
ARTICLE OPEN

A holographic duality from lifted tensor networks
Nathan A. McMahon 1,2✉, Sukhbinder Singh3 and Gavin K. Brennen2

Tensor networks provide an efficient classical representation of certain strongly correlated quantum many-body systems. We
present a general lifting method to ascribe quantum states to the network structure itself that reveals important new physical
features. To illustrate, we focus on the multiscale entanglement renormalization ansatz (MERA) tensor network for 1D critical
ground states on a lattice. The MERA representation of the said state can be lifted to a 2D quantum dual in a way that is suggestive
of a lattice version of the holographic correspondence from string theory. The bulk 2D state has an efficient quantum circuit
construction and exhibits several features of holography, including the appearance of horizon-like holographic screens, short-
ranged correlations described via a strange correlator and bulk gauging of global on-site symmetries at the boundary. Notably, the
lifting provides a way to calculate a quantum-corrected Ryu–Takayanagi formula, and map bulk operators to boundary operators
and vice versa.
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INTRODUCTION
In recent years, there has been a push to understand the
celebrated anti-de Sitter/conformal field theory (AdS/CFT) corre-
spondence1,2, a concrete realization of the so-called holographic
principle, from the perspective of quantum information theory. In
particular, some aspects of the AdS/CFT have been realized using
tensor network descriptions of ground states of critical quantum
many-body systems. It was first suggested by Swingle in ref. 3 that
the multiscale entanglement renormalization ansatz (MERA)4,5, a
particular tensor network suited to describing critical ground
states, might also be viewed as a spatial slice of a holographic AdS
spacetime. Since then, several other holographic interpretations
have been presented both of the MERA and other related tensor
networks, see e.g. refs. 6–15. Even in the absence of general
consensus yet on how the MERA realizes holography, one basic
lesson is more or less apparent: a given MERA representation can
be interpreted in dual (even several) ways.
Several approaches have been suggested to realize the

construction of bulk quantum mechanical states that are dual to
boundary theories and carry bulk degrees of freedom (DOFs).
Most of these programmes can be fit into one of three
approaches: (1) holographic codes, including matchgate tensor
networks10,16, (2) random tensor network/random stabilizer bulk
states17 or (3) exact holographic mappings11,12,18. Each of these
approaches carry their own advantages and disadvantages;
however, a particular limitation of the first two approaches is that
neither of them allow you to dial in an arbitrary CFT on the
boundary (matchgate tensor networks do allow for encoding
fermionic CFTs). On the other hand, since the third approach is an
exact mapping, it is not an efficient representation of the
boundary CFT. We focus on a method that naturally allows for
both of these features, a programme we began in our recent
work14,15, and demonstrate how we may modify our lifting
procedure to obtain several missing features that are required for
a unified description of the holographic principle through tensor
networks.

In this work, we describe how the MERA description of Ψj i can
be ‘lifted’ to a 2D quantum state ΨðliftÞ�� i. In this lifting construction,
two new physical bulk DOFs are introduced on each bond of the
tensor network using a lifting tensor. If this is done with lifting
tensors that simply copy virtual bonds to the new bulk DOFs (Such
as was done in our prior work14,15), one obtains a bulk state that is
dependent on the basis of the copy tensor in which the
information is promoted to the bulk. Our key insight is to choose
the lifting tensor to be an intertwiner. This means that equivalent
MERA representations related by a basis change along a bond give
rise to lifted states that vary only by on-site unitary transforma-
tions—thus, they all have the same entanglement properties.
Therefore, we may associate a unique 2D entanglement structure
to each 1D critical MERA state, and thus obtain a strict
correspondence between the boundary/bulk entanglement
properties.
By virtue of our construction defining a unique 2D entangle-

ment structure, we can analytically derive the Ryu–Takayanagi
formula ΨðliftÞ�� i from bulk entropic quantities. (In our previous
work this was only done numerically). In addition, this insight
gives rise to a mapping of bulk operators to boundary operators
and vice versa.
Finally, the original MERA, Ψj i can be recovered from our lifted

MERA, ΨðliftÞ�� i, by a series of local projections. Due to the lifted
MERA having only short-ranged entanglement, this process can be
viewed as a strange correlator. Namely, this is an overlap between
a 2D quantum state ΨðliftÞ�� i with short-range entanglement and a
2D product state, suggesting that the strange-correlator construc-
tion could be useful as a bulk description in a holographic
interpretation of the MERA.

RESULTS
We consider a MERA tensor network that defines a class of a
quantum many-body states on an infinite one-dimensional lattice,
see Fig. 1a. The MERA is particularly well suited to describe critical
ground states19. Given a critical Hamiltonian, the approximate
MERA representation of its ground state can be obtained, e.g. by a
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variational energy minimization algorithm20, and the approxima-
tion can be made more accurate by increasing χ (which increases
the number of variational parameters). Given the MERA repre-
sentation of a 1D critical ground state Ψj i, we lift it to a 2D
quantum state ΨðliftÞ�� i by inserting a 4-index lifting tensor t in the
middle of each bond of the MERA, as shown in Fig. 1c. During this
insertion, one pair of indices from t are connected to the ends of
the split bond, while the other pair add new DOFs in the bulk.
Note that this construction is quite general and in fact can be
done for any tensor network rather than just the MERA tensor
network (However, many of the holographic features to follow rely
on additional structure from the MERA, and so will not appear for
an arbitrary tensor network.). We require that the lifting tensor t
fulfils some reasonable axioms that are depicted in Fig. 1d. The
first axiom allows us to reverse the lifting and recover a properly
normalized boundary state: ΨðliftÞ�� i ! Ψj i by local bulk projectors
onto unnormalized singlets þj i ¼Pχ

j¼1 jj i jj i, that is

jΨi ¼ �
all bulk sites

η
ffiffiffi
χ

p �1hþj
� �

jΨðliftÞi: (1)

We have introduced a new parameter η≠ 0, which we call the
tuning parameter, to capture the rescaling freedom that is not
fixed by any of our physical considerations. The second axiom
ensures ΨðliftÞ�� i is a normalized quantum state. It corresponds to
demanding that the lifting tensor is isometric (Therefore, just
like the MERA, the lifted MERA may also be expressed as a
quantum circuit with a bounded-width causal cone. This, in

particular, implies that the expectation value of local observa-
bles can be computed efficiently from the lifted MERA, along
with being the basis of the holographic screen property). The
third axiom, additional to the axioms assumed in refs. 14,15,
ensures that ΨðliftÞ�� i is covariant under a change of basis of the
original tensor representation of the MERA by a unitary U acting
on the fundamental representation of UðχÞ. This axiom implies
that the lifting tensor is an intertwiner of UðχÞ that heavily
constrains the structure of the lifting tensor to a canonical form
(see the section ‘Proof of canonical form for the lifting tensor’ in
Methods).

ð2Þ

The numbers at the end of each index, including those with
tildes, are simply labels here for each index. Taking this solution,
the other two lifting axioms implyffiffiffi
χ

p
αþ ð ffiffiffi

χ
p Þ3β ¼ ffiffiffi

χ
p

η�1; (3)

ðjαj2 þ jβj2Þχ2 þ ðαβ� þ α�βÞχ ¼ 1; (4)

where η is the tuning parameter from the first lifting axiom, Fig.
1d(i). Assuming α and β are real and positive yields solutions

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η�2

χ2 � 1

s
; β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 � 1

p
� η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η�2

p
ηχ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 � 1

p : (5)

Fig. 1 The MERA and lifted MERA tensor networks. a A patch of an infinite MERA tensor network, which describes a quantum-critical ground
state Ψj i on an infinite lattice L as follows. Each open index i at the boundary of the tensor network is associated with a site of L and labels an
orthonormal basis ij i on the site. For a given basis state of the lattice, the open indices are fixed to the corresponding values, which yield a
closed tensor network. The latter can be contracted to obtain a complex number, which is the amplitude of the basis state in Ψj i. For
simplicity, we assume that each index of the tensor network runs over χ values. The tensor network is made of two types of tensors, illustrated
here u and w. b All tensors are isometries and fulfil the constraints shown here. c The lifted MERA—that describes a 2D quantum state
ΨðliftÞ�� i—is obtained by inserting a 4-index (χ ´ χ ´ χ ´ χ) lifting tensor t on each bond of the MERA. d The lifting tensor t is required to satisfy
the axioms shown described in the text.
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where we find that the parameters are bounded by the bond
dimension χ: 1 � η � χ and 0 � α; β � χ�1. These values corre-
spond to a legitimate choice tðα;βÞ for the lifting tensor. A 2D bulk
state is defined by choosing a lifting tensor from this domain;
different lifting tensors correspond to different bulk states.
As is well known, the MERA description of a quantum state of

size jLj can be described as a unitary circuit of depth log ðjLjÞ
acting on input 0j i�jLj, where the unitary tensors are unitary gates
and the isometric tensors can be extended to a unitary gate with
fixed input 0j i or 0j i�2 for the trinary MERA, see Fig. 1a5. The
same is true for the lifted MERA. The reason being that by the
second lifting axiom, see Fig. 1d(ii), the lifting tensor is an isometry
from index ~1 to indices 1, 2, 3, see Eq. (2). Thus, any unitary
extension, adding axillary indices ~2 and ~3, of the map
jj i~1 0j i~2 0j i~3 7! χα jj i1 Φþ�� i2;3 þ χβ Φþ�� i1;2 jj i3, where Φþ�� i is the Bell
state, will suffice. From this, one may construct a quantum circuit
generating the lifted MERA with the same circuit complexity as
the MERA.

Correlation functions
Now, we turn to the physical properties of the lifted MERA state that
are distinct from the MERA. The MERA has polynomially decaying
correlation functions; this behaviour is one of the reasons that the
MERA is viewed as a good tensor network to approximate critical
theories. In contrast, the lifted MERA has exponentially decaying
correlation functions. To see this first, consider the bulk correlator
hhOAOBiispine of two operators OA and OB (each acts on a pair of
bond sites) that are located deep in the bulk along the ‘spine’ of the
lifted MERA, see Fig. 2a. Thanks to the facts that MERA tensors u;w
are isometries by construction5, and by the second lifting axiom, the
tensor t is also an isometry (from index ~1 to indices 1, 2, 3),
hhOAOBiispine will depend only on the tensors that are located along
the spine of the lifted MERA (and the corresponding tensors along
the spine of the conjugate-lifted MERA). All the remaining tensors
cancel out with their complex conjugate transpose, see Fig. 2b.
Thus, we obtain the closed-form expression

hhOAOBiispine � Tr ρð1ÞTA½T ‘½TB��
� �

� hOAihOBi (6)

where TA; T ‘; TB are defined as shown in Fig. 2c–e, operators OA
and OB act on bulk sites that are separated by ‘ sites and ρð1Þ is
the reduced density matrix of one bulk site, s, located below a
spine in the MERA. For any chosen w the transfer matrix T has
dominated eigenvalue λmax ¼ 1. The corresponding eigenvector,
λmaxj i, we may now use in place of the spine and everything
above. In addition, for large ‘, ðTÞ‘ � λmaxj i λmaxh j is a projector
onto this dominant eigenvector. This means that the decay of
correlations is controlled by the largest eigenvalue <1, most
commonly the second largest eigenvalue λ2 < 1, and we have
hhOAOBiispine ¼ Oðλ‘2Þ. Thus, correlations decay exponentially
along the spine with a correlation length ξ ¼ 1=ln ðλ�1

2 Þ.
Next, consider a 2-point correlator hhOAOBiihorizontal of operators

OA and OB that are located at the same depth in the bulk, but are
now separated by a distance L along the horizontal direction. Here
L is the length of the geodesic between OA and OB. For simplicity,
let us also assume that OA and OB are each located at the base of a
spine section of the tensor network, and the two spines converge
to two neighbouring sites s; sþ 1 as we look deeper into the bulk.
Once again, the correlator has a closed-form expression (see
Fig. 2f where L ¼ 2‘)

hhOAOBiihorizontal � Tr ρð2Þ ðT ‘½TA�Þ � ðT ‘½TB�Þ
� 	
 � � hOAihOBi

(7)

where ρð2Þ is the reduced density matrix of a pair of bulk sites
located at neighbouring sites s and sþ 1, and T is the same transfer
matrix that appears in Eq. (6). Once again, we find that the correlator
hhOAOBiihorizontal decays exponentially as hhOAOBiihorizontal ¼ Oðλ‘2Þ.

Fig. 2 The two-point correlation function in the bulk along the
horizontal and vertical directions. a A ‘spine’ of the lifted MERA,
comprising a 1D chain of w-tensors. An infinite number of arbitrarily
long spines can be located in the infinite lifted MERA. b Tensor
network expression, Eq. (6), for the 2-point correlator of two
operators OA and OB (each acts on a pair of bond sites) that are
located deep along the spine. c–e Definitions of T ; TA; TB that
appear in Eq. (6). f Tensor network expression, Eq. (7), excluding
subtraction for local terms hOrmAihOrmBi. In this expression, operators
OA and OB are located at the same depth in the bulk, but are now
separated along the horizontal direction by a geodesic distance
L ¼ 2‘. Here also OA and OB are each located at the base of a spine
section of the tensor network.
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Here we considered bulk sites located along spines for
convenience. The above arguments can be easily generalized for
any pair of bulk locations; the closed-form expressions for 2-point
correlators away from spines are more complicated and also
involve the u-tensors. Thus, we find that the bulk correlations
decay exponentially in any direction. Note that the reason for the
polynomial decaying correlations in the MERA is due to the
correlation functions decaying exponentially with respect to the
tensor network length (going roughly as the logarithm of the
boundary distance); this is equivalent to a polynomial decaying
correlation function in the boundary distance.

Strange correlators
The qualitatively different structure of correlations in the MERA
and lifted MERA can be understood in terms of a strange
correlator. As introduced in ref. 21, a strange correlator is a
classical partition function with algebraically decaying correla-
tions that are obtained as the overlap of a quantum state with
exponentially decaying correlations and a product state. By
construction, Eq. (1), the critical MERA state Ψj i is recovered by
taking the overlap of the short-range correlated lifted MERA
state ΨðliftÞ�� i with the product state ð�all bulk sites þh jÞ. Thus, the
MERA viewed in this way bears a striking resemblance with a
strange correlator. The difference is that a strange correlator is a
partition function, a number, while the MERA is a critical
quantum state. However, an infinite critical MERA, which we
have considered here, can also be understood as a critical
partition function: either as a Euclidean path integral on a 2D
light-cone geometry of a 1D critical quantum system22,23, or as a
2D classical partition function Zcrit, albeit with complex
Boltzmann weights24, once we take an additional overlap with
a fixed 1D product state ð�all boundary sites þxh jÞ, where
þxj i ¼Pχ

j¼1 jj i; for sites with bond dimensions less than χ we
sum only upto the bond dimension in þxj i. Thus, we obtain

�
all boundary sites

hþxj
� �

�
all bulk sites

hþj
� �

jiðliftÞ / Zcrit: (8)

Holographic screens
In the rest of the paper, we show that the lifted MERA
encapsulates the essential properties of holography. First, we
demonstrate that a novel feature of the lifted MERA, first observed
in ref. 14, is the appearance of holographic screens. A holographic
screen is a codimension one surface (the ‘screen’) in the bulk that
carries all information contained in the region enclosed between
the surface and the boundary. (Even if DOFs inside this region are
lost, all its information remains intact on the enclosing screen.)
Consider, for example, the path γvirtualA shown in Fig. 3, which
encloses the two-dimensional wedge W½A�. We have

ρbkW½A� ¼ RyρvirtualA R: (9)

where ρbkW½A� is the reduced state of all the bulk sites inside the
wedgeW½A�, R is the tensor obtained by contracting all the tensors
inside the wedge and ρvirtualA is the reduced density matrix of the
virtual DOFs associated with the bonds that are intersected by the
path γvirtualA . Here R is an isometry, namely RRy ¼ 1d where d ¼
χ γvirtualAj j (since all the tensors inside the wedge are isometries).
Equation (9) also implies that the traces of moments of the two
reduced states are equal; thus, there Von Neumann entropies are
equal: SðρvirtualγA

Þ ¼ SðρbkW½A�Þ. While this illustrates how the informa-
tion in a two-dimensional wedge is encoded on a codimension
one surface ρvirtualγA

, the latter is not physically accessible from the
bulk. Thus, we refer to ρvirtualγA

as a virtual holographic screen.
Remarkably, for the unique value η ¼ ηHolo �

ffiffiffiffiffi
2χ

p
=
ffiffiffiffiffiffiffiffiffiffiffi
χ þ 1

p
,

which corresponds to fixing α ¼ β in Eq. (2), the inaccessible state
ρvirtualγA

is exactly equal to the reduced state ρbkγA of the physical sites

located along a path γA that closely follows the virtual screen as
shown in Fig. 3. See the section ‘Holographic screen’ in Methods
for details. Thus we have

S ρbkγA

� �
¼ S ρvirtualγA

� �
¼ S ρW½A�
� �

; (10)

Furthermore, for any physical local observable OW½A� inW½A� one
can determine a local observable Obk

γA
� ROW½A�Ry that clearly has

the same expectation value as OW½A� but is supported only on the
sites located along γA. We refer to γA as the physical holographic
screen, or simply holographic screen.
More generally, a holographic screen is any path through the

lifted network between the end points of a boundary interval that
is generated by the greedy algorithm introduced in the section
‘Holographic screen’ in Methods. A holographic screen cuts
through only lifting tensors, separating the two DOFs associated
with each lifting tensor site; however, only the outside DOFs
constitute the physical DOFs of the holographic screen γA. The
greedy algorithm ensures that all the tensors inside the wedge
constitute an isometry mapping from γvirtualA to W½A�, which leads
to the holographic screen property. We remark that the
construction of screens via this greedy algorithm and the ability
to map bulk operators onto the enclosing screen appears similar
to the construction of holographic codes by Harlow et al.10.
For a given boundary interval A, we can use a greedy algorithm

to construct a maximal holographic screen, the screen with the
maximal number of tensors in W½A� for some region A. We find
that the length of the maximal screen can be bounded by a
constant multiple of the traditional geodesic path between the
end points of region A (see Supplementary Methods Sec. II). Later,
we will exploit this property as motivation to assign a physical
distance between bulk sites through the maximal holographic
screen and to derive a Ryu–Takayanagi-like formula.

Bulk-boundary correspondence
Second, we show that bulk operators can be mapped to boundary
operators and vice versa via a series of tensor contractions and
expansions. The conceptual idea is illustrated by the invertible
maps in Fig. 4. Using this, it becomes clear that any operator on
the boundary can be slowly shifted with an effective boundary
towards the centre of the MERA, making use of type (ii) to (iii)
conversions and contractions with the original MERA tensors. After

Fig. 3 The path γA indicates DOFs of a holographic screen on a
lifted state ΨðliftÞðηÞ

�� �
that follows a dual geodesic connecting the

end points of the boundary region A. The bulk DOFs located just
outside the 1D path carry all the information contained within the
wedge W½A� when η ¼ ηHolo, but are also recovered for any η if the
corresponding bulk sites along γA are slightly modified by applying
a simple filtering operation, as described in the section ‘Holographic
screen’ in Methods. On the other hand, virtual holographic screens,
such as γvirtualA , exist in the lifted MERA for any value of η with no
modification. But because these screens are associated with virtual
DOFs associated with the bonds of the lifted MERA, they are not
physically accessible.
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moving the effective boundary to just below the point of interest,
we can move the operator on the effective boundary to the bulk
sites, using a type (i) to (iii) conversion, then reconstruct
everything below to recover the original bulk MERA quantum
state (We exploit the isometry properties of the MERA and lifting
tensors in order to reconstruct the spatial region that was
contracted over as the boundary operator was inched up into the
bulk.). Similarly, we may reverse the process by first contracting
the effective boundary upto the bulk site before slowly
reconstructing the bulk MERA above the operator of interest.
The reconstruction was done via insertions of identity (of the
original MERA tensors and their inverses), the unwanted tensors
are then contracted with the operators, which act to smear the
operator out and conversions of type (ii) to (i) are used to insert
t tensors. This process smears the bulk operator out across the
region of the boundary that was reconstructed.
This method can be used to compute bulk operators

corresponding to scaling field operators of the boundary CFT.
Consider a scale-invariant, single-site, operator B with scaling
dimension Δ on the original trinary MERA. The scale invariance
means that CW ½B� ¼ 3�ΔB, where CW ½	� denotes the contraction
map with a single copy of both the scale-invariant isometric tensor
of the MERA, w, and its dual, wy . This map is sometimes referred to
as the single-site scaling super-operator in the literature19. This
operator can be modified to retain this property on the bulk sites
by first defining the analogous boundary operator for the lifted

MERA, OðBÞ ¼ Bþ bI where b ¼ 3�ΔTrðBÞjαj2χ
3�~Δ�1

. This operator is scale
invariant with respect to the composition of contraction by the
same MERA isometries followed by the contraction map, L, which
contracts the operator with lifting tensors. This leads to L 

CW ½OB� ¼ 3�~ΔOB where the shifted scaling dimension is

~Δ ¼ Δ� log 3ð1� jαj2χ2Þ: (11)

Using a type (i) to (iii) conversion, the corresponding bulk operator
is

OðBÞ
bulk ¼

OðBÞ � β2χTrðOðBÞÞI
1� jβj2χ2 : (12)

This bulk operator can be moved a distance k vertically along the
spine of the lifted MERA, leaving the expectation value with
respect to ΨðliftÞ�� i invariant up to a factor 3�k~Δ. Supplementary
Methods Sec. III contains the full details for mapping operators in
either direction of this bulk-boundary operator correspondence.

Gauge symmetries
In AdS/CFT, a global on-site symmetry in the boundary description
generally corresponds to a local gauge symmetry in the bulk. Here
we show how our construction can be generalized to implement

this feature by introducing a symmetric lifting tensor. Our
construction follows closely that presented in ref. 15, but here
we additionally incorporate basis independence on subspaces
that are left unconstrained by the symmetry. Consider that the
state Ψj i, which is represented by a MERA, has a global on-site
symmetry described by group G, namely, Ψj i ¼ ð�s2LU

½s�
g Þ Ψj i for

all g 2 G where U½s�
g is a unitary representation of group element g

acting on-site s of the lattice and U½s�
g ¼ Ug for all s. It turns out that

under reasonable assumptions25, if the global on-site symmetry is
to be preserved at all renomalization scales, then the MERA
representation of Ψj i necessarily consists of tensors that commute
with G as depicted in Fig. 5a (for sufficiency see also refs. 26,27). It is
natural to express the MERA tensors and the lifting tensor in the
symmetry basis, in which Ug (or equivalently the vector space V
on which it acts) decomposes as the direct sum of irreducible
representations (irreps) as in ref. 26

V ¼ �
j
Dj �Vj; Ug ¼ �

j
IdimðDjÞ � Ug;j : (13)

Here Dj is the degeneracy space of irrep space Vj , Ug;j denotes
the unitary corresponding to group element g acting on the irrep
space Vj . (Notice that the symmetry acts as the identity IdimðDjÞ on
the degeneracy space.) In order to make the symmetry manifest in
our construction, we fix the symmetry basis j; tj ;mj

�� i ¼ jtj
�� i �

jmj

�� i on each bond, where jtj
�� i and jmj

�� i are the basis in the
degeneracy space Dj and irrep space Vj , respectively. We are still
free to choose any basis in the degeneracy spaces since the
symmetry acts trivially there. In order to generalize our construc-
tion to lift a symmetric MERA (a symmetric MERA representation of
a ground state can be obtained by using the variational energy
minimization algorithm adapted to the presence of the symmetry.
This algorithm outputs a MERA composed of symmetric tensors
and the bond irreps, and their degeneracies, that characterize the
ground state, see, e.g. ref. 27)—a MERA composed of tensors that
commute with G—we replace the lifting tensor t with the
symmetric lifting tensor tsym as defined in Fig. 5b. It can be readily
checked that tsym satisfies the symmetries depicted in Fig. 5c,
which in turn imply that the bulk state has a local gauge symmetry
—as generated by the elementary gauge transformations
depicted in Fig. 5d, e. When the symmetry group G is set to
identity, the symmetric lifting tensor tsym reduces to the non-
symmetric version t.

Ryu–Takayangi formula
In the AdS/CFT correspondence, the celebrated Ryu–Takayanagi
formula28 relates the entanglement entropy of a region in the
boundary vacuum to the area of the minimal surface that
subtends from the region into the bulk. In particular, for 1+1D
CFTs, the entanglement entropy of a region A in the vacuum is
proportional to the length LγgeoA

of the geodesic path γgeoA between
the end points of A through a spatial slice of the dual bulk AdS2þ1
spacetime:

SðρCFTA Þ ¼ c
3
log ðjAjÞ ¼

LγgeoA

4Gð2Þ : (14)

Here c is the CFT central charge, Gð2Þ is Newton’s constant in 2-
space dimensions and jAj is the length of region A in the flat
metric of the boundary CFT. It is important to note that Eq. (14) is
the semi-classical Ryu–Takayanagi formula. If instead we have

quantum gravity in the bulk Eq. (14) is replaced with SðρCFTA Þ ¼
L
γ
geo
A

4Gð2Þ þ Q where Q is the 1-loop additive correction given by the
entanglement entropy between the DOFs located inside and
outside of the geodesic29.
Previous work using unlifted MERA3 has connected boundary

entropy and bulk geodesics via the quantity jγAjlog ðχÞ, which
depends exclusively on the numerical parameter χ. However, from

Fig. 4 Graphical equations indicating interconvertability of
operators: (i) boundary type with lifting A, (ii) boundary type
without lifting B and (iii) bulk type C. Arrows indicate that the
operator of one type may be transformed into the other type, the
top row of these is obvious where any A or C there exists as an
operator B (via tensor contraction). The opposite directions are less
obvious but turn out to be possible using the basis-independent
lifting tensors (which was not the case in refs. 14,15 because of the
fixing of the basis).
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the result of Brown and Henneaux30, the radius of curvature of
semi-classical AdS3 space is proportional to the central charge
according to c ¼ 3R=2Gð2Þ and so we would expect the geodesic
lengths to vary with theoretical quantity c rather than parameter χ.
We now derive a formula analogous to the quantum-corrected
Ryu–Takayanagi formula using our lifting construction. First recall
that when η ¼ ηHolo we find SðρbkγA Þ ¼ SðρbkW½A�Þ. Therefore we
define

‘γA
4Gð2Þ � SðρbkγA Þ: (15)

For this reason, the function ‘γA , a measure of entanglement
entropy, is a bonafied measure of length as it is positive,
symmetric in boundary points and satisfies the triangle inequality.
The full proof is included in Supplementary Methods Sec. I.
Next consider the state ΨðliftÞðη ¼ 1Þ�� i, in which the bulk DOFs

are completely decoupled from the boundary. Thus
SðρbkW½A�ðη ¼ 1ÞÞ ¼ SðρCFTA Þ, where SðρCFTA Þ is the entanglement
entropy of the boundary CFT. Using this fact and extending the
definition Eq. (15) away from η ¼ ηHolo (see the section
‘Holographic screen’ in Methods) we find

SðρCFTA Þ ¼ ‘γA
4Gð2Þ � QðW½A�Þ; (16)

where the subtracted term is

QðW½A�Þ ¼ SðρbkW ½A�Þ � SðρbkW½A�; η ¼ 1Þ> 0: (17)

To it, Eq. (16) equates the entropy of the boundary CFT to an
entropic property of DOFs along the geodesic of the bulk
quantum state ΨðliftÞðη ¼ ηHoloÞ

�� i minus a correction term
QðW½A�Þ corresponding to the additional entanglement between
the wedge W½A� and the rest of the bulk state. In fact, Eq. (16) can
be generalized to all valid lifted states ΨðliftÞðηÞ�� i but it is necessary
to apply a pre-filtering operation along the screen, which is an
identity operation in the special case η ¼ ηHolo (see the section
‘Holographic screen’ in Methods).

Numerical calculation
The above discussion holds for the non-symmetric lifted MERA.
When using symmetric lifting tensors, there is additional
entanglement between bulk sites within and without the wedge
due to coupling between charge DOFs. To better understand
Eq. (16) in the symmetric case, we consider the MERA representa-
tion of ground states of unitary minimal model CFTs, realized in
anionic Heisenberg models31 (see also the section ‘Details for the
numerics’ in Methods). Each such CFT is specified by an integer
k � 2 and an associated Hamiltonian, HðkÞ, acting on a chain of
non-Abelian anyons. The anyons are spin�1=2 irreps of the
quantum group SUð2Þk , which is a deformation of the usual SUð2Þ
group such that there are no spin projection quantum numbers
associated to the anyons and total angular momentum is

Fig. 5 The local bulk gauging of a global on-site symmetry around a vertex. a In a MERA representation of a state that has a global on-site
symmetry G, all the tensors can be chosen to commute with the symmetry as shown here; g succinctly denotes a unitary representation of
g 2 G. b We use the symmetric lifting tensor defined as shown here for lifting a symmetric MERA (composed from tensors satisfying panel a).
Here within a given irrep j, tsymj is a non-symmetric lifting tensor tuned by a parameter ηj , κj is the Frobenius–Schur indicator and dj is the
dim(Vj) in Eq. (13). c Symmetries of the symmetric lifted tensor. d An elementary w-gauge transformation—e.g. tensor product of group
unitaries acting on bulk sites located immediately around a w tensor—leaves the bulk state invariant as shown. The left and right equalities
are obtained by applying panels c and a, respectively. e Similarly, an elementary u-gauge transformation leaves the bulk state invariant.
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truncated at k=2. The Hamiltonian is

ð18Þ

where the hi term (depicted here in the anyon fusion basis)

projects onto the state 1
2i ´

1
2iþ1 ! 0

��� i, i.e. physically the projection

onto the spin 0 fusion space of two (deformed) spin 1/2 particles
at sites i and i þ 1. The Hamiltonian is described by a unitary
minimal model CFT with central charge cðkÞ ¼ 1� 6

ðkþ1Þðkþ2Þ
32 and

in the limit k ! 1 the deformation disappears and the model
becomes the bosonic CFT from the usual SUð2Þ symmetric
antiferromagnetic spin 1

2 Heisenberg model.
We considered Hamiltonians with the values of k ¼

2; 4; 5; ¼ ; 10 and also k ¼ 1 (We have excluded k ¼ 3 due to
convergence issues when calculating it, see the section ‘Details for
the numerics’ in Methods.). For each of these, we obtained the
MERA representation of the ground state by using the anyonic
version of the MERA energy minimization algorithm33 implimen-
ted with ref. 34. We then lifted each MERA representation by using
the symmetric lifting tensor defined in Fig. 5b—where j now
labels anyon charges—to obtain the dual bulk states. For each of
these, we computed the Réyni-2 entropy, Sð2ÞðρÞ ¼ �log Tr ρ2½ �ð Þ
(We use the Reyni-2 entropy as it is easier to compute than the
von-Neumann entropy for the lifted MERA.), along the holographic
screen illustrated in Fig. 3. Details about our numerical simulations
are described in the section ‘Details for the numerics’ in Methods.
Figure 6 shows a plot of this bulk entanglement entropy density
(This density is taken with respect to the number of bulk sites in
the maximal holographic screen (the path taken through the bulk)
as opposed to the boundary size.) vs the central charge of the
boundary state. These results demonstrate a linear dependence of
bulk entropy density on central charge c for ηj ¼ 1, and passes
through 0 at c ¼ 0. However, the computed slope of 1.131 is
roughly six times greater than expected. We attribute this increase
in entropy density to the charge DOFs along the bonds in the
original MERA, as while the degeneracy DOFs are decoupled
between bulk and boundary sites, this is not true for charge DOFs.
We therefore find SðρbkW½A�Þ is >SðρCFTA Þ, which would be an
interesting prediction to test in other examples of the
Ryu–Takayanagi formula. For η ¼ ηHolo, achieved by setting ηj ¼ffiffiffiffiffiffi
2χ j

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
χ j þ 1

p
for each charge sector, the entropy density tends

to grow with the central charge similar to the η ¼ 1 case. (We
have excluded the k ¼ 4 point for ηj ¼ ηHolo;j here as the lifting
procedure for η ¼ ηHolo appears to amplify numerical instabilities.
We have included the full dataset in the section ‘Details for the
numerics’ under Methods which includes the k ¼ 4 point for a
variety of η values. We also exclude the k ¼ 3 point since it did not
appear to numerically converge to a particular value in our
calculations, this point is also excluded from the dataset given in
the section ‘Details for the numerics’ under Methods.) We also
note that there appears to be a constant offset for ηj ¼ ηHolo;j (and
for other values of η), for which the entropy density monotonically
increase with η. But since the entropy density at ηj ¼ χ j is fixed by
the numerical parameter χ j we expect the bond dimensions to
contribute to the entropy density with similar importance to the
underlying boundary model from which that the lifted MERA
arises, understanding these contributions for both non-symmetric
and symmetric models would be useful for future work. These
results suggest that even for the symmetric lifted MERA we can
interpret the shifts in entropy density for lifted MERA states with
ηj > 1 arising from additional entanglement between DOFs from
inside and outside the wedge.

DISCUSSION
In this work we have started with a tensor network, which is a
classical description of a quantum system, and promoted it to a
bona fide quantum state using a new lifting method. By virtue of
applying our construction to the MERA network we obtained a
lifted MERA state which exhibits several key features of the
holographic duality. (i) A bulk-boundary operator mapping, (ii) the
appearance of holographic screens, (iii) the gauging of global
boundary symmetries, and (iv) an analogue of the quantum-
corrected Ryu–Takayanagi formula. A key aspect of this construc-
tion is that it yields a unique bulk state (up to on-site unitary
transformations) for a given MERA state, which allows a strict
correspondence between the entanglement properties of the
boundary and the bulk. In particular, we exploited this to use the
bulk entanglement entropy as a measure of geodesic lengths,
which when compared with the boundary entropy led to a
Ryu–Takayanagi like formula. More broadly, our work illustrates a
possible way to build a holographic description of the MERA from
ground up, by only assuming a reasonable set of input conditions
(the lifting axioms and gauging of boundary symmetries).
An interesting feature that this tensor network approach to the

holographic principle uncovers is a relation to strange correlators.
Strange correlators were first introduced in ref. 21 to map 2D
symmetry protected quantum phases of matter to 1D critical
systems. Using the PEPS tensor network ref. 35 extended strange
correlators to map 2D topologically phases, described by a
topological quantum field theory (TQFT), to 1D critical systems,
thus also explicitly realizing the TQFT2þ1/CFT1þ1 correspondence.
While the lifted MERA does not immediately satisfy the TQFT2þ1/
CFT1þ1 correspondence, it does satisfy the conditions of a strange
correlator as the reverse lifting procedure.
This leads to an interesting open question is: under what

conditions does the lifted (symmetric) MERA, dual to a critical
MERA, describe a state with topological order? If this is possible,
then our construction could yield a TQFT2þ1/CFT1þ1 correspon-
dence—similar to the topological PEPS-based construction pre-
sented in ref. 35—but approached from the CFT side. From this
property the lifting procedure we have discussed suggests that
the perspective of the TQFT/CFT correspondence and strange
correlators would be an enlightening perspective from which to
approach holography.

Fig. 6 The second Rényi entropy density Sð2ÞðρbkγA ðηÞÞ=jγAj of bulk
sites on the maximal holographic screen γA (see Fig. 3). This is
computed for lifted ground state approximations of the anyonic
symmetric Hamiltonian HðkÞ with k ¼ 5; 6; 7; 8; 9; 10; 1, describ-
ing unitary minimal model CFTs with central charge cðkÞ. Results
shown for lifted states with ηj ¼ 1 and ηj ¼

ffiffiffiffiffiffi
2χ j

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
χ j þ 1

p
(holo-

graphic limit), where we use the same charge sectors j ¼ 1=2; 3=2
and same degeneracy dimensions χ1=2 ¼ 5; χ3=2 ¼ 3 for all k. The

linear fit Sð2ÞðρbkγA ð1ÞÞ=jγAj ¼ 1:131 ´ cðkÞ � 0:003, is calculated also
using the k ¼ 2; 4 points (not shown).
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METHODS
Proof of canonical form for the lifting tensor
Starting with just the third axiom (basis independence) from Fig. 1d,
depicted below:

ð19Þ

we show that all tensors that obey this axiom can be described by a tensor
of the form of Eq. (2).
Here t is the χ ´ χ ´ χ ´ χ lifting tensor, and the above equation holds for

all unitaries U of the group UðχÞ, where each bond is labelled by a
fundamental representation (or its dual). The group UðχÞ can be
decomposed into Uð1Þ ´ SUðχÞ, a phase times the special unitary from
the group SUðχÞ. Since Eq. (19) involves two copies of U and two copies of
its adjoint (either Uy or U�) the phase contributions cancel out. Therefore,
we may restrict Ug only to the subgroup SUðχÞ. The tensor product (or
fusion) of a fundamental and anti-fundamental representations (f and f ,
respectively) of SUðχÞ is isomorphic to the direct sum of the trivial
representation 0 and the anti-symmetric representation A. Equation (19)
then implies that the lifting tensor is an intertwiner of the group SUðχÞ
(and therefore an intertwiner of the group UðχÞ). But since we can achieve
this with two different choices of fusion pathway we obtain the following
two possible fusion decompositions (in accordance with the Wigner-Eckart
theorem) of the lifting tensor:

ð20Þ

ð21Þ

there is an ambiguity. We can also write this as

t ¼ a1V1 þ b1A1; (22)

t ¼ a2V2 þ b2A2: (23)

where Vi and Ai , respectively, correspond to the diagrams shown in Eq.
(20) for i ¼ 1, and, respectively, to the diagrams shown in Eq. (21) for i ¼ 2.
Specifically, Vi denotes the projection onto the trivial (vacuum) represen-
tation, and Ai denotes the projection onto the anti-symmetric representa-
tion. Of course since V2 is itself a symmetric SUðχÞ tensor, we can write it as

V2 ¼ γV1 þ δA1 ) A1 ¼ δ�1V2 � δ�1γV1; (24)

where the second equality follows after assuming there is a non-zero
contribution of A1 to V2. If this is not the case and δ ¼ 0 then this indicates
that V1 / V2. With the exception of the χ ¼ 1 case (where there is no anti-
symmetric representation) this is obviously never true. Lastly, we can
substitute this into the first representation of t to get a basis in terms of Vi :

t ¼ a1V1 þ b1A1 ¼ a1V1 þ b1ðδ�1V2 � δ�1γV1Þ ¼ ~aV1 þ ~bV2 (25)

The final step, required for completeness, is to show that for any pair ða; bÞ
there exists a pair ð~a; ~bÞ and vice versa. We have already shown one
direction:

~a ¼ aþ bδ�1 (26)

~b ¼ bδ�1γ (27)

Clearly this implies that there is a unique ð~a; ~bÞ pair for each ða; bÞ pair. To
show the opposite we invert the equations to obtain:

a ¼ ~a� ~bγ�1 (28)

b ¼ ~bδγ�1 (29)

This indicates that if γ ≠ 0 then we also have a unique ða; bÞ for each ð~a; ~bÞ.
To show this is the case note that if γ ¼ 0 then we have that tensor
V2 / A1. But from Eq. (21) it is clear (when bending the top-right most leg
down) that V2 is the identity on a χ2 dimensional vector space, while A1 is a
projector onto the χ2 � 1 dimensional anti-symmetric representation.
Therefore, γ ≠ 0.

Holographic screen
In the results we pointed out that in our quantum bulk state there are a
number of regions of the bulk/boundary of the lifted MERA, W½A�, that are
equivalent to the DOFs on a corresponding screen, γA , of one dimension
lower in the bulk. This relationship is key to our analogous Ryu–Takayanagi
formula. A key step in this process is to exploit the fact that the lifted MERA
is constructed from isometries and unitaries. This then gives rise to a state
which we will call ρ̂virtualγA

, constructed by contracting all tensors outside the

virtual screen, γvirtualA . This then allows us to connect the states in the
wedge W½A�, ρbkW½A� , and ρ̂virtualγA

by an isometry R (where RRy ¼ 1):

ρvirtualγA
¼ RρbkW½A�R

y: (30)

The intuition behind how the virtual screen works is best illuminated by
a constructive greedy algorithm, from which we can construct viable
wedges W½A�. This greedy algorithm is essentially the same as the greedy
algorithm defined in ref. 10, but slightly restricted here due to us using
ordinary isometries rather then perfect or block perfect tensors36. To
perform this algorithm, first choose a boundary A, from which we will
define a ‘wedge’ W0½A� as the empty set of tensors/the set of physical sites
on the boundary A. Associated to this is the holographic screen γvirtualA;0
which is just the boundary A. Next define a new wedge W1½A� by choosing
a subset of tensors from the original MERA connected to the holographic
surface γvirtualA;0 (the boundary A). This subset must include only tensors
u;w : Hin 7!Hout where the entire space Hin is on the surface γA;0, i.e. all
legs leading down of the chosen u and w must be on γvirtualA;0 (or directly
above a tensor t that is on γvirtualA;0 ). Hout is then the resulting space that the
selected u and w map Hin. This is then specified by γvirtualA;1 that agrees with
γvirtualA;0 except where a selected tensor remains above it, in that case it
passes above the tensor instead. This then defines a new wedge W1½A� as
the set of tensors u and w selected, denoted fTg. It may also be viewed as
the boundary sites A and all bulk sites directly below the tensors fTg. The
associated holographic surface γvirtualA;1 is then the effective boundary for
region A when excluding tensors fTg. This processes can then be repeated
any number of times, buildingWnþ1½A� out ofWn½A� and γvirtualA;nþ1 out of γ

virtual
A;n

by selecting tensors with Hin only along the effective boundary γvirtualA;n
(again ignoring t tensors). This generates all holographic surfaces, and we
will call the surface associated to the maximal sized set W½A� as the
maximal holographic surface. As discussed in Supplementary Methods Sec.
II, this is closely related to the dual graph geodesic. This construction
makes it is clear that R is an isometry from the effective boundary γvirtualA to
the sites in wedge W½A� (including boundary sites in A), where
dimðW½A�Þ � dimðγvirtualA Þ.
Reaching Eq. (30) only requires the MERA begin constructed from

isometries and the second lifting axiom holds, see Fig. 1d(ii), meaning the
lifting tensor may be interpreted as an isometry.
The final step in making the connection between sites in ρbkW½A� and on

holographic screen γA is to connect the virtual screen to the true
holographic screen. This is done by relating the two tensor sums that
appear on the right hand sides of Fig. 7a and b. If this can be done then we
have said that ρvirtualγA

is equal to the holographic screen ρbkγA . The support of
ρbkγA is defined as a subset of the DOFs generated by the lifting tensors
along the holographic screen, in particular the DOF that is deeper into the

Fig. 7 A graphical demonstration of the mapping from virtual
bonds to bulk degrees of freedom. Expanding the lifting tensor
below for a single site given states a ρvirtualγA

and b ρbkγA . We contract

everything besides these sites into ρð1Þ everything else being the
same we see that these two states are very similar, only differing by
an exchange of α and β. This diagram is for a single site but can be
extended to other multi-site cases by similar equivalences (exchan-
ging α and β for each lifting tensor along the cut one at a time).
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bulk for each lifting tensor. Then because ρvirtualγA
is equal to ρbkW½A� by an

isometry, so is ρbkγA .
The tensor network described by Fig. 7a refers to ρvirtualγA

and Fig. 7b
refers to ρbkγA . Comparing the two right hand sides of Fig. 7a and b it is
possible to see that the diagrams associated with coefficient αβ� (or its
complex conjugate) are isotropically equivalent between Fig. 7a and b. We
can also see that the diagrams with coefficients jαj2 and jβj2 are also
isotopically equivalent, but require the two diagrams also be swapped (i.e.
the diagram for jαj2 in one sum is the same as the diagram for jβj2 in the
other, and vice versa). Therefore to equate these two diagrams we need to
generate a method to swap α and β.
To do this we define a completely positive operator F which acts on all

DOFs arising from the lifting tensors along γA . It is obvious that when α ¼ β
then this operator is the identity, thus earning this limit of η its designation

as the holographic limit of lifting, η ¼ ηHolo ¼
ffiffiffiffi
2χ

pffiffiffiffiffiffi
χþ1

p . When we extend

η away from the holographic limit this F ¼ �j2γA F
ðα;βÞ
j takes the form of a

filtering operation constructed from local operators Fðα;βÞj :

ð31Þ

Where we set a ¼ βα�1 and b ¼ ðα2 � β2Þα�1ðαþ χβÞ�1, with these
parameters the operator is completely positive. Graphically the action of
this on a lifting tensor is

ð32Þ

where the renormalisation of the CP map, given in Eqs. (35) and (36), has
been ignored.
Since this operation swaps α and β then we can view it as converting η

to ~η:

~ηðηÞ ¼ ηχ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 � 1

p (33)

We will use F to indicate the flip of α and β for the lifting tensors along
the holographic screen sites, therefore we define a modified density matrixeρbkγA with the same support as ρbkγA by:

eρbkγA ¼ Trbt F ρbk;ð2ÞγA

h i� �
¼ ρvirtualγA

¼ RρbkW½A�R
y (34)

Here we apply the filtering operation F to the quantum state ρ
bk;ð2Þ
γA

reduced to only (the pair of) DOFs generated by all the lifting tensors along
γA . Having applied the filter we then trace out the bottom DOF of each
lifting tensor along γA by Trbt and reduce the support back to that of ρbkγA .
By the previous arguments this is equal to ρvirtualγA

and therefore also equal
to RρbkW½A�R

y. So when we extend our Ryu–Takayanagi formula to η other
than the holographic limit, we replace SðρbkγA Þ with SðeρbkγA Þ in Eq. (15).
Beginning with the completely positive operator from Eq. (31), from

which we constructed the filtering operators, we can construct a local
POVM on each site such that one of the measurement outcomes
corresponds to successfully flipping α and β. For a > jaþ bχj we find the
POVM to be:

M1 ¼ Fðα;βÞ

a

M2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ bχ

a

� �2
s

PS

(35)

Where PS ¼ 1
χ

Pχ
j¼1 jjj i jjh j is the projector onto the singlet. Otherwise we

find the POVM to be:

M1 ¼ Fðα;βÞ

jaþ bχj

M2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

aþ bχ

� �2
s

PS

(36)

The probability of success for measurement outcome 1 (successfully
flipped α and β) can also be computed making use of the fact that it is
acting on a bulk lifted state. Therefore the probability of outcome 1 for a
local operator at some site can be worked out by realising that the

expectation value of the identity term is 1 (as the lifted MERA is a pure
quantum state). Further when computing the expectation value of the
projector PS on a single site the outcome will be η�2. This can be observed
from the first lifting axiom, which states the expectation value of the bulk
state times the singlet is equal to the η�1 times the norm of a lifted state
where we have the decoupled lifting tensor at that site (i.e. the lifting
tensor generated by η ¼ 1). Since this lifting is again a pure state that gives
expectation value η�2. Therefore for a lifted tensor on any single site, the
probability of success of the filtering operation is:

P ¼
a2þð2baχþb2χ2Þη�2

a2 a > jaþ bχj
a2þð2baχþb2χ2Þη�2

jaþbχj2 a < jaþ bχj

8<: (37)

Finally, it is important to note how this changes when we consider
symmetries. For Abelian symmetries nothing changes except that we
define the flip operator separately on each charge j based on the tuning ηj
of that charge (or equivalently αj and βj). For non-Abelian symmetries we
choose to flip only the degeneracy DOFs and leave the gauge DOFs alone.
As discussed in the main text the limit η ¼ 1 is also a special limit where

the geometric definition of the length ‘ / SðeρbkγA Þ ¼ SðρCFTA Þ. The opposite

limit is also of interest as the state eρbkγA / IγA and so the definition of length

is ‘ / SðeρbkγA Þ ¼ log ðχÞjγAj. For values of η between these extremes
(including the holographic limit) we expect a contribution from both the
model as observed when η ¼ 1 (and therefore dependent on central
charge for CFTs) and the bond dimension as observed when η ¼ χ. We
cannot make any more predictions other then we expect an increase in
entropy with central charge and with bond dimension, finer details require
numerical analysis due to the highly non-linear interaction between η and
the model occurring at sites deeper into the bulk then the sites of γA which
does not occur when η ¼ 1 or η ¼ χ. Finally even these limits break down
due to non-linearities occurring arising from gauge DOFs coupling all DOFs
with charges in the bulk. This is expected to increase the entropy when
ηj ¼ 1 as we no longer recover the CFT and also decrease the entropy
when ηj ¼ χ j as we do not end up with a maximally mixed state.

Details for the numerics
In the results we discussed the symmetric lifted MERA, focusing on a family
of anyonic Heisenberg models31 which generated a complete set of
unitary minimal model CFTs. Here we will give further details regarding the
calculations and results.
Each CFT from this family of unitary minimal models is specified by an

integer k � 2 and an associated Hamiltonian, HðkÞ, acting on a chain of non-
Abelian anyons. Without exploiting the anyonic symmetry the family of
Hamiltonians HðkÞ of Eq. (18) is the anyonic analogue of the standard spin 1

2
antiferromagnetic Heisenberg model. These deformed Heisenberg models
exist as points, labelled by integers k � 2, along the XXZ spin chains:

HðkÞ ¼ � 1
2dðkÞ

P
i ðσxi σxiþ1 þ σyi σ

y
iþ1Þ

�
þ dðkÞ

2 1� σzi σ
z
iþ1


 �þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2ðkÞ

4

q
ðσziþ1 � σzi Þ



:

(38)

where dðkÞ ¼ 2 cos π
kþ2

� �
. While the total Hamiltonian is hermitian (up to

boundary terms), the local interaction terms are non-hermitian. These local
non-hermitian contributions are important as when they are removed HðkÞ
no longer corresponds to unitary minimal models, instead each Hamiltonian
becomes a bosonic CFT with central charge c ¼ 1.
Irrespective of if we explicitly include the non-hermitian local interaction

terms, the ground state energy density is:

EðkÞ
N

¼ d2ðkÞ � 4
4dðkÞ

Z 1

�1
dx

sechðπxÞ
cosh 2x arccos dðkÞ

2

� �h i
� dðkÞ

2

(39)

and if we keep the non-local terms then the central charge is

cðkÞ ¼ 1� 6
ðk þ 1Þðk þ 2Þ : (40)

Associated to each CFT are a number of conformal dimensions:

hr;s ¼ ðk þ 2Þr � ðk þ 1Þsð Þ2 � 1
4ðk þ 2Þðk þ 1Þ ; (41)

with parameters 1 � r � k and 1 � s � k þ 1. From these conformal
dimensions the scaling dimensions (for the primary fields) of our CFT
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models can be computed and are simply the sum of two allowable
conformal dimensions for the model, each corresponding to a particular
representation of the CFT algebra with this particular central charge. The
remaining scaling dimensions (associated to descendent fields) are just the
other scaling dimensions positively displaced by an integer value. As can
be seen from the results of ref. 33 not all possible scaling dimensions will
appear, and in fact only a few of them will. Therefore as we have no prior
knowledge of which representations will appear in our model we compute
the error in scaling dimensions with respect to the closest possible scaling
dimension of the model.
As shown in ref. 32, and used in the main text, HðkÞ can also be

understood as a deformed Heisenberg model (for k � 2). In which case the
anyons are spin�1=2 irreps of the quantum group SUð2Þk . This group is a
deformation of the standard SUð2Þ symmetry group, restricting to a finite
number of possible spin values, eliminating those half integers with values
>k
2, truncating the total angular momentum to k=2. If we choose to exploit

these anyonic symmetries then the Hamiltonian may be presented as:

ð42Þ

where the hi term (depicted here in the anyon fusion basis) projects onto
the state 1

2i ´
1
2iþ1 ! 0

��� i, i.e. physically it is the projection onto the spin 0
fusion space of two (deformed) spin 1/2 particles at sites i and i þ 1. In the
limit k ! 1 the deformation disappears and the model becomes the
bosonic CFT from the usual SUð2Þ symmetric antiferromagnetic spin 1

2
Heisenberg model. This can be observed in both Eqs. (38) and (42) (noting
that dð1Þ ¼ 2).
The presence of these non-hermitian terms is also the reason that we

cannot use the usual, non-symmetric, MERA for spin chain to simulate this
family of models. Instead, we must resort to the anyonic version of the
MERA33. We studied the k ¼ 2; 	 	 	 ; 10 models and the k ¼ 1, the last of
which corresponds to the standard spin 1

2 antiferromagnetic Heisenberg
model. We obtained the anyonic MERA representation of each ground
state via a variational energy minimisation computation, as described in
ref. 33, and implemented with ref. 34. In the simulations, we kept five
transition layers and an additional scale-invariant layer. We assigned
degeneracy 5 and 3 to irreps 1

2 and
3
2, respectively, on each bond index of

the MERA, and zero degeneracy to all other irrep labels. (Except in the
k ¼ 2 case, where spin 3

2 does not exist.) The relative errors in ground state
energy, central charge, and first couple (non-trivial) scaling dimensions are
listed in Table 1.
We then lifted the resulting MERA tensor network representation using

the symmetric lifting tensor defined in Fig. 5b—where j now labels anyon
charges—to obtain the dual bulk states. For each of these we computed
the Réyni-2 entropy, Sð2ÞðρÞ ¼ �log Tr ρ2½ �ð Þ, along the holographic screen
illustrated in Fig. 3. We use the Reyni-2 entropy as it is easier to compute
than the von-Neumann entropy for the lifted MERA. In the main text, Fig. 6
showed a plot of this bulk entanglement entropy density vs the central

charge of the boundary state. This density is taken with respect to the
number of bulk sites in the maximal holographic screen (the path taken
through the bulk) as opposed to the boundary size.
In addition, to the results presented in plot Fig. 6 we studied the k ¼ 2

and k ¼ 4 ground states, excluding the k ¼ 3 ground state due to
convergence issues that arose during the lifting procedure. For each value
of k we studied six additional values of tuning parameters—corresponding
to six further dual bulk states for each critical ground state—focusing on
the ηj ! 1 limit. We considered ηj ¼ f1; 1:01; 1:03; 1:1; 1:2; 1:5g where
ηj takes the same value for all j. In addition we considered the holographic

limit ηj ¼
ffiffiffiffiffi
2χ j

pffiffiffiffiffiffiffi
χ jþ1

p !
χ j!1

ffiffiffi
2

p
which is roughly between the η ¼ 1:2 and η ¼ 1:5

cases but with a j dependent tuning parameter. We also considered the
maximal entropy limit where ηj ¼ χ j . In these last two values of η we have
set η separately on each charge sector, j, based on the bond dimension, χ j ,
associated to said sector.
The results for all values of k and η, excluding values for k ¼ 3, are plotted

in Fig. 8. We restrict ourselves to regions A between two spines (sequences
of isometries connected via the middle sites) which eventually are
neighbouring at some renormalisation scale. This means that the region A
corresponds to the boundary sites between the middle sites of the spine.
This then means that the geodesic γA corresponds to only paths which are of
the form of shown in Supplementary Methods Fig. 2a, and therefore is both
the maximal holographic screens and the graph geodesic paths.
To compute the entropy density of this we compute the eigenvalues

fλigi¼0;			 of the transfer matrix shown in Fig. 9. By doing this we have
computed the asymptotic entropy density Sð2ÞðρbkγA Þ=jγAj ¼ log 2ðλ1Þ as
jAj ! 1 and so only the scale-invariant layer contributes to this
calculation. In each of these ground states we see a complete ordering
of the entropy density growing with the tuning parameter η just as we
would expect in the non-symmetric case. We may find this complete order
breaks down and a partial order emerges if we had tuned the ηj

Table 1. The relative errors in energy density EðkÞ, central charge cðkÞ
and the first three non-trivial scaling dimensions Δð1;2;3Þ , for the
numerical ground state calculations for the Hamiltonian given in Eqs.
(38) and (42).

k ¼ ΔrelEðkÞ ΔrelcðkÞ Δrel Δ
ð1Þ
 ��� �� Δrel Δ

ð2Þ
 ��� �� Δrel Δ
ð3Þ
 ��� ��

2 2:3 ´ 10�7 3:2 ´ 10�3 1:2 ´ 10�2 2:7 ´ 10�3 7:9 ´ 10�3

3 4:4 ´ 10�6 2:5 ´ 10�2 3:2 ´ 10�2 4:0 ´ 10�2 3:4 ´ 10�2

4 1:6 ´ 10�6 1:0 ´ 10�2 1:2 ´ 10�2 2:7 ´ 10�3 7:9 ´ 10�3

5 9:4 ´ 10�6 1:4 ´ 10�2 3:1 ´ 10�2 5:0 ´ 10�3 1:4 ´ 10�2

6 1:0 ´ 10�5 1:4 ´ 10�2 4:1 ´ 10�2 7:6 ´ 10�3 2:0 ´ 10�2

7 1:1 ´ 10�5 1:4 ´ 10�2 7:2 ´ 10�2 4:6 ´ 10�4 5:2 ´ 10�2

8 1:1 ´ 10�5 1:4 ´ 10�2 1:1 ´ 10�2 1:0 ´ 10�3 7:1 ´ 10�2

9 1:2 ´ 10�5 1:4 ´ 10�2 4:3 ´ 10�2 3:5 ´ 10�3 6:6 ´ 10�2

10 1:2 ´ 10�5 1:5 ´ 10�2 2:0 ´ 10�2 8:7 ´ 10�4 6:5 ´ 10�2

1 1:3 ´ 10�5 1:7 ´ 10�2 N/A 6:0 ´ 10�3 N/A

0.5 0.6 0.7 0.8 0.9 1
Central Charge

0

1

2

3

4

ytisne
D yportn

E

= 1 = 1.01
= 1.03

= holo

=

= 1.5

= 1.1

= 1.2

Fig. 8 The second Rényi entropy density Sð2ÞðρbkγA ðηÞÞ=jγAj of bulk
sites on the geodesic holographic screen γA (see Fig. 3) for ground
states of the Hamiltonian HðkÞ for various values of η for each k,

and ηholo �
ffiffiffiffi
2χ

pffiffiffiffiffiffiffi
χþ1

p . The connections for different models for a given

tuning parameter is not to indicate a predicted model that the
authors propose, but rather to aid the reader in separating the
different sets of lifting results based on the values of η used.

Fig. 9 The transfer matrix that was used to compute the entropy
density.
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parameters separately for each j so that we may have η
ð1Þ
j < η

ð2Þ
j but

η
ð1Þ
j0 > η

ð2Þ
j0 .

Given this observation we can now consider the two limits of η and
compare them to the non-symmetric case. The first limit of η ¼ χ, which
for the symmetric case becomes ηj ¼ χ j . In the non-symmetric case we
expect the entropy density to be the maximal possible entropy density of
log ðχÞ. For the symmetric case the analogue would be expected to be
log ðPjχ jDjÞ where Dj is the quantum dimension of the charge j which is
defined for SUð2Þk as:

Dj ¼
sin ð2jþ1Þπ

kþ2

� �
sin π

kþ2

� � (43)

In Table 2 we compare the computed entropies for when ηj ¼ χ j for all
values of k. Based on the non-symmetric results, where the state should be

a maximally mixed state we expect this to go as SðIγA Þ=jγAj ¼

�log 2

P
j
χ jDj

ð
P

j
χ jDjÞ2

 !
(using base 2 for all entropy calculations) where j is

summed over all possible charge labels. We find that the entropy for the
symmetric models does not completely saturate this bound as there is
additional information which is encoded in the probability of existing in
the different gauge sectors. As confirmation that this is the case we see
that when k ¼ 2 and we have only stored a single gauge DOF, this bound
perfectly predicts the entropy density.
We also wish to study the other limit, where ηj ¼ 1, and compare it with

the prediction of describing the entropy of the original CFT theory. For
Renyi-2 entropy the relationship between the entropy of the CFT on region
A, ρCFTA and the central charge c and the subsystem size jAj, is:
Sð2ÞðρCFTA Þ ¼ c

4
log 2ðjAjÞ: (44)

For the path that we are considering there is a relationship between jAj
and the path length through the bulk jγAj ¼ 2N given by:

jAj ¼ 2
3N � 1
3� 1

) jγAj ¼ 2 log 3 jAj þ 1ð Þ (45)

This means that we expect our entropy density to take the form:

Sð2ÞðρCFTA Þ=jγAj �
c
8
log 2ð3Þ � 0:20c: (46)

To study this we first perform linear regression on our η ¼ 1 limit to
compare to the prediction from Eq. (46) for a linear regression to
Sð2ÞðρCFTA Þ=jγAj ¼ mc þ xð0Þ. We then compare the regression to linear,
quadratic and cubic models and consider the t-statistics of the coefficients
of these models to determine the most appropriate model. The t-statistic
in this case is a measure of the probability that the results (the entropy
density) are completely uncorrelated to the other variables (the central
charge). In particular this probability is the chance that a random Gaussian
distribution could give rise to this distribution. The t-statistic has an
associated p-value which is interpreted as the probability of having
sampled random points to generate a correlation of this magnitude or

greater. Further we work out the t-statistics for comparing the higher order
models to the linear model, in this case we repeat the analysis on the
difference between the entropy density an the linear model.
Doing this we get m ¼ 1:131± 0:095 with a t-statistic of 11.9 (p-value of

6:8 ´ 10�6) and xð0Þ ¼ �0:003± 0:083 with a t-statistic of −0.0384 (p-value
of 0.97). This states that the deviation of the intercept away from the
theoretically predicted value of 0 is extremely likely (
 97%) to be simply
due to random noise (here due to the fact that the MERA with finite bound
dimension is only an approximation to the ground state). The linear
contribution is highly unlikely to be due to random noise (<10�3%).
Further the value we find is that the slope is about five times greater then
what we predicted and this is attributed to be due to additional
decoherence that occurs due to the coupling of the charge sectors to
the bulk DOFs.
For completeness we also study the likelihood of this data being

described by a higher order polynomial in the central charge. This was
done by computing the t-statistics for the coefficients when performing
regression to the quadratic and cubic models. Here we find that the
Gaussian random noise is highly likely to be able to generate data with a
quadratic fit which is just as significant as the one we found. For the cubic
model each coefficient has a 
 8% chance of having being generated by
the random noise, this is better then the quadratic model but in the linear
case the probability of the observed relation arising from random noise is a
factor of 1000 smaller then any polynomial relationship from the cubic
regression. For completeness we also compare this to the linear model of
Sð2ÞðρCFTA Þ=jγAj ¼ 1:131 ´ c � 0:003 and find similar results (where here we
say the null model is Gaussian noise plus the observed linear model). These
results are given in Table 3.
At the extreme points of η (ηj ¼ 1 and ηj ¼ χ j) we see there is an almost

linear relationship between the entropy density and the central charge. For
ηj ¼ 1 we expected this based on non-symmetric results, for ηj ¼ χ j this
observation is likely coincidental since the quantum dimension tends to
grow as the central charge. Between these extreme points we see a

Table 2. Entropy densities for computed results for ηj ¼ χ j , S eρbkγA�
, and

the expected maximal entropy density, SðIγA Þ=jγAj. In addition to this
the differences between the computed and predicted entropy
densities, ΔS, are given as well as the relative difference ΔRelS.

k ¼ SðeργA Þ=jγAj SðIγA Þ=jγAj ΔS=jγAj ΔRelS=jγAj
2 2.8219 2.8219 0 0

4 3.7925 3.3326 0.4599 0.1213

5 3.9773 3.2063 0.7710 0.1939

6 4.0941 3.2240 0.8701 0.2125

7 4.1727 3.3231 0.8496 0.2036

8 4.2283 3.3777 0.8506 0.2012

9 4.2691 3.4177 0.8514 0.1994

10 4.2999 3.4313 0.8686 0.2020

1 4.4594 3.4876 0.9719 0.2179

Table 3. Table of coefficients for polynomial fits to the η ¼ 1 data.

xn Coefficient Standard error t Stat p Value

Linear, null=Gaussian noise

x0 −0.003 0.083 −0.038 0.97

x1 1.131 0.095 11.89 6.8 × 10−6

Quadratic, null=Gaussian noise

x0 −0.10 0.39 −0.26 0.81

x1 1.4 1.1 1.27 0.25

x2 −0.19 0.74 −0.26 0.81

Cubic, null=Gaussian noise

x0 −7.1 3.3 −2.1 0.086

x1 31 14 2.2 0.078

x2 −39 19 −2.1 0.087

x3 16.9 8.0 2.1 0.088

Quadratic, null= linear+Gaussian noise

x0 −0.10 0.39 −0.25 0.81

x1 0.3 1.1 0.25 0.81

x2 −0.19 0.74 −0.26 0.81

Cubic, null= linear+Gaussian noise

x0 −7.1 3.3 −2.1 0.086

x1 30 14 2.1 0.078

x2 −39 19 −2.1 0.087

x3 16.9 8.0 2.1 0.088

Along with the fits the standard error, t-statistic and associated p-value
generated for each coefficient by this regression are included in this table.
Analysis of these results indicates that the linear model is the most
statistically significant with a probability of having randomly generated
such a distribution being roughly 7 × 10−6. All other regressions generated
coefficients with significantly larger probabilities of the distribution being
random, each at least on the order of several parts in a hundred.
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deviation from linearity which becomes most extreme around η ¼ ηHolo.
These deviations are most noticeable for k ¼ 4; 5; 6. There are two
possible reasons that this may be the case, the first is that we should use a
different tuning parameter for the different charge sectors. However, the
behaviour of the deviation is consistent between the constant tuning
parameter ηj ¼ 1:2 and a the holographic tuning ηj ¼

ffiffiffiffiffiffi
2χ j

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
χ j þ 1

p
,

roughly η ¼ ð1:29; 1:22Þ for the two non-zero charge sectors, are the
same. This suggests that the behaviour has to do with the average tuning
values (or average tuning values relative to the charge sector bond
dimension) as opposed to arising due to relative tunings between charge
sectors.
The abnormal behaviour could also arise from the fact that as η varies

between 1 and χ we get a mixture of behaviours arising in the lifted MERA
state. Drawing from our intuition in the non-symmetric case, when η ¼ 1
we find that the state along the maximal holographic screen should
behave as a section of the boundary CFT. On the other hand, in the η ¼ χ
limit this gives rise to a maximally mixed state. In between these limits we
expect there to be both mixed state contributions as well as the pure state
contribution. Notwithstanding, since the mixing of α and β contributions to
the lifting tensor occurs not only at the holographic screen, but also above
it, this suggest that should be some form of non-linear feedback as we
transition between the η ¼ 1 and η ¼ χ extremes which could be
important. For this reason the anomalous behaviour around η ¼ ηHolo
may be indicative of some kind of transition from CFT like behaviour to a
mixed state like behaviour. This non-linearity with respect to the central
charge may just be the true behaviour around these parameters, however,
the authors suspect the lifting procedure simply exacerbates the numerical
instabilities in the original MERA tensor network state. For this reason it
may be worthwhile exploring this for a possible transition and any
associated order parameters in future work.

DATA AVAILABILITY
The datasets generated and analysed during the current study is avaliable from the
corresponding author upon reasonable request. The numerics were done using the
Matlab library avaliable at https://github.com/qnla/SymLibrary34.
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