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Where is Cingulate Cortex?
A Cross-Species View
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Cingulate cortex is a hub of cognitive and
emotional control, and it is highly pre-
served across mammals. As such,
muchof our knowledgeon cingulate cor-
tex relies on a synthesis of findings
across species.

One crucial obstacle to such cross-
species comparisons is a striking dis-
crepancy in anatomical definitions. In
most mammals, the border between
subregions of the cingulate cortex is
drawn along the rostrocaudal axis, but
in mice and rats it has been routinely
drawn perpendicularly to this axis.
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To compare findings across species, neuroscience relies on cross-species
homologies, particularly in terms of brain areas. For cingulate cortex, a structure
implicated in behavioural adaptation and control, a homologous definition
across mammals is available – but currently not employed by most rodent re-
searchers. The standard partitioning of rodent cingulate cortex is inconsistent
with that in any other model species, including humans. Reviewing the existing
literature, we show that the homologous definition better aligns results of rodent
studies with those of other species, and reveals a clearer structural and func-
tional organisation within rodent cingulate cortex itself. Based on these
insights, we call for widespread adoption of the homologous nomenclature,
and reinterpretation of previous studies originally based on the nonhomologous
partitioning of rodent cingulate cortex.
This rarely discussed discrepancy has
given rise to apparent inconsistencies in
cingulate cortex structure and function,
within and across species.

A homologous nomenclature of
cingulate cortex across species was
proposed in 2005, but has so far been
rarely used in relevant studies.

We argue that applying the homologous
definition aligns the structure and func-
tion of rodent cingulate cortex with that
of other species. It also better reflects
the inherent structure of rodent cingulate
cortex itself.
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Cingulate Cortex – a Cross-Species History
Evolutionary success depends on the ability to operate flexibly in a changing environment. This
encompasses skills such as planning tasks, selecting among sensory inputs, inhibiting learned
actions, and over-riding automatic behaviours. Such operations are mediated to a large extent
by prefrontal circuits [1]. Prefrontal cortex consists of several substructures, among them the cin-
gulate cortex. Cingulate cortex plays a particularly central role in various functions related to be-
havioural flexibility, ranging from autonomic regulation to action selection and performance
monitoring – both in health [2–5] and disease [6,7].

While evidence broadly suggests that cingulate cortex can be divided into a number of structurally
and functionally distinct regions [5,8,9], the definition of these regions has undergone several
changes throughout the past century. In the past decades, the field has begun to converge on
a partitioning system that divides cingulate cortex into several regions along the rostrocaudal
axis. The two most anterior of these regions are referred to as anterior cingulate cortex (ACC)
and midcingulate cortex (MCC), or alternatively have often been described as ventral ACC
(vACC) and dorsal ACC (dACC) (for clarity, we will adhere to the ACC/MCC designation through-
out the article (see Box 1 for details on the history of partitioning systems for cingulate cortex). This
nomenclature has successfully been implemented across species, including nonhuman primates
and rabbits, but has rarely been used in mice and rats (Figure 1, Key Figure).

Even though studies in mice and rats have played a key role in elucidating neuronal mechanisms
by which cingulate cortex drives behavioural regulation [8], the anatomical partitioning system
they most commonly use, as discussed in more detail later, cannot be directly translated to
findings in virtually any other species, in terms of both structure and function [10–13]. Specifically,
the nomenclature typically applied in rodents divides cingulate cortex into cingulate area 1 (Cg1)
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Box 1. History of Human Cingulate Cortex

Human cingulate cortex has undergone several remappings over the past century. Brodmann [121] originally divided it into
precingulate and postcingulate cortex, with precingulate cortex corresponding to what researchers have since referred to as the
ACC and postcingulate cortex corresponding to what today is known as posterior cingulate cortex (PCC). However, in the early
1990s, following the advent of functional neuroimaging methods, studies failed to demonstrate a uniform activation of the ACC in
a variety of contexts [122–126]. For instance, emotional processing; for example, in tasks involving emotive facial expressions or emo-
tionally charged voices, results in activation of a portion of perigenual ACC; whereas cognitive processing, for example, in stimulus–
response selection tasks under cognitive load, results in activation of the posterior part of ACC, adjacent to the PCC [3,27].

To account for this observed dichotomy in activation patterns, ACC was subsequently subdivided into vACC (indicating
the anterior segment, surrounding the genu of the corpus callosum; also referred to as rostral ACC) and dorsal ACC (in-
dicating the posterior part, dorsal to the corpus callosum and adjacent to PCC; [127]). Around the same time, Vogt
[5,119] argued that based on anatomical features such as cytoarchitectural borders, receptor distribution, and connectiv-
ity profile, as well as on functional divisions, vACC differ from each other to an extent that suggests they should be
regarded as distinct structures altogether, rather than as subdivisions of the same ‘anterior cingulate’ structure. To this
end, Vogt [128] introduced a nomenclature by which vACC is referred to as ACC and dACC is considered part of
midcingulate cortex (MCC (see Figure 1 in main text). Since the publication of Vogt’s book on the cingulate cortex in
2009 [5], which was based on a wide-ranging synthesis of the literature available at the time, argued in favour of a clear
distinction between ACC and MCC, the scientific community has increasingly adopted this nomenclature. This transition
has proved useful, laying the ground for integrating data on differences in function, connectivity, and potential malfunctions
into a comprehensive model of ACC and MCC functioning [15]. Furthermore, cross-species comparisons were bolstered
as ACC and MCC could be identified consistently in the primate, rabbit, and rodent brains [15].
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Key Figure

Midsaggital View of ACC and MCC across Species
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Figure 1. Light red, ACC. Light blue, MCC. Presented are the human, monkey, rabbit, and rodent brains. For the rodent, both the non-homologous Cg1/Cg2 and the
homologous ACC/MCC nomenclature are shown. Abbreviations: ACC, anterior cingulate cortex; Cg1, cingulate area 1; Cg2, cingulate area 2; IL, infralimbic cortex;
MCC, midcingulate cortex; PL, prelimibic cortex.
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and cingulate area 2 (Cg2), drawing the border between Cg1 and Cg2 exactly perpendicularly to
that between ACC and MCC as applied in other mammals [5,11,14,15]. As a result, both Cg1
and Cg2 cover parts of what would be considered ACC and MCC in other mammalian species.

This breakdown in cross-species comparability was first addressed by Vogt et al. [16]; and amap
of rodent ACC andMCC homologous to that in other mammals was subsequently generated and
validated [11], with rodent ACC covering Brodmann areas 24, 25, and 32, and rodent MCC
covering A24′ (from here on, areas will be denoted by A, e.g., area 24 = A24). This homologous
map has been adopted in recent versions of rodent atlases [17,18], but has so far been applied
only sparsely even in recent studies of rodent cingulate cortex [14,19–21]).

Recently, Laubach et al. [10] have traced the current usage of different definitions for rodent
prefrontal cortex, including cingulate cortex. By tracking the appearance of terms such as pre-
frontal cortex and cingulate cortex in N10 000 studies in several species including humans,
primates, and rodents, the authors were able to explicitly demonstrate the lack of consensus
on anatomical definitions. While this constitutes a crucial step towards a more unified approach,
their review (partly in view of its breadth) did not address how well different nomenclatures reflect
the actual anatomical/functional boundaries within cingulate cortex.

Here, we set out to add this perspective. To this end, we directly compare the structural and func-
tional distinctiveness of cingulate cortex regions based either on the homologous ACC/MCC or the
nonhomologous Cg1/Cg2 nomenclature of rodent cingulate cortex. Our comparisons suggest that
applying the ACC/MCC definition not only reconciles findings on cingulate cortex across species,
but also clarifies the functional and structural organization within rodent cingulate cortex itself.

In the following sections, we first briefly introduce the structure and function of human ACC/MCC
as a benchmark, then discuss competing nomenclatures of rodent cingulate cortex and their
functional implications. We conclude with recommendations for how future studies on cingulate
cortex may provide new grounds for cross-species comparison and synergy.

Human ACC and MCC – Anatomy and Connectivity
Human ACC encompasses the frontal third of cingulate cortex, surrounding the rostral part of the
corpus callosum (A24a–c, A25, A32, and A33), while MCC occupies the middle third of the cin-
gulate cortex (A24a′–c′, A32′, and A33′). Both ACC and MCC can be subdivided into two subre-
gions – pregenual (pACC) and subgenual ACC (sACC), and anterior MCC (aMCC) and posterior
MCC (pMCC; Figure 2A, zoom-in inset). While human cingulate cortex additionally contains other
regions – specifically, posterior cingulate cortex and retrosplenial cortex (RSC) – this article fo-
cuses solely on ACC/MCC and their homologous definition across species. In this section, we
mainly summarize diffusion-weighted magnetic resonance imaging studies that investigated the
connectivity patterns of human ACC andMCC. Due to the limited spatial resolution of these tech-
niques, it is difficult to make specific statements about the exact laminar origin and termination of
projections. We thus use the term connectivity to refer to the existence of tracts between ACC/
MCC and other brain regions.

Like all prefrontal areas, ACC and MCC are both highly connected with frontal cortex: they show
strong connections with orbitofrontal cortex (OFC), ventromedial prefrontal cortex (vmPFC), and
dorsolateral prefrontal cortex (dlPFC) [22–24]. Apart from this, the connectivity patterns of ACC
and MCC relate to distinct functional purposes. ACC strongly connects to areas involved in pro-
cessing emotional salience, motivation, and autonomic function, such as the amygdala and
vmPFC. Connections to autonomic brainstem nuclei are mostly centred in sACC, while extensive
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Figure 2. Cingulate Cortex Connectivity in Humans. (A) Anatomy of the human ACC (light red) and MCC (light blue). The ACC and MCC are depicted in the medial
wall of one hemisphere, adjacent to the corpus callosum. Zoom-in inset: Human ACC and MCC can be subdivided into several subregions. (B) Connectivity profile of ACC
and MCC, based mainly on the diffusion-tensor imaging analysis of [22], and further validated via additional literature (see Human ACC and MCC – Anatomy and
Connectivity in main text [5,15,25,26,29]). In [22], the authors measured the likelihood that a seed area connects with another area by generating a probabilistic
connectivity profile of cingulate cortex with the rest of the brain. While DTI cannot reveal the exact origin and termination points of projections with full certainty, the
results reveal a connectivity pattern of ACC and MCC that is comparable to that observed in monkey studies using axonal fibre-tracing techniques. Connectivity is
colour-coded here in four categories, from strong (red) to nonexistent (light yellow). To highlight some of the key differences in the connectivity patterns: Amygdala,

(Figure legend continued at the bottom of the next page.)
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connections to amygdala, hypothalamus, nucleus accumbens (NAc), and periaqueductal grey
(PAG) are seen throughout sACC and pACC. By contrast, MCC mainly connects to areas in-
volved in action control and decision making, such as dlPFC, sensorimotor and parietal cortex,
as well as motor cortices and pontine and PAG nuclei. MCC also contains the cingulospinal
motor area.While aMCC receives moderate amygdalar input, this input is absent in pMCC. Unlike
ACC, MCC is not part of the default-mode network, but is considered to be part of the salience
network [25,26]. Figure 2B summarizes the connectivity profiles of ACC and MCC.

Human ACC and MCC – Function
The functional importance of human ACC and MCC was first highlighted by studies of patients
with ACC and/or MCC lesions, whowere reported to suffer from diverse symptoms, including ap-
athy, as well as dysregulation of autonomic functions, emotion, attention, and error monitoring
[27,28]. In the past few decades, neuroimaging work has expanded on these initial findings, dem-
onstrating that ACC serves as a processing hub for the regulation of autonomic responses, as
well as assessing emotional and motivational aspects of internal and external information [29].
For instance, emotional contexts such as seeing emotional faces or listening to emotionally
charged voices, reliably activate ACC [30]. Consistent with ACC’s strong interconnection with au-
tonomic brainstem nuclei, one of the most robust findings across species is that electrical stimu-
lation of ACC depresses autonomic activity [31], leading to reduced blood pressure/heart rate,
and respiratory inhibition.

MCC, by contrast, has been highlighted to play a role in different facets of cognitive control, such
as response selection, attentional processing, monitoring conflict, and detecting errors [3,27].
MCC’s role in decision-making seems to be especially pronounced in reward-based decision-
making [32,33]. Given the strong activation of this area in a multitude of task domains, an over-
arching theory is difficult to establish and has been the topic of intense debate [34,35]. Overall,
MCC activity seems to relate to multiple aspects of updating beliefs and internal models of the en-
vironment to guide decision-making [36]. Studies using sophisticated task designs have also
shown that ACC and MCC are often active during the same task but code for complementary
task-related parameters [37]. Figure 3 summarizes to which behavioural aspects ACC and
MCC have been found to contribute.

Rodent ACC and MCC – Anatomy and Connectivity
Cg1/Cg2 Nomenclature
The most popular partitioning system for rodent cingulate cortex defines two subareas: Cg1 and
Cg2, located dorsally to each other (Figure 4A). Cg1 encompasses A24b and A24b′ and Cg2
consists of A24a and A24a′. A25 and A32, which are considered as part of ACC in other mam-
mals, are not part of either Cg1 or Cg2, but treated as separate areas [infralimbic cortex (IL)
and prelimibic cortex (PL), respectively; Figure 4A]. As Figures 1 and 4 show, although this defi-
nition can be applied consistently in rats and mice, it is not homologous to the ACC/MCC
definition used in other mammals [5,11,14,15,21]. This discrepancy arises because the
border between ACC and MCC is drawn perpendicularly to that between Cg1 and Cg2 (Figure
4A). In other words, while A24 and A24′ form the border between ACC and MCC in other mam-
mals, in rats and mice, they are each covered by both Cg1 and Cg2, whereas A25 and A32 (part
of ACC) are excluded by both Cg1 and Cg2.
hypothalamus, andOFC are strongly connectedwith ACC, whereas the parietal cortex andmotor cortices are strongly connectedwithMCC. Please note that for simplicity,
the schematic refers to connections of ACC and MCC to entire brain areas, and does not examine connections between ACC and MCC to specific subdivisions of the
connected brain areas. Differential connections, for instance to subdivisions of the thalamus, are discussed in the main text. Abbreviations: ACC, anterior cingulate
cortex; aACC, anterior ACC; aMCC, anterior MCC; DTI, diffusion tensor imaging; MCC, midcingulate cortex; OFC, orbitofrontal cortex; pACC, posterior ACC; PCC,
posterior cingulate cortex; pMCC, posterior MCC.
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Figure 3. Behavioural and Cognitive Functions Associated with Different Subregions of Cingulate Cortex in
Humans. Behavioural functions are colour-coded roughly on a ‘hot–cold axis’ from highly affective (red) to highly
cognitive functions (blue; see inset legend). ACC is shaded in light red and MCC in light blue. Rectangles denote individual
studies. To generate Figure 3, we used a systematic literature search in PubMed to find studies (from year 2000 onwards)
that investigated the functional role of ACC and MCC. The following keywords were used, combined with ACC and MCC
as search terms: autonomic function/control, negative emotion, positive emotion, pain, fear, attention, and decision-
making. Note: given that MCC is a relatively new concept, even in human literature, we extended our search to include the
term dorsal ACC, which is anatomically similar to MCC. Studies were only included if it were possible to determine which
subregions of ACC/MCC were investigated, either because authors explicitly stated the examined subregions and/or
because they gave anatomical coordinates that could be used to infer subregions. The studies included in Figure 3 are
[35,44,93–104]. As can be seen, affective functions generally group towards ACC, whereas more cognition-centred
functions cluster in MCC. Abbreviations: ACC, anterior cingulate cortex; MCC, midcingulate cortex.
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As long as anatomical definitions are set out clearly, the partitioning of cingulate cortex into
Cg1/Cg2 does not pose a problem in itself. In fact, most of the insights into how rodent cin-
gulate cortex mediates emotional and cognitive control have so far been gained using the
Cg1/Cg2 nomenclature [38–42]. However, this approach does create a fundamental obsta-
cle for cross-species comparisons, because most studies of rodent cingulate cortex do not
investigate ACC and MCC independently, whereas studies in other species do
[3,5,6,34,43,44].

In theory, this would mean that rodent studies regarding subregions of cingulate cortex should
simply not be compared directly to the corresponding studies conducted in other species. How-
ever, in practice, rodent studies of cingulate cortex are obviously not treated – nor should they be
treated – as an entirely separate research field. To compare and synthesise findings across spe-
cies, studies have sometimes treated rodent Cg1 and/or Cg2 as directly comparable to human
ACC [38–40,45–55]; mostly without assigning a direct counterpart to human MCC
[39,40,45,46,56–63]; on other occasions, Cg1 and Cg2 have been equated to MCC [64]; and
in still other cases, rodent Cg1 has been treated as the counterpart of human dACC
[38,42,65–67] and Cg2 as the counterpart of human vACC [68–70]. All of these approaches
overlook the fact that the border between Cg1 and Cg2 is defined perpendicularly to both the
border between ACC/MCC and between dACC/vACC, so that results gained using the Cg1/
Cg2 nomenclature will necessarily represent a mix of data that would have been studied sepa-
rately under the ACC/MCC (or dACC/vACC) nomenclature.
290 Trends in Neurosciences, May 2020, Vol. 43, No. 5
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Figure 4. Comparison of ACC/MCC and Cg1/Cg2 Nomenclature for Parcellating Rodent Cingulate Cortex. (A) In the Cg1/Cg2 nomenclature, Cg1 is often
treated, explicitly or implicitly, as corresponding to human MCC (light blue) and Cg2 as corresponding to human ACC (light red; for details see main text). PL (which is
almost entirely equivalent to A32, light green) and IL (equivalent to A25, light purple) are not considered parts of rodent cingulate cortex in this nomenclature. The
border between Cg1 and Cg2 is drawn across the ventral–dorsal axis. The zoom-in inset depicts subregions of Cg1 and Cg2. (B) The ACC/MCC definition draws the
border between ACC and MCC across the caudal–rostral axis, as in other mammalian species. This definition also includes A25 and A32 as part of the ACC. The
zoom-in inset depicts subregions of the ACC and MCC. (C) and (D) show the afferent connectivity of ACC and MCC in mice and rats when applying the Cg1/Cg2 and
ACC/MCC nomenclature, respectively. The connectivity diagram (color-coded as in Figure 3) was generated based on [14,71] and validated via [5,11,21,72–78,105].
Note that the connectivity profile for the ACC/MCC nomenclature more closely resembles the connectivity found in humans than the connectivity for the Cg1/Cg2
nomenclature. As in Figure 3, only connections to entire brain areas, but not their subdivisions, are represented here. Abbreviations: ACC, anterior cingulate cortex;
Cg1, cingulate area 1; Cg2, cingulate area 2; IL, infralimbic cortex; MCC, midcingulate cortex; PL, prelimibic cortex; RSC, retrosplenial cortex.
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ACC/MCC Nomenclature
In the ACC/MCC nomenclature (Figure 4B), rodent ACC consists of A24a-b, A25, A32, and A33
(although it should be noted that A33 is present in rats but not mice). Compared to human ACC,
this excludes A24c and A24d because rodents do not have a cingulate sulcus. For the same rea-
son, A32′ and A24c′ are absent as well and rodent MCC thus encompasses only A24a′ and A24b′
Trends in Neurosciences, May 2020, Vol. 43, No. 5 291
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(A33 does not extend intoMCC).While in humans, MCC can be subdivided into anterior and pos-
terior MCC, rodent MCC is comparatively uniform and based on the current literature, does not
seem to require further subdivisions. The border between A24 (ACC) and A24′ (MCC) is outlined
by clear differences in cytoarchitecture [11] as well as connectivity (see below).

To explore how the use of the two different nomenclatures impacts measurements of cingulate
cortex connectivity, we reinterpreted available studies concerning cingulate cortex connectivity.
A particularly informative study in this regard is [14], given that the authors reported the afferent
connectivity profile for A24a/A24b (ACC) and A24a′/A24b′ (MCC) separately. This allows us to
estimate how the connectivity profile would look for Cg1 (A24b/A24b′) and Cg2 (A24a/A24a′), as
well as for ACC (A24a/A24b) and MCC (A24a′/A24b′), thereby enabling a direct comparison be-
tween the ACC/MCC definition and the Cg1/Cg2 definition. For the afferent connectivity profile
of A25 and A32, which form part of ACC in the ACC/MCC nomenclature, we relied on [71],
since [14] focuses on A24 and A24′ only.

Based on these and additional studies that investigated either the afferent or efferent connectivity
profile of cingulate cortex [11,21,72–74] we observed that rodent Cg1/Cg2 seem to show a
mixed connectivity pattern, with both Cg1 and Cg2 being moderately connected to a wide
range of areas, including subcortical and cortical structures involved in a wide range of functions
such as pain processing and performing cognitively demanding tasks (Figure 4C). By contrast,
when using the ACC/MCC nomenclature, rodent ACC and MCC show a connectivity pattern
that is noticeably better demarcated (Figure 4D), and better matched to that observed in humans
(Figure 3). Centred in A32 but extending throughout ACC, there is strong connectivity with struc-
tures involved in processing emotional information, such as the OFC, hypothalamus, amygdala,
and autonomic brainstem nuclei [72,74,75]. Rodent ACC further connects with cortical areas in-
volved in sensory processing, RSC, and monoaminergic brainstem nuclei [14,74,76]. Rodent
MCC, by contrast, has limited connections to amygdala and hypothalamus [14,77], while being
strongly connected to parietal association cortex, RSC, motor cortices, and pontine nuclei
[14,21,78]. As in humans [22], the border between MCC (A24′) and ACC (A24) is outlined by a
difference in overall connection density (A24 having denser connections), as well as a divergence
of thalamic targets [11,14]).

One reason for this difference in connection specificity between the two nomenclatures is that the
Cg1/Cg2 nomenclature does not include A25 and A32, which maintain strong and specific
reciprocal connections to amygdala, OFC, insula, and autonomic brainstem nuclei
[71,72,75,79] (Figure 4C). Most importantly, given that in this nomenclature both Cg1 and Cg2
span parts of A24 (considered ACC) and A24′ (considered MCC), differentially strong connec-
tions to A24 and A24′, respectively, will appear as uniformly intermediate across Cg1/Cg2.
In other words, connectivity differences that in the ACC/MCC nomenclature define the
border between separate areas, connect roughly equally to Cg1 and Cg2, suggesting that the
ACC/MCC nomenclature is better suited to highlight intrinsic connectivity differences among
cingulate cortex regions.

Rodent ACC and MCC – Function
To map the functional organization of rodent ACC and MCC in a way that parallels the one typi-
cally discussed in humans, we conducted a literature search, mapping the functional categories
shown in Figure 3 (relating to humans) onto rodent cingulate cortex based on the anatomical co-
ordinates (bregma coordinates) provided by each study (Figure 5). Figure 5A includes research
that used the Cg1/Cg2 nomenclature. In the resulting map, the transition from emotional to cog-
nitive aspects of behaviour is noticeably less clear cut than in the human brain (Figure 3).
292 Trends in Neurosciences, May 2020, Vol. 43, No. 5
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Figure 5. Behavioural and Cognitive Functions Associated with Different Subregions of Cingulate Cortex in
Rodent. Following the same visualization principle as in Figure 3, this figure shows the distribution of behavioural and
cognitive functions across rodent ACC (light red) and MCC (light blue). Rectangles denote individual studies; colours
represent the behavioural/cognitive function investigated. The left hemisphere shows mouse studies while the righ
hemisphere is based on rat studies, taking into account the specific anatomical anterior-posterior bregma coordinates pe
study (see scale on top of each hemisphere). The same search strategy as for Figure 3 was used to search for rat and
mouse studies that investigated the functional role of Cg1/Cg2 (A) or ACC/MCC (B). Given that positive emotions, such as
happiness, are rather difficult to study directly in rodents, we added a search term for studies that investigated social play

(Figure legend continued at the bottom of the next page.
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Specifically, functions that in humans are uniquely attributed to either ACC or MCC seem to be
shared by rodent Cg1 and Cg2. In addition, autonomic functions that in humans are shaped by
sACC (A25/A32) appear to be absent in the Cg1/Cg2 nomenclature.

While this could in part reflect genuine differences between species, it is most likely a matter
of methodology: Cg1 and Cg2 both span parts of A24 and A24′, which as discussed earlier
have different connectivity profiles (Figure 4) and are therefore likely to also show functional
differences. As a result, when using the Cg1/Cg2 parcellation, most experimental treatments
and recordings are done in either both areas jointly, or only the centre of Cg1/Cg2, which
happens to fall into A24 (i.e. ACC in the ACC/MCC nomenclature). In either case, A24′
(i.e. MCC in the ACC/MCC nomenclature) is not investigated separately in the Cg1/Cg2
parcellation. It follows that any functional differences that might exist between A24 and
A24′ will not be visible to studies that do not investigate these areas separately. In addition,
since A25 and A32 are considered neither as part of Cg1 nor of Cg2, functions that are
specifically mediated by these brain regions in humans, including the control of autonomic
function, have generally not been investigated as part of cingulate function when using the
Cg1/Cg2 definition.

This raises the question whether using the ACC/MCC nomenclature would improve the segre-
gation of functional roles across rodent cingulate cortex. To address this question,
we consulted the few existing studies that explicitly use the ACC/MCC nomenclature, and
systematically searched and reinterpreted studies that investigate rodent ACC and/or MCC
individually irrespective of nomenclature, based on the anatomical coordinates they provide
and/or the Brodmann areas they refer to (Figure 5). The studies identified in this way converge
on two main conclusions, set out in more detail in the following paragraphs. First, A24 and A24′
appear to fulfil separable and largely complementary functions, which are addressed indepen-
dently by the ACC/MCC definition but merged together by the Cg1/Cg2 definition. Second,
rodent A25 and A32 seem to mediate similar functions to human A25 and A32, which the
ACC/MCC definition treats as part of cingulate cortex just like in other mammals, but the
Cg1/Cg2 definition does not.

Concerning the functional role of A25 and A32, numerous studies based on the Cg1/Cg2 defini-
tion have investigated rodent A25 and A32 individually, generally referring to them as IL and PL.
These studies indicate that rodent A25 and A32 fulfil largely similar functions to human A25 and
A32. For example, as in humans [5], rodent A25 and A32 are involved in the regulation of auto-
nomic functions [80] as well as in depressive-like behaviours [81]. Note that rodent A25 and
A32 also seem to be involved in fear-related behaviours [82]; a function that in humans is mainly
attributed to MCC [5]. However, this apparent discrepancy seems to at least partially stem from
the fact that unlike human studies, rodent studies mostly use fear conditioning paradigms, which
in humans also activate all subregions across ACC and MCC [3]. Overall, given these similarities,
we advocate that A25 and A32 in rodents should be classified in the same way as in humans –
that is, as part of ACC.
behaviours, which is often considered to reflect positive affect in rats. For positive emotions, we did not include studies on
reward processing, since such studies generally featured both reward processing and reward-based decision making,
introducing a confound. Studies were only included if specific bregma coordinates were reported. For (A) (functions
associated with Cg1/Cg2), studies included: [39,40,45,46,56–63]; for (B) (functions associated with rodent ACC/MCC),
studies included: [19,41,42,49,54,82,83,87,106–120]. Abbreviations: ACC, anterior cingulate cortex; Cg1, cingulate area
1; Cg2, cingulate area 2; MCC, midcingulate cortex.
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Similarly, studies that have investigated rodent A24 (ACC) independently of A24′ (MCC)
have confirmed the role of A24 in reward [83], negative affect [84], and pain [84–86] – a
close match with human ACC (Figure 5B). In addition, A24 also seems to regulate func-
tions mainly associated with MCC in humans, for example, attention and decision-
making [41,54,83,87]. This could suggest that the functional segregation of ACC and
MCC in rodents is in fact more blurred than in humans. However, another possible expla-
nation is that due to the nature of behavioural testing in rodents, effortful tasks like atten-
tion and decision-making tests will nearly always feature an element of reward and/or
punishment – and both reward and punishment are clearly mediated by ACC in both ro-
dents and humans [8]. Thus, even though some cognitive functions may be less anatom-
ically segregated in rodents than humans, the functional partitioning of rodent cingulate
cortex is quite evidently more structured and more comparable to the human cingulate
cortex when applying the ACC/MCC than the Cg1/Cg2 definition.

Finally, there are almost no studies explicitly investigating rodent A24′ (MCC) independently
of A24 (ACC; Figure 5B). We identified studies focusing on MCC through a systematic
search for the terms ‘A24′, ‘MCC’, or ‘caudal part of ACC’, manually checking the anatom-
ical coordinates the respective studies applied. This search yielded a handful of articles
[11,14,19–21,78,88]. Only four of these investigated the link between MCC and behaviour,
either in the context of pain processing [19,88] or the regulation of aggression [20,89].
These four studies further support a close homology between humans and rodents when
the ACC/MCC nomenclature is applied. As in humans, MCC’s role in behaviour seems
to be separate from, and often complementary to, that of ACC. For instance, as seen in
humans, MCC’s role in rodent pain processing was demonstrated by a study showing in-
creased activity within MCC after noxious stimulation of the forepaw [88]. Expanding on
this, another study [19] demonstrated that rodent ACC and MCC play differential roles in
pain perception, with MCC involved in the gating of sensory hypersensitivity, while ACC
mediates acute pain and affect-related behaviours [84,86]. This is consistent with human
literature demonstrating complementary roles of ACC (affect-like behaviours) and MCC
(appraisal/approach-avoidance) in pain processing [90]. Finally, in the remaining two stud-
ies on rodent MCC, we were able to confirm another clear functional dissociation between
mouse ACC and MCC by demonstrating complementary contributions to aggressive be-
haviour [20,89]. ACC volume was increased in aggressive BALB/cJ mice (relative to
BALB/cByJ controls), whereas MCC volume was decreased [20]. Interestingly, when vol-
umes were recalculated using the Cg1/Cg2 definition, behaviour-related volumetric differ-
ences vanished. Furthermore, the concentration of parvalbumin interneurons in MCC but
not ACC predicted differences in aggressive behaviour [89].

Although few in number, the above-mentioned studies demonstrate the advantages of studying
ACC and MCC as independent structures also in rodents. With more research utilizing the ACC/
MCC definition, the function of rodent MCC is bound to be outlined more clearly in the future. So
far, the available functional studies discussed above, and the strong efferent connectivity to RSC
and visual association cortices as well as visual thalamus [21] point towards a role of rodent MCC
in modulating attentional and visuospatial orientation – a good match with human MCC. Thus,
both functional and anatomical evidence favours a split between rodent ACC andMCC according
to the homologous definition. As we have shown above, this can also benefit existing work orig-
inally based on the Cg1/Cg2 nomenclature. By examining the anatomical coordinates provided
by individual studies, data can be reinterpreted according to the ACC/MCC nomenclature –

often clarifying the original observations. Apart from refining insights into the functional organisa-
tion of rodent cingulate cortex itself, this also better aligns results with those from other species.
Trends in Neurosciences, May 2020, Vol. 43, No. 5 295



Outstanding Questions
Homologous areas in human and
rodent cingulate cortex are embedded
in partially different cortical networks,
including an expanded granular
prefrontal cortex in humans. How does
this affect their function in the two
species?

Sulcal areas of cingulate cortex are
present in primates but not rodents.
Do they simply reflect a size constraint
that results in folding of larger but
essentially homologous areas, or do
they contribute unique functions to
primate prefrontal cortex?

The use of the Cg1/Cg2 definition has
so far largely prevented rodent MCC
from being studied separately from
ACC. Based on the few studies investi-
gating rodent MCC, it seems to be less
involved in cognitive functions like at-
tention and decision-making than pri-
mate MCC. Where and how are these
functions shaped in rodents? And
what functions can be attributed
uniquely to rodent MCC?

In contrast to human/primateMCC, ro-
dent MCC so far appears to be a uni-
form structure. With the function of
the rodent MCC bound to be outlined
more clearly in future, will subcircuits
similar to those in human/primate
MCC be revealed?

Rodent MCC has strong reciprocal
connections with visual cortex. Since
rodents are thought to be less vision-
driven than many other mammals are,
what purpose do these connections
serve?

Behavioural tasks to more precisely
dissect cognitive function are needed
in rodents. Can one devise rodent
tests that approach the meticulous
segregation of cognitive functions
as achieved by primate tasks? If so,
will such paradigms confirm a similar
mapping of cognitive functions across
cingulate cortex, and/or highlight
differences in functional organization?

The definition of homologous areas
across species has so far mainly
relied on either structural or functional
markers in isolation. Can one merge
anatomical and functional indicators,
for example, microcircuit structure,
long-range connectivity, and functional
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Concluding Remarks
Here, we have presented functional and anatomical evidence indicating that a homologous
definition of ACC and MCC across rodents and other mammals is not only available and
advantageous to cross-species research, but also warranted by the structural and functional
segregation within the rodent cingulate cortex itself.

Why, one might wonder, has the homologous definition of rodent ACC/MCC not been more
widely adopted, particularly given that it was proposed over a decade ago [11,91]? One possible
reason is that researchers are prioritising consistency across studies. New studies may rely on
established definitions, either because they accept the definition based on the available literature
or to keep new insights comparable to previous studies. In addition, many laboratories may be
using brain atlases that still feature the Cg1/Cg2 definition [83,86].

Given these obstacles, what can be done to promote wider acceptance of the homologous
ACC/MCC nomenclature? As in many other contexts, a crucial first step would be to increase
awareness of the issue, as has been done recently with regards to broader questions around
interspecies homologies of the prefrontal cortex [10]. At a more practical level, an important
step to make in the context of the cingulate cortex, regardless of which nomenclature is applied
in a particular study, is to take note of reporting the exact anatomical definition being used.
Researchers should preferably state not only which areas have been investigated, but also
name the corresponding Brodmann areas and stereotactical coordinates. Similarly, review
articles need to verify whether rodent studies they cite have in fact studied ACC and MCC, or
Cg1 and Cg2.

Of course, not all features of rodent cingulate cortex are directly homologous to those in
humans. Functionally, for instance, rodent MCC may serve certain functions that are different
from those of human MCC (see Outstanding Questions). Such differences obviously set limits
to translating findings between rodents and humans. However, we would argue that this is all
the more reason to strive for anatomical definitions that are as homologous as possible. How
else can we begin to investigate in which way homologous areas have differentially evolved
since their common ancestor, and what similarities and discrepancies have arisen as a result
[92]?

Ultimately, we advocate for a complete transition to the ACC/MCC nomenclature of rodent cingu-
late cortex. Studies investigating the functional role of rodent MCC are particularly needed, be-
cause the Cg1/Cg2 nomenclature has so far prevented MCC from being studied as an
independent structure. In addition, the shift towards the ACC/MCC nomenclature should also in-
volve some reinterpretation of existing results. For example, researchers that previously investi-
gated ACC and MCC as one structure may want to reanalyse their data to disentangle the
specific contributions of ACC and MCC. The brief reanalyses presented here give reason to be-
lieve that such analyses may often yield more compelling results. Although these steps are time
consuming, they promise to enhance the clarity and cross-species synergy of future findings.

Interspecies translation lies at the heart of neuroscience. Using a homologous nomenclature of
cingulate cortex opens up avenues for new cross-species comparisons, but also for discovering
hidden insights in data that have so far used the Cg1/Cg2 definition. Together, these long-term
advantages are set to far outweigh the short-term drawbacks of transitioning between
nomenclatures. We strongly recommend that researchers interested in rodent cingulate cortex
make the switch – the sooner the better.
296 Trends in Neurosciences, May 2020, Vol. 43, No. 5



activation, to pinpoint homologous
areas more consistently?
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