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Abstract
Through evolution, nature has provided natural products (NPs)
as a rich source of diverse bioactive material. Many drug dis-
covery programs have used nature as an inspiration for the
design of NP-like compound classes. These concepts are
guided by the prevalidated biological relevance of NPs while
going beyond the limitations of nature to produce chemical
matter that could have unexpected or novel bioactivities.
Herein, we discuss, compare, and highlight recent examples of
NP-inspired methods with a focus on the pseudo-NP concept.
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Introduction
Approaches that inspire new molecular discovery pro-
grams are at the core of chemical biology and medicinal
chemistry. As the mode of action of small molecules
compared to most genetic approaches can be rapid,
tunable, conditional, and reversible [1], the develop-
ment of selective probes is of high value for biological
applications. A key challenge that arises is the identifi-

cation of areas in chemical space, which are relevant for
bioactivity [2], because the possible number of small
molecules is at least 1060, too many to ever be synthe-
sized, nonetheless biologically evaluated [3].
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Natural products (NPs) contain privileged molecular
scaffolds with inherent biological relevance, having
themselves evolved to fulfill specific biological functions
within the context of signaling pathways and protein
interactions [4]. These frameworks are, therefore,

‘prevalidated’ representations of nature’s exploration of
biologically relevant chemical space. While numerous
NP-based drug discovery programs have successfully
used NPs or their close derivatives as endpoints [5],
other methods have thrived on using NPs as starting
points to inspire new bioactive compound collections. In
this review, recent developments in methods that are
inspired by nature will be discussed with a focus on the
recently disclosed pseudo-NPs concept.
Ring distortion strategy – complexity-to-
diversity (CtD)
An elegant approach to exploit nature’s pre-validated and
rich pool of biologically relevant molecular scaffolds was
introduced in 2013 as a ring distortion/modification
strategy by Hergenrother and co-workers [6**]. Instead

of regarding the complex structures of NPs as the final
product in a synthesis or drug discovery effort, they are
set as privileged starting points for the exploration of NP-
derived chemical space through appropriate chemical
modifications of orthogonal functional characteristics
embedded in the chosen NPs. In contrast to the tradi-
tional optimization efforts, which intend to improve po-
tency or drug-like properties of a NP, the ring distortion/
modification approach aims for significant disruption of
the overall topology of the parent NP by manipulation of
core ring systems. This approach aims for a high degree of

scaffold diversity and is, hence, referred to as the
complexity-to-diversity (CtD) strategy.

CtD is inspired by the biosynthetic pathways leading to
complex NPs where common intermediates are trans-
formed by diverse arrays of various enzymes to generate
compounds that are distinct from each other. Trans-
ferring this logic into the hands of organic chemists,
enzymes become chemoselective reagents, which
enable the strategic manipulation of a suitable NP
through ring-cleavage, ring-rearrangement, ring-fusion

and modification of ring-size (expansion or contrac-
tion), and/or its oxidation state (e.g., aromatization), as
illustrated in Figure 1a.
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Figure 1
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(a) General depiction of the ring distortion strategy. (b) Ring contraction (highlighted in red) and diversification (highlighted in blue) of pleuromutilin to give
a thiredoxin inhibitor, ferroptocide. (c) Ring-fusion of cinchona alkaloids to provide oxazatwistanes (highlighted in red). Further diversification (highlighted
in blue) and phenotypic screening provided the autophagy inhibitor oxautin-1.
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A synthetic proof of concept was outlined by the diver-
sification of several NPs, including gibberellic acid [6**],
adrenosterone [6**], quinine [6**], abietic acid [7],
yohimbine [8], sinomenine [9], and lycorine [10]. A
recent example demonstrated the biological relevance of
CtD by the diversification of pleuromutilin and subse-
quent biological evaluation (Figure 1b) [11*]. In total, 29
structurally diverse and highly complex derivatives of

pleuromutilin were synthesized using CtD and screened
in a phenotypic assay for anticancer activity. A ring-
contraction product of pleuromutilin was further elabo-
rated to ferroptocide and was found to rapidly induce
ferroptotic death of cancer cells by inhibiting thioredoxin.

The biological relevance of the CtD approach was
further verified by Laraia et al., focusing on the diver-
sification of oxazatwistanes (Figure 1c) [12*]. The
synthesis commenced with an intramolecular ether-
ification of cinchonine or quinidine to install the ring-

fused non-natural oxazatricyclo[4.4.0.0]decane scaf-
fold. Subsequent metal-catalyzed cross-coupling re-
actions and CeH functionalization were used to further
modify the quinoline core to afford a total of 47 com-
pounds that were subjected for biological evaluation in a
range of phenotypic assays. The identification of several
autophagy inhibitors, an activity not exhibited by
cinchona alkaloids at concentrations up to 30 mM [13],
demonstrated that significant changes in the topology of
NPs might lead to novel NP-inspired molecular frame-
works that are endowed with different bioactivity pro-

files than their natural predecessors.
Biology-oriented synthesis
Biology-oriented synthesis (BIOS) is a design principle
to generate small molecules as tools for the study of
complex biological systems [4,14,15**]. In nature,

evolutionary conservation of molecular architectures
leads only to a limited number of possible small-
molecule binding sites [16]. Analogously, NPs have
come from the function-driven evolution of biosynthetic
pathways. Whereas the surrounding substitution pat-
terns can be highly diverse, the core scaffolds are
conserved. BIOS uses NPs as prevalidated starting
points in the development of bioactive molecules. From
a chemoinformatic structural analysis of NPs [2],
simplified core scaffolds have been identified that may
transfer biologically relevant characteristics to the

resulting synthetic molecule [17]. Diversification of
substituent patterns can lead to specific selectivity
profiles and can provide NP-inspired compound collec-
tions that are more elaborate and have enriched bioac-
tivity relative to combinational libraries. Therefore, the
size of the compound collection can be reduced while
increasing bioactivity hit rates.

The application of BIOS in providing compounds for the
development of optimized structures, for example, in
www.sciencedirect.com
potency or pharmacodynamic properties, has been
shown in various examples. Secoyohimane NPs such as
rychnophylline (Figure 2a) are known for their neurite
growth-promoting properties [18e20]. The simplifica-
tion to the spiro-core scaffold composed of four
connected rings allowed the synthesis of five de-
rivatives, which are active in neurite growth assays [21].
Similarly, derivatives of the NP sominone (Figure 2b)

with the dehydro-d-lactone motif were identified as
potent inhibitors of the Hedgehog signaling pathway
[22]. Overall, the BIOS approach has structurally and,
thereby, synthetically simplified NPs to provide small
molecules that have new or improved bioactivities.
Pseudo-natural products
While several approaches have been developed to pro-
duce novel bioactive compound collections, they may
have limitations. The CtD approach gives rapid access
to diverse biological space through chemical derivatiza-
tion of NPs. However, the use of NPs as a starting point
may present a chemical limitation because the avail-
ability of sufficient quantities of many NPs is restricted.
Nevertheless, complex polycyclic scaffolds that are NP-
like can be directly synthesized and distorted [23]. In

BIOS, NPs inspire the synthesis of structurally simpli-
fied but biologically relevant compound collections. NPs
occupy a large yet limited amount of chemical space
[24]. However, NP-like chemical space is significantly
larger than existing NP scaffolds and therefore presents
a chemical limitation of BIOS. From a biological view-
point, these compounds may retain similar bioactivities
to the structurally related parent NP, thereby limiting
the exploration of biological space [17].

Methods that allow for rapid access to biologically
pertinent chemical space while retaining biological

relevance to NPs may provide useful compound collec-
tions. This matching led to the development of the
pseudo-NP approach [25**,26**] in which bioactive
compound classes are obtained through combining
strategies that take inspiration from nature, such as
BIOS, with principles that efficiently cover a vast
amount of chemical space, such as fragment-based
compound design. In a cheminformatics analysis, more
than 180,000 NPs were analyzed and simplified to
approximately 2,000 NP-based fragment classes in
which the properties of the NPs were retained [27]. It

was hypothesized that the de novo combination and
arrangement of the NP fragments could give unprece-
dented combinations or fusion patterns that may pro-
vide novel scaffolds that are significantly different from
NPs and other NP-based collections (Figure 3a). These
compounds could retain biological and chemical rele-
vance to NPs but extend beyond the biologically rele-
vant chemical space explored by nature. The new
compound classes resemble NPs but are not accessible
through existing biosynthetic pathways. Therefore, they
Current Opinion in Chemical Biology 2020, 56:111–118
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Figure 2
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The BIOS approach with (a) rychnophylline and (b) sominone, which provided compounds that promote neurite growth and inhibit the Hedgehog signaling
pathway, respectively.
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were termed ‘pseudo-natural products’ (pseudo-NPs).

The term pseudo-NPs has been previously used by Suga
et al. and Oshima et al. to describe cyclic peptides
[28,29] and products from intercepted biosynthetic
pathways [30,31], respectively.

The general design criteria of pseudo-NP compound
classes should combine NP-fragments with diverse
bioactivities, providing structures that have chirality and
complementary heteroatom content, such as oxygen and
nitrogen. Furthermore, the merging of biosynthetically
unrelated fragments may be advantageous for inducing

new bioactivities. Further principles can provide
expansive libraries based on different connectivity pat-
terns of the same NP-fragment combinations. For
example, the chromane and tropane fragment could be
combined in different ways to provide spiro-fused or
edge-fused compounds (Figure 3bi). Other compounds
could retain the same connectivity pattern but have
different connection points (Figure 3bii). Finally, more
than two fragments could be connected in various pat-
terns (Figure 3biii).

The pseudo-NP design principle may lead to new
scaffolds that could have unexpected or unprecedented
biological targets. To biologically evaluate these com-
pounds, unbiased assays can be used to monitor entire
biological systems, such as signaling cascades and
phenotypic changes, instead of individual targets [32].
Current Opinion in Chemical Biology 2020, 56:111–118
Beyond individual phenotypes, multiparametric high-

content image screening technologies, such as the ‘cell
painting’ assay, can be used to assist hypothesis gener-
ation of the biological target or pathway that is being
affected [33]. In addition, such phenotypic profiling
enables evaluation of library performance diversity and
activity distributions across sub-library classes, hence
allowing informed library designs toward high perfor-
mance diversity or hit expansion into promising struc-
ture classes [34].

The first example of the pseudo-NP concept provided

an unprecedented combination of a chromane and a
tetrahydropyrimidone (THPM) fragment through a
bridged fusion connection (Figure 4a) [25**]. The
‘chromopynone’ library was synthesized in a telescoped
manner via a variant of the Biginelli reaction followed by
a single-flask, multistep reaction cascade. Biological
evaluation of the chromopynone collection showed in-
hibition in glucose uptake assays. (e)-(R,R)-Chromo-
pynone-1 was the most potent compound in the library,
selectively inhibited glucose transporters GLUT-1 and
GLUT-3, and inhibited cancer cell growth. It is inter-

esting to note that the bioactivity of the pseudo-NP was
neither shared by 2,801 compounds that contain the
chromane fragment or substructure nor 1,270 com-
pounds containing the THPM fragment or substructure
in glucose uptake assays. Therefore, the combination of
chromane and THPM fragments provided novel
www.sciencedirect.com
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Figure 3
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(a) Design of pseudo-NPs through deconstruction of NPs and mixed reassembly. (b) Variation of (i) connectivity patterns, (ii) connection points, and (iii)
the combination of more than two NP-fragments in pseudo-NP design.
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bioactivity that is unrelated to the two independent NP
fragments.

Indotropanes were reported as a class of pseudo-NPs

that combine the biosynthetically unrelated fragments
indole and tropane through a bipodal connection (Figure
4b). Cu-catalyzed 3 þ 2 cycloaddition reactions were
www.sciencedirect.com
used to provide a stereogenically complex library of
indotropanes [35]. After biological evaluation, myoki-
nasib was found to induce extensive cell rounding and to
impair cell division, causing multinucleation [36*]. It

was hypothesized that this phenotype may be due to
failed cytokinesis. From a kinase panel and several vali-
dation experiments, the phenotype could be attributed
Current Opinion in Chemical Biology 2020, 56:111–118
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Figure 4
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Design and implementation of the pseudo-NP method to provide (a) chromopynone, (b) indotropane, and (c) pyrano-furo-pyridone compound classes.
Unique bioactivities were found within the compound classes of GLUT-1/-3, MLCK1, and mitochondrial complex I inhibition, respectively.

116 Next generation therapeutics
to the inhibition of MLCK1. Myokinasib is the first
selective, isoform-specific inhibitor of MLCK1. Relative

to typical ATP-competitive kinase inhibitors, which are
usually flat and aromatic, myokinasib is stereogenically
Current Opinion in Chemical Biology 2020, 56:111–118
complex and has a three-dimensional shape. The un-
precedented combination of the indole and tropane led

to a pseudo-NP that has unprecedented bioactivity and
is a novel chemotype for kinase inhibition.
www.sciencedirect.com
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2-Pyridone and dihydropyran NP fragments comprise
several unique structures and biological activities. Using
either a Pd-catalyzed Tsuji-Trost cascade, a Pd-catalyzed
Tsuji-Trost oxa-Michael cascade or a quinine-mediated
Michael transacetalization cascade, these rarely related
NP fragments could be fused in three distinct bipodal
attachment point isomers to provide a compound library
of pyrano-furo-pyridones (PFPs) (Figure 4c) [37*].

Morphological profiling by means of a cell painting assay
enabled the prioritization of substructure class A and
guided the discovery and identification of PFP A as a
structurally novel inhibitor of mitochondrial complex I.
Further analysis of the cell painting data indicated
general trends in structureephenotype relation, which
could be subsequently confirmed in a structureeactivity
relationship study by a cell-based fluorogenic assay
measuring the production of mitochondrial superoxide
(MitoSOX Red assay).
Conclusions and outlook
Nature continues to be a source of inspiration for the
design of novel bioactive compound collections. The
CtD approach synthetically mimics enzymatic processes
by chemically functionalizing and distorting NPs to

structurally diverse compound collections. In BIOS,
NPs inspire the synthesis of structurally simplified
compound collections that are enriched in bioactivity.
Nevertheless, the CtD and BIOS approaches may be
limited due to their focus on specific NP scaffolds as
starting points.

The pseudo-NPs principle aims to combine the bio-
logical relevance of NP-guided methods with the rapid
chemical exploration of fragment-based ligand discovery
through the deconstruction of NPs to fragments and
their mixed reassembly to provide scaffolds that are

unprecedented in nature. The three classes of pseudo-
NPs discussed here provide support that pseudo-NPs
may display novel and unexpected bioactivities that
differ from the parent NPs. We expect that the design
principle of pseudo-NPs will provide compound collec-
tions that will have significant value toward the explo-
ration of biologically relevant chemical space, eventually
disclosing novel molecular architectures eliciting
potentially unprecedented modes of actions, which can
be developed further to chemical probes or serve as
privileged starting points in chemical biology and drug

discovery projects.
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