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Abstract. Energetic particles (EPs) are known to change the properties of shear

Alfvén waves in tokamaks, and for this reason non-perturbative models have to be

used to describe their linear and non-linear evolution. In this work, mode structures

distortion with symmetry breaking properties featured by a finite radial wave phase

velocity due to EP effects are considered. A mode structure of the form A(s) =

e−σ(s−s0)
2

with complex parameters σ and s0 is used, to describe not only the width

(∝ 1/
√

Re{σ}) and the mean location (Re{s0}) of the bell-shaped radial structure,

but also the radial phase variations (Im{σ}, Im{s0}) , where s is the normalized radial

coordinate. The values of (σ, s0) are fitted from the results given by the gyrokinetic

eigenvalue code LIGKA. The impact on EP transport is investigated using the drift-

kinetic code HAGIS. The effects of the mode structure symmetry breaking on the mode

saturation level and the EP transport are analysed. In the presence of mode structure

symmetry breaking which is relevant to the simulation and experimental observations,

the growth rate as well as the particle and energy transport level can vary by ∼ 10%.

The velocity-space averaged parallel velocity of EPs in the inner region s = 0.2 ∼ 0.5

can change its sign for different mode structures, demonstrating the importance of the

mode structure symmetry breaking on EP toroidal velocity reversal. This large effect

(∼ 100%) on the mean parallel flow could have implications for EP current drive and

the transport in the burning plasmas.
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1. Introduction

Energetic particle (EP) transport in the presence of Alfvénic modes determines the

EP profiles and plays a crucial role in the overall plasma confinement. In order to

model the EP transport efficiently, mixed linear-nonlinear recipes are used in various

codes [1, 2, 3]. In this scheme, the linear mode structure and the (complex) mode

frequency are determined with an eigenvalue solver, and then these linear properties

are used in the calculation of the nonlinear wave-EP interaction and the consequent

EP transport. For the perturbative approach, the linear mode structure is calculated

without taking into account the EP or kinetic background species effects [4]. While the

“perturbative” approach captures the dominant features of the instability excitation, the

“non-perturbative” effects cause a “distortion” of the mode which has been generally

observed by Electron Cyclotron Emission Imaging (ECEI) in various experiments

[5, 6, 7]. It has been reported that EP can modify the Alfvén eigenmode structures

with respect to the mode radial location and width [8], and can cause significant mode

structure symmetry breaking [9]. Meanwhile, the mode frequency, as the eigen value of

the linear system, or as a solution of the nonlinear dynamic system, can also change due

to the EP effects. In turn, the non-perturbative mode structures are expected to bring

the impacts on the linear growth rates, mode saturation levels and the EP transport

[10, 11]. These effects need to be evaluated based on comparative studies and therefore

merit further investigation.

It is shown recently that the radial phase profile and velocity of the eigenmode can

be modified by EP’s non-perturbative effects, which causes the up-down asymmetry

of the 2D mode structure [9]. A complex Gaussian representation of the mode

structure capturing the symmetry breaking features in parallel and radial directions

is analytically derived from the system of gyrokinetic equations [9]. In this work, we

utilize this representation for the non-perturbative mode structure to study the induced

EP transport. We use the HAGIS [12] code to study the effects of the asymmetric mode

structures on the EP transport with the eigenmode solution calculated using LIGKA

[13]. HAGIS models the nonlinear interaction between EPs described by drift-kinetic

theory and a set of linear eigenmodes. It is assumed that the eigenmode structures

do not change in HAGIS . The evolution of wave amplitude and the EPs distribution

function are calculated according to the Lagrangian equation and the particles’ equations

of motion which describe the kinetic wave-particle nonlinearities. The total energy and

canonical angular momentum of the wave-particle system is conserved in HAGIS. In

addition, δf method is adopted to reduce the numerical noise [12, 14].

We focus on the effects of mode symmetry breaking on the EP transport, especially

the EP momentum transport. While symmetry breaking has been intensively studied

in micro-turbulence transport (w/o EPs) due to its effects on intrinsic toroidal rotation

[15, 16], its effects on EP transport are not studied to our knowledge. Thus, this work

can also shed new light on intrinsic rotation studies for burning plasmas. This work

is organized as follows. In Section 2, the representations of the mode structures with
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symmetry breaking for the EP transport studies are introduced. In Section 3, the

simulation results of mode growth rate, saturation level and EP transport are shown

and discussed. In Section 4, a summary and an outlook are given.

2. Non-perturbative mode structure with Symmetry Breaking

While the EP non-perturbative effects on the Alfvén modes have been discussed and

analyzed theoretically [10, 9], this work focuses on the EP transport induced by the “non-

perturbative” modes. The radial mode structures with different symmetry breaking

features are represented by a complex Gaussian equation [9],

Φ̂nm(s) = e−σ(s−s0)
2

, (1)

where the radial coordinate s =
√
ψ, ψ is the normalized poloidal flux, and σ and s0

are complex parameters. By solving the eigenvalue problem for Alfvén modes driven by

EPs with trial functions of the form exp{−σ(s− s0)2} using the variational principle, it

can be shown that s0 and σ are complex numbers whose imaginary parts are caused by

the EPs contribution (details can be found in [9]). Here we define the complex radial

wave vector as ks(s) ≡ −i d(ln Φ̂nm)/ds, whose real part and imaginary part represent

the radial variation of the phase and amplitude, respectively. With Eq. 1, we have

ks = −2[(s− s0,R)σI − s0,IσR] + 2i[(s− s0,R)σR + s0,IσI ] , (2)

where the subscript ’R’ and ’I’ indicate the real and imaginary parts, respectively. While

1/
√
σR and s0,R (in the third term) are linked to the width and the mean location of

the Gaussian shape, σI (in the first term) describes the ks component that has opposite

signs in s > s0,R and s < s0,R, and s0,I (in the second term) describes the ks component

that is constant along s. Thus, the complex Gaussian functions in our work provide a

simple but general way of representing the mode structure symmetry breaking. When

we choose a complex s0 but a real σ, i.e., σ = σR (corresponding to case C in table 1),

our complex Gaussian representation is consistent with the radially curved eigenmode

wavefronts, as reported in the DIII-D studies [17].

To demonstrate the effect of mode symmetry breaking, we use a circular equilibrium

with Grad-Shafranov shift with parameters matched to ASDEX-Upgrade, but the

method is general and can be used for any equilibrium. The main parameters are as

follows. Minor radius a = 0.496 m, major radius R0 = 1.67 m, magnetic field strength

and safety factor at axis are B0 = 2.2 T and q0 = 1.99 respectively. The minimum of

q is qmin = 1.903 at s = 0.494. As the input of HAGIS , we use the Reversed Shear

Alfvénic Eigenmode (RSAE) whose structure and frequency are calculated by LIGKA

[13]. The mode structure and q profile are shown in the left frame of figure 1. The q

profile is very flat in the inner region. This RSAE has a toroidal mode number n = 2,

a dominant m = 4 poloidal mode number and frequency fn = 133 kHz. The parallel

wave vector at s = 0.4 is k‖(s = 0.4) ≈ (nq −m)/(qR) = −4.92× 10−4/cm. When the

mode structure is calculated using LIGKA, the ideal MHD model is adopted without the

thermal ions kinetic effects and the EPs kinetic effects, serving as the base case. When
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the EPs kinetic effects are taken into account, the mode structure can be distorted

significantly and the mode width and frequency also change. In this work, we focus on

investigating the effects of mode structure symmetry breaking, so we use the same mode

eigen frequency as the input of HAGIS in the simulations.

We fit the m=4 mode structure given by LIGKA with the complex Gaussian

equation Φ = Ae−σ(s−s0)
2

using the least-squares method. The fitting results are shown

in the right frame of figure 1 with σ = 39.25+1.14i and s0 = 0.40+0.0015i. The LIGKA

mode structure is almost symmetric. The fitting parameter A = 148.66 − 18.17i =

149.77e−0.1216i is related to the mode amplitude and initial phase. The mode structure

is an input for HAGIS [12]. Since the mode amplitude changes due to the wave-

particle interaction and oscillates according to e−iωnt in HAGIS , where ωn = 2πfn is

the eigenfrequency, the parameter A can be considered as a normalization factor.

Figure 1. Left: the left axis corresponds to the radial mode structure calculated

by LIGKA of the n = 2 RSAE with the frequency f = 133kHz and the dominant

harmonicm = 4; the right axis corresponds to the safety factor q. The radial coordinate

s =
√
ψ, where ψ is the normalized poloidal flux. Right: the complex Gaussian fitting

result of the n = 2,m = 4 eigenmode. The dotted lines and the solid lines indicate the

LIGKA results and the fitted solutions respectively.

By adopting different values of the two parameters σ and s0, the mode structure can

represent different symmetry breaking features. We choose four sets of representative

parameters (σ, s0): A, B, C and D as shown in table 1. Case A is the base case with the

symmetric mode structure and cases B, C and D mimic the experimental observations

[17] and the HMGC simulation results [18]. The mode structures corresponding to

Table 1. Parameters σ and s0 choosen for four cases.
A B C D

σ 40 40-50i 40 40-50i

s0 0.4 0.4 0.4+0.02i 0.4+0.02i

different values of σ and s0 are shown in figure 2. The radial wave vector, ks = i2σ(s−s0),
is zero when σ and s0 are both real. The real part of wave vector represents the
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wave radial propagation. Figure 2(A) corresponds to the mode structure with no

EP contribution (σ and s0 both real), characterized with up-down symmetry [9].

Correspondingly, the mode does not propagate in the radial direction. Figure 2(B)

corresponds to the boomerang like mode structure with real s0 but complex σ. The

wave propagates at the same speed but in opposite directions on both sides of s0.

Figure 2(C) corresponds to the mode structure with real σ but complex s0, and thus

Re(ks) = 1.6 as a constant number. The wave has a pure positive radial propagation

with kr = ks∂s/∂r ≈ ks(1/49.57)/cm = 0.032/cm. For case C, the mode is distorted

clockwise as shown in the 2D mode structure in figure 2. If the Im(s0) is negative, the

mode is distorted counter-clockwise. Figure 2(D) corresponds to the mode structure

with complex σ and s0, thus the wave vector ks is not constant and when s =Re(s0),

the wave vector is not zero, ks(s = 0.4) 6= 0. While the fitting procedure is based on the

mode structure from LIGKA, it can be readily applied to treat the experimental ECEI

data for further estimation of the non-perturbative mode structure effects.

Figure 2. Four typical mode structures with different values of (σ, s0) listed in table 1.

Left: The mode structures Φ̂(s) and the wave vector ks. Right: 2D mode structure.

3. Simulation results

The wave-EP nonlinearity and the related EP transport are simulated using the HAGIS

code. The mode saturation is determined completely by the depletion of the free energy

in the particle distribution function, since neither collisions nor turbulence is taken into

account, and there is no source term for EPs. In HAGIS , each toroidal harmonic of a

given mode with eigenvalue ωn can be represented in the form,

Φ̃n = An(t)e−i$n(t)
∑
m

Φ̂nm(s)ei(nζ−mθ−ωnt), (3)

where n refers to the toroidal mode number of the single mode with angular frequency

ωn, m the poloidal harmonics, An the real amplitude and $n(t) the EP induced
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non-perturbative phase change (the change in amplitude and $n(t) is much slower

than the wave oscillation). The change of the wave frequency is δω(t) = d$n/dt.

Here, ζ is the toroidal azimuthal angle and θ is the poloidal angle. The fixed

linear eigenfunction Φ̂nm(s) can be a complex quantity [12]. Generally, for multiple

harmonics, the symmetry breaking features such as exp{−σnm(s− s0,nm)2} of different

harmonics can be different and can be included in Φ̂nm(s). In addition, by writing

Φ̂nm(s) = Ânm(s) exp{−σnm(snm − s0,nm)2}, the information regarding the relative

phase-shifts between neighbouring harmonics Ânm(s) can be also included. In this work,

we only keep one harmonic and Φ̂(s) in each case contains different mode structure

symmetry breaking features.

3.1. Test Particle studies on Wave-Particle Resonance

Generally, for a particle with given constants of motion, the linear wave-particle

resonance condition is given by n〈ωζ〉 − p〈ωθ〉 = ωn, where p is an integer, ωζ and

ωθ are the toroidal and poloidal transit frequencies and 〈. . .〉 denotes averaging over one

poloidal transit time [19]. For low energy particles in a circular cross-section tokamak,

the dominant resonance harmonics are p = m ± 1 [20]. In strongly shaped plasmas

and for large drift-orbit displacements, higher order harmonics are also important [21].

The exact resonance location can be only found by integrating over the particle poloidal

trajectory [22]. According to quasi-linear theory, diffusion only occurs for the particles

that exactly satisfy the resonance condition via a delta function [23]. However, the

resonances are, in principle, broadened due to the finite growth rate, finite mode

amplitude and the collisions [24, 25], and also effectively broadened due to stochastic

processes affecting the resonant particles [26], such as collisions and microturbulence

[27]. In addition, the mode structures are important for the wave-particle interactions.

For example, a narrow structure can lead to a significant decrease in the resonance width

compared to a case in which the eigenfunction does not vary across the resonant island

[20] and the scaling of mode saturation levels is linear proportional to the initial growth

rate, Asat ∝ γL instead of ∝ γ2L [28, 29].

To analyse the mode structure effects on the wave-particle resonances, a two-

dimensional scan has been performed in initial particle parallel velocity and initial

radius (v‖, s), where v‖ is the parallel velocity. As the initial condition, the particle

perpendicular velocity v⊥ = 0, the particle location θ = 0, ζ = 0. In the test particle

studies, particles are pushed in the field given by Eq. 3 without modification to the

field due to EPs’ feedback. The particles energy variation during 20 poloidal circles in

the presence of a mode with the fixed amplitude δBr/B = 10−3 (≈ HAGIS saturation

value) and locked phase shift $ = 0 is shown in figure 3, where the Alfvén velocity vA
is used for normalization, with vA = 8.265× 106 m/s. The corresponding initial energy

range of the y-axis on figure 3 is from 15 keV to 150 keV. The particle energy changes

significantly at the p = 2 resonance for s around 0.4 where the mode peaks. Resonance

lines are visible in A, B, C and D and are distorted due to different mode structures.
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Figure 3. Fractional change in energy |∆E|/E0 of the deeply passing (v‖/v = 1) EPs

arising from their interaction with the mode whose amplitude is fixed δBr/B = 10−3

for four cases. The red line shows where linear resonance condition is satisfied, i.e.

n〈ωζ〉 − p〈ωθ〉 = ωn with p = 2. The black line corresponds to p = 3 while the green

line to p = 2.5. Particles on the left side of the white line are with stagnation orbits

(passing orbits that do not enclose the magnetic axis).

The resonance pattern and magnitude in A and C are similar; and those in B and D

are similar (also see saturation level analyses following). For cases B and D, featured

with a significant radial propagation, the resonance structures are distorted apparently

compared with case A.

3.2. δf simulation of EP transport

3.2.1. EP initial distribution. In order to study the nonlinear wave-particle interaction

and the consequent EP transport, the δf simulation is performed using HAGIS . The

radial distribution of the EP density is assumed to be

f(ψ) =
1

1 + exp(ψ−ψ0

δψ
)
, (4)

with ψ0 = 0.16 and δψ = 0.2. The EP density at magnetic axis is n(0) = 9.163 ×
1017 m−3. We use a slowing down distribution in energy (E),

f(E) =
1

E3/2 + E
3/2
c

erfc
(
E − E0

∆E

)
, (5)

with a birth energy of E0 = 93 keV , Ec = 37.21 keV , ∆E = 149.9 keV . The beta of EP

population is βf = 0.1%. We use an isotropic pitch angle distribution. In the following

simulations, we use 300 000 markers, loading position s ∈ [0.001, 0.9] and energy range

E ∈ [10 keV, 100 keV ].
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3.2.2. Mode saturation and linear growth rate. The linear growth rate γL is fitted

between the 200th to 1000th steps (1 step = 3.7678×10−7 s). The saturation level Asat
and the frequency change of the mode δω are averaged over time window 10000th-

15000th steps (t = 3.77 − 5.65 ms) as shown in figure 4(a). The linear growth

rate, the saturation level and the frequency change of base case A (symmetric) are

γL/ωn = 1.00×10−2, Asat = 3.61×10−3 and δω/ωn = −1.64×10−2. These values of the

base case A are used as the units of the linear growth rate, the saturation level and the

δω, and other cases are always compared with the base case A, as shown in figure 4(b).

For Case B compared with Case A, the linear growth rate and saturation level decrease

by 10% and 20% respectively due to mode structure distortion. For Case D, Asat and γL
decrease compared with Case A, which shows the similar trend as Case B. For Case C,

γL and Asat slightly change compared with Case A. The relative difference of frequency

change, δω/ωn, in B, C and D compared with Case A can be ∼ 20%.

Figure 4. (a) Mode amplitude variation with time for A, B, C and D four cases. (b)

Mode linear growth rate, saturation level, frequency change at saturation, compared

with base case A.

3.2.3. Particle redistribution at saturation. The flattening of the density and energy

profiles induced by the Alfvén modes occurs when the resonance condition is met, as

shown in the left and middle frames of figure 5 (δn, δE < 0 for s < 0.5; δn, δE > 0

for s > 0.5). The radial distribution is obtained by integrating over velocity space

and the other real space coordinates. Perturbative mode structures (B, C, D) lead to

changes in particle and energy transport with δn, δE deviating by ∼ 10%. In contrast,

the parallel velocity profile changes significantly due to the non-perturbative mode

structure symmetry breaking as shown in right frame of figure 5. In the inner region

(s < 0.5), u‖ can even change its direction (rotation reversal). The average is taken

during t=3.77-5.65 ms (at saturation) in all figures. The radial profiles of the perturbed

EP density (left), energy (middle) and parallel (right) velocity are calculated according

to δn =
∫
δfdv3/

∫
fdv3, δE =

∫
δf · Edv3/

∫
fdv3, and u‖ =

∫
δf · v‖dv3/

∫
fdv3
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respectively. Note that for case C (with real σ = 40 and complex s0 = 0.4 + 0.02i), the

mode is only slightly distorted and its saturation level, linear growth rate and δω are

all similar to case A. However, the u‖ direction in the inner region (s < 0.5) is opposite

with that in cases B and D. This demonstrates the importance of the mode structure

symmetry breaking for the EP toroidal momentum transport, in particular in the case

of unidirectional or, more generally, asymmetric radial propagation.

Figure 5. The radial profile of the perturbed EP density (left), energy (middle)

and the parallel velocity (right) at saturation (averaged during t=3.77-5.65 ms). The

integration is performed over velocity space and other configuration space coordinates

in obtaining the radial profile.

3.2.4. u‖ reversal due to the mode radial wave vector. The reversal of the u‖ for different

mode structures is investigated in more detail by further modification of case C. As

shown in figure 7, the variation of Im(s0) leads to the significant change of the EP

parallel velocity u‖. For these cases, σ is kept real with σ = 40. A u‖ reversal in the

inner region is observed as Im(s0) varies, and the u‖ of EPs at s = 0.26 can be produced

with a magnitude of ∼ 10 km/s. For these u‖ reversal cases, the mode distortions are

relatively small (|Im(s0)| ≤ 0.03). The mode saturation level and the linear growth rate

deviate from case A (s0 = 0.4) by less than 6% as shown in figure 6. The frequency

change of the mode at saturation δω/ωn varies from −0.88× 10−2 to −2.13× 10−2 for

Im(s0) varying from −0.03i to 0.03i. As shown in figure 8, the density and energy

profiles of these cases change mainly at s < 0.4 region and less than 20% compared with

the base case (s0 = 0.4). We also did a scan for varying Im(σ) and keeping s0 = 0.4,

the u‖ does not change direction, emphasising that Im(s0) is the key parameter causing

u‖ reversal.

3.2.5. Generation of u‖ due to the asymmetric wave-particle interaction. The

perturbed distribution δf in velocity and real space is studied to analyse the u‖
generation. The δf along pitch angle and radial directions, δf(λ, s), is shown in figure 9

for negative and positive Im(s0) cases, where λ = v‖/v. For two different cases with

s0 = 0.4 − 0.03i (left) and s0 = 0.4 + 0.03i (right),the change of the δf value is more

visible for the co-moving particles in the s < 0.4 region (top left corner) as shown in
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Figure 6. (a) Mode amplitude variation with time for the u‖ reversal cases. (b) The

mode linear growth rate, saturation level, frequency change at saturation, compared

with case A. The frequency change of the mode at saturation δω/ωn varies from

−0.88× 10−2 to −2.13× 10−2 for Im(s0) varying from −0.03i to 0.03i.

Figure 7. Left: EP parallel velocity radial distribution u‖(s) changes with s0. The

u‖ in the inner region changes direction with Im(s0). Right: u‖(s = 0.26) varies with

Im(s0).

Figure 8. Radial profile of the density and δE at saturation.
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Figure 9. δf(λ, s) of EPs for negative and positive Im(s0), where λ = v‖/v. The

black line is the contour of δf = 0.

figure 9, which is consistent with the results in figure 8. The perturbed distribution

δf averaged over s ∈ [0.2, 0.4] and along λ is shown in figure 10(a). The responses

of particles are different according to their pitch angles. δf of co-moving particles are

more sensitive to the Im(s0). Particles with λ ∈ [0.3, 1] response more strongly and as

Im(s0) changes, δf near λ = 0.5 changes significantly. The response region of δf for

counter-moving particles is much narrower, mainly in λ ∈ [−1,−0.6].

Figure 10. (a) δf(v‖/v) of EPs averaged over s=0.2-0.4. (b) Asymmetric δf · v‖
distribution of EPs averaged over s=0.2-0.4.

The δf · v‖ distribution along v‖ is shown in figure 10(b). The contributions of

co-moving particles are negative and the contributions of counter-moving particles are

positive. When the Im(s0) changes from negative to positive values, the contributions of

counter-moving particles increase and the contributions of co-moving particles decrease,

leading to the generation of the net parallel velocity. While the asymmetric particle

response of thermal ions to the microturbulence has been studied in previous work [30],
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our work shows that for EP transport, the asymmetric mode structure also plays an

important role in particle response and the u‖ generation.

Since the total toroidal angular momentum of the wave-particle system is conserved

for any isolated system, the toroidal momentum evolution equation can be written in

conservative form [15, 31, 32], ∂tPφ+∂tgφ+∇·Πφ = 0 where Pφ is the particles toroidal

momentum, gφ is the toroidal component of the electromagnetic field momentum, and

Πφ is the toroidal momentum flux. The momentum density ~g of the Alfvén wave can be

written explicitly, ~g = ε0δ ~E×δ ~B = ~B/(2B)
{

(k‖/ω)(k2rR + k2θ + k2rI)|Φ̂nm|2
}

, where ε0 is

the vacuum permittivity, the subscripts R and I indicate the real and imaginary parts,

kr = ks∂s/∂r, kθ = m/r. For the Alfvén eigenmode, E‖ = −( ~B/B) · ∇Φ̂− ∂Â‖/∂t = 0

approximation has been adopted, where Â‖ is the parallel component of the vector

potential. In this work, kθ = 0.263/cm, krR = 0.032/cm � kθ at s = 0.4 for Case C

with s0 = 0.4 + 0.02i, the magnitude of wave momentum ~g changes very little when

determining the dependence of the u‖ reversal on Im(s0). This becomes obvious when

comparing mode with positive and negative values of Im(s0): the wave momentum ~g

is the same but the u‖ in the inner region is opposite, as shown in figure 7. Thus

although the direct momentum source from the wave could contribute to the u‖, other

mechanisms need to be considered to uncover the u‖ generation. The complete form of

the Reynolds-Maxwell stress (Πφ) [31, 32] needs to be derived with the consideration

of necessary effects such as the polarization drift effect [33], the turbulence acceleration

mechanism [34] and the EP physics such as the finite Larmor radius/finite orbit width

effect [35].

As is mentioned, the perturbative approach implemented in HAGIS conserves the

total energy and toroidal momentum, but the mode structure is fixed [12, 14]. Thus the

difference between transients and persistent processes of the u‖ generation related to the

mode structure time variation cannot be distinguished. In a more self-consistent non-

linear simulation with mode structure modification, the radially varying wave phase may

change in time and thus generate a different time-averaged u‖ profile. While the toroidal

momentum transport can be transient, the nonlinear balance can be attained and the

eventual mode structure and u‖ can differ from the transient ones. Nevertheless, the

mode structure observed in experiment and simulation shows that radially varying AE

phase fronts can persist during nonlinear saturation phase [5, 18] and thus, a finite level

of the u‖ distribution is expected. To estimate this non-linear balance quantitatively,

more self-consistent simulations using gyrokinetic codes will be necessary for a more

accurate calculation of the u‖ generation.

4. Summary

The effects of the non-perturbative mode structure on the energetic particle transport

have been analyzed in this work. The LIGKA-HAGIS [13, 12, 3] coupling scheme

has been applied to investigate the EP-wave interaction and the EP transport. In

the simulations, the mode structures are fitted using the analytical formula with
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symmetry breaking properties based on Ref. [9] in order to mimic the experimental and

simulation observations [5, 8]. Analyses based on ASDEX-Upgrade parameters show

that non-perturbative mode structure can be important for EP transport modelling.

The particle resonance changes and the wave-particle resonance island structures are

distorted due to the mode structure symmetry breaking. The mode radial propagation

(asymmetry of radial wave vector ks, caused by radial non-uniformity with respect to

mode rational surface) changes the EP transport, especially the toroidal momentum

transport. Specifically, with mode symmetry breaking effects considered, the mode

linear growth rate can change by 10% and the saturation level can change by 20%. While

the EP density and energy transport can change by of order 10%, the EP parallel velocity

distribution can change significantly, with the magnitude of ∼ 10 km/s. Especially,

u‖ = δf · v‖ radial profile reversal in the inner region is observed when varying the

mode structures. This demonstrates the feature of toroidal momentum transport in the

presence of EPs, as a complement to the momentum transport studies for bulk plasmas

[16, 15, 36, 37]. It is identified that the non-perturbative treatment is important,

especially for the studies of the EP intrinsic rotation and the parallel EP current

formation. The simulation stresses the importance of global analysis, however, based

on [9], the global effects can be included in local (and thus cheap) analysis. As a result,

this work also opens up the possibility for non-perturbative EP transport analyses in

experiments when coupled to 2D mode structure measurement such as ECEI diagnostic.

In addition, self-consistent nonlinear electromagnetic simulations using gyrokinetic or

hybrid approaches [8, 38, 39, 40] can include more comprehensive physics ingredients

in order to reveal more details of the EP physics, such as phase space zonal structure

dynamics [41, 42]. Specifically, the following aspects merit more effort in order to

build our capability of predicting the EP transport, especially the parallel momentum

transport.

• While in this work shows that the EP transport can be affected due to the mode

structure distortion with reasonably selected parameters (σ, s0), the hybrid and

gyrokinetic simulations are needed to identify the quantitative connection between

(σ, s0) and the EP profiles such as the maximum EP drive location and the nonlinear

phenomenon such as frequency chirping that are observed in hybrid and gyrokinetic

simulations [43, 44]. With this quantitative mapping between EP parameters, mode

distortion parameters (σ, s0) and the EP transport modifications, the capability of

interpreting and predicting the EP transport in experiments can be enhanced.

• In the self-consistent hybrid and gyrokinetic simulations, the mode frequency,

growth/damping rate and the mode structure can change due to the mode-particle

interaction [45]. The nonlinear effects on the EP transport, especially the u‖
generation also needs to be evaluated. Our analyses also need to be extended

to consider the nonlinear wave-wave and wave-particle effects on mode structure

symmetry breaking and EP transport, by making use of various theoretical tools

and transport theory [46, 25, 37, 15].
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These studies require dedicated effort and will be part of our future work for the

study of the non-perturbative mode structure effects on EP transport.
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