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Bounce-transit motion in concentric circular magnetic geometry is typically analyzed in the limit that the inverse aspect
ratio, ε , is small. We prove that this approximation is not necessary to study a concentric circular geometry by deriving
new analytic formulas while retaining a non-zero ε . We use these formulas to demonstrate that the approximation is
robust for ε . 0.3.

I. INTRODUCTION

Inhomogeneity in a magnetic field gives rise to charged
particle orbits such that the particle either is trapped in the
magnetic well or passes through the magnetic field.1–3 The
properties of these orbits have long been studied in tokamak
plasmas and are instrumental in describing a wide range of
kinetic and neoclassical phenomena.4–10 For example, anal-
ysis of trapped electron modes requires knowledge of the
lowest-order bounce-transit motion, and the toroidal drift fre-
quency characterizes the stability of these modes.11–13 In ki-
netic magnetohydrodynamics, the bounce-transit and drift fre-
quencies underly the resonances with energetic particles that
drive instabilities.14–16 Moreover, neoclassical calculations of
the zonal flow residual involve a series of bounce-transit time
averaging, a process that is intimately related to the calcula-
tion of the toroidal drift frequency.17–19 Thus, analytic formu-
las are indispensable in understanding these problems through
analytical and computational means; this need has led to a
great amount of work done solely on the bounce-transit mo-
tion itself in order obtain such formulas.2,20 Unfortunately, the
complex magnetic geometry in a tokamak presents a difficult
obstacle in deriving analytic formulas. The main goal of this
work is to remove one of these obstacles to allow for more
accurate calculations.

Previous analyses of guiding center bounce-transit motion
have utilized concentric circular magnetic geometry to sim-
plify the problem. In addition, the inverse aspect ratio is typi-
cally assumed to be small, resulting in an even more approxi-
mate magnetic geometry.12,20,21 This work takes direct inspi-
ration from Ref. 20, which performed analogous calculations
in the limit of small inverse aspect ratio. While this small
inverse aspect ratio approximation does make the formulas
easier to obtain and more compact, they are not necessary to
carry out an analytic derivation. Instead, a finite, non-zero in-
verse aspect ratio can be retained throughout the entirety of
the derivation. The calculations presented in this work are
possible because the fundamental integrals used in this paper
are of the form ∫

R(u,
√

P(u))du, (1)
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where P is a polynomial of degree 3 or 4 with no repeated
roots, R is a rational function of u and

√
P(u), and R contains

at least one odd power of
√

P.

It is well known that such an integral can always be repre-
sented by the three Legendre forms of elliptic integrals.22–25

While previously derived formulas only used elliptic integrals
of the first and second kind, these new formulas require the
elliptic integral of the third kind. Closed form solutions for
the field line-following equations of motion are found using
modified functions similar to the classical Jacobi elliptic func-
tions that are used, for instance, to describe particle trapping
in waves.26 We also show that the small inverse aspect ratio
approximation can be directly applied to the finite inverse as-
pect ratio analysis. The resulting comparison demonstrates
that the approximation is valid for moderately small inverse
aspect ratio. In the cases where the approximation is not good
enough, these analytic formulas can be used for increased
accuracy. Spherical tokamaks such as the National Spheri-
cal Torus (NSTX) and the Mega Ampere Spherical Tokamak
(MAST) are characterized by low aspect ratios; the inverse
aspect ratios for these two tokamaks were both ∼ 0.77.27,28

Thus, finite inverse aspect ratio effects can be important, even
if the analysis is restricted to a concentric, circular geometry.

The paper is organized as follows. Sec. II clarifies the an-
alytic concentric circular magnetic geometry and the prelimi-
naries for bounce-transit motion along the field line. Secs. III
and IV derive formulas for the bounce-transit frequency, the
longitudinal adiabatic invariant, and the closed form solution
to the bounce-transit motion. We next take into account devia-
tions from the field line motion due to magnetic drifts and con-
servation of canonical toroidal momentum while still retaining
a finite inverse aspect ratio. Sec. V analyzes the radial excur-
sion from the magnetic field line that results in banana orbits.
Sec. VI then calculates the slow toroidal drift frequency by
analyzing the equation of motion in the toroidal direction. Fi-
nally, we summarize our work in Sec. VII. We also include a
brief overview of our definitions and notation for elliptic in-
tegrals in Appendix A, while a tabulation of specific elliptic
integrals used to calculate the toroidal drift frequency can be
found in Appendix B.
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II. CIRCULAR MAGNETIC GEOMETRY

For a concentric circular tokamak geometry,29 the magnetic
field is defined to be

B =
B0

1+ ε cos(θ)

(
φ̂ +

ε

q̄(r)
θ̂

)
. (2)

The triad (r,θ ,φ) (minor radial distance, poloidal angle, az-
imuthal angle) defines a right-handed coordinate system with
r̂× θ̂ = φ̂ . The inverse aspect ratio ε = r/R0 and approximate
safety factor q̄ are functions of r only, where R0 is the major
radius. We do not take into account the Shafranov shift; thus,
the flux surfaces considered are concentric circles, .30 We note
that the magnetic field strength is typically approximated as

B = |B| ≈ B0 (1− ε cos(θ)) . (3)

To retain a finite inverse aspect ratio, we do not use this ap-
proximation in this work.

The true safety factor q(r) is given by

q(r) =
1

2π

∫ 2π

0
dθ

B ·∇φ

B ·∇θ
=

q̄(r)√
1− ε2

. (4)

We note that the magnetic field can be written in the Clebsch
form31

B = ∇α×∇ψ, (5)

where

α = φ −q(r)χ(r,θ), (6)
dψ

dr
=

rB0

q̄(r)
. (7)

We identify ψ with minus the poloidal flux normalized to 2π

and note that ψ labels the flux surface while α labels the field
line. The straight field line poloidal coordinate χ is defined as

χ = 2arctan

[√
1− ε

1+ ε
tan
(

θ

2

)]
(8)

and is constructed to satisfy the property

B ·∇φ

B ·∇χ
= q(r). (9)

The unit vector b̂ denoting the direction of the magnetic field
is

b̂ =
B
B
=

1√
1+ ε2/q̄2

(
φ̂ +

ε

q̄
θ̂

)
. (10)

The guiding center approximation used in this work is jus-
tified by the adiabatic conservation of the magnetic moment,
which requires that the gyroradius be small compared to other
relevant length scales in the system.32–36 We impose two con-
ditions on the guiding center particle orbit to determine the
bounce-transit motion to lowest-order in the gyroradius:

ψ̇ = 0, (11)
α̇ = 0. (12)

This restricts the particle to the magnetic field line. These
conditions can be written in terms of our previous coordinates,

ṙ = 0, (13)

φ̇ =
q̄θ̇

1+ ε cos(θ)
. (14)

We then compute the parallel velocity with this restriction in
mind,

v‖ = v · b̂ =

√
1+

ε2

q̄2 q̄R0θ̇ . (15)

Accordingly, we can define the length along the field line to
be

l =

√
1+

ε2

q̄2 q̄R0θ . (16)

From conservation of energy, the magnitude of the parallel
velocity is

∣∣v‖∣∣=√ 2
m
(E−µB) =

√
2E
m

√
1− µB0/E

1+ ε cos(θ)
, (17)

where E is the kinetic energy (since we ignore the electrostatic
potential), µ is the magnetic moment, and

B0(r) = B0

√
1+ ε2/q̄2. (18)

We next parameterize the orbit via the trapping parameter
κ ,

µB0

E
= 1+ ε−2εκ

2. (19)

Trapped particles reflect at a poloidal angle θb where their
parallel velocity is 0. We find that for trapped particles,

0≤ κ < 1, (20)
θb = 2arcsin(κ), (21)

Passing particle orbits, however, are not reflected. Instead,
they continue along the magnetic field line and make a com-
plete transit through the entire torus. Thus, the trapping pa-
rameter for passing particles is bounded by

1 < κ ≤
√

1+ ε

2ε
. (22)

The upper bound for κ corresponds to the situation where the
perpendicular velocity is 0. A particle at the trapped-passing
boundary (κ = 1) is analogous to a stationary pendulum at
the top of its arc, so we expect the period to approach infinity
as κ → 1 from both sides. We note that in the small inverse
aspect ratio limit, the upper bound for κ approaches infinity.

The differential equation governing the motion of the parti-
cle is then√

1+
ε2

q̄2 q̄R0
∣∣θ̇ ∣∣=√2E

m

√
2ε

√
κ2− sin2 (θ/2)

1+ ε cos(θ)
. (23)
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The characteristic frequency for the periodic motion is

ω0 =

√
E/m
√

ε

q̄R0
√

1+ ε2/q̄2
, (24)

while the characteristic length is

l0 =

√
1+

ε2

q̄2 q̄R0. (25)

This gives us

∣∣θ̇ ∣∣= 2ω0

√
κ2− sin2 (θ/2)

1+ ε cos(θ)
. (26)

We confirm that in the small ε limit

ω0 ≈
√

E/m
√

ε

q̄R0
, (27)

l0 ≈ q̄R0. (28)

Having defined the exact concentric circular geometry and
identified the lowest-order equation of motion, we proceed
to deriving analytic formulas for the bounce-transit frequency
and the longitudinal adiabatic invariant.

III. BOUNCE-TRANSIT FREQUENCY

Although the guiding center deviates from the magnetic
field line, we can calculate the longitudinal invariant J (also
known as the bounce-transit action); J is an adiabatic invari-
ant, meaning that if the time scale of the deviation is longer
than the bounce-transit period then it can be treated as a
constant.37 J is defined to be

J =
1

2π

∮
mv‖dl. (29)

Meanwhile, the bounce-transit frequency is defined as

ω =

(
∂J
∂E

)−1

, (30)

or equivalently

ω =
2π

T
= 2π

(∮ dl
v‖

)−1

. (31)

Because the bounce and transit motions are qualitatively dif-
ferent, we separate the calculation for trapped and passing par-
ticles. This distinction will apply to all other calculations in
this paper.

The elliptic integrals calculated here and elsewhere in the
paper are functions of parameters called the modulus and the
characteristic. These parameters are functions of κ and ε and

take on different forms for trapped and passing particles. For
trapped particles, the modulus and characteristic are

kb = κ

√
1− ε

1+ ε−2εκ2 , (32)

nb =
−2εκ2

1+ ε−2εκ2 . (33)

For passing particles, the modulus and characteristic are

kt =
1
κ

√
1+ ε−2εκ2

1− ε
, (34)

nt =
−2ε

1− ε
. (35)

Throughout this work, we simplify many elliptic integrals
into an analytically tractable form; Ref. 22 contains tables of
elliptic integrals, whereas Refs. 23 and 24 outline the method
to reduce and simplify these integrals.

A. Trapped Particles

The longitudinal invariant for trapped particles is

Jb =
8mω0l2

0
2π

∫
θb

0
dθ

√
κ2− sin2 (θ/2)

1+ ε cos(θ)
. (36)

We perform the substitution

θ = 2arcsin
(√

uκ
)

(37)

and find that

Jb =
8mω0l2

0

2π
√

2ε

∫ 1

0
du

√
1−u

√
u
√

1
κ2 −u

√
1+ε

2εκ2 −u
. (38)

Consulting Refs. 22–24, we find that this integral can be ex-
pressed analytically:

Jb =
4mω0l2

0
πε

√
1+ ε−2εκ2

(
(1+ ε)Π(nb,kb)

1+ ε−2εκ2 −K (kb)

)
.

(39)

In the small ε limit, we find that

Jb ≈
8mω0l2

0
π

(
E(κ)− (1−κ

2)K(κ)
)
. (40)

Meanwhile, for small κ we can approximate the bounce action
as

Jb ≈
2mω0l2

0√
1+ ε

κ
2. (41)

For both small κ and small ε , it is then clear that

Jb ≈ 2mω0l2
0κ

2. (42)
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Next, we compute the period

Tb =
4

2ω0

∫
θb

0
dθ

√
1+ ε cos(θ)

κ2− sin2 (θ/2)
. (43)

We again perform the substitution θ = 2arcsin(
√

uκ) and ob-
tain

Tb =
2
√

2ε

ω0

∫ 1

0
du

√
1+ε

2εκ2 −u
√

u
√

1−u
√

1
κ2 −u

, (44)

and using Refs. 22–24 once again,

Tb =
4

ω0

(1+ ε)Π(nb,kb)√
1+ ε−2εκ2

. (45)

Therefore, the bounce frequency is

ωb =
2π

Tb
=

πω0

2

√
1+ ε−2εκ2

(1+ ε)Π(nb,kb)
. (46)

Taylor expanding the bounce period for small ε , we find that

Tb ≈
4K (κ)

ω0
, (47)

so the bounce frequency can be approximated by

ωb ≈
πω0

2K (κ)
. (48)

In the limit of small κ , we instead have

Tb ≈
2π

ω0
√

1+ ε
, (49)

ωb ≈ ω0
√

1+ ε. (50)

In the limit such that both ε and κ are small,

Tb ≈
2π

ω0
, (51)

ωb ≈ ω0. (52)

B. Passing Particles

The longitudinal invariant for trapped particles is

Jt =
4mω0l2

0
2π

∫
π

0
dθ

√
κ2− sin2 (θ/2)

1+ ε cos(θ)
. (53)

We perform the substitution

θ = 2arcsin
(√

u
)
, (54)

which is similar to the substitution performed for passing par-
ticles. Upon doing so, we find that

Jt =
4mω0l2

0

2π
√

2ε

∫ 1

0
du

√
κ2−u

√
u
√

1−u
√

1+ε

2ε
−u

. (55)

Consulting Refs. 22–24, we find that this integral can be writ-
ten analytically as

Jt =
2mω0l2

0
πε

(
1+ ε−2εκ2

κ
√

1− ε

)(
(1+ ε)Π(nt ,kt)

1+ ε−2εκ2 −K (kt)

)
.

(56)
Taking a Taylor expansion of Jt about ε = 0, we obtain

Jt ≈
4mω0l2

0
π

κE
(
κ
−1) . (57)

Meanwhile, for large κ transit action is approximately

Jt ≈
mω0l2

0

√
2ε

ε (1+ ε)
. (58)

For both small ε and large κ , the expression simplifies to

Jt ≈
√

2mEq̄R0 ≈ m
∣∣v‖∣∣ q̄R0. (59)

The transit period is

Tt =
2

2ω0

∫
π

0
dθ

√
1+ ε cos(θ)

κ2− sin2 (θ/2)
. (60)

Again performing the substitution θ = 2arcsin(
√

u), we ob-
tain

Tt =

√
2ε

ω0

∫ 1

0
du

√
1+ε

2ε
−u

√
u
√

1−u
√

κ2−u
. (61)

Using Refs. 22–24 again, we find that

Tt =
2

ω0

(1+ ε)Π(nt ,kt)

κ
√

1− ε
. (62)

Therefore, the transit frequency is

ωt =
2π

Tb
= πω0

κ
√

1− ε

(1+ ε)Π(nt ,kt)
. (63)

Taylor expanding the transit period for small ε , we find that

Tt ≈
2K
(
κ−1

)
ω0κ

. (64)

Therefore, the transit frequency can be approximated by

ωt ≈
πω0κ

K (κ−1)
. (65)

In the limit of large κ , we instead have

Tt ≈
π
√

2ε

ω0
=

2πl0√
2E/m

, (66)

ωt ≈
√

2
ε

ω0 =

√
2E/m
l0

. (67)

Finally, for small ε and large κ we obtain

Tt ≈
2πl0√
2E/m

≈ 2π q̄R0∣∣v‖∣∣ , (68)

ωt ≈
√

2E/m
l0

≈
∣∣v‖∣∣
q̄R0

. (69)
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FIG. 1. Normalized longitudinal invariant J/J0 versus the trapping
parameter κ , where J0 = 8mω0l2

0/π . The bounce invariant corre-
sponds to κ < 1 and the transit invariant corresponds to κ > 1. The
upper bound for κ is ε dependent, so each case is plotted up until its
respective upper bound.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

κ
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ǫ = 0.5

ǫ = 0.7

FIG. 2. Normalized bounce-transit frequency ω/ω0 versus the trap-
ping parameter κ . The bounce frequency corresponds to κ < 1 and
the transit frequency corresponds to κ > 1. The upper bound for κ

is ε dependent, so each case is plotted up until its respective upper
bound.

C. Comparison to the Small ε Limit

Having derived analytic expressions for both the longitudi-
nal invariant and the bounce-transit frequency, we can easily
compare the exact expressions to the small ε approximation.
Fig. 1 plots the longitudinal invariant while Fig. 2 plots the
bounce-transit frequency for various values of ε , where ε = 0
refers to the small ε limit. The ε = 0.3 case corresponds to the
edge region in many tokamaks; ε = 0.5,0.7 are also plotted to
account for low aspect ratio tokamaks. We can see that the
small ε approximation is suitable even for the extreme case of
ε = 0.7.

We note that the discontinuity in Fig. 1 at κ = 1 arises from
the discrepancy in defining J for the bounce and transit cases.
J is calculated with a closed line integral; a trapped particle
undergoes a back and forth motion, whereas a passing parti-
cle’s velocity never changes direction. Thus, there is a fac-
tor of 2 difference for the closed line integral depending on
whether we consider the particle trapped or passing at κ = 1.
No discontinuity arises in Fig. 2 since the frequency at the
trapped-passing boundary is 0.

Having characterized the periodicity of the motion, we next
develop closed form solutions to the equation of motion and
find explicit expressions for θ(t).

IV. CLOSED FORM SOLUTION TO THE
BOUNCE-TRANSIT MOTION

To calculate the closed form solution for the bounce-transit
motion we reformulate problem as follows: find θ(α) where
α(t) satisfies

dα

dt
= ω. (70)

The function α is called the action angle, and is linked to the
adiabatic invariant associated with the periodic motion. The

strategy is to first find α(θ) and then invert the function to
obtain the closed form solution. Using the chain rule, we can
write

dα

dt
=

dα

dθ
θ̇ = ω, (71)

α = ω

∫
θ dθ ′

θ̇ ′
. (72)

The specific form of this integral is elliptic and depends on
whether we consider trapped or passing particles. In the fol-
lowing calculations, we constrain α such that −π ≤ α ≤ π

for one whole periodic motion and use the initial condition
α(θ = 0) = 0. To invert the elliptic integral, we define a func-
tion amπ such that

amπ (Π(ϕ,n,k) ,n,k) = ϕ. (73)

This is analogous to the Jacobi amplitude function that is used
for elliptic integrals of the first kind. For ease of notation, we
drop n and k. We also define analogous trigonometric func-
tions,

snπ (u) = sin(amπ (u)) , (74)
cnπ (u) = cos(amπ (u)) , (75)

dnπ (u) =
√

1− k2 snπ (u)
(
1−α

2 snπ (u)
)
. (76)

These functions satisfy the relations

sn2
π(u)+ cn2

π(u) = 1, (77)
d

du
snπ(u) = cnπ(u) dnπ(u), (78)

d
du

cnπ(u) =− snπ(u) dnπ(u). (79)

We clarify that these functions do not have the same properties
as the typical Jacobi elliptic functions, so care must be taken
in using them.
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FIG. 3. Normalized poloidal angle θ/π versus normalized action
angle αb/π for κ = 0.99. The particle undergoes a nearly sinusoidal
motion with little discrepancy between different values of ε .
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FIG. 4. Normalized poloidal angle θ/π versus normalized action
angle αb/π for ε = 0.3. The amplitude of the motion increases with
κ as expected.
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FIG. 5. Normalized poloidal velocity θ̇/ω0 versus the normalized
action angle αb/π for κ = 0.99. It is more clear that the particle’s
motion deviates from sinusoidal motion.
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FIG. 6. Normalized poloidal velocity θ̇/ω0 versus the normalized
action angle αb/π for ε = 0.3. The amplitude of the motion increases
with κ as expected.

A. Trapped Particles

For trapped particles, the integral we wish to compute can
be simplified to

αb =
π

2

∫
θ

0 dθ ′
√

1+ε cos(θ ′)
κ2−sin2(θ ′/2)∫ θb

0 dθ ′
√

1+ε cos(θ ′)
κ2−sin2(θ ′/2)

(80)

where for convenience we temporarily restrict our domain to
0≤ αb ≤ π/2 and 0≤ θ ≤ θb. We define a new angle ϕb

sin2(ϕb) =
sin2(θ/2)

κ2
1+ ε−2εκ2

1+ ε−2εκ2 sin2(θ/2)
(81)

and obtain

αb =
π

2
Π(ϕb,nb,kb)

Π(nb,kb)
. (82)

As a sanity check, we note that ϕ = π/2 corresponds to θ =
θb, in which case the numerator (having become a complete

integral) cancels with the denominator. Using our previously
defined inverse functions, we find that

sin2(ϕb) = sn2
π

(
2αb

π
Π(nb,kb) ,nb,kb

)
. (83)

We abbreviate the right-hand side as sn2
π

(
2αb
π

Π

)
. We can

then solve for θ ,

sin(θ/2) = κ snπ

(
2αb

π
Π

)√√√√ 1+ ε

1+ ε−2εκ2 cn2
π

(
2αb
π

Π

) ,
(84)

cos(θ/2) =

√√√√√1+ ε−2εκ2−κ2 (1− ε) sn2
π

(
2αb
π

Π

)
1+ ε−2εκ2 cn2

π

(
2αb
π

Π

) .

(85)



7

−1.0 −0.5 0.0 0.5 1.0

αt/π

−1.0

−0.5

0.0

0.5

1.0
θ
/
π

ǫ = 0

ǫ = 0.1

ǫ = 0.3

FIG. 7. Normalized poloidal angle θ/π versus normalized action
angle αt/π for κ = 1.4. In the extreme passing limit the particle has
a nearly constant poloidal velocity, with very little deviation between
different values of ε .
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FIG. 8. Normalized poloidal angle θ/π versus normalized action
angle αt/π for ε = 0.3. As κ increases the motion becomes straighter
and less sinusoidal.
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FIG. 9. Normalized poloidal velocity θ̇/ω0 the versus the normal-
ized action angle αt/π for κ = 1.4. κ = 1.4 is very close to the max-
imum allowed trapping parameter for ε = 0.3, hence why its plot is
the straightest.
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FIG. 10. Normalized poloidal velocity θ̇/ω0 the versus the normal-
ized action angle αt/π for ε = 0.3. The maximum velocity increases
for larger κ and in turn the variation of the velocity decreases.

These equations are now valid for all αb and by extension
valid for all time. Taking the time derivative, we find that

θ̇ =
2κω0 cnπ

(
2αb
π

Π

)
√

1+ ε
. (86)

Thus, we have closed form expressions for θ and θ̇ as func-
tions of αb(t).

In the small ε limit, we can approximate these expressions
as

sin(θ/2)≈ κ sn
(

2αb

π
K(κ),κ

)
, (87)

cos(θ/2)≈ κ cn
(

2αb

π
K(κ),κ

)
, (88)

θ̇ ≈ 2κω0 cn
(

2αb

π
K(κ),κ

)
, (89)

where sn and cn are the usual Jacobi elliptic functions.

B. Passing Particles

For passing particles, we instead calculate

αt = π

∫
θ

0 dθ ′
√

1+ε cos(θ ′)
κ2−sin2(θ ′/2)∫

π

0 dθ ′
√

1+ε cos(θ ′)
κ2−sin2(θ ′/2)

. (90)

Similar to ϕb, we define a new variable ϕt

sin2(ϕt) = sin2(θ/2)
1− ε

1+ ε−2ε sin2(θ/2)
(91)

and obtain

αt = π
Π(ϕt ,nt ,kt)

Π(nt ,kt)
. (92)
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FIG. 11. Phase space plot of θ̇/ω0 versus θ/π for ε = 0.3. The sep-
aratrix represented by the dotted curve corresponds to the trapped-
passing boundary at κ = 1.
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FIG. 12. Phase space plot of θ̇/ω0 versus θ/π for ε = 0. The sep-
aratrix represented by the dotted curve corresponds to the trapped-
passing boundary at κ = 1.

Note that ϕ = π/2 corresponds θ = π . Performing the inver-
sion, we find that

sin2(ϕt) = sn2
π

(
αt

π
Π(nt ,kt) ,nt ,kt

)
. (93)

Abbreviating the right-hand side as sn2
π

(
αt
π

Π
)
, we can then

solve for θ ,

sin(θ/2) = snπ

(
αt

π
Π

)√ 1+ ε

1+ ε−2ε cn2
π

(
αt
π

Π
) , (94)

cos(θ/2) = cnπ

(
αt

π
Π

)√ 1− ε

1+ ε−2ε cn2
π

(
αt
π

Π
) . (95)

These equations are valid for all αt and thus all time.
We can also calculate θ̇ for passing particles. However,

we need to take into account the fact that the parallel velocity
can either be positive or negative and never changes sign. To
accommodate for the potential sign difference we define ε‖ to
be the sign of v‖:

v‖ = ε‖
∣∣v‖∣∣ . (96)

Then, since we previously defined ωt to be strictly positive,
we need to write

dαt

dt
= ε‖ωt . (97)

We can then proceed to safely calculating θ̇ by taking a time
derivative and simplifying,

θ̇ =
2κω0ε‖

√
1− 1+ε−2εκ2

κ2(1−ε)
sn2

π

(
αt
π

Π
)

√
1+ ε

. (98)

We have now obtained closed form solutions for θ and θ̇ that
are valid for all time.

In the small ε limit, these expressions are approximately

sin(θ/2)≈ sn
(

αt

π
K
(
κ
−1) ,κ−1

)
, (99)

cos(θ/2)≈ cn
(

αt

π
K
(
κ
−1) ,κ−1

)
, (100)

θ̇ ≈ 2κω0ε‖ dn
(

αt

π
K
(
κ
−1) ,κ−1

)
. (101)

C. Phase Space Portrait

Having calculated the closed form solutions for the bounce-
transit motion, we can easily plot the phase-space portrait as
shown in Figs 11 for ε = 0.3 and Fig. 12 for ε = 0. The
bounce orbits reside in the interior of the separatrix where the
particle follows a closed loop. On the exterior of the separa-
trix, the particle instead continues its motion such that θ̇ never
changes sign. The phase-space portrait for the case of ε = 0 is
mathematically identical to that of a simple pendulum. While
the portrait for ε = 0.3 looks qualitatively similar to a simple
pendulum’s, there is an important difference. In the case of
a simple pendulum, the phase portrait is unbounded in the θ̇

direction; one can find an orbit corresponding to any value of
θ̇max/ω0,pend.. For transit orbits in a concentric circular geom-
etry, the phase-space orbit curves are bounded by the curve
corresponding to κ =

√
(1+ ε)/(2ε). We can see in Fig. 11

that the outermost curves corresponding to κ = 1.4 are very
straight and already nearly bound any interior curves. In con-
trast, for the small ε limit κ is unbounded from above, so a
phase-space orbit curve can found for any value of θ̇max/ω0.
This can be seen in Fig. 12 where the outermost curves are not
straight; indeed, they never become perfectly straight, regard-
less of what value κ takes.

This completes our discussion of the lowest-order guiding
center orbit. Without assuming anything about ε in a concen-
tric circular geometry, we have derived analytical expressions
for the bounce-transit frequencies and closed form solutions
to the bounce-transit equation of motion. We then proceed
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FIG. 13. Banana orbits in the normalized poloidal (x/R0,z/R0) plane
for ε = 0.3,δb/R0 = 0.05, ψ0 as the reference magnetic flux surface.
The origin corresponds to the magnetic axis.

to the next order in the gyroradius by considering deviations
from the field line.

V. BANANA ORBITS

First, we consider the radial deviation from the lowest-order
guiding center orbit. To calculate the radial deviation, we ex-
pand about a reference magnetic surface ψ = ψ0, noting that
ψ = ψ(r). We define a reference radial position r0 such that

ψ0 = ψ(r0), (102)

Pφ =−eψ +
mB0R0v‖

B
=−eψ0, (103)

where Pφ is the canonical toroidal momentum. Performing an
expansion about r0, we find that

r ≈ r0 +
dr
dψ

∣∣∣∣
ψ0

(ψ−ψ0) = r0 +
q̄R0

r0

mv‖
eB

. (104)

We can simplify by writing v‖ and B in terms of θ and θ̇ ,
which in turn are functions of the action angle α . For trapped
particles, we obtain

r ≈ r0 +2
q̄2R2

0
r0

mω0

eB0

κ
√

1+ ε
(
1+ ε−2εκ2

)
cnπ

(
2αb
π

Π

)
1+ ε−2εκ2 cn2

π

(
2αb
π

Π

) .

(105)
We isolate one of the factors and find that

q̄2R2
0

r0

mω0

eB0
=

q̄
Ωc
√

ε

√
E
m
, (106)

where Ωc = eB0/m is the characteristic cyclotron frequency.
We then write

q̄
Ωc
√

ε

√
E
m

=
q̄ρc√

2ε

√
E

µB0 =
δb√

1+ ε−2εκ2
, (107)

where we have used the cyclotron radius ρc and the banana
width

δb =
q̄ρc√

2ε
. (108)

Therefore, for trapped particles the expression simplifies to

r ≈ r0 +2δbκ

√
1+ ε

√
1+ ε−2εκ2 cnπ

(
2αb
π

Π

)
1+ ε−2εκ2 cn2

π

(
2αb
π

Π

) . (109)

The banana orbits are plotted in the poloidal plane in Fig. 13,
where the characteristic banana shape is readily apparent.

For passing particles, we instead obtain the expression

r ≈ r0+2ε‖δbκ

√
1− ε2

1+ ε−2εκ2

×

√
1− ε− (1+ ε−2εκ2) sn2

π

(
αt
π

Π
)

1+ ε−2ε cn2
π

(
αt
π

Π
) .

(110)

However, the radial deviation from ψ0 can be rather large for
passing particles given a high enough velocity. If we instead
expand about the time average of ψ , we would obtain an ex-
pression with a lower deviation. It is easily shown that in our
case

〈ψ〉= ψ0 +
mR2

0q̄ε‖ωt

e
. (111)

Defining 〈r〉 such that ψ(〈r〉) = 〈ψ〉, we find that the equation
for the radial deviation is modified in the following way:

r ≈ 〈r〉+2ε‖δbκ

√
1− ε2

1+ ε−2εκ2

×

√
1− ε− (1+ ε−2εκ2) sn2

π

(
αt
π

Π
)

1+ ε−2ε cn2
π

(
αt
π

Π
)

−
πδbε‖κ

√
1− ε

(1+ ε)Π(nt ,kt)
√

1+ ε−2εκ2
.

(112)

We can compare the two methods by plotting the transit or-
bits in the poloidal plane as shown in Figs. 14 and 15. As
predicted, expanding from the time averaged flux surface cor-
responds to less deviation from the flux surface.

Having studied the radial excursion from the magnetic field
line, we now calculate the change in the toroidal motion after
accounting for magnetic drifts and the conservation of canon-
ical toroidal momentum.
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FIG. 14. Transit orbits in the normalized poloidal (x/R0,z/R0) plane
for ε = 0.3,δb/R0 = 0.05, using ψ0 as the reference magnetic flux
surface. The origin corresponds to the magnetic axis.
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FIG. 15. Banana orbits in the normalized poloidal (x/R0,z/R0) plane
for ε = 0.3,δb/R0 = 0.05, using 〈ψ〉 as the reference magnetic flux
surface. The origin corresponds to the magnetic axis. As expected,
expanding about the time averaged flux surface results in a smaller
deviation.

VI. TOROIDAL DRIFT FREQUENCY

Magnetic drifts and the conservation of canonical toroidal
momentum alter the toroidal motion so that it no longer fol-
lows the magnetic field line. Rather, the guiding center drifts
toroidally through the magnetic field lines lying on a flux sur-
face. The toroidal drift frequency characterizes this motion
and can be calculated by time averaging the equation of mo-
tion corresponding to the toroidal direction.

As in the case of banana orbits, we define a reference mag-
netic surface ψ = ψ0 and Taylor expand around it; because
the radial excursion is proportional to the gyroradius, this is
equivalent to a gyroradius expansion. We note that the exactly
conserved canonical toroidal momentum is again

Pφ =−eψ +
mB0R0v‖

B
=−eψ0. (113)

We then find that

ψ = ψ0 +
mB0R0v‖

eB
= ψ0 +ψ1. (114)

The guiding center equations of motion without an electric
field in a static magnetic field are given by

dx
dt

=
(
v‖b̂+vD

)
·∇x, (115)

dv‖
dt

=−µ

m
∇B, (116)

where vD is the magnetic drift. We apply these equations of
motion to the coordinates ψ,χ,φ and expand:

dψ

dt
≈ vD ·∇ψ|

ψ0
, (117)

dχ

dt
≈ Ωχ

∣∣
ψ0

+
dΩχ

dψ

∣∣∣∣
ψ0

ψ1 + vD ·∇χ|
ψ0

, (118)

dφ

dt
≈ qΩχ

∣∣
ψ0

+
d

dψ

(
qΩχ

)∣∣∣∣
ψ0

ψ1 + vD ·∇φ |
ψ0

, (119)

where the lowest-order magnetic drift is the sum of the classi-
cal curvature and grad-B drifts,

vD =
b̂
eB
×
(

mv2
‖k+µ∇B

)
. (120)

Here, e is the charge of the particle and k is the curvature
vector defined such that

b̂×k = ∇× b̂−
(
b̂ ·∇× b̂

)
b̂. (121)

We have also introduced Ωχ ,

Ωχ = v‖b̂ ·∇χ =
v‖c

qR0 (1+ ε cos(θ))
, (122)

where for convenience we have defined the function

c(r) =
1√

1+ ε2/q̄2
. (123)
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FIG. 16. Normalized toroidal drift frequency 〈ωd〉/ωd,0 versus the
trapping parameter κ for ŝ = 1, q̄ = 2. The trapped-passing boundary
can easily be seen at κ = 1, around which the toroidal drift frequency
changes sign. Discrepancies from the small ε limit are large only for
ε = 0.7
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FIG. 17. Normalized toroidal drift frequency 〈ωd〉/ωd,0 versus the
trapping parameter κ for ŝ = 0, q̄ = 2. The trapped-passing boundary
can easily be seen at κ = 1, around which the toroidal drift frequency
changes sign. Discrepancies from the small ε limit become large for
ε = 0.5,0.7.
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FIG. 18. Normalized toroidal drift frequency 〈ωd〉/ωd,0 versus
the trapping parameter κ for ŝ = −0.5, q̄ = 2. For small ε , the
toroidal drift frequency undergoes sign reversal relatively far from
the trapped-passing boundary. The behavior near the trapped-passing
boundary at κ = 1 noticeably differs from the small ε limit for
ε = 0.7.
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FIG. 19. The trapping parameter κ at which the toroidal drift fre-
quency changes sign versus the magnetic shear ŝ for q̄ = 2. A de-
crease in magnetic shear corresponds to drift reversal occurring at a
lower value of κ . Discrepancies from the small ε limit are large for
ε = 0.5,0.7.

Using these equations of motion, we find that

φ̇ =
dq
dψ

Ωχ

∣∣∣∣
ψ0

ψ1 + vD ·∇φ |
ψ0
− qvD ·∇χ|

ψ0
+q

dχ

dt

= ωd +q
dχ

dt
,

(124)

where ωd is the term that corresponds to the deviation from
the magnetic field line.

To proceed with the calculation, we define a time average
using the field-line-following orbit as reference. For trapped
particles, the time average of a function F(ε‖,χ), also called
the bounce average, is

〈F〉= 2π

ωb

∫
χb

−χb

dχ∣∣Ωχ

∣∣ (F(ε‖,χ)+F(−ε‖,χ)
)
. (125)

For passing particles, we instead have the transit average

〈F〉= 2π

ωt

∫
π

−π

dχ∣∣Ωχ

∣∣F(ε‖,χ). (126)

To simplify our calculations we perform a change of vari-
ables from χ to θ ,∫

χb

−χb

dχ∣∣Ωχ

∣∣ = ∫ θb

−θb

dθ
q̄R0

c
∣∣v‖∣∣ . (127)

We then find that for trapped particles〈
φ̇
〉
= 〈ωd〉 (128)

and for passing particles〈
φ̇
〉
= 〈ωd〉+qε‖ωt , (129)
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where ωt is the transit frequency. The additional term for
passing particles accounts for the change in the toroidal co-
ordinate after a 2π change in the poloidal angle. Thus, it is
associated with the lowest-order transit motion examined in
Secs. III and IV.

The explicit expression for ωd is

ωd =
mq̄v2

‖
eB0r2

(
c2ŝ+

1
2

I1

)
+

Eq̄
eB0r2 I2. (130)

We have defined the magnetic shears,

s =
r
q̄

dq̄
dr

, (131)

ŝ =
r
q

dq
dr

=

(
s+

ε2

1− ε2

)
, (132)

and the functions I1(θ), I2(θ)

I1 = 1− (s−1)(1− c2)+
1−2c2

1+ ε cos(θ)

+
c2ε2 sin2(θ)

(1− ε2)(1+ ε cos(θ)2)
,

(133)

I2 = (s−1)
(
1− c2)+1− 1

1+ ε cos(θ)

+
c2ε2 sin2(θ)

(1− ε2)(1+ ε cos(θ)2)
.

(134)

We can then perform a time average, noting that

v2
‖ =

4Eε

m
κ2− sin2(θ/2)

1+ ε cos(θ)
. (135)

Using the elliptic integrals tabulated in the appendix, we ob-
tain for trapped particles

〈ωd〉=
Eq̄

eB0r2F1

[(
(s−1)

(
1− c2)+1

)
F1−F2 +

c2ε2

1− ε2 F3

+2ε
(
2ŝ+1− (s−1)

(
1− c2))F4

+2ε
(
1−2c2)F5 +

2c2ε3

1− ε2 F6

]
.

(136)

For passing particles, we instead have

〈ωd〉=
Eq̄

eB0r2G1

[(
(s−1)

(
1− c2)+1

)
G1−G2 +

c2ε2

1− ε2 G3

+2ε
(
2ŝ+1− (s−1)

(
1− c2))G4

+2ε
(
1−2c2)G5 +

2c2ε3

1− ε2 G6

]
.

(137)

We now take the limit that ε is small. In this limit,

s≈ ŝ, (138)
c≈ 1, (139)

and the elliptic integrals simplify as outlined in the appendix.
We also see that the characteristic drift frequency is

ωd,0 =
Eq̄

eB0rR0
≈

ω2
0 q̄3

Ωcε
. (140)

For trapped particles, we then obtain

〈ωd〉 ≈
ωd,0

(
(2+4ŝ)E(κ)−

(
1+4ŝ

(
1−κ2

))
K(κ)

)
K(κ)

,

(141)

which is the standard result. For passing particles, the drift
frequency is approximately

〈ωd〉 ≈
ωd,0

(
2κ2 (1+2ŝ)E

(
κ−1

)
−
(
2κ2−1

)
K
(
κ−1

))
K (κ−1)

.

(142)

Figs. 16-18 compare the toroidal drift frequency for various
values of ε and ŝ. We note that we only plot up to each individ-
ual case’s respective upper bound for κ shown in Eq. 22. We
see that the exact formula is well approximated by the small
ε limit for ε . 0.3. However, finite inverse aspect ratio ef-
fects become important for larger values of ε . Departure from
the small ε limit is more noticeable for low magnetic shear in
Fig. 17 and negative magnetic shear in Fig. 18. One can show
that the magnetic drift at the trapped-passing boundary is

〈ωd〉(κ = 1) = ωd,0

(
(s−1)

(
1− c2

)
ε

− 1
1− ε

)
. (143)

The ε dependence results in a large discrepancy for large val-
ues of ε . For the negative magnetic shear case, there is thus a
large spike near the trapped-passing boundary for large values
of ε that is absent for small values of ε .

Figs. 16-18 demonstrate that not only does a sign reversal
for the toroidal drift frequency take place, but the value of κ

corresponding to the drift reversal is dependent on both ε and
ŝ. Fig. 19 plots the value of κ at which the reversal takes place
as a function of ŝ. The ε = 0.5 case diverges from the small ε

limit, and the extreme ε = 0.7 case shows markedly different
behavior. The difference is not noticeable for large, positive ŝ.

VII. CONCLUSIONS

The calculations in this paper demonstrate that analytical
formulas for the bounce-transit motion in a concentric cir-
cular geometry can be obtained without a small ε approxi-
mation. In addition, the standard small ε formulas can be
easily obtained from the exact formulas; this method guar-
antees that a consistent ordering is applied in deriving the
approximate expressions. A comparison using the analytical
expressions reveals that the approximation is well suited for
ε . 0.3. The approximate expressions for the longitudinal in-
variant and bounce-transit frequency are also robust for larger
values of ε . However, the toroidal drift frequency is not well
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approximated for large ε , even absent the inclusion of shaping
effects. Of course, one must keep in mind that the concentric
circular geometry is itself an approximation which can signif-
icantly break down in the edge region. However, additional
shaping effects such as the Shafranov shift could also be per-
turbatively included while retaining a finite ε .

Our analysis demonstrates that in cases where a concentric
circular geometry is justified, applying a small ε approxima-
tion to the geometry itself and subsequent calculations is also
often justified. The formulas derived in this paper can be uti-
lized while restricting oneself to a concentric circular geome-
try if additional accuracy is required, which may prove useful
for spherical tokamaks.
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APPENDIX A: ELLIPTIC INTEGRAL
NOTATION

We clarify the notation used for elliptic integrals, as differ-
ent sources will often have conflicting notation. The complete
elliptic integral of the first kind is defined as

K(k) =
∫

π/2

0

dϕ√
1− k2 sin2(ϕ)

, (A1)

where k is the modulus. The complete elliptic integral of the
second kind is

E(k) =
∫

π/2

0
dϕ

√
1− k2 sin2(ϕ). (A2)

The incomplete integral of the third kind is

Π(ϕ,n,k) =
∫

ϕ

0

dϕ ′√
1− k2 sin2(ϕ ′)

(
1−nsin2(ϕ ′)

) , (A3)

where n is the characteristic. The integral is called complete
when ϕ = π/2,

Π(n,k) =
∫

π/2

0

dϕ√
1− k2 sin2(ϕ)

(
1−nsin2(ϕ)

) . (A4)

We note that n is allowed to be positive or negative.

For trapped particles, the modulus k and characteristic n are

kb = κ

√
1− ε

1+ ε−2εκ2 , (A5)

nb =
−2εκ2

1+ ε−2εκ2 . (A6)

For passing particles, the modulus and characteristic are

kt =
1
κ

√
1+ ε−2εκ2

1− ε
, (A7)

nt =
−2ε

1− ε
. (A8)

APPENDIX B: SPECIFIC ELLIPTIC
INTEGRALS

The calculation of several elliptic integrals is necessary to
carry out the analysis in Sec. VI. These integrals are tabulated
below with the help of Refs. 22–24. We first list those corre-
sponding to trapped particles:

F1(ε,κ) =
∫

θb

0
dθ

√
1+ ε cos(θ)

κ2− sin2(θ/2)

=
2(1+ ε)Π(nb,kb)√

1+ ε−2εκ2
,

(B1)

F2(ε,κ) =
∫

θb

0
dθ

√
1+ ε cos(θ)

κ2− sin2(θ/2)
1

1+ ε cos(θ)

=
2K (kb)√

1+ ε−2εκ2
,

(B2)

F3(ε,κ) =
∫

θb

0
dθ

√
1+ ε cos(θ)

κ2− sin2(θ/2)
sin2(θ)

(1+ ε cos(θ))2

=
2((1− ε)K (kb)+2εE (kb)− (1+ ε)Π(nb,kb))

ε2
√

1+ ε−2εκ2
,

(B3)
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F4(ε,κ) =
∫

θb

0
dθ

√
κ2− sin2(θ/2)

1+ ε cos(θ)

=

√
1+ ε−2εκ2

ε

(
(1+ ε)Π(nb,kb)

1+ ε−2εκ2 −K (kb)

)
,

(B4)

F5(ε,κ) =
∫

θb

0
dθ

√
κ2− sin2(θ/2)

1+ ε cos(θ)
1

1+ ε cos(θ)

=
2
√

1+ ε−2εκ2

1− ε2

(
E (kb)−

(
1− k2

b
)

K (kb)
)
,

(B5)

F6(ε,κ) =
∫

θb

0
dθ

√
κ2− sin2(θ/2)

1+ ε cos(θ)
sin2(θ)

(1+ ε cos(θ))2

=
(1+ ε)(abK (kb)+bbΠ(nb,kb))+ cbE (kb)

3ε3 (1− ε2)
√

1+ ε−2εκ2
.

(B6)

We have defined additional coefficients for F6,

ab = 3−6ε +
(
4κ

2−1
)

ε
2, (B7)

bb =−3
(
1− ε

2) , (B8)

cb = 2ε
(
3−
(
4κ

2−2
)
− ε

2) . (B9)

For passing particles, we have instead

G1(ε,κ) =
∫

π

0
dθ

√
1+ ε cos(θ)

κ2− sin2(θ/2)

=
2(1+ ε)Π(nt ,kt)

κ
√

1− ε
,

(B10)

G2(ε,κ) =
∫

π

0
dθ

√
1+ ε cos(θ)

κ2− sin2(θ/2)
1

1+ ε cos(θ)

=
2K (kt)

κ
√

1− ε
,

(B11)

G3(ε,κ) =
∫

π

0
dθ

√
1+ ε cos(θ)

κ2− sin2(θ/2)
sin2(θ)

(1+ ε cos(θ))2

=

(
k2

t (K (kt)−Π(nt ,kt))+
nt (K (kt)−E (kt))

1−nt

)
× 2κ (1− ε)3/2 (1−nt)

ε2 (1+ ε−2εκ2)
,

(B12)

G4(ε,κ) =
∫

π

0
dθ

√
κ2− sin2(θ/2)

1+ ε cos(θ)

=
(1+ ε)Π(nt ,kt)−

(
1+ ε−2εκ2

)
K (kt)

εκ
√

1− ε
,

(B13)

G5(ε,κ) =
∫

π

0
dθ

√
κ2− sin2(θ/2)

1+ ε cos(θ)
1

1+ ε cos(θ)

=
2κE (kt)√

1− ε(ε +1)
,

(B14)

G6(ε,κ) =
∫

π

0
dθ

√
κ2− sin2(θ/2)

1+ ε cos(θ)
sin2(θ)

(1+ ε cos(θ))2

=
(1+ ε)(atK (kt)+btΠ(nt ,kt))+ ctE (kt)

3ε3κ
√

1− ε(1+ ε)(1+ ε−2εκ2)
.

(B15)

The coefficients for G6 are

at = 3−
(
12κ

2−6
)

ε +
(
8κ

4−8κ
2 +3

)
ε

2, (B16)

bt =−3
(
1−2

(
κ

2−1
)

ε−
(
2κ

2−1
)

ε
2) , (B17)

ct = 2εκ
2 (3− (4κ

2−2
)

ε− ε
2) . (B18)

We also tabulate the small ε expansions used in Sec. VI,

F1 ≈ 2K(κ)+ ε (2E(κ)−K(κ)) , (B19)
F2 ≈ 2K(κ)− ε (2E(κ)−K(κ)) , (B20)

F3 ≈
8
3
(
(2κ

2−1)E(κ)− (1−κ
2)K(κ)

)
, (B21)

F4 ≈ 2
(
E(κ)−

(
1−κ

2)K(κ)
)
, (B22)

F5 ≈ 2
(
E(κ)−

(
1−κ

2)K(κ)
)
, (B23)

F6 ≈−
8

15
((

2−3κ
2 +κ

4)K(κ)−2
(
1−κ

2 +κ
4)E(κ)

)
,

(B24)

G1 ≈
2
κ

K
(
κ
−1)+ ε

κ

(
2E
(
κ
−1)− (2κ

2−1
)

K
(
κ
−1)) ,

(B25)

G2 ≈
2
κ

K
(
κ
−1)− ε

κ

(
2E
(
κ
−1)− (2κ

2−1
)

K
(
κ
−1)) ,

(B26)

G3 ≈
8
3

κ
((

2κ
2−1

)
E
(
κ
−1)−2

(
κ

2−1
)

K
(
κ
−1)) ,

(B27)

G4 ≈ 2κE
(
κ
−1) , (B28)

G5 ≈ 2κE
(
κ
−1) , (B29)

G6 ≈
8
15

κ
(
2
(
κ

4−κ
2 +1

)
E
(
κ
−1)

−
(
κ

2−1
)(

2κ
2−1

)
K
(
κ
−1)) . (B30)
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