [45],
however they use many more input features and rely on data
augmentation. Nevertheless our results show that SBS should
also be considered along with MPS when considering one-
dimensional data, and may be applied in other settings such
as natural language processing [64], [65].

VI. CONCLUSION
We have introduced generalized tensor networks, which
enlarge the class of tensor networks by introducing a reuse
of information taking the form of a copy operation of ten-
sor elements. The resulting networks are related to graphi-
cal models and we have discussed the strong relations that
exist between particular graphical models and tensor network
structures, such as restricted Boltzmann machines and string-
bond states. We provided an algorithm to train these models
to perform a supervised learning task and discussed several
strategies to use tensor networks in conjunction with real-
valued data. We showed that generalized tensor networks
that can be contracted exactly can perform accurate image
classification with much smaller bond dimension than regular
tensor networks, that they can be used in other settings such as
sound recognition and that they can be combined with neural-
network architectures. Tensor networks can also be seen as a
tool to simulate quantum circuits, and there is much research
trying to understand how quantum circuits can be used in
machine learning. Quantum circuits corresponding toMPS or
tree tensor networks have been studied in the context of quan-
tum machine learning [16], [27]. To implement the function
corresponding to a generalized tensor network, one would
need to copy the data at the input of the quantum circuit.
Our results thus show that quantum machine learning circuits
should take as input several copies of each data input and not
just a single one, as well as share parameters between the
different unitaries in the circuit. Generalized tensor networks
which originate from the classical simulation of quantum
states may thus serve as a testing and benchmarking platform
of near-term quantum machine learning architectures.
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