arXiv:1812.11644v1 [cond-mat.str-€l] 31 Dec 2018

MERA as a holographic strange correlator

Nathan A. McMahon!2, Sukhbinder Singh3, Gavin K. Brennen !

LCenter for Engineered Quantum Systems, Dept. of Physics & Astronomy, Macquarie University, 2109 NSW, Australia

2Center for Engineered Quantum Systems, School of Mathematics and Physics,
The University of Queensland, St Lucia, Queensland 4072, Australia and
3Max-Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany

The multi-scale entanglement renormalization ansatz (MERA) is a tensor network that can efficiently param-
eterize critical ground states on a 1D lattice, and also suggestively implement some aspects of the holographic
correspondence of string theory on a lattice. Extending our recent work [S. Singh, Physical Review D 97,
026012 (2018); S. Singh, N. A. McMahon, and G. K. Brennen, Phys. Rev. D 97, 026013 (2018)], we show how
the MERA representation of a 1D critical ground state—which has long range entanglement—can be viewed as
a strange correlator: the overlap of a 2D state with short range entanglement and a 2D product state. Strange
correlators were recently introduced to map 2D symmetry protected or topologically ordered quantum states to
critical systems in one lower dimension. The 2D quantum state dual to the input 1D critical state is obtained by
lifting the MERA, a procedure which introduces bulk quantum degrees of freedom by inserting intertwiner ten-
sors on each bond of the MERA tensor network. We show how this dual 2D bulk state exhibits several features
of holography, for example, appearance of horizon-like holographic screens and bulk gauging of global on-site
symmetries at the boundary. We also derive a quantum corrected Ryu-Takayanagi formula relating boundary en-
tanglement entropy to bulk geodesic lengths—as measured by bulk entropy—and numerically test it for ground

states of a set of unitary minimal model CFTs, as realized by 1D anyonic Heisenberg models.

In recent years, there has been a push to understand the cel-
ebrated anti-de Sitter/conformal field theory (AdS/CFT) cor-
respondence [[1}12], a concrete realization of the so called holo-
graphic principle, from the perspective of quantum informa-
tion theory. In particular, some aspects of the AdS/CFT have
been realized using tensor network descriptions of ground
states of critical quantum many body systems. It was first
suggested by Swingle in Ref. [3] that the multi-scale entan-
glement renormalization ansatz (MERA) [4, 3], a particu-
lar tensor network suited to describing critical ground states,
might also be viewed as a spatial slice of a holographic AdS
spacetime. Since then several other holographic interpreta-
tions have been presented both of the MERA and other related
tensor networks, see e.g. Ref. [6H15]. Even in the absence of
general consensus yet on how the MERA realizes holography,
one basic lesson is more or less apparent: a given MERA rep-
resentation can be interpreted in dual (even several) ways.

In this paper, we show how the MERA representation of
any 1D critical ground state |¥) may also be viewed as a
strange correlator, namely, as an overlap between a 2D quan-
tum state [P(i)) with short range entanglement and a 2D
product state. Strange correlators were first introduced in
Ref. [16] to map 2D symmetry protected quantum phases of
matter to 1D critical systems. Using the PEPS tensor network
Ref. [17] extended strange correlators to map 2D topologi-
cally phases, described by a topological quantum field theory
(TQFT), to 1D critical systems, thus also realizing explicitly
the TQFT,1/CFTi4; correspondence. Here, we will show
that the ‘dual’ 2D quantum state obtained from the MERA—
in addition to having short-range correlations—also exhibits
a number of features reminiscent of holography. We sug-
gest that the strange-correlator construction could be useful
as a bulk description in a holographic interpretation of the
MERA. To this end, we generalize our recent work presented
in Ref. [14}115] in an important direction. There we described
how the MERA description of |¥) can be “lifted” to a 2D

quantum state |PU)). In this lifting construction—which
was shown to caricature several features of the AdS/CFT
dictionary—two physical degrees of freedom (DOFs) were in-
troduced on each bond of the tensor network, and the MERA
was modified by inserting additional ‘lifting tensors’ (one on
each bond) that act on the new bond DOFs. But the construc-
tion mapped a given critical state |¥') to many lifted states,
each of which generally had different entanglement. This was
because a different lifting tensor was chosen for each differ-
ent choice of ‘bond’ basis in which the MERA tensors are
expressed. This is somewhat unsatisfactory, since a change
of bond basis in the tensor network still describes the same
state |¥) [18]]. In this paper, we present a modified construc-
tion where the different lifted states are related to one another
only by on-site unitary transformations—thus, they all have
the same entanglement properties. This allows us to asso-
ciate a unique 2D entanglement structure to each 1D critical
MERA state, and thus obtain a strict correspondence between
the boundary/bulk entanglement properties. Our key insight,
which we elaborate in the paper, is that the lifting tensor must
be an interwiner of the group of basis change transformations:
the group U() where y determines the size of the MERA
tensors [19].

Surprisingly, the new basis-independent construction still
retains several interesting features of the previous construc-
tion in Ref. [14,[15]], e.g. the promotion of a boundary global
onsite symmetry to a local gauge symmetry in the bulk and
the appearance of ‘holographic screens’ in the bulk, both of
which we revisit in this paper. Additionally, by using en-
tanglement entropy along a geodesic in the bulk as a surro-
gate for geodesic length we obtain a quantum corrected Ryu-
Takayanagi formula [20, 21]. The overall message here is to
focus on finding a holographic structure which emerges purely
from tensor networks. Our search is guided by the AdS/CFT
correspondence, but our results hold independently.

MERA and lifted MERA.— We consider a MERA tensor
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FIG. 1. (a) A patch of an infinite MERA tensor network, which de-
scribes a quantum critical ground state |'¥) on an infinite lattice £ as
follows. Each open index i at the boundary of the tensor network is
associated with a site of £ and labels an orthonormal basis |) on the
site. For a given basis state of the lattice, the open indices are fixed
to the corresponding values, which yields a closed tensor network.
The latter can be contracted to obtain a complex number, which is
the amplitude of the basis state in |¥). For simplicity we assume
that each index of the tensor network runs over  values. The tensor
network is made of two types of tensors, illustrated here u and w. (b)
All tensors are isometries and fulfill the constraints shown here. (c)
The lifted MER A—which describes a 2D quantum state [¥(f))—is
obtained by inserting a 4-index ( x y x ¥, X %) lifting tensor # on each
bond of the MERA. (d) The lifting tensor T is required to satisfy the
axioms shown described in the text.

network that defines a class of a quantum many-body states
on an infinite one dimensional lattice, see Fig. a). The
MERA is particularly well suited to describe critical ground
states [22]. Given a critical Hamiltonian, the approximate
MERA representation of its ground state can be obtained
e.g. by a variational energy minimization algorithm [23], and
the approximation can be made more accurate by increas-
ing  (which increases the number of variational parameters).
Given the MERA representation of a 1D critical ground state
|¥) we lift it to a 2D quantum state |¥(™) by inserting a 4-
index lifting tensor ¢ on each bond of the MERA, as shown
in Fig. [T[c). We require that the lifting tensor ¢ fufills some
reasonable axioms that are depicted in Fig. [T[(d). The first
axiom allows us to reverse the lifting and recover a properly
normalised boundary state: |¥(if)) — |¥) by local bulk pro-
jectors onto unnormalized singlets |+) = ZLI [7)17), that is

®) = ( @ nyx ' (+)wh). (1)

all bulk sites

The second axiom ensures |} is a normalised quantum
state. It corresponds to demanding that the lifting tensor is
isometric [24] . The third axiom, the only axiom that was not
assumed in Ref. [[14}[15]], ensures that |‘P(liﬂ)> is covariant un-

der a change of basis of the original tensor representation of

the MERA by a unitary U in the fundamental representation
of U(y). This axiom implies that the lifting tensor is an inter-
twiner of U () which heavily constrains the structure of the
lifting tensor to a canonical form (see Appendix [[)

t<a15¥{= JT(a\/< + M’N/. @

Using this solution, the other two lifting axioms imply:

Vae+ (V) B= v, 3)
(lo* + [B*)x* + (oB* + o B)x = 1, 4)

where M is the tuning parameter from the first lifting axiom,
Fig.[[[d)(i). Assuming, without loss of generality, that o and
B are real and positive yields solutions:

S e B:\/xL —nyl-n—?
-1 MV/x? -1

where 1 <n<yand0<a,p< X‘l. These values correspond
to a legitimate choice #(®P) for the lifting tensor. (Given Eq.
we will also parameterize 1(*B) as ™)) A 2D bulk state is de-
fined by choosing a lifting tensor from this domain; different
lifting tensors correspond to different bulk states.

MERA as a strange correlator— As introduced in
Ref. [[16]], a strange correlator is a classical partition func-
tion with algebraically decaying correlations that is obtained
as the overlap of a quantum state with exponentially decay-
ing correlations and a product state. We show in Appendix

(&)

that the correlation functions in the 2D state |¥(ifV) de-

cay exponentially along the geodesic distance between any
two bulk sites. This essentially follows from the fact that
the tensor network expression for the correlator between any
two sites consists of the product of copies of a ‘transfer ma-
trix’ along the shortest bulk path connecting them. By con-
struction, Eq. |1} the critical MERA state |\P) is recovered by
taking the overlap of the short-range correlated lifted MERA
state [P} with the product state (®),, ... (+|).- Thus, the
MERA viewed in this way bears a striking resemblance with
a strange correlator. The difference is that a strange corre-
lator is a partition function, a number, while the MERA is a
critical quantum state. However, an infinite critical MERA,
which we have considered here, can also be understood as a
critical partition function: either as a Euclidean path integral
on a 2D light-cone geometry of a 1D critical quantum system
[25 126[]; or as a 2D classical partition function Z;, albeit
with complex Boltzmann weights [27], once we take an addi-
tional overlap with a fixed 1D product state (&), oy e (+x/)s

where |+,) = Z?Z] |/). In this case, we obtain

(R D & (+NIPHV) o< Zoy. 6)

all boundary sites all bulk sites

In the rest of the paper, we demonstrate that the lifted MERA
exhibits features that are reminiscent of holography. For this
reason, and based on the above discussion, we additionally
qualify the MERA as a holographic strange correlator.
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FIG. 2. The path 4 indicates DOFs of a holographic screen on a
lifted state |®(if)(n)) that follows a dual geodesic connecting the
end points of the boundary region A. The bulk DOFs located just
outside the 1D path carry all the information contained within the
wedge W[A] when 1 = Ny, but are also recovered for any 1 if the
corresponding bulk sites along y4 are slightly modified by applying a
simple filtering operation, as described in Appendix[ITI] On the other
hand virtual holographic screens, such as 'yXim’al exist in the lifted
MERA for any value of 1 with no modification. But because these
screens are associated with virfual DOFs associated with the bonds
of the lifted MERA, they are not physically accessible.

Holographic screens.— One novel feature of the lifted
MERA, first observed in Ref. [[14]], is the appearance of holo-
graphic screens. A holographic screen is a codimension one
surface (the "screen") in the bulk that carries all information
contained in the region enclosed between the surface and the
boundary. (even if DOFs inside this region are lost, all its in-
formation remains intact on the enclosing screen.) Consider,
for example, the path yz\i““al shown in Fig. 2| which encloses

the two dimensional wedge W[A]. We have:

pg‘]/([A] — R‘Tp‘xirtualR. (7)

where pa‘,‘[ 4] is the reduced state of all the bulk sites inside

the wedge WIA], R is the tensor obtained by contracting all
the tensors inside the wedge, and pX““al is the reduced density
matrix of the virtual DOFs associated with the bonds that are
intersected by the path y{™4. Here R is an isometry, namely
RR' = 1X‘VA‘ (since all the tensors inside the wedge are isome-

tries). Eq.[7)also implies that the traces of moments of the two
reduced states are equal; thus there Von Neumann entropies
are equal: S (pqv{i““al) =S (pw([ A]). While this illustrates how
the information in a two dimensional wedge is encoded on a

codimension one surface p;i”“a], the latter is not physically

accessible from the bulk. Thus we refer to p
holographic screen.

Remarkably, for the wunique value M = MNgolo =
V2x/v/%x+1, which corresponds to fixing oo = B in
Eq. , the inaccessible state pY™ is exactly equal to the

Ya
reduced state p'%]f of the physical sites located along a path Y4

which closely follows the virtual screen as shown in Fig. [2|
See Appendix [III} for details. Thus we have

virtual

A as a virtual

S(pyy) = S(py"™) = S(pwa)), ®)
Furthermore, for any physical local observable Oy in
W[A] one can determine a local observable 0%‘ = ROW[A]RT

FIG. 3. a) In a MERA representation of a state that has a global
on-site symmetry G, all the tensors can be chosen to commute with
the symmetry as shown here; g succinctly denotes a unitary repre-
sentation of g € G. b) We use the symmetric lifting tensor defined
as shown here for lifting a symmetric MERA (composed from ten-
sors satisfying panel a). Here within a given irrep j, t;ym is a non-
symmetric lifting tensor tuned by a parameter 1, 5¢; is the Frobenius
Schur indicator, and d; is the dim(V ;) in Eq. E} ¢) Symmetries of the
symmetric lifted tensor. d) An elementary w-gauge transformation—
e.g. tensor product of group unitaries acting on bulk sites located
immediately around a w tensor—leaves the bulk state invariant as
shown. The left and right equalities are obtained by applying panels
c and a respectively. (e) Similarly, an elementary u-gauge transfor-
mation leaves the bulk state invariant.

that clearly has the same expectation value as Oy /4] but is sup-
ported only on the sites located along y4. We refer to y4 as the
physical holographic screen, or simply holographic screen.

More generally, a holographic screen is any path through
the lifted network between the end points of a boundary in-
terval that is generated by the greedy algorithm introduced in
Appendix A holographic screen cuts through only lifting
tensors, separating the two DOFs associated with each lift-
ing tensor site; however only the outside DOFs constitute the
physical DOFs of the holographic screen y4. The greedy algo-
rithm ensures that all the tensors inside the wedge constitute
an isometry mapping from v to W[A], which leads to the
holographic screen property. We remark that the construction
of screens via this greedy algorithm and the ability to map
bulk operators onto the enclosing screen appears similar to
the construction of holographic codes by Harlow et. al. [28]].

For given boundary interval A, we can use the greedy algo-
rithm to construct a maximal holographic screen, the screen
with the maximal number of tensors in W[A] for some re-
gion A. We find that the length of the maximal screen can
be bounded by a constant multiple of the traditional geodesic
path between the end-points of region A (see Appendix [V).
Later, we will exploit this property as motivation to assign
a physical distance between bulk sites through the maximal
holographic screen and to derive a Ryu-Takayanagi like for-
mula.

Gauging boundary symmetries.— In AdS/CFT, a global
on-site symmetry in the boundary description generally cor-



responds to a local gauge symmetry in the bulk. Here we
show how our construction can be generalized to implement
this feature by introducing a symmetric lifting tensor. Our
construction follows closely that presented in Ref. [[15]], but
here we additionally incorporate basis-independence on sub-
spaces that are left unconstrained by the symmetry. Con-
sider that the state |¥), which is represented by a MERA,
has a global on-site symmetry described by group G, namely,
¥) = (Rser Ug‘v])|‘1’> for all g € G where Ug‘v] is a unitary
representation of group element g acting on-site s of the lat-
tice and UL = U, for all s. It turns out that under reason-
able assumptions [29], if the global on-site symmetry is to
be preserved at all renomalization scales than the MERA rep-
resentation of |¥) necessarily consists of tensors that com-
mute with G as depicted in Fig. [[a), (for sufficiency see also
Ref. [30, 31]). It is natural to express the MERA tensors
and the lifting tensor in the symmetry basis, in which U, (or
equivalently the vector space V on which it acts) decomposes
as the direct sum of irreducible representations (irreps) as in
Ref. [30]

V=@PD;aV;, U=Plup)@Usj- (O

J J
Here D); is the degeneracy space of irrep space V;, Uy ; de-
notes the unitary corresponding to group element g acting on
the irrep space V ;. (Notice that the symmetry acts as the iden-
tity Lim(p;) ON the degeneracy space.) In order to make the
symmetry manifest in our construction, we fix the symmetry
basis | j,¢j,mj) = |jt;) ®|jm;) on each bond, where | jt;) and
|jm ) is a basis in the degeneracy space ID; and irrep space V;
respectively. We are still free to choose any basis in the degen-
eracy spaces since the symmetry acts trivially there. In order
to generalize our construction to lift a symmetric MERA [32]
—a MERA composed of tensors that commute with G—we
replace the lifting tensor ¢ with the symmetric lifting tensor
Y™ as defined in Fig. 3{b). It can be readily checked that
Y™ satisfies the symmetries depicted in Fig. [3[c), which in
turn imply that the bulk state has a local gauge symmetry—as
generated by the elementary gauge transformations depicted
in Fig. Ekd,e). When the symmetry group G is set to identity
the symmetric lifting tensor 7Y™ reduces to the non-symmetric
version f.

Ryu-Takanagi formula for bulk/boundary entanglement
entropies.— In the AdS/CFT correspondence, the celebrated
Ryu-Takayanagi formula [20] relates the entanglement en-
tropy of a region in the boundary vacuum to the area of the
minimal surface that subtends from the region into the bulk.
In particular, for 1+1D CFTs, the entanglement entropy of a
region A in the vacuum is proportional to the length Lﬁco of

the geodesic path yieo between the end points of A through a
spatial slice of the dual bulk AdS;.; spacetime:

L seo
tog([A]) = . (10)

c

3

S(pg™") =

Here c is the CFT central charge, G is Newton’s constant
in 2 space dimensions, and |A| is the length of region A in

the flat metric of the boundary CFT. It’s important to note that
Eq. [[T]is the semi-classical Ryu-Takayanagi formula. If in-
stead we have quantum gravity in the bulk Eq. [IT]is replaced

L geo
with S(p§FT) = 422) + Q where Q is the 1-loop additive cor-
rection given by the entanglement entropy between the DOFs
located inside and outside of the geodesic [21].

Previous work using unlifted MERA [3] has connected
boundary entropy and bulk geodesics via the quantity
|va|log(y), which depends exclusively on the numerical pa-
rameter %. However, from the result of Brown and Henneaux
[33]], the radius of curvature of semiclassical AdS3 space is
proportional to the central charge according to ¢ = 3R/ 26
and so we would expect the geodesic lengths to vary with the-
oretical quantity c rather than parameter ¥. We now derive a
formula analogous to the quantum-corrected Ryu-Takayanagi
formula using our lifting construction. First recall that when
N = NHolo We find S(p%‘) = S(plv"l,‘[A]). Therefore we define:

EYA — bk
PYeE) = S(pyy)- (11)

For this reason the function EYA, a measure of entanglement
entropy, is a bonafied measure of length as it is positive, sym-
metric in boundary points, and satisfies the triangle inequality.
See Appendix [[V]for proof.

Next consider the state |¥(if)(n = 1)), in which the bulk
DOFs are completely decoupled from the boundary. Thus
S(pal,‘[A] (m=1)) = S(p{T), where S(p§FT) is the entangle-
ment entropy of the boundary CFT. Using this fact and extend-
ing the definition Eq.[TT]away from 1 = Mol (see Appendix
we find

¢
S(S™) = ;i —eWlAl), (12)

where the subtracted term is
Q(W[A]) = S(P¥a) = S m=1)>0.  (13)

To wit, Eq. [[2] equates the entropy of the boundary CFT to
an entropic property of DOFs along the geodesic of the bulk
quantum state |¥0) (1 = Npyepe)) minus a correction term
Q(WIA]) corresponding to the additional entanglement be-
tween the wedge W[A] and the rest of the bulk state. In fact,
Eq. can be generalized to all valid lifted states [PV (1)))
but it is necessary to apply a pre-filtering operation along
the screen, which is an identity operation in the special case
M = NMHolo (see Appendix [III)).

The above discussion holds for the non-symmetric lifted
MERA. When using symmetric lifting tensors, there is ad-
ditional entanglement between bulk sites within and without
the wedge due to coupling between charge DOFs. To bet-
ter understand the Eq. in the symmetric ase we consider
the MERA representation of ground states of unitary mini-
mal model CFTs, realised in anyonic Heisenberg models [34].
(See also Appendix [VI]) Each such CFT is specified by an in-
teger k > 2 and an associated Hamiltonian, H(k), acting on
a chain of non-Abelian anyons. The anyons are spin—1/2 ir-
reps of the quantum group SU (2), which is a deformation of
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FIG. 4. The second Rényi entropy density $()( pql;}: (M))/Iva| of bulk
sites on the geodesic holographic screen y4 (see Fig. [2) for ground
states of the Hamiltonian H (k). This is done for n; =1 and n; =
V2xj/~/%j+ 1 (holographic for degeneracy dimension ;), other
values of 1 are included in Appendix [VIl We also included the linear
regression for the N = 1 case, see Appendix |VI| for a discussion of
why this relationship should be linear. We have excluded the k = 3
points due to lack of numerical convergence and the k = 4 point for
N = NHolo due to its anomolous behaviour, see Appendix [VI] for a
deeper analysis of this point.

the usual SU(2) group such that there are no spin projection
quantum numbers associated to the anyons and total angular
momentum is truncated at k/2. The Hamiltonian is:

H(k) Y n h Y (14)
i i%?sd
where the %; term (depicted here in the anyon fusion basis)
projects onto the state |%l X %i .1 — 0), i.e. physically the
projection onto the spin 0 fusion space of two (deformed) spin
1/2 particles at sites i and i+ 1. The Hamiltonian is described
by a unitary minimal model CFT with central charge c(k) =
1-— m [35)] and in the limit £ — o the deformation

disappears and the model becomes the bosonic CFT from the
usual SU(2) symmetric antiferromagnetic spin % Heisenberg
model.

We considered Hamiltonians with the values of k =
2,4,5,...,10 and also k = o [36]. For each of these, we ob-
tained the MERA representation of the ground state by using
the anyonic version of the MERA energy minimization algo-
rithm [37] implimented with Ref. [38]. We then lifted each
MERA representation by using the symmetric lifting tensor
defined in Fig. 3[b)—where j now labels anyon charges—to
obtain the dual bulk states. For each of these, we computed
the Réyni-2 entropy, S (p) = —log (Tr [p?])[39], along the
holographic screen illustrated in Fig. 2] Details about our
numerical simulations are described in Appendix Fig. {4
shows a plot of this bulk entanglement entropy density[40] vs
the central charge of the boundary state. These results demon-
strate a linear dependence of bulk entropy density on central
charge c for ; = 1, and passes through 0 at ¢ = 0. However
the computed slope of 1.131 is roughly 6 times higher then
expected, this increased entropy density can be attributed to
charge DOFs meaning that bulk sites are not decoupled from
the original MERA. Therefore we find S(p%‘,‘[ A]) is greater

CFT

than S(p3""), which would be an interesting prediction to

test in other examples of the Ryu-Takayanagi formula. For
N = NHolo» setting M; = 1/2x,/+/X;+ 1 for each charge sec-
tor, the entropy density tends to grow with the central charge
similar to the ) = 1 case [41] We also note that there appears
to be a constant offset for 1; = NHolo,; (and for other values
of m), for which the entropy density monotonically increase
with 1. But since the entropy density at n; = ; is fixed by
the numerical parameter ) ; we expect the bond dimensions
to contribute to the entropy density with similar importance
to the underlying boundary model from which that the lifted
MERA arises, understanding these contributions for both non-
symmetric and symmetric models would be useful for future
work. These results suggest that even for the symmetric lifted
MERA we can interpret the shifts in entropy density for lifted
MERA states with n; > 1 arising from additional entangle-
ment between DOFs from inside and outside the wedge.

Summary.— In this work we constructed a short-range en-
tangled 2D bulk state dual to any 1D critical ground state that
is described by a MERA tensor network. The critical state is
recovered from the 2D bulk state as a strange correlator. We
also showed that the 2D bulk state—which is obtained by ‘lift-
ing’ the MERA—exhibits several holographic features: (i) the
appearance of holographic screens, (ii) the gauging of global
boundary symmetries, and (iii) an analog of the quantum cor-
rected Ryu-Takanayagi formula. A key aspect of this con-
struction is that it yields a unique bulk state (up to on-site uni-
tary transformations) for a given MERA state, which allows a
strict correspondence between the entanglement properties of
the boundary and the bulk. In particular, we exploited this to
use the bulk entanglement entropy as a measure of geodesic
lengths, which when compared with the boundary entropy led
to a Ryu-Takayanagi like formula. More broadly, our work
illustrates a possible way to build a holographic description of
the MERA from ground up, by only assuming a reasonable set
of input conditions (the lifting axioms and gauging of bound-
ary symmetries). An interesting open question is: under what
conditions does the lifted (symmetric) MERA, dual to a criti-
cal MERA, describe a state with topological order? If this is
possible, then our strange correlator construction could yield
a TQFT,41/CFT| 4 correspondence—similar to the topolog-
ical PEPS-based construction presented in Ref. [17]—but ap-
proached from the CFT side.
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I. PROOF OF CANONICAL FORM FOR THE LIFTING
TENSOR

In this appendix, we prove that Eq.[2is the only solution to
the third axiom (basis independence) depicted from Fig. [T(d)

here:
*
UsgqU
% . %it ()
UT

Here ¢ is the x x x x x x x lifting tensor, and the above
equation holds for all unitaries U of the group U(Y) (using
the fundamental representation). The group U(Y) can be de-
composed into U(1) x SU(), that as, as a phase times a spe-
cial unitary from the group SU (). Since Eq.[I5]involves two
copies of U and two copies of its adjoint (either UT or U*)
the phases cancel out. Therefore, we may restrict U, only
to the subgroup SU (). The tensor product (or fusion) of a
fundamental and anti-fundamental representations (f and f
respectively) of SU (%) is isomorphic to the direct sum of the
trivial representation 0 and the anti-symmetric representation
A. Eq.[I3]then implies that the lifting tensor is an intertwiner
of the group SU(y). But since we can achieve this by two
choices of fusion pathway we obtain the following two pos-
sible fusion decompositions (in accordance with the Wigner-
Eckart theorem) of the lifting tensor:

a) b)
\ét=al}<+bl}< % = %; Q%A
(16)

We also write this as
t=a T +bAy, 17
t=ayTr + bA;. (18)

where V; and A; respectively correspond to the diagrams
shown in Eq.[T6p for i = 1, and respectively to the diagrams
shown in Eq.[I6b for i = 2. Specifically, V; denotes the pro-
jection onto the trivial (vacuum) representation, and A; de-
notes the projection onto the anti-symmetric representation.
Of course since V5 is itself a symmetric SU (y) tensor, we can
write it as

Vo=YW1+0A; = A :5_1‘/2—5_17‘/1, (19)

where the second equality follows after assuming there is a
non-zero contribution of A; to V5. If this is not the case and
8 =0 then this indicates that V; « V,. With the exception of the
% = 1 case (where there is no antisymmetric representation)
this is obviously never true. Lastly we can substitute this into
the first representation of M to get a basis in terms of V;:

M=a\Vi+biA; =a\Vi +b (8 WV, =8 yW)) = avy + bV,

(20)

The final step, required for completeness, is to show that for

any pair (a,b) there exists a pair (d,b) and vice-versa. We
have already shown one direction:

d=a+bd" 1)

b=b5"y (22)
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Clearly this implies that there is a unique (&,b) pair for each
(a,b) pair. To show the opposite we invert the equations to
obtain:

— by (23)
b=Dbdy! (24)

™

a =

This indicates that if Y # 0 then we also have a unique (a,b)
for each (d@,b). To show this is the case note that if y = 0 then
we have that tensor V, «< A;. But from Eq. @]it is clear (when
bending the top-right most leg down) that V; is the identity on
ay? dimensional vector space, while A is a projector onto the
x? — 1 dimensional anti-symmetric representation. Therefore,

Y#0.

II. BULK STATE HAS EXPONENTIALLY DECAYING
CORRELATIONS

In this appendix we argue that the bulk states obtained via
our lifting construction generally have exponentially decaying
correlations. First, consider the bulk correlator {04 Op )i Of
two operators O4 and Op (each acts on a pair of bond sites)
that are located deep in the bulk along the “spine” of the lifted
MERA, see Fig. [5(a). Thanks to the fact that MERA ten-
sors u, w and the lifting tensor ¢ are all isometries, {O4 OB ).in
depends only on the tensors that are located along the spine
of the lifted MERA (and the corresponding tensors along the
spine of the conjugate lifted MERA), while all remaining ten-
sors cancel out, see Fig.Ekb). Thus, we obtain the closed-form
expression:

(0408) g =Tr (PVT(T) T ) — (O} (08)  @5)

where Ty, Tg, Tp are defined as shown Fig. c,d,e), operators
04 and Op act on bulk sites that are separated by ¢ sites, and
p(V is the reduced density matrix of one pair of bulk sites on
a bond located deep along the spine. For any chosen w the
transfer matrix 7 has dominate eigenvalue Apy,x = 1. There-
fore, for large £, (T)" ~ | Amax) (Amax | is a projector to the dom-
inant eigenvector |Amax). This means that the decay of cor-
relations is controlled by the largest eigenvalue less then one,
most commonly the second largest eigenvalue A, < 1, we have
(0408 ) ome = 0(7»2) Thus, correlations decay exponentially
along the spine with a correlation length & = 1/In(A; ).
Next, consider a 2-point correlator {O4Op Yrorisoma Of Opera-
tors O4 and Op that are located at the same depth in the bulk
but are now separated by a distance L along the horizontal di-
rection. Here L is the length of the geodesic between O4 and
Op. For simplicity, let us also assume that O4 and Op are each
located at the base of a spine section of the tensor network, and
the two spines converge to two neighbouring sites s,5+ 1 as
we look deeper into the bulk. Once again, the correlator has a
closed-form expression (see Fig. [5[f) where L = 2/):

(0408 s =T (p (1) T1) 0 (7)T5) )
—(04)(08)

(26)



a) a "spine" of the lifted MERA

b) c)

corresponding spine
of the conjugate lifted
MERA

f)

¢ sites
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FIG. 5. (a) A “spine” of the lifted MERA, comprised of a 1D chain
of w-tensors. An infinite number of arbitrarily long spines can be
located in the infinite lifted MERA. (b) Tensor network expression,
Eq.[23] for the 2-point correlator of two operators O4 and Op (each
acts on a pair of bond sites) that are located deep along the spine.
(c.d,e) Definitions of T,T4,Tp that appear in Eq. @ (f) Tensor
network expression, Eq. 26 excluding subtraction for local terms
(O4)(Og). In this expression operators O4 and Op are located at the
same depth in the bulk but are now separated along the horizontal
direction by a geodesic distance L = 2¢. Here also O4 and Op are
each located at the base of a spine section of the tensor network.

where p() is the reduced density matrix of pair of bulk
sites located at neighbouring sites s and s+ 1, and T is the
same transfer matrix that appears in Eq. 23] Once again, we
find that the correlator { O Op Yyomoma decays exponentially as
<< 0,03 >>horizomal = 0(7\%)

Here we considered bulk sites located along spines for con-
venience. The above arguments can be easily generalized for
any pair of bulk locations; the closed-form expressions for 2-
point correlators away from spines are more complicated and
involve also the u-tensors. Thus, we find that the bulk corre-
lations decay exponentially in any direction.

III. HOLOGRAPHIC SCREEN

In the main text we pointed out that in our quantum bulk
state there are a number of regions of the bulk/boundary of
the lifted MERA, W [A], that are equivalent to a surface in the
bulk of one dimension lower, the screen y4. This relationship
is key to our analogous Ryu-Takayanagi formula. A key step
in this process is to exploit the fact that the lifted MERA is
constructed from isometries and unitaries. This then gives rise
to a state which we will call ﬁ;/i““al, constructed by contracting
all tensors outside the virtual screen. This then allows us to
connect the states in the wedge W[A], p'v’&‘[ e and ﬁﬁrmal by an

isometry R (where RR" = 1):

Py = Rppy R 27)

The intuition behind how the virtual screen works is best
illuminated by a constructive greedy algorithm, from which
we can construct viable wedges W[A]. This greedy algo-
rithm is essentially the same as the greedy algorithm defined
in Ref. [28]], but slightly restricted here due to us using ordi-
nary isometries rather then perfect or block perfect tensors[?
]. To perform his algorithm, first choose a boundary A, from
which we will define a “wedge” Wy[A] as the empty set of ten-
sors/ the set of physical sites on the boundary A. Associated to
this is the holographic screen yﬂ)‘“al which is just the bound-
ary A. Next define a new wedge W, [A] by choosing a subset of
tensors from the original MERA connected to the holographic
surface yX_‘aua' (the boundary A). This subset must include only
tensors u,w : Hiy — Hoy Where the entire space 74, is on the
surface Y40, i.e. all downward legs of u and w must be on
Yytual This then defines a new wedge Wi [A] as the set of ten-
sors {7 }/the boundary sites A and all bulk sites directly below
the tensors {7'}. The associated holographic surface y/‘ffl‘“al is
then the effective boundary for region A generated by exclud-
ing said tensors {T'}. This processes can then be repeated] any

virtua

number of times, building W,,, 1[A] out of W, [A] and y}}* out
of yxi‘rr:“al by selecting tensors with #, only along the effective

boundary yX_;‘“al. This generates all holographic surfaces, and
we will call the surface associated to the maximal sized set
W/[A] as the maximal holographic surface. As discussed in
Appendix [V]this is closely related to the dual graph geodesic.
From this construction it is clear that R is an isometry from
the effective boundary yXirt“al to the true boundary A (and all
bulk sites in the wedge W[A].

Reaching equation Eq. 7] only requires the MERA be-
gin constructed from isometries and the second lifting axiom
(Fig. [Td, ii) via the interpretation of the lifting tensor as an
isometry.
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We contract everything besides these sites into pVlrlual everything else
being the same we see that these two states are very similar, but re-
quire that we swap o and 3 between diagrams to arrive at an exact
equivalence. This diagram is for a single site but can be extended to
other multi-site cases by similar equivalences (flipping the a and
of each site along the cut one at a time).

The final step in making the connection between sites in
ptv"l,‘[ 4] and on holographic screen Y4 is to connect the virtual
screen to the true holographic screen. This is done by relating
the two tensors that appear on the right hand sides of Fig. [§Ka)
and (b). If this can be done then we have said that pvmu“11

is equal to the holographic screen p%]f. The support of pbi‘
is defined as a subset of the DOFs generated by the lifting
tensors along the holographic screen, in particular the DOF
deeper into the bulk out of each pair generated by a lifting
tensor. Then because pVlrtuall is equal to palf[ 4] by an isometry

then so is pYA

The tensor network described by Fig. @a) refers to pVirtual

and Fig. |6(b) refers to pbk. Comparing the two right hand
sides of @a) and (b) 1t is possible to see that the diagrams
associated w1th coefficient aff* (or its complex conjugate) are
isotropically equivalent between Fig. [6(a) and Fig. [p[b). We
can also see that the diagrams with coefficients ||* and |B|?
are also isotopically equivalent, but swapped in the two dia-
grams (i.e. the diagram for ||? in one sum is the same as the
diagram for |B|? in the other, and vice-versa). Therefore to
equate these two diagrams we need to swap o and [3.

To do this we define a completely positive operator F
which acts on all DOFs arising from the lifting tensors along
Ya. Itis obvious that when o = 3 then this operator is the iden-
tity, earning this limit of n its designation as the holographic

limit of lifting, M = Nyolo = % When we extend 1 away
from the holographic limit this # takes the form of a filtering

operation constructed from local operators

F(a,m;g = //+ b/75/. (28)

Where we set a = Ba™! and b = (> — B2 (o +xB) !
with these parameters the operator is completely positive.
Graphically the action of this on a lifting tensor is

(a B)

x \<§§ - \<< (29)
4 ([Z,tx)

7
t(oc,B) t((X,B) t

where the renormalisation of the CP map, given in Eq.|32|and
Eq.[33] is ignored.

Since this operation swaps o and 3 then we can view it as
converting 1 to 7:

2
N P 1—n?
M) =41 7 <\/x—1+n> (30)

We will use ¥ to indicate the flip of o and [ for the lifting
tensors along the holographic screen sites, therefore we define
a modified density matrix 5';1“ with the same support as p%\‘ by

P =T (7 [P5?] ) = oyt = ROBE KT GBD)

Here we apply the filtering operation ¥ to the quantum

state pg/l;’(z) reduced to only (the pair of) DOFs generated by
the lifting tensors along Y4. Having applied the filter we then
trace out the bottom DOF of each lifting tensor along y4 by
Try and reduced the support. By the previous arguments this
is equal to pVIrmdl and therefore also equal to prk R, There-
fore when extending our Ryu-Takayanagi formula to n be-
yond the holographic limit we replace S(pb¥) with S(pb~) in
Eq.

Beginning with the completely positive operator from
Eq. 28] from which we constructed the filtering operators, we
can construct a local POVM on each site such that one of the
measurement outcomes corresponds to successfully flipping
o and B. For a > |a+ by/| we find the POVM to be:

RpW[A]

F(oB)
M, =
. (32)
2
My = 1—(a+bx) s
a

Where P is the projector onto the singlet. Otherwise we find
the POVM to be:

” Flop)
" la+ byl
; (33)
a
My=4|1- S
2 <a+bx>

The probability of success for measurement outcome 1
(successfully flipped o and B) can also be computed making
use of the fact that it is acting on a bulk lifted state. Because



of that the probability of outcome 1 for local operator at some
site can be worked out by realising that the expectation value
of the identity is 1 (as the lifted MERA is a pure quantum
state). Further when computing the expectation value of the
projector Py = %Z&:] [771()1jj| on a single site the outcome

will be N2, This can be observed from the first lifting ax-
iom, which states the expectation value of the bulk state times
the singlet is equal to the ™! times the norm of a lifted state
where we have the decoupled lifting tensor at that site (i.e. the
lifting tensor generated by m = 1). Since this lifting is again
a pure state that gives expectation value 2. Therefore for a
lifted tensor on any single site, the probability of success of
the filtering operation is:

2 2 )
. a +(2baxa—;b x°n a> \a—|—bx| .
- 2 2b, b2 2\n—2
CHEAIIN < |a+ by

Finally it is important to note how this changes when
we consider symmetries. For abelian symmetries nothing
changes except that we define the flip operator separately on
each charge j. For non-abelian symmetries we choose to flip
only the degeneracy DOFs and leave the gauge DOFs alone.

IV. TRIANGLE INEQUALITY OF HOLOGRAPHIC CUTS

One possible issue with the analogous Ryu-Takayanagi for-
mula is the use of entanglement entropy along holographic
screens as the measure of bulk length. In this appendix we
demonstrate that this measure of bulk length satisfies the re-
quirements to be a measure of distance for all points on the
boundary of the lifted MERA. Furthermore this can be ex-
tended to satisfy the requirements of the triangle inequality for
a significant class of triangles located fully within the bulk.

This text will focus on the general case of a distance mea-
sure between points a and b. If a and b are on the bound-
ary then these are points located between physical sites on
the boundary, if they are in the bulk then they correspond to
plaquettes. The restriction we place on these points is that if
either of them are in the bulk then there must exist a holo-
graphic screen that passes through both a and b, though we
will later conjecture an extension to all pairs of a and b.

The definition of length that we use is the entropy of the
effective boundary v, ) associated to the effective boundary
sites that exist between a and b along the maximal holographic
screen Y, which passes through these points:

Liap) = S(ng))- (35)
Where p§::£’> is the reduced density matrix along the holo-
graphic screen 7, ;, connecting a and b.

To be a measure of distance this must satisfy the follow-
ing four requirements, 1) it must be non-negative €<a‘,,) >0,
which all entropies satisfy. 2) The distance measure can only
be zero if a = b, this is true for our measure since a selection of
sites at some renormalisation scales in the MERA tensor net-
work (not necessarily critical) is highly unlikely to be a pure

10

state, further if 1 # 1 then it can never by zero due to a maxi-
mally mixed contribution that the lifting tensor directly above
the screens will leave. 3) the distance measure must be sym-
metric so that £(, ) = £(; 4), since it is obvious that Y, = Yp 4
then this is satisfied also satisfied. 4) Finally the distance mea-
sure must satisfy the triangle inequality, for which we have a
partial solution which we will spend the rest of this appendix
demonstrating.

As mentioned in the main text, the entropy of holographic
cuts obeys a triangle inequality when used as a definition of
length. As stated, we will restrict to defining the lengths of
paths between plaqueettes a and b that lie along a single holo-
graphic cuty, 5. This is geodesic between a and b if we choose

the holographic cut such that this quantity £(, ;) = S(p%f))

is minimised. Since there are possibly multiple holographic
screens satisfying this we find that the geodesic £(, ;) corre-
sponds to the maximal holographic screen that passes through
a and b. Considering the entropy along the effective bound-
aries that make up the screens 7y, ;) and y/(a"b) that differ by
only one tensor (Y, ;) being more maximal), we find that the
entropies are related by:

p(?b)) = ViV (36)
a,b

Where V is an isometry of the original MERA and € is a
local CPTP map which either maximally mixes the site, or
leaves it alone. This corresponds to the lifting tensors on the
sites at the bottom of V which were part of Y, ;) but are not
part of path y/(a‘ by This type of CPTP map will always increase
the entropy so that:

)

a,b
)2 S(pg(é‘b)) = EY(a‘h)' (37

Now if we have 3 points a,b,c with holographic screens
Ya» and Yp . such that b is between sites a and c¢ in the an-
gular directions, then we can find the holographic screen 7, .
which minimises £(, ) = S(pf,jf)) (i.e. the "geodesic" path
between a and ¢ required to complete the triangle). By the
argument above the geodesic screen Y, ) must be the max-
imal holographic screen passing through a and c. Since the
combination of paths Y, ;) and Y(; o) is a holographic screen,
then the geodesic holographic screen 7y, ) must be either this
screen, or deeper into the bulk. Therefore:

(a,b,c)

a,c a,b
S(py) < S(pinsy,.) < S

h+seys) 68)
Yab '
where the last inequality arises from the subaddativity of en-
tropy and we demonstrate that these lengths satisfy the trian-
gle inequality £, + ¢}, . > £, for this measure of length in
the bulk.

Therefore this distance measure defines a metric for a large
number of sites in the bulk. However some paths do not have
a holographic screen between them (for example the faces



above and below a disentangler), so here we conjecture a gen-
eralisation for distance,

‘€a71’ = minéa,X +£x,b 39

where x is a site sharing (possibly different) holographic cuts
with both a and b.
The triangle inequality is then

loe= n}cinﬁa,x + L < myinﬁa_y +4yp+mint, , + £, . (40)
z

We do not currently know how to prove the triangle inequal-
ity for this extension, but already the results here show that
we can extend this distance measure into sites within the bulk.
As a side note there is a strong relationship between this mea-
sure of distance and the geodesics for the dual graph because
of the use of maximal holographic screens. As discussed in
Appendix [V]these maximal holographic screens are related to
geodesic screens on the dual graph of the tensor network and
are exactly them in the binary and modified binary MERA
cases.

V. RELATIONSHIP BETWEEN HOLOGRAPHIC CUT
LENGTH AND GEODESIC LENGTH

In the main text we talked about maximal holographic
screens Y " of a boundary region A and used them in place
of geodesic screens yieo when drawing an analogy to the Ryu-
Takayanagi formula. In this appendix we will show that the
number of sites in the maximal holographic screen for region
A is equal to the number number of sites in the geodesic screen
connecting the boundaries of region A through the bulk for the
binary and modified binary MERAs, while in the ternary case
it is strictly bounded above by three times this number:

PR < ] < 3 @)

and are therefore linear in each other.

The maximal holographic screen, Yy72% is unique for a re-
gion A and is constructed in a method similar to the greedy
algorithm introduced in the HaPPY paper [28]. This method
of construction is to iteratively consider a screen y;°" for
region A. Then for all tensors which have edges passing
through v} **", if the tensor is an isometry from screen v}, ™"

to (yff_ffe“)/ (with the smaller dimensional space on screen

(yjﬁffe“)/) then we include them in the wedge for screen ¥

If there are no more tensors to add then we have found
the maximal holographic screen Y{°l© = 50 With this
definition our maximal holographic screen would match the
geodesic used for the Ryu-Takayangi formula in the HaPPY
holographic codes if we chose to lift tensor networks made
out of perfect tensors[28]].

To compare this to the geodesic path, based on dual graph
length, we will separate the tensor network into the different
MERA layers an ask if the geodesic connecting edges of a
boundary region of length |A| will pass through sites in the
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4 Sites

a) 3 Sites

FIG. 7. Geodesic paths for all possible locations of a variety of sizes
for the lifted versions for a (a) binary MERA, (b) modified binary
MERA, and (c) ternary MERA. For all 3 MERA cases the paths are
only shown for sizes where it is not guaranteed that the geodesic
path must pass into the next layer of the MERA. Also in all these
cases there can be degeneracies in the geodesic path chosen, here we
choose them to all be holographic screens.

above layer. If it would then we can work out the geodesic by
considering the the quickest path to the next layer, if not we
can just brute force the solution. In general we need to look at
the next layer up if within region A of size |A| the algorithm
described above would reach the next layer, this happens for
|A| > 5, |A| >4 and |A| > 7 for the binary, modified binary and
ternary MERAs respectively. The brute force solutions are
all geodesics are shown in Fig. [/} for these we have chosen
to show only geodesic cuts which are also holographic cuts,
these geodesics are not unique but all cuts in these figures are
geodesics.

For sizes larger then this we try to choose the quickest path
to get from our current layer to the next layer up. Fig.[8|shows
both the quickest (least cuts) holographic path and quickest
(least cuts) geodesic path from one layer to the next, specif-
ically for the left hand side of the region. For the binary
and modified binary MERAs these always agree, but for the
ternary binary we find that there are two cases where they
disagree. This is sufficient to characterise the geodesics for
the binary and modified binary MERAs by the maximal holo-
graphic screen, finding [ = [v§%°|.

Finally we will finish analysing the ternary MERA, to do
this we need to consider the difference in the geodesic path
lengths and holographic path lengths on the left side of the
region as we go up layers. Here we note that if we go up one
layer either the geodesic path and holographic paths are the
same or the geodesic path is cuts one fewer edges and is one
location to the left of the holographic path at the start of the
next layer (see Fig. [8). We find that on any subsequent layers



a) b) c)

‘ ._
FIG. 8. A comparison of geodesic paths and holographic paths to
reach the next layer of renormalisation for the lifted ternary MERA.
Here we are only considering the left-most side of the region of in-
terest, indicated below by the blue line (ending at the blue dot). The
argument on the right hand side proceeds in the same manner. If this
starts at site (a) then the geodesic path is the same as the holographic
path, but for cases where it starts at (b) and (c) these paths differ. In
the case where the holographic path differs from the geodesic path
the geodesic path ends one site further to the left but performs one
less cut then the holographic path does.

this difference will always stay at one site by the brute force
calculation in Fig.[Ofa). We repeat this until the effective size
of region A at the layer for the holographic path is less then 7
and we can use the results of Fig. [/} Since the corresponding
effective region for the geodesic may be one or two sites larger
then this the cases for sizes of 7 and 8 are shown in Fig. [Op.

FIG. 9. a) The three cases for geodesic path compared to holographic
path if the geodesic path starts one site to the left (shown by having
Fig. B at the bottom). In all cases the geodesic path ends one more
site to the left at the next layer but will never cut more bonds the the
holographic screen (even though they start at different sites) when
getting to the next layer. b) The geodesic paths for 7 and 8 sites for
the ternary MERA, all of these paths pass through the next layer up.
Like the ones in Fig. [/| these geodesic paths are holographic paths,
differences between holographic paths and geodesic paths only ap-
pear if we pass through at least 2 layers, but that is not needed here
to characterise all the holographic and geodesic screens for arbitrary
regions of the ternary MERA

Using these results it can be seen that the path length for ev-

ery transition between layers from bottom to top is | Af’plfn| <

3\YG Similarly comparing the geodesic and holographic
path Il’engths for the top layer (effective holographic region less
then 7) then again we find that [y490, | < 3|y pare| and there-
fore we get the bound from Eq. @ This bound is strict since
when when moving from the boundary layer up to the the first

layer the holographic path may never saturate the upper bound

of Eq. (1]
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This kind of relationship between maximal holographic
screens and geodesic paths appears to be naturally generalis-
able to other MERA constructions including those in higher
dimensions. The construction given to produce the maxi-
mal holographic screen places a natural upper bound on the
geodesic length when we are working with a one dimensional
boundary, for higher dimensions this extends to placing an
upper bound on the minimal surface size. Finally it is worth
commenting that while we expect this relationship between
the minimal surface size and the maximal holographic screen
size to hold in higher dimensions, there may be pathological
cases where this breaks down. One example may be if the
size of the boundary region in one dimension is significantly
smaller then in the other, or if region is curved and the bound-
ary region is no longer a convex shape.

VI. DETAILS FOR THE NUMERICS

The family of Hamiltonians H (k) of Eq. EIS the anyonic
analog of the standard spin 5 antiferromagnetic Heisenberg
model. This model arises from a deformation of the SU(2)
symmetry of the regular Heisenberg model, which restricts the
possible spin values to half integers no greater then % These
deformed Heisenberg models exist as points, labelled by inte-
gers k > 2, along the XXZ spin chains:

H(K) = =5 X | (0103, 00l

+A (1 -oiop,) +iy/1 - T (7 o). )

As shown in Ref. [35], and used in the main text, H (k)
can also be understood as a deformed Heisenberg model (for
k>2).

The ground state energy density is:

E (k) _ d*(k)—4 oo sech(mx)
T T 4dk) f_m coqh {Zxarccos( (‘))] @ (43)
where d(k) = 2cos (75 ) and the central charge is
) =1-—2 (44)
o (k+D)(k+2)

While the total Hamiltonian is hermitian (up to boundary
terms), the local interaction terms are non-hermitian. These
local non-hermitian contributions are important as when they
are removed H(k) no longer corresponds to unitary mini-
mal models with central charges defined by Eq. [#4] Instead
each Hamiltonian becomes a bosonic CFT with central charge
¢ =1. As mentioned in the main text these models are a de-
formed spin % antiferromagnetic Heisenberg model:

N
hi= (45)
ii+1

where the £; term (depicted here in the anyon fusion basis)

projects onto the state |%1 2 i1 — 0), ie. physically the



k= ArelE(k) Arelc(k) Al (A(])) A <A(2)> Arel (A(3)>
2 123x107732x1073] 1.2x10°2 [ 27x 1073 [ 7.9x 1073
3 144%x107°(25%x1072| 3.2x 1072 | 4.0x1072 | 3.4x 1072
4 11.6x107%/1.0x1072| 1.2x1072 | 2.7x 1073 | 7.9x 1073
5 194x107%1.4x1072[73.1x1072|75.0x 1073| 1.4x 1072
6 [1.0x1072]1.4x1072| 41x1072 |~7.6x1073| 2.0x 1072
7 111x1073]1.4x1072[772x1072| 4.6 x 107* | 5.2x 1072
8 [1.1x1079[1.4x1072|"1.1x1072| 1.0x1073 | 7.1x 1072
9 [1.2x1075|1.4x1072| 43%x1072 | 3.5x 1073 | 6.6 x 1072
10 [1.2%x1073|1.5x 1072] 2.0x 1072 |=8.7x 107*|~6.5 x 1072
0 [1.3%x1073]1.7x 1072 N/A 6.0x 1073 N/A

TABLE I. The relative errors in energy density E(k), central charge

¢(k) and the first two non-trivial scaling dimensions A12) for the nu-
merical ground state calculations for the Hamiltonian given in Eq.[42]

and Eq. @3]

4
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FIG. 10. The second Rényi entropy density S(2>(p$f(n)) /|val of
bulk sites on the geodesic holographic screen Y4 (see Fig. [2) for
ground states of the Hamiltonian H (k) for various values of m for
each k, and Mpolp = \/% The connections for different models for
a given tuning parameter is not to indicate a predicted model that the
authors propose, but rather to aid the reader in separating the differ-

ent sets of lifting results based on the values of 1 used.

projection onto the spin 0 fusion space of two (deformed) spin
1/2 particles at sites i and i + 1.

The presence of these non-hermitian terms is also the rea-
son that we cannot use the usual, non-symmetric, MERA for
spin chain to simulate this family of models. Instead, we must
resort to the anyonic version of the MERA [37]. We stud-
ied the k = 2,---,10 models and the k = o, the last of which
corresponds to the standard spin % antiferromagnetic Heisen-
berg model. We obtained the anyonic MERA representation
of each ground state as described in Ref. [37]. In the simu-
lations, we kept five transition layers and an additional scale-
invariant layer. We assigned degeneracy 5 and 3 to irreps %
and % respectively, on each bond index of the MERA, and zero
degeneracy to all other irrep labels. (Except in the k = 2 case,
where spin % does not exist.) The relative errors in ground
state energy, central charge, and first couple (non-trivial) scal-
ing dimensions are listed in table[l]

In addition, to the results presented in plot Fig. @] for
each value of k we studied six additional values of tuning
parameters—corresponding to six further dual bulk states for
each critical ground state— focusing on the 1 — 1 limit. We
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W*

FIG. 11. The transfer matrix that was used to compute the entropy
density.

consideredn = {1,1.01,1.03,1.1,1.2,1.5} where n; takes the
same value in all ca\s/ei in addition we considered the holo-
2X Jj . .

o ijm /2 which is roughly between
the n = 1.2 and n = 1.5 cases. We also considered the max-
imal entropy limit where 1; = ;. In these last two values of
1 we have set 1 separately on each charge sector, j, based on
the bond dimension, };, associated to said sector.

The results for all values of k and 1, excluding values for
k = 3, are plotted in Fig.[I0] We restrict ourselves to regions
A between two spines (sequences of isometries connected via
the middle sites) which eventually are neighbouring at some
renormalisation scale. This means that the region A corre-
sponds to the boundary sites between the middle sites of the
spine. This then means that the geodesic y4 corresponds to
only paths which are of the form of Fig. [§[a) (see Appendix
and therefore is both the maximal holographic screens and
the graph geodesic paths.

To compute the entropy density of this we compute the
eigenvalues {A;}i—o.. of a transfer matrix shown in figure
Fig. By doing this we have computed the asymptotic en-
tropy density S(z)(p$f)/|yA| = logy(M1) as |A| — oo and so
only the scale invariant layer contributes to this calculation.
We exclude the k = 3 values due to lack of convergence in the
entropy density results. In all these cases we see a complete
ordering of the entropy density as defined by the tuning pa-
rameter M just as we would expect in the non-symmetric case.
A partial order may be able to be imposed in the symmetric
case by tuning the m; values separately for each j so that we

may have T]S-l) < 115-2) but n}” > T]?).

Given this observation we can now consider the two lim-
its of 1 and compare them to the non-symmetric case. The
first limit of n = %, which for the symmetric case becomes
M; = X;» we expect the entropy density to be the maximal pos-
sible entropy density of log() for the non-symmetric case.
In the symmetric case the analogue would be expected to be
log(¥;%,;d;) where d; is the quantum dimension of the charge
J which is defined for SU(2); as:

graphic limitn; =

sin (Liié)“)
sin (¢7)
In table [I[I| we compare the computed entropies for when

M, = x; for all values of k. Based on the non-symmetric re-

sults, where the state should be a maximally mixed state we

dj= (46)



k=|S(Py,)/Ival| Sy, )/ 1Yal|AS/|Yal | ArelS/ ¥4l
2 2.8219 2.8219 0 0

4 3.7925 3.3326 [ 0.4599 | 0.1213
5 3.9773 3.2063 |0.7710| 0.1939
6 4.0941 3.2240 |0.8701 | 0.2125
7 4.1727 3.3231 [0.8496| 0.2036
8 4.2283 3.3777 |0.8506 | 0.2012
9 4.2691 3.4177 [0.8514| 0.1994
10 | 4.2999 3.4313 | 0.8686| 0.2020
o 4.4594 3.4876 |0.9719| 0.2179

. _ bk
TABLE II. Entropy densities for computed results forn; =y, S (pY N
and the expected maximal entropy density, S(/y,)/|va|. In addition
to this the differences between the computed and predicted entropy
densities, AS, are given as well as the relative difference Agg|S.

expect this to go as S(Iy,)/|va| = —log, (%) (using

base 2 for all entropy calculations) where j is summed over
all possible charge labels. We find that the entropy for the
symmetric models does not completely saturate this bound as
there is additional information encoded in the probability of
existing in the different gauge DOFs. As confirmation that this
is the case we see that when k = 2 and we have only stored a
single gauge degree of freedom, this bound perfectly predicts
the entropy density.

We also wish to study the other limit, where 1; = 1, and
compare it with the prediction of describing the entropy of
the original CFT theory. For Renyi-2 entropy the relationship
between the entropy of the CFT on region A, p§tT and the
central charge ¢ and the subsystem size |A], is:

SO (pST) = S Togs ([A))- 7)
For the path that we are considering there is a relationship
between |A| and the path length through the bulk |ys| = 2N
given by:

3 1
Al =2 = |Ya| = 2logs (|A[ +1) (48)

3

N_
—1

This means that we expect our entropy density to take the
form:

SOPS™) /|~ Glogy(3) % 0.20e.  49)

To study this first we want to perform linear regression on
our | = 1 limit to compare to the prediction from Eq. 9] for
a linear regression to S?) (p§FT)/|ya| = mc +x(9). We then
compare the regression to linear, quadratic and cubic models
and consider the t-statistic of the coefficients of these mod-
els to determine the most appropriate model. The t-statistic
in this case is a measure of the probability that the results
(the entropy density) are completely uncorrelated to the other
variables (the central charge). In particular this probability
is the chance that a random Gaussian distribution could give
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[x" [ Coefficient | Standard Error| tStat | p Value |
Linear, Null = Gaussian Noise

O] —0.003 0.083 —0.038] 0.97
x| 1131 0.095 11.89 |6.8x 107°
Quadratic, Null = Gaussian Noise
O] =0.10 0.39 —026] 0.81
X! 1.4 1.1 1.27 0.25
x| =0.19 0.74 —0.26 0.81
Cubic, Null = Gaussian Noise
O =71 3.3 —2.1 0.086
x! 31 14 2.2 0.078
2| =39 19 -2.1 0.087
2| 169 8.0 2.1 0.088
Quadratic, Null = Linear + Gaussian Noise
0T —0.10 0.39 —0.25 0.81
x! 0.3 1.1 0.25 0.81
2| =019 0.74 —026| 0.81
Cubic, Null = Linear + Gaussian Noise
O =71 3.3 —2.1 0.086
X! 30 14 2.1 0.078
2 =39 19 —2.1 0.087
2| 169 8.0 2.1 0.088

TABLE III. Table of coefficients for polynomial fits to the n =1
data. Along with the fits the standard error, t-statistic and associated
p-Value generated by the regression are included in this table. Anal-
ysis of these results indicates that the linear model is the most statis-
tically significant with a probability of the distribution being random
of about 7 x 107°. All other models have cofficients with signifi-
cantly larger probabilities of the distribution being random, these at
least on the order of several parts in a hundred.

rise to this distribution. The t-statistic has an associated p-
value which is interpreted as the probability of having sam-
pled random points to generate a correlation of this magnitude
or greater. Further we work out the t-statistics for comparing
the higher order models to the linear model, in this case we
repeat the analysis on the difference between the entropy den-
sity an the linear model.

Doing this we get m = 1.131 +0.095 with a t-statistic of
11.9 (p value of 6.8 x 1079) and x(?) = —0.003 - 0.083 with
a t-statistic of -0.0384 (p value of 0.97). This states that the
disturbance of the intercept away from the theoretically pre-
dicted value of 0 is extremely likely (~ 97%) to be due to
random noise (here due to the fact that the MERA with fi-
nite bound dimension is only an approximation to the ground
state). The linear contribution is highly unlikely to be due to
random noise (< 1073%). Further the value we find is that
the slope is about 5 times greater then we predicted and this
is attributed to be due to additional decoherence that occurs
due to the coupling of the charge sectors to the bulk degrees
of freedom.

For completeness we also study the likelihood of this data
being described by a higher order polynomial in the central
charge. This was done by computing the t-statisitics for the
coeficients when performing linear regression to quadratic and
cubic models, in these cases we find that the best fit to a
quadratic model is highly likely to be generated purely by
the gaussian noise that is assumed during linear regression.



For the cubic model each coefficient has a ~ 8% chance of
being random noise, this is better then the quadratic model
but in the linear model the probability of the linear rela-
tion being due to random noise is roughly a factor of 1000
smaller then any polynomial relationship in the cubic model.
For completeness we also compare this to the linear model
of S@)(p§*T) /|y4| = 1.131C — 0.003 and find similar results
(where the null model is gaussian noise plus the linear model).
These results are given in table [[TI}

At the extreme points of 1 (n; = 1 and M; = ;) we see
there is an almost linear relationship between the entropy den-
sity and the central charge. Between these extreme points we
see a deviation from linearity which becomes most extreme
around M = Nyolo- These deviations occur most significantly
for k =4,5,6. There are two possible reasons that this may
be the case, the first is that we should use a different tun-
ing parameter for the different charge sectors. However the
behaviour of constant tuning parameter 1; = 1.2 and a the
holographic tuning n; = /2%;/+/X;+1 which is roughly
N = (1.29,1.22) for the two relevant charge sectors. This sug-
gests that the behaviour has to do with absolute values (or
absolute values relative to the charge sector bond dimension)
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as opposed to due to relative tunings between charge sectors.

The abnormal behaviour could also arise from the fact that
as m varies between 1 and y we get a mixture of behaviours
of the lifting procedure. Drawing from our intuition of the
non-symmetric case, in the 1 = 1 case we find that the state
along the maximal holographic screen should behave as a sec-
tion of the boundary CFT. On the other hand, in the N =%
limit this gives rise to a maximally mixed state. In between
these limits we expect there to be both mixed state contribu-
tions as well as the pure state contribution. Notwithstanding,
since the mixing of o and B contributions to the lifting tensor
occurs not only at the holographic screen, but also above it,
this suggest that non-linear feedback as we transition between
the 1 = 1 and n = ) extremes could be important. For this
reason the anomalous behaviour around 1 = Nyl May be in-
dicative of some kind of transition from CFT like behaviour to
a mixed state like behaviour. This non-linearity with respect
to the central charge may be the true behaviour around these
parameters, however the authors suspect this behaviour may
just be the lifting procedure exacerbates the numerical insta-
bilities from the original MERA procedure. For this reason it
may be worthwhile exploring this for a possible transition and
any associated order parameters in future work.
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