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Abstract
The statistical analysis of environmental data from remote sensing and Earth system
simulations often entails the analysis of gridded spatio-temporal data,with a hypothesis
test being performed for each grid cell. When the whole image or a set of grid cells
are analyzed for a global effect, the problem of multiple testing arises. When no
global effect is present, we expect α% of all grid cells to be false positives, and
spatially autocorrelated data can give rise to clustered spurious rejections that can be
misleading in an analysis of spatial patterns. In this work, we review standard solutions
for themultiple testing problem and apply them to spatio-temporal environmental data.
These solutions are independent of the test statistic, and any test statistic can be used
(e.g., tests for trends or change points in time series). Additionally, we introduce
permutation methods and show that they have more statistical power. Real-world data
are used to provide examples of the analysis, and the performance of each method is
assessed in a simulation study. Unlike other simulation studies, our study compares
the statistical power of the presented methods in a comprehensive simulation study.
In conclusion, we present several statistically rigorous methods for analyzing spatio-
temporal environmental data and controlling the false positives. These methods allow
the use of any test statistic in a wide range of applications in environmental sciences
and remote sensing.
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1 Introduction

A common strategy in analyzing gridded spatio-temporal data derived from remote
sensing or Earth system models is to fit a statistical model at each grid cell (Julien and
Sobrino 2009; Fensholt and Proud 2012; Beck and Goetz 2012; Eckert et al. 2015;
Zhang et al. 2017). The statistical model or test employed depends on the researcher’s
study target. For example, a correlation test, a two-sample t-test, a trend test, or a linear
or even nonlinear model could be the most appropriate. Each of these tests produces
a p-value for each grid cell, and the p-values can be plotted over the entire study
area to create a statistical image. When attempting to analyze this image to assess its
collective significance (e.g., to identify significant patterns or an overall effect), we
incur the multiple testing problem.

This problem, which results in uncontrolled false-positive test results and con-
sequent false scientific “discoveries”, has received relatively little attention in the
environmental sciences and remote sensing, except for a small but growing num-
ber of climate science reports (Ventura et al. 2004; Wilks 2006a, b). Therefore, our
objective in this study is to raise awareness of this issue. We outline state-of-the-
art solutions, including permutation methods, and we demonstrate their potential in
real-world applications. We additionally conduct a simulation study.

More specifically, we explore two permutation methods that address the multiple
testing problem in the context of trend detection in a comprehensive simulation study.
Previous simulation studies have focused on evaluating the Familywise error rate of
Bonferroni and related methods, random field theory methods, and permutation meth-
ods (Nichols and Hayasaka 2003). Such studies have also compared the Familywise
error rate (FWER) and the statistical power of the false discovery rate (FDR) with the
case of no correction (Wilks 2016) or with Bonferroni and related methods (Ventura
et al. 2004; Wilks 2006a). A permutation method based on clustering has been intro-
duced in neuroimaging (Nichols and Holmes 2002), but it has not yet been evaluated
in a simulation study. A necessary step is to compare—in a single study—permutation
methods with Bonferroni and related methods, both in terms of their Familywise error
rate and their statistical power. As an additional point, we know of no other study that
evaluates the performance of the Mann–Kendall trend test in the context of multiple
testing.

The paper is structured as follows. In Sect. 2 we present the general conceptual
background, and we continue to explain the methods and notation in detail in Sect. 3.
In Sect. 4, a simulation study is conducted to assess the validity of the methods and to
compare their performance. The methods are then applied to two real-world datasets.
Finally, in Sect. 5, we conclude with some remarks and discussion about the methods
and the interpretations that can be obtained from each of them, andwe suggest possible
additional applications.

2 Background

In a single statistical hypothesis test, a result is declared to be significant if the test
indicates that the observed data are unlikely given that the null hypothesis is true.
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Fig. 1 Probability of at least one false positive test (FWER) as a function of the number of independent
simultaneous tests performed (α � 0.05), i.e. P � 1 − (1 − α)n

When multiple tests are performed (e.g., at the grid cell level), as is common in many
environmental science studies, the probability of obtaining a significant result by
chance (false positive) greatly increases. This probability of at least one false positive
amonga “family” of tests is called theFamilywise error rate (FWER).Aswith anyother
statistical test, we wish to constrain the FWER to a desired α level, which is usually
0.05, although suitable α levels are problem specific. Figure 1 illustrates the FWER as
a function of the number of multiple tests being performed—when performing as few
as 100 tests, we are almost guaranteed to have at least one false positive (>99%), when
the individual tests are independent. Indeed, the possibility exists that the majority of
discoveries or significant results are false positives (Wilks 2016). Further, due to spatial
autocorrelation, these false positives can also cluster together, giving the analyst a false
impression of a coherent pattern. Both of these drawbacks are further illustrated in the
simulation study (Sect. 4.2).

Two common strategies are used to control the FWER. One strategy is to set a new
threshold of significance that takes into account the number of tests performed (e.g.,
Bonferroni, Hochberg); we refer to these methods as Bonferroni-related methods. The
other strategy is to set the threshold of significance using the sampling distribution of
the maximum statistic (i.e., the 100 · (1 − α)th percentile). Only methods that have
strong control of the FWER allow making inferences on specific hypothesis tests (T.
Nichols and Hayasaka 2003); for this reason, we focus mainly on such methods.

This work introduces methods that use the distribution of the maximum statistic
and compares them to Bonferroni-related methods in the context of geospatial envi-
ronmental data. Performance is assessed with a simulation study, and two real-world
datasets are used for illustration. Methods that use the distribution of the maximum
statistic have been applied in other disciplines, most notably in neuroimaging (Nichols
and Holmes 2002; Nichols and Hayasaka 2003) and genetics (Dudoit et al. 2003).
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Table 1 Classification of grid cells

Retain null hypothesis Reject null hypothesis

Null hypothesis true G0|0 G1|0

Null hypothesis false G0|1 G1|1

3 Methods

3.1 Notation

Let H � {Hi , i � 1, 2, . . . , M} be the hypotheses at each grid cell, where Hi � 0
indicates that the null hypothesis is true, and Hi � 1 indicates that the alternative
hypothesis is true. We retain and reject Hi with Ĥi � 0 and Ĥi � 1, respectively,
depending on the outcome of the corresponding test. Hglobal denotes the global null
hypothesis; that is, all null hypotheses are true. The test statistic corresponding to
each hypothesis is denoted by Ti , and the image of test statistics is T . Let P � pi
be the corresponding p-values. Note that the number of tests, M , equals the number
of grid cells, since we test one hypothesis per grid cell. We indicate the ordered p-
values using the standard notation p(i), where p(1) ≤ p(2) ≤ . . . ≤ p(M). Finally, we
denote the significance level for the test statistic at each grid cell by αlocal, and the
significance level for the global null hypothesis by αglobal; rejecting the global null
hypothesis allows the researcher to declare what is referred to as global significance
or field significance.

3.2 Types of error

For a statistical test, we use α to denote the type I error, that is, the probability of
rejecting the null hypothesis (no effect) when it is true (false positive). The type
II error, β, is the probability of not rejecting the null when we should have (false
negative). The statistical power of a test is 1−β. In a single statistical test, we control
the probability of a false-positive decision at the specified α level. The classification
of grid cells in multiple testing is summarized in Table 1. In this context, G represents
the number of grid cells, and the subscript is the decision (fail to reject: Ĥi � 0, reject:
Ĥi � 1) given the truth (Hi � 0, Hi � 1); for example, G0|1 is the number of grid
cells for which we retained a false null hypothesis.

In multiple testing we often wish to control the probability of observing at least
one false positive among the whole family of tests, P(G1|0 > 0); this is the FWER. A
relatively new approach to dealingwithmultiple testing is the control of the FDR (Ben-
jamini and Hochberg 1995), defined as E

(
G1|0/G1|·

)
. The FDR is the expected value

of the proportion of false positives among all rejected null hypotheses, or “discoveries.”
Thus, a small FDR ensures that our discoveries are reliable, without constraining the
probability of making at least one false discovery. FDR control is therefore expected
to have higher within-image power than FWE methods, which is why it is sometimes
preferred.
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Importantly, there are two types of control of the FWER: weak and strong. Both
allow testing for field significance, but weak control only allows rejecting the global
null. Weak control does not enable rejecting individual grid cells’ null hypotheses,
which would be required to pinpoint specific significant subregions. In contrast, strong
control enables rejecting individual grid cells’ null hypotheses, but at the cost of being
a more conservative test and thus having weaker power.

The comparison of weak and strong control is analogous to a comparison of more
than two means in an ANOVA. The null hypothesis is that all means are equal, and we
use the F statistic to quantify this global hypothesis. If the statistic is extreme enough
(or its p-value lower than the specified α), we conclude that the means are different,
but we do not know which specific means are different. This situation is equivalent
to weak control. To determine which pairs of means are statistically different, several
strategies exist, including the Bonferroni correction, Tukey’s HSD, Scheffé’s method,
and so forth. After applying any of these post hoc tests, we can determine whichmeans
are not equal, which is equivalent to having strong control.

Formally, weak control is defined as

P

(
⋃

i∈G
Ti ≥ u|Hglobal � 0

)
≤ αglobal (1)

where Ti � {1, . . . , M}; the set G is the whole study area composed of M grid cells;
and u is the threshold of significance. To achieve strong control, the false positives
must be controlled in any region G0 ⊂ G where the null hypothesis is true:

P

(
⋃

i∈G0

Ti ≥ u

)

≤ αglobal ∀G0 ⊂ G (2)

In other words, detecting significance in a region should not affect the results of
other regions when strong control is achieved (Nichols and Hayasaka 2003). As an
example, in a global-scale analysis, detecting significance in a continent will not affect
the control of false positives in other continents.

3.3 Global tests for significance

Testing for a global effect is also known as testing for “field significance”. In this
testing, the objective is to assess if an effect is present anywhere in the region or study
area; in other words, we want to reject the global null hypothesis Hglobal . Testing for a
global effect is a consequence of testing a hypothesis in each grid cell and controlling
the FWER. If a single grid cell is found to be significant (after accounting for the
multiplicity of tests), we can reject Hglobal and conclude that an overall effect exists
in the study area. Depending on the type of FWER control (weak or strong), the null
hypotheses of individual grid cells can be rejected. We divide the methods for global
significance into two categories: Bonferroni-related methods and methods based on
the maximum distribution.
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3.3.1 Bonferroni-related methods

Perhaps the most popular method for multiple testing corrections is the Bonferroni
correction, which establishes the new threshold of significance by dividing α by M ,
the total number of tests (grid cells). All p-values below the threshold are declared
significant. This method is very conservative; significance thresholds are often too low
to detect any significance, especially with large datasets arising from remote sensing.

An alternative method based on the minimum p-value is theWalker method, whose
performance has been evaluated in the context of environmental applications (Wilks
2006a). If the global null hypothesis is true, then the p-values follow a uniform dis-
tribution on [0,1], and observing a p-value close to 0 would indicate a violation of
the global null hypothesis. The Walker test uses the distribution of the minimum p-
value, which is known to follow a beta distribution (Wilks 2006b), to establish the
significance threshold.

An improvement is to let the threshold u in Eqs. (1) and (2) vary, replacing it
with ui , as long as the overall FWER is controlled. This leads to step-up and step-
down methods, where the ordered p-values, p(i), are sequentially compared with the
corresponding threshold, vi , using the inequality

p(i) < vi (3)

where vi is the p-value threshold corresponding to the respective threshold in terms
of the test statistic, ui . In step-up methods, we start the largest p-value, p(M), and
compare it with vM . We then compare the second largest value, p(M−1), to v(M−1),
and so on. The first p(i) that satisfies the inequality in Eq. (3) is declared significant,
as well as all the smaller p-values. In step-down methods, we start with the minimum
p-value, p(1) and compare it with v1. We then compare p(2) with v2, and so on. The
first p-value that does not satisfy the inequality in Eq. (3) is declared nonsignificant,
and all the p-values below are declared significant. The idea behind this approach is
to let the threshold adapt to the signal in the data.

We evaluate the performance of step-up and step-down procedures with two com-
mon methods: Holm (step-up) and Hochberg (step-down). In theory, both methods
have more statistical power than the Bonferroni method, but with thousands of tests,
there is little difference in performance (Nichols and Hayasaka 2003; Dudoit et al.
2003).

The final two Bonferroni-related methods evaluated control the FDR. The method
introducedbyBenjamini andHochberg (1995), hereafter referred to asBH, controls the
expected number of false discoveries among all discoveries. Benjamini and Yekutieli
(2001) modify the BHmethod, which controls the FDR under positive autocorrelation
(or independence) among test statistics, to account for other cases of dependency
among the test statistics; we refer to their method as the BY method.

The methods and their respective thresholds are compared in Table 2. Note that, for
testing field significance, the threshold v1 is the same for Bonferroni, Holm, Hochberg,
and FDR. Hence they are expected to have similar FWER control. Walker and BY
methods also offer similar power; take, for example, the analysis of 10,000 grid cells
at a significance level of αglobal � 0.05. Bonferroni, Holm, Hochberg, and FDR have
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Table 2 Thresholds for Bonferroni related methods

Method vi Control of FWER

Bonferroni α
/
M Strong

Walker 1 − (1 − α)1/M Strong

Hochberg (step-down) α(1/(M − i + 1)) Strong

Holm (step-up) α(1/(M − i + 1)) Strong

BH (step-up) α
(
i
/
M

)
Weak

BY (step-up) α
(
i
/
M · c), c �

m∑

j�1
1
/
j Weak

v1 � 0.05
10000 � 5 · 10−6, while Walker has v1 � 1 − (1 − 0.05)

1
1000 � 5.13 · 10−6 and

BY has v1 � 0.05
10000·∑ 1/i � 5.11 · 10−7. The probability of these methods reaching

differing conclusions is extremely low.

3.3.2 Maximum distribution

The maximum statistic allows us to control for the FWER (Nichols and Hayasaka
2003). At least one grid cell in an image will be declared significant if and only
if the maximum statistic, maxT , exceeds the threshold u. If we choose u to be the
100 · (

1 − αglobal
)
th percentile of the distribution of the maximum statistic, written

as u � F−1
maxT |Hglobal�0

(
1 − αglobal

)
, we have

P

(
⋃

i

Ti ≥ u|Hglobal � 0

)

�P
(
maxT ≥ u|Hglobal � 0

)

� 1 − FmaxT |Hglobal�0(u)

� α

(4)

Strong control is achieved if the null distribution of any subset does not depend
on the other null hypothesis. This circumstance is called subset pivotality, and it is
satisfied if no logical constraints exist between grid cells; that is, any combination
of significant/nonsignificant grid cells is possible (Nichols and Hayasaka 2003). It
is also referred to as satisfying the free combination condition. An example of this
condition not being satisfied is the following comparison of three means, μ1, μ2, and
μ3.If μ1 �� μ2, then μ1 � μ3 and μ2 � μ3 cannot both be true, and so the free
combination condition is not satisfied (Bretz et al. 2011). In the case of a test statistic
being applied at each grid cell, this condition is satisfied—a test statistic Ti at the ith
grid cell has no impact on any other test statistic.

Significance is determined by u, as described above. Any test statistic (grid cell)
whose absolute value exceeds the threshold u is declared significant. Note that u does
not depend on the choice of test statistic; we can use any valid test statistic. In the
following section, we describe two test statistics based on the maximum distribution,
which is derived via permutation methods.
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Table 3 Example of the
permutation approach for a
single time series

Data Mann–Kendall’s S

Original data: 1, 2, 3, 4, 5 10

Permutation 1: 2, 4, 1, 5, 3 2

Permutation 2: 5, 2, 4, 3, 1 − 6

··· ···

Permutation k: 3, 5, 1, 2, 4 0

3.4 Permutationmethods

3.4.1 Background

Permutation tests are nonparametric tests. As opposed to their parametric counterparts,
nonparametric tests do not assume a distribution of the test statistic under the null
hypothesis; instead, it is derived empirically. This approach is especially useful because
deriving the null distribution theoretically requires many assumptions that are hard to
meet, as is the case with the maximum statistic distribution. The following is a brief
overview of how permutationmethodswork in this context. Please refer to Nichols and
Holmes (2002) for an in-depth treatment of permutation methods and their relation to
the maximum distribution of a test statistic.

In a permutation test, the test statistic under all possible rearrangements of the data
is calculated. For this calculation, we assume exchangeability; that is, the distribution
of the statistic does not change whenwe change the ordering/labeling of the data under
the null hypothesis. For a time series, the ordering/labeling are the time points. When
the existence of a trend is being tested, the null hypothesis is that there is no trend.
Under this null hypothesis, we assume that the observations are random and could
have come from any time point. Thus, our data are exchangeable and we can proceed
with a permutation test.

Consider a time series of five observations. If all the values are greater than their
previous value, we would be inclined to conclude that the data show an upward trend.
Similar to a parametric statistical test, a permutation test allows us to test if the observed
data are unlikely given that the null hypothesis is true. Let the values for the time series
be 1, 2, 3, 4, and 5, and supposewewant to test for the existence of a trend.We compute
Mann–Kendall’s S statistic (as defined in Sect. 4.1) for each permutation, as shown in
Table 3.

All the test statistics obtained from the permutations form our distribution of the test
statistic under the null hypothesis of no trend. The p-value is given by the proportion
of test statistics that are greater than or equal to the observed test statistic. If the total
number of possible rearrangements is too large, a subsample is enough (Dwass 1957;
Edgington 1969). In this case, there are 5!� 120 rearrangements, and the significance
for a two-sided test at α � 0.05 is indicated by our test statistic being among the three
largest/smallest test statistics (since 120 · 0.05/2 � 3). In the example, the critical
values are − 8 and 8, and our observed test statistic is the largest test statistic, and it
is significant with a p-value of 2 · (1/120) � 0.02.
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3.4.2 Controlling the Familywise error rate

The above procedure is a permutation test for a single time series. To control the
FWER, we permute the entire image simultaneously and record the maximum statistic
(among all the grid cells) for each permutation. Permuting whole images conserves
the spatial autocorrelation present in the data. The resulting set of test statistics form
the maximum distribution of the test statistic under the null hypothesis, of which we
use the 100 · (1 − αglobal

)
th percentile to establish the significance threshold.

Although the spatial autocorrelation is accounted for by permuting images as a
whole, accounting for temporal autocorrelation may still be needed. Temporal auto-
correlation violates the exchangeability condition necessary to perform permutations,
and ignoring it can lead to false-positive rates (per grid cell) as high as 30% (Yue et al.
2002). To account for temporal autocorrelation, we apply the correction proposed by
von Storch (1999): for each grid cell, we calculate the temporal autocorrelation r̂ at
lag-1 and replace the original time-series xt with the series Yt � xt − r̂ xt−1.

Note that while permutation p-values can be obtained as described above, we only
use permutation methods to establish the threshold of significance. The p-values used
in this paper are derived from the z-statistic obtained from the Mann–Kendall trend
test, as described in Sect. 4.1. We use this approach because Bonferroni and related
methods have very conservative thresholds of significance, and we would need to
perform an enormous number of permutations for p-values to achieve significance.
For example, in a dataset of (only) 10,000 grid cells, the Bonferroni threshold at
α � .05 is v � 0.05

10,000 � 5 · 10−6. With 1000 permutations, the minimum p-value that

can be achieved is 1
1000 � 1 · 10−3, which is several orders of magnitude larger than

required for statistical significance.
The motivation for using the maximum statistic comes from random field theory

(RFT), which was first used for statistical analysis in the neuroimaging community
(Worsley et al. 1992). An in-depth treatment of RFT can be found in Petersson et al.
(1999) and Cao and Worsley (2001) and a more concise one in Nichols and Hayasaka
(2003). Essentially, RFT is used to approximate the distribution of themaximum statis-
tic, which is then used to establish a significance threshold that controls the FWER.
The drawback of the RFT approach is that it makes assumptions on the image to be
analyzed. Among other things, it assumes the data are a realization of a stationary
multivariate Gaussian distribution with a known degree of smoothness. In neuroimag-
ing, as well as in environmental sciences, meeting these conditions is difficult, which
is why permutation methods are appealing.

We perform two permutation tests in this study: one for the maximum distribution
of the test statistic (hereafter called maxT ), and one for the maximum distribution of
the supra-threshold cluster size (STCS) of the test statistic. The STCS is the number
of significant grid cells that are adjacent (contiguous first-order queen neighbors).
For both methods, we permute whole images simultaneously and recalculate the test
statistic at each grid cell. For maxT , we record the maximum test statistic among
all grid cells; for STCS, we record the size of the largest cluster of significant grid
cells. We then repeat these steps N times. These steps are summarized in Table 4. The
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Table 4 Steps for permutation tests

Maximum statistic distribution (max T) Supra-threshold cluster size (STCS)

Permute images Permute images

Calculate test statistic at each grid cell Calculate test statistic at each grid cell

Keep the maximum statistic among all grid cells Keep the size of the largest cluster of significant grid
cells

Repeat N times Repeat N times

distribution of the maximum statistic is formed from the statistics recorded in each
permutation.

Both tests allowus to control theFWERat the desiredαglobal by setting the threshold
of significance, u, to the 100 · (1 − αglobal

)
th percentile of their respective maximum

distributions. For maxT , any grid cell whose absolute value of the test statistic exceeds
u is declared significant. For STCS, u is in terms of cluster size, so any cluster larger
than u is declared significant.

The analysis is done entirely in the R programming language (R Core Team 2019).
For the STCS method, we identify the clusters with the osc package in R (Kriewald
et al. 2019). The algorithm selects a random starting point among significant grid cells
and checks the neighbors for significance. If significant, it adds them to the cluster
and iterates in this manner until no more significant neighbors remain. It then repeats
this process until all significant grid cells are assigned a cluster or a maximum of 3
times the number of columns (default setting). We have adapted the algorithm so that
it distinguishes between significantly positive and significantly negative grid cells.

4 Simulation study and real-world examples

In this sectionwe analyze spatial time series of twowidely used environmental datasets
that play an important role in the assessment of climate change and its impacts on
ecosystems: the GIMMS Normalized Difference Vegetation Index (NDVI) dataset
3rd generation version 1 (Pinzon and Tucker 2014; Tucker et al. 2005) and the NASA
GISS Surface Temperature Analysis (GISTEMP) version 5 (GISTEMP Team 2019;
Hansen et al. 2010). TheNDVI data are available fromNASA’s Ecological Forecasting
Lab repository, https://ecocast.arc.nasa.gov/data/pub/gimms/. The GISTEMP data are
available from NASA’s Goddard Institute for Space Studies repository, https://data.
giss.nasa.gov/gistemp/.

The simulation study was designed to mimic such real-world situations under con-
trolled conditions with known presence (and magnitude) or absence of trends. It is
thus instrumental in evaluating the performance of the Bonferroni-related and permu-
tation methods in terms of control of the FWER, global test power, and percentage
of correctly detected trends, considering different rates of change. We use the Man-
n–Kendall trend test in the real-world and the simulation studies; an overview of the
methods analysed is presented in Table 5.
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Table 5 Overall summary of all analyzed methods

Methods FWER control Inference on Observed αglobal References

Bonferroni Strong Individual grid
cells and study
area

Conservative Bonferroni (1936)

Walker Strong Individual grid
cells and study
area

Conservative Walker (1914)

Hochberg Strong Individual grid
cells and study
area

Conservative Hochberg (1988)

Holm Strong Individual grid
cells and study
area

Conservative Holm (1979)

Benjamini-
Yekutieli

Weak Study area Most conservative Benjamini and
Yekutieli (2001)

Benjamini-
Hochberg

Weak Study area Conservative Benjamini and
Hochberg (1995)

Maximum statistic Strong Individual grid
cells and study
area

Nominal level Nichols and
Hayasaka (2003)

Dudoit et al. (2003)

Supra threshold
cluster size

Strong Clusters and study
area

Nominal level Nichols and
Holmes (2002)

4.1 Trend test

Although we could use any test statistic, we focus on the Mann–Kendall’s (MK) S
statistic, which is often used to determine significance of trends obtained with the
Theil-Sen estimator. Many reports present a map showing grid cells with a significant
trend, but no test for field significance or correction for multiple testing is carried out
(Julien and Sobrino 2009; Fensholt and Proud 2012; Beck and Goetz 2012; Eckert
et al. 2015; Zhang et al. 2017). Without such correction, the results that are shown
may be spurious and there may be no true trend or spatial pattern.

A benefit of using theMKS statistic is that it can be transformed to a Z-score.When
deriving the distribution of the maximum statistic over a set of test statistics, we want
them to have a common null distribution so that no single test statistic dominates the
maximum distribution (Nichols and Hayasaka 2003). For example, when means are
compared, using mean difference as a test statistic (instead of a t-statistic) will result
in grid cells with a larger range of values dominating the distribution of the maximum
test statistic. Although the FWER would still be controlled, potential significant test
statistics could be masked, leading to a loss of power.

Autocorrelation is well known to influence the test statistic; positive autocorrelation
inflates the type I errors, while negative autocorrelation makes the test conservative
(Yue et al. 2002). Any conclusions drawn from test statistics that fail to control the
type I error should be viewed with caution. Before applying the MK trend test, we
apply von Storch’s correction, which controls the type I error at the specified α level
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and has only slightly inflated false-positive rates for strong temporal autocorrelation
(von Storch 1999).

We stress that the methods here can be applied to any test statistic that produces a
p-value, but, for simplicity, we focus only on the MK statistic, calculated by

S �
n−1∑

i�1

n∑

j�i+1
sign

(
x j − xi

)
(5)

where the sign function can be 1, 0, or − 1 if the term between the parentheses is
positive, zero, or negative, respectively. The variance can be calculated with

var(S) � n(n−1)(2n+5)
18 . (6)

We can convert this test statistic to a standard normal distribution by

Z �

⎧
⎪⎨

⎪⎩

S−1√
var(S)

f or S > 0

0 f or S � 0
S+1√
var(S)

f or S < 0
(7)

All tests performed are two sided, and p-values are calculated by

p � 2(1 − φ(|Z |)) (8)

where φ is the cumulative distribution function of the standard normal distribution.

4.2 Simulation study

4.2.1 Setup

Analyses of global gridded datasets commonly include thousands or even millions
of grid cells. In this simulation study we generate 1000 realizations of Gaussian
random fields on a 100×100 grid with different levels of spatial autocorrelation.
The spatial autocorrelation is determined by r(d) � exp

(−cd2
)
, where d represents

the Euclidean distance between the grid cell midpoints, and c is chosen so that r
(1) � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Each realization consists of 34 time
steps, where each grid cell has a standard normal distribution

(
μ � 0, σ 2 � 1

)
, and

each time step has the specified spatial autocorrelation. This arbitrary square grid is
chosen to mimic situations encountered in real-world applications, and it serves as a
compromise between limiting computational complexity and avoiding edge effects.
Nevertheless, it roughly corresponds to Earth system model results at a 2°×2° res-
olution (assuming global coverage), which contains up to 16,200 grid cells. For
comparison, in theGISTEMP dataset we analyze 14,295 grid cells.We do not simulate
temporal autocorrelation because it is addressed separately by using an appropriate
testing procedure (Wilks 2016). For all scenarios, the permutation methods are based
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on 1000 permutations. The proportion of images with at least one significant grid cell
is recorded, and this is the FWER, since no trend was added.

Two other correlation functions have been used. An exponential correlation func-
tion r(d) � exp(−c|d|)with the values for c chosen as above, and aMatérn correlation

function r(d;φ, κ) � (
2k−1Γ (κ)

)−1(
d
/

φ
)k
Kκ

(
d
/

φ
)
, where φ and κ are nonneg-

ative parameters of the covariance, Γ (·) is the Gamma function, and K_κ(·) is the
modified Bessel function of the third kind, of order κ . The range φ is fixed to be 1,
and the smoothness κ is allowed to vary, with κ � .5, 1, 2, 3, 4, 5, 6, 7, 8 representing
spatial correlation ranging from low to high. These results can be found in Appendix
A.

The magnitude of the trend is unknown in real-world studies. To assess the ability
to detect a trend, we simulate correlated Gaussian fields as above, and we induce
a varying amount of trend, ranging from 0.001 to 0.1 per time step. This approach
covers a wide range of trend magnitudes, from “hardly appreciable” on a visual basis
to “impossible to overlook.” The trend is added only to a square in the center; for each
of the trend magnitudes, we also vary the size of the trend-affected region: we use a
5×5 square, a 20×20 square, and a 50×50 square, which correspond to 0.25, 4, and
25 percent of all grid cells, respectively. The proportion of images that are identified
with field significance (at least one significant grid cell) is recorded, which is the global
test power.

Besides global test power, the researcher may also be interested in how much of
the signal is identified. For each simulation in which a trend is induced, we calculate
the proportion of correctly identified grid cells in the trend-affected region, which is
the within-image test power.

4.2.2 Results

All methods control the FWER, although only the permutation method based on the
maximum test statistic effectively controls the FWER at the desired nominal αglobal

level. The STCSmethod is slightly conservative at low spatial autocorrelation (FWER
between 0.02 and 0.03), but it approaches the nominal level as the autocorrelation
becomes stronger. Other methods are very conservative—their FWER is much lower
than the nominal level. Bonferroni and related methods achieve a FWER of 0.01,
regardless of the strength of spatial autocorrelation. The BY method stands out for
being the most conservative, with an observed FWER of 0.0002 across all levels of
spatial autocorrelation.

With regard to the global test power, the permutation method and the clustering
method consistently have better global test power than the other methods. Among the
permutation methods, the STCS is consistently better, with an exception occurring
when two conditions are met: a small trend-induced region (5×5 square or 0.25% of
all grid cells) and strong spatial autocorrelation (≥ 0.8). The BHmethod offers global
test power comparable to the maxT method, but its power is always slightly lower.
Among the Bonferroni-related methods, it offers the highest power.

As a test for field significance, both permutation approaches outperform the others.
The clustering procedure only fails in the case mentioned before. For all other cases,
the clusteringmethod proves to be the best option to test for field significance, followed
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Fig. 2 Achieved FWER of the multiple testing corrections as a function of spatial autocorrelation

closely by the permutation method. The BH correction follows closely, with the rest
of the Bonferroni-type corrections achieving the same type I and type II errors. As
expected, the BY correction is last because it is highly conservative.

In terms of within-image test power, the STCS and BH are the best performing
methods. The STCS has increased within-image test power for all cases except the
one discussed above: small trend-induced region (0.25% of all grid cells) and strong
spatial autocorrelation (≥ 0.8). The second-best Bonferroni-related method is the BY
method, which outperforms the maxT method in all cases except those with a small
trend-induced area (0.25% of all grid cells). The other methods have consistently low
within-image test power—even for the best-case scenario of no correlation and large
trend-induced area (Fig. 4g), themethods detect only around 30%of the signal.We can
always detect 100% of the signal by declaring all grid cells as significant. Therefore,
it is of interest to know the proportion of true negatives that are correctly identified.
For all methods, this proportion is ∼ 100% (not shown).

Because Bonferroni-related methods (Bonferroni, Hochberg, Holm, Walker) are
unlikely to differ in terms of FWER, global test power, and within-image test power,
their individual lines cannot be observed (Figs. 2, 3, 4) because they overlap for most
of the simulation scenarios.

No observable difference appears in the results when we change the correlation
function. All methods control the FWER regardless of the correlation structure of the
data, with the individualmethods performing similarly across all correlation functions.
In terms of global test power and within-image test power, we also observe similar
performance across all three correlation functions.

4.3 Real-world examples

4.3.1 Data

We analyze NDVI trends from the GIMMS dataset for the years 1982 to 2015 globally.
The spatial resolution is 1/12°×1/12° and the values are aggregated yearly to obtain
a time series of 34 years.
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Fig. 3 Global test power for the case of no spatial autocorrelation, moderate spatial autocorrelation (0.5) and
strong spatial autocorrelation (0.9) as a function of trendmagnitude. The red line indicates theαglobal � 0.05
level. The effect area is the percentage of all grid cells where a trend was induced

Fig. 4 Within-image test power for the case of strong no spatial autocorrelation, moderate spatial autocor-
relation (0.5) and strong spatial autocorrelation (0.9) as a function of trend magnitude. The effect area is
the percentage of all grid cells where a trend was induced

Long-term temperature trends are analyzed from the NASA GISTEMP product
globally for the years 1951 to 2018. The spatial resolution is 2°×2° and the values
are aggregated yearly to obtain a time series of 68 years.
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Table 6 Results of FWE methods applied to data sets, αglobal � 0.05

Data # of grid cells Unadjusted Bonferroni Walker Holm Hochberg

NDVI 9331,200 217,585 0 0 0 0

GISTEMP 14,295 9152 1 1 1 1

Data # of grid cells Unadjusted BH BY max T STCS

NDVI 9,331,200 217,585 0 0 22 0

GISTEMP 14,295 9152 5962 0 97 8076

Shown are number of significant grid cells identified by each method

4.3.2 Results

All methods control the FWER at a significance level of αglobal � 0.05, and the
permutation distributions are derived from 5000 permutations. In the GIMMS NDVI
data, only the permutationmethod,maxT , detected a trend in 22 grid cells (not shown),
scattered across northeastAfrica and southwestYemen. The detected grid cells showed
increasing monotonic trends.

In the GISTEMP temperature data, almost all methods detect significant grid cells
with increasing temperature trends, indicating global warming. As expected, Bon-
ferroni, Walker, Holm, and Hochberg all are rather conservative, detecting only a
single grid cell (the same grid cell, located in southeast Angola). The STCS, BH, and
maxT methods detect much more significant trends, with 8076, 5962, and 97 grid
cells, respectively (Table 6). The BY method does not detect any trend. None of the
methods detect significant decreasing trends in any location.

The BH method detects significant grid cells around the globe, identifying signifi-
cant warming trends around the world. The maxT method detects fewer grid cells, but
it shows a distinguishable spatial pattern of warming in Siberia and a smaller hotspot
in southeast Angola (Fig. 5).

Not accounting for the multiplicity can lead to an incorrect conclusion of field
significance ormisinterpretation of a spatial pattern.Both datasets exhibit large number
of grid cells with a significant trend when there is no correction for multiple testing.
When multiplicity is not corrected for, the MK test flags only ∼ 2% of grid cells as
significant in theGIMMSNDVIdata,while for theGISTEMP temperature data∼ 64%
of the grid cells are flagged as significant. After correction for multiple testing, the
GIMMS NDVI data show no clear spatial pattern and most methods detect no trends.
The GISTEMP data retain the overall spatial patterns (STCS and BH methods) and
identify smaller regions of interest (maxT method), while most methods indicate field
significance.

5 Discussion

We have compared different strategies to account for the multiple testing issue
that arises in the environmental sciences. Previously used strategies, referred to as
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Fig. 5 Results of applying the MK test for the GISTEMP data with different corrections for multiple testing.
White grid cells indicate no significance (p>0.05), light red and light blue indicate unadjusted significance
(p<0.05) for increasing and decreasing trends, respectively, and bright red and bright blue indicate sig-
nificance for increasing and decreasing trends, respectively, after correcting for multiple testing with the
specified correction at a significance level of αglobal � 0.05
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Fig. 6 Results of applying the MK test for the simulated data with different corrections for multiple testing.
White grid cells indicate no significance (p>0.05), light red and light blue indicate unadjusted significance
(p<0.05) for increasing and decreasing trends, respectively, and bright red and bright blue indicate sig-
nificance for increasing and decreasing trends, respectively, after correcting for multiple testing with the
specified correction at a significance level of αglobal � 0.05. The simulated scenario has spatial autocorre-
lation of 0.9, an effect area of 4%, and an induced trend (�μ

/
σ ) of 0.08 per time step, which corresponds

to Fig. 4f. The 20×20 black square in the middle highlights the area of the induced trend

Bonferroni-related methods, were compared with two recent permutation alternatives
that have been successfully applied in other fields (Nichols and Holmes 2002; Nichols
and Hayasaka 2003; Dudoit et al. 2003). All methods were applied to two real-world
data sets and were evaluated in a simulation study, in terms of their achieved FWER,
global test power and within-image test power.

Permutation methods take into account the spatial autocorrelation in the data
because it is captured by the maximum statistic. This is not the case with Bonferroni-
related methods. Although Bonferroni-related methods are robust to the spatial
autocorrelation (Fig. 2; Wilks 2006a, b), it comes at the price of the tests being conser-
vative, which affects their ability to detect a signal.We observe that Bonferroni-related
methods achieve a FWER well below the nominal level (Fig. 2), which affects their
global test power and within-image test power (Figs. 3, 4, 6). This outcome can also be
seen in the results from real-world datasets, inwhichBonferroni-relatedmethods—ex-
cluding the Benjamini and Hochberg (1995) method—lead to fewer grid cells being
declared as significant relative to permutationmethods. Similar results from real-world
datasets are observed in Nichols and Holmes (2002), Nichols and Hayasaka (2003),
and Dudoit et al. (2003). Although developments have occurred in the FDR method-
ology in the spatial setting (e.g., Risser et al. 2019; Shen et al. 2002; Sun et al. 2015;
Ventura et al. 2004), we focus on the original FDR procedure for two reasons: (1) it is
the most commonly used in the environmental sciences, and (2) we choose to focus
on methods with strong control of the FWER.

The permutation methods introduced present a favorable alternative for address-
ing the multiple testing issue in environmental sciences. Specifically, the clustering
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method controls the FWER and outperforms all other methods in both global test
power and within-image test power in all but one scenario—when there is a small
area with an effect (0.25%) and strong spatial correlation (≥ 0.8). Other studies in
which permutation methods are used to derive the distribution of the maximum statis-
tic have also found increased global test power in simulations (Dudoit et al. 2003) and
increased within-image test power in real-world datasets (Nichols and Holmes 2002;
Nichols and Hayasaka 2003; Dudoit et al. 2003).

The case in which the clustering method fails is not unexpected. The clustering
method only takes into account the size of the cluster, not the individual p-values; there-
fore, with stronger spatial autocorrelation, the clusters that appear randomly become
larger than the size of the cluster with the induced trend. This situationmakes the trend-
induced cluster invisible to the STCS method. In general, this outcome highlights a
possible ambiguity of trend detection and spatial random variability.

In terms of the within-image test power, Benjamini and Hochberg’s (1995) method
identifies more signal than the maxT method (Figs. 4, 6), but this benefit comes at
a cost of more false positives and no localizing power—individual grid cells cannot
be declared significant. The maxT method identifies fewer grid cells, but it allows
individual grid cells to be declared significant. This characteristic can be of critical
importance in geospatial data analysis.

Not correcting for multiple testing would almost always lead to the conclusion of
field significance and possibly the misinterpretation of spurious spatial patterns. By
performing corrections for multiple testing, we ensure that the analysis is done in a
statistically rigorous way and enhance the reliability and reproducibility of the results.

The type of Familywise error control—weak or strong—determines the statistical
conclusions that may be drawn from the analysis. Only methods with strong control of
the FWER (Bonferroni, Walker, Holm, Hochberg, and the permutation method based
on the maximum statistic) allow us to make inferences on individual grid cells. The
permutationmethod based on clustering allows us tomake inferences on regions (clus-
ters). Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001) methods,
in contrast, do not allow for inferences on specific regions or grid cells.

Permutation methods and other resampling methods have a wide range of applica-
tions. In the environmental sciences, these methods have been used to detect a change
in temperature trends (Zang et al. 2019), identify memory effects in time series (Kraft
et al. 2019), and assess habitat selection (Fattorini et al. 2014). Many parametric
methods have a permutation analog. Since the maximum distribution of a test statistic
can be derived for any permutation method, controlling the FWER with the methods
presented in this paper is straightforward.

Nevertheless, limitations exist for the use of permutation methods. There are cases
in which a permutation procedure is not straightforward or simply not possible. For
example, if the test statistic is invariant to permutations (e.g., a one-sample t-test), we
would be unable to derive the distribution of the maximum statistic because permuting
the data will not change the test statistic. Another consideration is that permutation
methods are computationally expensive, although with modern computing power this
issue should not be limiting. When such issues arise, Benjamini and Hochberg (1995)
method is a viable alternative for analyzing spatial patterns.
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In this paper we focus on methods that apply a correction for multiple testing to the
test statistics obtained from amodel being fit at each grid cell. An alternative approach
to field significance is to fit a spatio-temporal model and test a global null hypothesis
of whether all regression coefficients vanish. For more on this approach, the reader is
referred to DelSole and Yang (2011).

We introduce permutation methods to account for multiple testing in the context of
environmental data, andwe show their advantages. Althoughmanymethods to account
for multiple testing have been developed since Livezey and Chen (1983) introduced
their method to the environmental sciences, they do not account for the spatial autocor-
relation that often occurs in environmental data. The permutation methods introduced
here capture the spatial autocorrelation in the maximum statistics’ distribution. By
accounting for this autocorrelation, we improve upon previous methods: Permutation
tests have higher global test power than all other methods compared here, including
controlling the FDR with Benjamini and Hochberg (1995) procedure.

The clustering method introduced here consistently outperforms all other methods
in terms of global test power and within-image test power. For analyzing spatial pat-
terns, controlling the FDR remains a powerful tool. However, it comes at the cost of
no localizing power—we cannot conclude statistical significance of single grid cells
or specific regions. This situation is where permutation methods prove useful because
they allow making inferences on specific grid cells or regions, and they can identify
more pixels than other commonly used Bonferroni and related methods.
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Appendix

See Figs. 7, 8, 9, 10, 11 and 12.
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Fig. 7 Achieved FWERof themultiple testing corrections as a function of spatial autocorrelation. The spatial
autocorrelation is determined by r(d) � exp(−c|d|), where d represents the Euclidean distance between
the grid cell midpoints, and c is chosen so that r(1) equals the desired spatial autocorrelation

Fig. 8 Global test power for the case of no spatial autocorrelation, moderate spatial autocorrelation (0.5) and
strong spatial autocorrelation (0.9) as a function of trendmagnitude. The red line indicates theαglobal � 0.05
level. The effect area is the percentage of all grid cells where a trendwas induced. The spatial autocorrelation
is determined by r(d) � exp(−c|d|), where d represents the Euclidean distance between the grid cell
midpoints, and c is chosen so that r(1) equals the desired spatial autocorrelation
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Fig. 9 Within-image test power for the case of strong no spatial autocorrelation, moderate spatial autocor-
relation (0.5) and strong spatial autocorrelation (0.9) as a function of trend magnitude. The effect area is
the percentage of all grid cells where a trend was induced. The spatial autocorrelation is determined by r
(d) � exp(−c|d|), where d represents the Euclidean distance between the grid cell midpoints, and c is
chosen so that r(1) equals the desired spatial autocorrelation

Fig. 10 Achieved FWER of the multiple testing corrections as a function of spatial autocorrelation. The
spatial autocorrelation is determined by the Matérn correlation function with a range parameter of 1 and
varying smoothness parameter
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Fig. 11 Global test power for the case of no spatial autocorrelation, moderate spatial autocorrelation (κ � 2)
and strong spatial autocorrelation (κ � 5) as a function of trend magnitude. The red line indicates the
αglobal � 0.05 level. The effect area is the percentage of all grid cells where a trend was induced. The
spatial autocorrelation is determined by the Matérn correlation function with a range parameter of 1 and
varying smoothness parameter

Fig. 12 Within-image test power for the case of strong no spatial autocorrelation, moderate spatial autocor-
relation (κ � 2) and strong spatial autocorrelation (κ � 5) as a function of trend magnitude. The effect
area is the percentage of all grid cells where a trend was induced. The spatial autocorrelation is determined
by the Matérn correlation function with a range parameter of 1 and varying smoothness parameter
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