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A neural network solving Grad-Shafranov equation constrained with measured magnetic signals
to reconstruct magnetic equilibria in real time is developed. Database created to optimize the
neural network’s free parameters contain o↵-line EFIT results as the output of the network from
1, 118 KSTAR experimental discharges of two di↵erent campaigns. Input data to the network
constitute magnetic signals measured by a Rogowski coil (plasma current), magnetic pick-up coils
(normal and tangential components of magnetic fields) and flux loops (poloidal magnetic fluxes).
The developed neural networks fully reconstruct not only the poloidal flux function  (R,Z) but also
the toroidal current density function j� (R,Z) with the o↵-line EFIT quality. To preserve robustness
of the networks against a few missing input data, an imputation scheme is utilized to eliminate the
required additional training sets with large number of possible combinations of the missing inputs.
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I. INTRODUCTION

Magnetic equilibrium is one of the most important in-
formation to understand the basic behavior of plasmas in
magnetically confined plasmas, and the o↵-line EFIT [1]
code has been extensively used to reconstruct such equi-
libria in tokamaks. Its fundamentals are basically finding
a solution to an ideal magnetohydrodynamic equilibrium
with toroidal axisymmetry, known as the Grad-Shafranov
(GS) equation [2]:
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where  =  (R,Z) is the poloidal flux function, j� =
j� (R,Z) the toroidal current density function, p( ) the
plasma pressure. F ( ) is related to the net poloidal cur-
rent. Here, R, � and Z denote the usual cylindrical coor-
dinate system. As the �⇤ is a two-dimensional nonlinear
partial di↵erential operator, the o↵-line EFIT [1] finds
a solution with many numerical iterations and has been
implemented in many tokamaks such as DIII-D [3], JET
[4], NSTX [5], EAST [6] and KSTAR [7] to name some
as examples.
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With an aim of real-time control of tokamak plasmas,
real-time EFIT (rt-EFIT) [8] code is developed to pro-
vide a magnetic equilibrium fast enough whose results
are di↵erent from the o↵-line EFIT results. As pulse
lengths of tokamak discharges become longer [9–15], de-
mand on more elaborate plasma control is ever increased.
Furthermore, some of the ITER relevant issues such as
ELM (edge localized mode) suppression with RMP (res-
onant magnetic perturbation) coils [16] and the detached
plasma scenarios [17, 18] require sophisticated plasma
controls, meaning that the more accurate magnetic equi-
libria we have in real time, the better performance we
can achieve.
There has been an attempt to satisfy such a require-

ment of acquiring a more accurate, i.e., closer to the
o↵-line EFIT results compared to the rt-EFIT results,
magnetic equilibrium in real-time using graphics process-
ing units (GPUs) [19] by parallelizing equilibrium recon-
struction algorithms. The GPU based EFIT (P-EFIT)
[19] enabled one to calculate a well-converged equilibrium
in much less time; however, the benchmark test showed
similar results to the rt-EFIT rather than the o↵-line re-
sults [20].
Thus, we propose a reconstruction algorithm based on

a neural network that satisfies the GS equation as well as
the measured magnetic signals to obtain accurate mag-
netic equilibrium in real time. We note that usage of neu-
ral networks in fusion community is increasing rapidly,
and examples are radiated power estimation [21], iden-
tifying instabilities [22], estimating neutral beam e↵ects
[23], classifying confinement regimes [24], determination
of scaling laws [25, 26], disruption prediction [27–29], tur-
bulent transport modelling [30–33], plasma tomography
with the bolometer system [34, 35], coil current predic-
tion with the heat load pattern in W7-X [36], filament
detection on MAST-U [37], electron temperature profile
estimation via SXR with Thomson scattering [38] and
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equilibrium reconstruction [39–44] together with an equi-
librium solver [45]. Most of previous works on the equi-
librium reconstruction with neural networks have paid
attention to finding the poloidal beta, the plasma elon-
gation, positions of the X-points and plasma boundaries,
i.e., last closed flux surface, and gaps between plasmas
and plasma facing components, rather than reconstruct-
ing the whole internal magnetic structures we present in
this work.

The inputs to our developed neural networks consist
of plasma current measured by a Rogowski coil, normal
and tangential components of magnetic fields by mag-
netic pick-up coils, poloidal magnetic fluxes by flux loops
and a position in (R,Z) coordinate system, where R is
the major radius, and Z is the height as shown in Fig-
ure 1. The output of the neural networks is a value
of poloidal flux  at the specified (R,Z) position. To
train and validate the neural networks, we have collected
a total of 1, 118 KSTAR discharges from two consecu-
tive campaigns, i.e., 2017 and 2018 campaigns. We, in
fact, generate three separate neural networks which are
NN2017, NN2018 and NN2017, 2018 where subscripts indi-
cate the year(s) of KSTAR campaign(s) that the training
data sets are obtained from. Additional 163 KSTAR dis-
charges (from the same two campaigns) are collected to
test the performance of the developed neural networks.

We train the neural networks with the KSTAR o↵-line
EFIT results, and let them be accurate magnetic equi-
libria. Note that disputing on whether the o↵-line EFIT
results we use to train the networks are accurate or not
is beyond the scope of this work. If we find more ac-
curate EFIT results, e.g., MSE(Motional Stark E↵ect)-
constrained EFIT or more sophisticated equilibrium re-
construction algorithms that can cope with current-hole
configurations (current reversal in the core) [46–48], then
we can always re-train the networks with new sets of data
as long as the networks follow the trained EFIT data with
larger similarity than the rt-EFIT results do. This is be-
cause supervised neural networks are limited to follow
the training data. Hence, as a part of the training sets
we use the KSTAR o↵-line EFIT results as possible ex-
amples of accurate magnetic equilibria to corroborate our
developed neural networks.

To calculate the output data a typical neural network
requires the same set of input data as it has been trained.
Therefore, even a single missing input (out of input data
set) can result in a flawed output [49]. Such a case can be
circumvented by training the network with possible com-
binations of missing inputs. As a part of input data, we
have 32 normal and 36 tangential magnetic fields mea-
sured by the magnetic pick-up coils. If we wish to cover
a case with one missing input data, then we will need
to repeat the whole training procedure with 68 (32+ 36)
di↵erent cases. If we wish to cover a case with two or
three missing input data, then we will need additional
2, 278 and 50, 116 di↵erent cases to be trained on, re-
spectively. This number becomes large rapidly, and it
becomes formidable, if not impossible, to train the net-

works with reasonable computational resources. Since
the magnetic pick-up coils are susceptible to damages,
we have developed our networks to be capable of infer-
ring a few missing signals of the magnetic pick-up coils
in real-time by invoking an imputation scheme [50] based
on Bayesian probability [51] and Gaussian processes [52].
In addition to reconstructing accurate magnetic equi-

libria in real-time, the expected improvements with our
neural networks compared to the previous studies are at
least fourfold: (1) the network is capable of providing
whole internal magnetic topology, not limited to bound-
aries and locations of X-points and/or magnetic axis; (2)
spatial resolution of reconstructed equilibria is arbitrarily
adjustable within the first wall of KSTAR since (R,Z)
position is a part of the input data; (3) the required
training time and computational resources for the net-
works are reduced by generating a coarse grid points also
owing to (R,Z) position being an input, and (4) the net-
works can handle a few missing signals of the magnetic
pick-up coils using the imputation method.
We, first, present how the data are collected to train

the neural networks and briefly discuss real-time prepro-
cessing of the measured magnetic signals in Section II.
For the readers who are interested in thorough descrip-
tion of the real-time preprocessing, Appendix A provides
the details. Then, we explain the structure of our neural
networks and how we train them in Section III. In Section
IV, we present the results of the developed neural net-
work EFIT (nn-EFIT) in four aspects. First, we discuss
how well the NN2017, 2018 network reproduces the o↵-line
EFIT results. Then, we make comparisons among the
three networks, NN2017, NN2018 and NN2017, 2018, by ex-
amining in-campaign and cross-campaign performance.
Once the absolute performance qualities of the networks
are established, we compare relative performance qual-
ities between nn-EFIT and rt-EFIT. Finally, we show
how the imputation method support the networks when
there exist missing inputs. Our conclusions are presented
in Section V.

II. COLLECTION AND REAL-TIME
PREPROCESSING OF DATA

Figure 1 shows locations where we obtain the input
and the output data with the first wall (blue dotted line)
on a poloidal cross-section of KSTAR. The green dot-
ted line indicates a Rogowski coil measuring the plasma
current (Ip). The green open circles and crosses show
locations of the magnetic pick-up coils measuring 32 nor-
mal (Bn) and 36 tangential (Bt) components of magnetic
fields, respectively, whereas the green triangles show 22
flux loops measuring the poloidal magnetic fluxes ( FL).
These magnetic signals are selectively chosen out of all
the magnetic sensors in KSTAR [53] whose performance
has been demonstrated for many years, i.e., less suscep-
tible to damages.
Although KSTAR calibrates the magnetic sensors
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FIG. 1. A poloidal cross-section of KSTAR with the first wall
(blue dotted line). Green dotted line indicates a Rogowski coil
measuring the plasma current (Ip). Green open circles and
crosses depict locations of the magnetic pick-up coils measur-
ing 32 normal (Bn) and 36 tangential (Bt) magnetic fields,
respectively, whereas green triangles represent 22 flux loops
measuring poloidal magnetic fluxes ( FL). Black asterisks
(22 ⇥ 13 spatial positions) show locations where we obtain
the values of  from the o↵-line EFIT results.

FIG. 2. Before (blue) and after (red) the magnetic signal
adjustments for (a) normal and (b) tangential components of
magnetic fields measured by the magnetic pick-up coils, and
(c) poloidal magnetic flux measured by one of the flux loops.
The signals return closer to zeros after the adjustment when
all the external magnetic coils (except the toroidal field coils)
are turned o↵ at around 30 sec in this KSTAR discharge. See
Appendix A for detailed description.

(magnetic pick-up coils and flux loops) regularly during
a campaign to remove drifts in the magnetic signals, it
does not guarantee to fully eliminate such drifts. Thus,
we preprocess the signals to adjust the drifts. Figure 2
shows examples of before (blue) and after (red) the drift
adjustment for (a) normal and (b) tangential components
of magnetic fields measured by the magnetic pick-up coils

TABLE I. Summary of the data samples to train and validate
the networks

Parameter Definition Data size No. of samples
Ip Plasma current 1

(Rogowski coil)

Bn Normal magnetic field 32
(Magnetic pick-up coils)

217,820
Bt Tangential magnetic field 36 (time slices)

(Magnetic pick-up coils)

 FL Poloidal magnetic flux 22
(Flux loops)

R Position in major radius 1 286
(22⇥ 13 grids)

Z Position in height 1

Network Input size 93 (+1 for bias)

Total no. of samples 62,296,520

and (c) poloidal magnetic flux measured by one of the
flux loops. Here, a KSTAR discharge is sustained until
about 20 sec, and all the external magnetic coils (except
the toroidal field coils) are turned o↵ at about 30 sec.
Therefore, we expect all the magnetic signals to return
to zeros at around 30 sec. If not, we envisage that there
has been residual drifts. This means that we need to be
able to preprocess the magnetic signals in real-time so
that the input signal characteristics for predictions are
similar to the trained ones. Appendix A describes in de-
tail how we preprocess the magnetic signals in real-time.
The black asterisks in Figure 1 show the 22 ⇥ 13 grid

points where we obtain the values of  from the o↵-line
EFIT results as outputs of the networks. We note that
the original o↵-line EFIT provides the values of  with
65 ⇥ 65 grid points. The 22 ⇥ 13 grid points are se-
lected such that the distances between the neighboring
channels in R and Z directions are as similar as possi-
ble while covering whole region within the first wall. By
generating such coarse grid points we can decrease the
number of samples to train the network, thus consuming
less amount of computational resources. Nevertheless, we
do not lose the spatial resolution since (R,Z) position is
an input, i.e., the network can obtain the value of  at
any position within the first wall (see Section IV).
With an additional input for the spatial position R and

Z, each data sample contains 93 inputs (and yet another
input for bias) and one output which is a value of  at the
specified (R,Z) location. We randomly collect a total of
1, 118 KSTAR discharges from 2017 and 2018 campaigns.
Since each discharge can be further broken into many
time slices, i.e., every 50 msec following the temporal
resolution of the o↵-line EFIT, we obtain 217, 820 time
slices. With a total of 286 value of  from 22⇥13 spatial
points, we have a total of 62, 296, 520 (= 217, 820⇥ 286)
samples to train and validate the networks. 90% of the
samples are used to train the networks, while the other
10% are used to validate the networks to avoid overfitting
problems. Note that an overfitting problem can occur
if a network is overly well trained to the training data
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following the very details of them. This inhibits gener-
alization of the trained network to predict unseen data,
and such a problem can be minimized with the validation
data set. All the inputs except R and Z are normalized
such that the maximum and minimum values within the
whole samples become 1 and �1, respectively. We use
the actual values of R and Z in the unit of meters.
Table I summarizes the training and validation samples

discussed in this section. Additionally, we also have ran-
domly collected another 163 KSTAR discharges in the
same way discussed here which are di↵erent from the
1, 118 KSTAR discharges to test the performance of the
networks.

III. NEURAL NETWORK MODEL AND
TRAINING

A. Neural network model

We develop the neural networks that not only output
a value of  but also satisfies Equation (1), the GS equa-
tion. With the total of 94 input nodes (91 for a plasma
current and magnetic signals, two for R and Z position,
one for the bias) and one output node for a value of  ,
each network has three fully connected hidden layers with
an additional bias node at each hidden layer. Each layer
contains 61 nodes including the bias node. The structure
of our networks is selected by examining several di↵erent
structures by error and trials.
Denoting the value of  calculated by the networks as

 

NN, we have

 

NN=s0 +
60X

l=1

sl

⇥ f

0

@
ul0+

60X

k=1

ulkf

0

@
vk0+

60X

j=1

vkjf

 
wj0+

93X

i=1

wjixi

!1

A

1

A
,

(2)

where xi is the i

th input value with i = 1, . . . , 93, i.e., 91
measured values with the various magnetic diagnostics
and two for R and Z positions. wji is an element in
a 61 ⇥ 94 matrix, whereas vkj and ulk are elements in
61 ⇥ 61 matrices. sl connects the l

th node of the third
(last) hidden layer to the output node. w, v, u and s are
the weighting factors that need to be trained to achieve
our goal of obtaining accurate  . wj0, vk0, ul0 and s0 are
the weighting factors connecting the biases, where values
of all the biases are fixed to be unity. We use a hyperbolic
tangent function as the activation function f giving the
network non-linearity [54]:

f(t) = tanh(t) =
2

1 + e

�2t
� 1. (3)

The weighting factors are initialized as described in [55]
so that a good training can be achieved. They are ran-
domly selected from a normal distribution whose mean

is zero with the variance set to be an inverse of total
number of connecting nodes. For instance, our weighting
factor w connects the input layer (94 nodes with bias)
and the first hidden layer (61 nodes with bias), therefore
the variance is set to be 1/(94 + 61). Likewise, the vari-
ances for v, u and s are 1/(61 + 61), 1/(61 + 61) and
1/(61 + 1), respectively.

B. Training

With the aforementioned network structure, training
(or optimizing) the weighting factors to predict the cor-
rect value of  highly depends on a choice of the cost
function. A typical choice of such cost function would
be:

✏ =
1

N

NX

i=1

⇣
 

NN
i �  

Target
i

⌘2
, (4)

where  Target is the target value, i.e., the value of  from
the o↵-line EFIT results in our case, and N the number
of data sets.
As will be shown shortly, minimizing the cost function

✏ does not guarantee to satisfy the GS equation (Equa-
tion (1)) even if  NN and  Target matches well, i.e., the
network is well trained with the given optimization rule.
Since �⇤

 provides information on the toroidal current
density directly, it is important that �⇤

 

NN matches
�⇤
 

Target as well. We have an analytic form represent-
ing  NN as in Equation (2); therefore, we can analytically
di↵erentiate  NN with respect to R and Z, meaning that
we can calculate �⇤

 

NN during the training stage. Thus,
we introduce another cost function:

✏

new =
1

N

NX

i=1

⇣
 

NN
i �  

Target
i

⌘2

+
1

N

NX

i=1

⇣
�⇤
 

NN
i ��⇤

 

Target
i

⌘2
,

(5)

where we obtain the value of �⇤
 

Target from the o↵-line
EFIT results as well.
To acknowledge di↵erence between the two cost func-

tions ✏ and ✏

new, we first discuss the results. Figure 3
shows the outputs of the two trained networks with the
cost function (a) ✏ and (b) ✏new. It is evident that in
both cases the network output  NN (red dashed line) re-
produces the o↵-line EFIT  

Target (black line). However,
only the network trained with the cost function ✏new re-
produces the o↵-line EFIT �⇤

 

Target. Both networks
are trained well, but the network with the cost function
✏ does not achieve our goal, that is correctly predicting
 

Target
and �⇤

 

Target.
Since our goal is to develop a neural network that

solves the GS equation, we choose the cost function to be
✏

new to train the networks. We optimize the weighting
factors by minimizing ✏new with the Adam [56] which is
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FIG. 3. An example of the two networks’ results trained with
the cost function (a) ✏ and (b) ✏new for KSTAR shot# 17939
at 0.950 sec. Both networks (red dashed line) reproduce the
 

Target (black line) well (left panels), but only the network
trained with ✏new reproduces �⇤

 

Target (right panels).

one of the gradient-based optimization algorithms. With
90% and 10% of the total data samples for training and
validation of the networks, respectively, we stop training
the networks with a fixed number of iterations that is
large enough but not too large such that the validation
errors do not increase, i.e., to avoid overfitting problems.
The whole workflow is carried out with Python and Ten-
sorflow [57].
With the selected cost function we create three di↵er-

ent networks that di↵er only by the training data sets.
NN2017, NN2018 and NN2017, 2018 refer to the three net-
works trained with the data sets from only 2017 (744
discharges), from only 2018 (374 discharges) and from
both 2017 and 2018 (744 + 374 discharges) campaigns,
respectively.
The descending feature of the cost function ✏new as a

function of the training iteration for NN2017,2018 network
is shown in Figure 4. Both the training errors (blue line)
and validation errors (red dashed line) decrease together
with similar values which means that the network is well
generalized. Furthermore, since the validation errors do
not increase, the network does not have an overfitting

FIG. 4. The descending feature of training (blue line) and
validation (red dashed line) errors as a function of iterations.
Shaded areas represent standard deviation of the errors.

problem. Note that fluctuations in the errors, i.e., stan-
dard deviation of the errors, are represented as shaded
areas.
Small undulations repeated over the iterations in Fig-

ure 4 are due to the mini-batch learning. Contrary to the
batch learning, i.e., optimizing the network with the en-
tire training set in one iteration, the mini-batch learning
divides the training set into some number of small sub-
sets (1, 000 subsets for our case) to optimize the networks
sequentially. One cycle that goes through all the subsets
once is called an epoch. The mini-batch learning helps to
escape from local minima in the weighting factor space
[58] via the stochastic gradient descent scheme [59].

IV. PERFORMANCE OF THE DEVELOPED
NEURAL NETWORKS: BENCHMARK TESTS

In this section, we present how well the developed net-
works perform. Main figures of merit we use are peak
signal-to-noise ratio (PSNR) and mean structural simi-
larity (MSSIM) as have been used perviously [34] in ad-
dition to the usual statistical quantity R2, coe�cient of
determination. We note that obtaining full flux surface
information  (R,Z) on 22 ⇥ 13 or 65 ⇥ 65 spatial grids
with our networks takes less than 1 msec on a typical
personal computer.
First, we discuss the benchmark results of the

NN2017,2018 network. Then, we compare the performance
of NN2017, NN2018 and NN2017,2018 networks. Here, we
also investigate cross-year performance, for instance, ap-
plying the NN2017 network to predict the discharges ob-
tained from 2018 campaign and vice versa. Then, we
evaluate the performance of the networks against the rt-
EFIT results to examine possibility of supplementing or
even replacing the rt-EFIT with the networks. Finally,
we show how the imputation scheme supports the net-
works’ performance. Here, all the tests are performed
with the unseen (to all three networks, i.e., NN2017,
NN2018 and NN2017,2018) KSTAR discharges which are
88 and 75 KSTAR discharges from 2017 and 2018 cam-
paigns, respectively.
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FIG. 5. Performance tests of the NN2017,2018 network on the
unseen KSTAR discharges from (a)(b) 2017 campaign and
(c)(d) 2018 campaign. The values of R2 and histograms of
(a)(c)  NN vs.  Target and (b)(d) �⇤

 

NN vs. �⇤
 

Target with
colors representing number of counts manifest goodness of the
NN2017,2018 network. Red dashed line is the y = x line.

A. Benchmark results of the NN2017,2018 network

Figure 5 show the benchmark results of the NN2017,2018

network, i.e., network trained with the data sets from
both 2017 and 2018 campaigns. (a) and (b) show the
results with the test discharges from 2017 campaign;
while (c) and (d) present the results with the test dis-
charges from 2018 campaign. Histograms of (a)(c)  NN

vs.  Target and (b)(d) �⇤
 

NN vs. �⇤
 

Target are shown
with colors representing the number of counts. For in-
stance, there is a yellow colored point in Figure 5(a)
around (�0.1,�0.1) ± ", where " is a bin size for the
histogram. Since yellow represents about 2⇥ 105 counts,
there are approximately 2 ⇥ 105 data whose neural net-
work values and EFIT values are �0.1 ± " simultane-
ously within our test data set. Note that each KSTAR
discharge contains numerous time slices whose number
depends on the actual pulse length of a discharge, and
each time slice generates the total of 22⇥ 13 = 286 data
points. The values of  Target and �⇤

 

Target are obtained
from the o↵-line EFIT results. It is clear that the network
predicts the target values well.
As a figure of merit, we introduce the R2 metric (coef-

ficient of determination) defined as

R2 = 1�

PL
i=1

⇣
y

Target
i � y

NN
i

⌘2

PL
i=1

⇣
y

Target
i � 1

L

PL
j=1 y

Target
j

⌘2 , (6)

where y takes either  or �⇤
 , and L is the number

of test data sets. The calculated values are written in
Figure 5, and they are indeed close to unity, implying
the existence of very strong linear correlations between
the predicted (from the network) and target (from the o↵-
line EFIT) values. Note that R2 = 1 means the perfect
prediction. The red dashed lines on the figures are the
y = x lines.
Figure 6 is an example of reconstructed magnetic equi-

libria using KSTAR shot #18057 from 2017 campaign.
(a) shows the evolution of the plasma current. The verti-
cal dashed lines indicate the time points where we show
and compare the equilibria obtained from the network
(red) and the o↵-line EFIT (black) which is our target.
(b) and (c) are taken during the ramp-up phase, (d) and
(e) during the flat-top phase, and (f) and (g) during the
ramp-down phase. In each sub-figure from (b) to (g), left
panels compare  , and right panels are for�⇤

 . We men-
tion that the equilibria in Figure 6 are reconstructed with
65 ⇥ 65 grid points even though the network is trained
with 22 ⇥ 13 grid points demonstrating how spatial res-
olution is flexible in our networks.
For a quantitative assessment of the network, we use an

image relevant figure of merit that is peak signal-to-noise
ratio (PSNR) [60] (see Appendix B) originally developed
to estimate a degree of artifacts due to an image com-
pression compared to an original image. Typical PSNR
range for the JPEG image, which preserves the original
quality with a reasonable degree, is generally in 30–50
dB [34, 61]. For our case, the networks errors relative to
the o↵-line EFIT results can be treated as artifacts. As
listed on Figure 6(b)-(g), PSNR for  is very good, while
we achieve acceptable values for �⇤

 .

B. The NN2017, NN2018 and NN2017,2018 networks

Similar to shown in Figure 5, we show the benchmark
results of the NN2017 (trained with the data sets from
2017 campaign) and the NN2018 (trained with the data
sets from 2018 campaign) in Figures 7 and 8, respectively.
R2 metric is also provided on the figures. Again, overall
performance of the networks are good.
The NN2017 and NN2018 networks are trained with only

in-campaign data sets, e.g., NN2018 with the data sets
from only 2018 campaign, and we find slightly worse re-
sults, but still good, on predicting cross-campaign mag-
netic equilibria, e.g. NN2018 predicting equilibria for
2017 campaign. Notice that the NN2017 seems to predict
cross-campaign equilibria better than in-campaign ones
by comparing Figure 7(a) and (c) which contradicts our
intuition. Although the histogram in Figure 7(c) seems
tightly aligned with the y = x line (red dashed line), close
inspection reveals that the NN2017 network, in general,
underestimates the o↵-line EFIT results from 2018 cam-
paign marginally. This will be evident when we compare
image qualities.
Mean structural similarity (MSSIM) [62] (see Ap-
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7

FIG. 6. The actual reconstruction results for the KSTAR shot#18057, comparing the network results and o↵-line EFIT
reconstructions for ramp-up ((b) and (c)), flat-top ((d) and (e)), ramp-down ((f) and (g)) phases following (a) the plasma
current evolution. Black lines indicate the flux surfaces from the o↵-line EFIT, overlaid with the red dotted lines which stand
for the NN reconstructions. As a figure of merit, magnitudes of PSNR metric are written on each figure.

pendix B) is another image relevant figure of merit used
to estimate perceptual similarity (or perceived di↵er-
ences) between the true and reproduced images based
on inter-dependence of adjacent spatial pixels in the im-
ages. MSSIM ranges from zero to one, where the closer
to unity the better the reproduced image is.
Together with PSNR, Figure 9 shows MSSIM for (a)

NN2017, (b) NN2018 and (c) NN2017,2018 where the o↵-line
EFIT results are used as reference. Notice that counts in
all the histograms of MSSIM and PSNR in this work cor-
respond to the number of reconstructed magnetic equi-
libria (or a number of time slices) since we obtain a sin-
gle value of MSSIM and PSNR from one equilibrium;
whereas counts in Figures 5, 7 and 8 are much bigger
since 286(= 22⇥13) data points are generated from each

time slice. Red (green) line indicates the test results
on the data sets from 2017 (2018) campaign. In gen-
eral, whether the test data sets are in-campaign or cross-
campaign, image reproducibility of all three networks,
i.e., predicting the o↵-line EFIT results, is good as at-
tested by the fact that MSSIM is quite close to unity and
PSNR for  (�⇤

 ) ranges approximately 40 to 60 (20 to
40). It is easily discernible that in-campaign results are
better for both NN2017 and NN2018 unlike what we noted
in Figure 7(a) and (c). Not necessarily guaranteed, we
find that the NN2017,2018 network works equally well for
both campaigns as shown in Figure 9(c).
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8

FIG. 7. Same as Figure 5 for the the NN2017 network, i.e.,
trained with the data sets from 2017 campaign.

FIG. 8. Same as Figure 5 for the the NN2018 network, i.e.,
trained with the data sets from 2018 campaign.

C. Comparisons among nn-EFIT, rt-EFIT and
o↵-line EFIT

It is widely recognized that rt-EFIT results and o↵-
line results are di↵erent from each other. If we allow the
o↵-line EFIT results used to train the networks to be
accurate ones, then the reconstruction of equilibria with
the neural networks (nn-EFIT) must satisfy the following
criterion: nn-EFIT results must be more similar to the
o↵-line EFIT results than rt-EFIT results are to the o↵-
line EFIT as mentioned in Section I. Once this criterion

FIG. 9. Histograms of MSSIM (left panel) and PSNR (right
panel) for (a) NN2017, (b) NN2018 and (c) NN2017,2018. Red
(green) line indicates the test results on the data sets from
2017 (2018) campaign. In each sub-figure, top (bottom) panel
show the results for  (�⇤

 ). The o↵-line EFIT results are
used as reference.

is satisfied, then we can always improve the nn-EFIT as
genuinely more accurate EFIT results are collected. For
this reason, we make comparisons among the nn-EFIT,
rt-EFIT and o↵-line EFIT results.
Figure 10 shows an example of reconstructed magnetic

equilibria for (a) rt-EFIT vs. o↵-line EFIT and (b) nn-
EFIT (the NN2017,2018 network) vs. o↵-line EFIT for
KSTAR shot #17975 at 0.7 sec with  (left panel) and
�⇤
 (right panel). Green, red and black lines indicate
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FIG. 10. An example of reconstructed  (R,Z) (left panel)
and �⇤

 (R,Z) (right panel) for KSTAR shot #17975 at
0.7 sec comparing (a) rt-EFIT (green) and o↵-line EFIT
(black) and (b) nn-EFIT (NN2017,2018) (red) and o↵-line EFIT
(black).

rt-EFIT, nn-EFIT and o↵-line EFIT results, respectively.
This simple example shows that the nn-EFIT is more
similar to the o↵-line EFIT than the rt-EFIT is to the
o↵-line EFIT, satisfying the aforementioned criterion.
To validate the criterion statistically, we generate his-

tograms of MSSIM and PSNR for the nn-EFIT and
the rt-EFIT with reference to the o↵-line EFIT. This
is shown in Figure 11 as histograms, where MSSIM (left
panel) and PSNR (right panel) of  (top) and �⇤

 (bot-
tom) are compared between the nn-EFIT (black) and the
rt-EFIT (green). Here, the nn-EFIT results are obtained
with the NN2017,2018 network on the test data sets. We
confirm that the criterion is satisfied with the NN2017,2018

network as the histograms in Figure 11 are in favour of
the nn-EFIT, i.e., larger MSSIM and PSNR are obtained
by the nn-EFIT. This is more conspicuous for �⇤

 than
 .
We perform the similar statistical analyses for the

other two networks, NN2017 and NN2018, which are shown
in Figures 12 and 13. Since these two networks are
trained with the data sets from only one campaign, we

FIG. 11. Histograms of MSSIM (left panel) and PSNR (right
panel) of  (top) and �⇤

 (bottom) calculated by the nn-
EFIT (black) and the rt-EFIT (green), where the nn-EFIT is
the NN2017,2018. For both the nn-EFIT and the rt-EFIT, the
o↵-line EFIT is treated as reference.

FIG. 12. Same as Figure 11 with the NN2017 as the nn-EFIT
where the test data sets are obtained from (a) 2017 campaign
and (b) 2018 campaign.
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FIG. 13. Same as Figure 11 with the NN2018 as the nn-EFIT
where the test data sets are obtained from (a) 2017 campaign
and (b) 2018 campaign.

show the results where the test data sets are prepared
from (a) 2017 campaign or (b) 2018 campaign so that
in-campaign and cross-campaign e↵ects can be assessed
separately. We find that whether in- or cross-campaign,
the criterion is fulfilled for both  and �⇤

 .

D. The NN2017,2018 network with the imputation
scheme

If one or a few magnetic pick-up coils which are a part
of the inputs to the nn-EFIT are impaired, then we will
have to re-train the network without the damaged ones
or hope that the network will reconstruct equilibria cor-
rectly by padding a fixed value, e.g., zero-padding, to
the broken ones. Of course, one can anticipate training
the network by considering possible combinations of im-
paired magnetic pick-up coils. With the total number of
68 signals from the magnetic pick-up coils being inputs
to the network in our case, we immediately find that the
number of possible combinations increases too quickly to

FIG. 14. Measured (blue open circles) and inferred with the
imputation method [50] (red crosses with their uncertainties)
values for (a) Bn and (b) Bt. Probe # on the horizontal axis
is used as an identification index of magnetic pick-up coils.
Inferred probes are Probe #3, 4, 6, 14, 18, 24, 30, 35, 37 for
Bn and Probe #4, 6, 8, 11, 17, 29, 30, 32, 35 for Bt.

TABLE II. The imputation results shown in Figure 14 with
KSTAR shot #20341 at 2.1 sec.

Bn [T] ⇥10�2
Bt [T] ⇥10�2

No. Measured Inferred No. Measured Inferred
3 -1.45 -1.88±0.22 4 -14.69 -13.97±0.47
4 -1.72 -2.31±0.24 6 -12.38 -11.42±0.97
6 4.62 4.45±0.65 8 -7.82 -7.88±0.67
14 6.13 6.36±0.27 11 -3.15 -3.22±0.65
18 -8.27 -8.11±0.48 17 0.10 0.30±0.52
24 1.86 1.65±0.30 29 3.84 2.65±0.64
30 -7.52 -7.19±0.18 30 1.15 0.49±0.61
35 -7.93 -7.08±0.65 32 -2.65 -2.11±0.62
37 -4.27 -1.41±0.93 35 -8.07 -8.87±0.55

consider it as a solution.

Since inferring the missing values is better than the
null replacement [49], we resolve the issue by using the re-
cently proposed imputation method [50] based on Gaus-
sian processes (GP) [52] and Bayesian inference [51],
where the likelihood is constructed based on Maxwell’s
equations. The imputation method infers the missing
values fast enough, i.e., less than 1 msec to infer at least
up to nine missing values on a typical personal computer;
thus, we can apply the method during a plasma discharge
by replacing the missing values with the real-time in-
ferred values.

We have applied the imputation method to KSTAR
shot #20341 at 2.1 sec for the normal (Bn) and tangen-
tial (Bt) components of the magnetic pick-up coils as
an example. We have randomly chosen nine signals from
the 32 Bn measurements and another nine from the 36 Bt
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FIG. 15. Top panel: nn-EFIT (NN2017,2018 network) recon-
structed equilibria without any missing values (black line),
and with two missing values replaced with the inferred values
using the imputation method (green line) or with the zeros
using the zero-padding method (pink dashed line), where the
missing values are (a) Bn Probe #14 and 30 (left panel) and
(b) Bt Probe #4 and 8 (right panel). Bottom panels: his-
tograms of MSSIM and PSNR using the imputation method
(green) and the zero-padding method (pink) for all the equi-
libria obtained from KSTAR shot #20341, where the refer-
ence values are those obtained using nn-EFIT without any
missing values. Note that there are many more counts less
than 0.9 for MSSIM with the zero-padding method.

measurements and pretended that all of them (9+9) are
missing simultaneously. Figure 14 shows the measured
(blue open circles) and the inferred (red crosses with their
uncertainties) values for (a) Bn and (b) Bt. Probe # on
the horizontal axis is used as an identification index of
the magnetic pick-up coils. Table II provides the actual
values of the measured and inferred ones for better com-
parisons. We find that the imputation method infers the
correct (measured) values very well except Probe #37 of
Bn. Inferred (missing) probes are Probe #3, 4, 6, 14, 18,
24, 30, 35, 37 for Bn and Probe #4, 6, 8, 11, 17, 29, 30,
32, 35 for Bt. Here, we provide all the Probe #’s used
for the neural network: Bn Probe #[2, . . . , 6, 8, 9, 11,
. . . , 15, 17, . . . , 20, 23, . . . , 26, 28, . . . , 32, 34, 35, 37,
. . . , 41] (a total of 32) and Bt Probe #[2, . . . , 6, 8, 9, 11,
. . . , 32, 34, 35, 37, . . . , 41] (a total of 36).

Comparisons between the nn-EFIT without any miss-

FIG. 16. Same color code as in Figure 15. Missing values are
(a) eight Bt (except only Probe #6) and (b) all nine Bt.

ing values, which we treat as reference values, and the
nn-EFIT with the imputation method or with the zero-
padding method are made. Here, nn-EFIT results are ob-
tained using the NN2017,2018 network. Top panel of Fig-
ure 15 shows  (R,Z) obtained from the nn-EFIT with-
out any missing values (black line) and from the nn-EFIT
with the two missing values replaced with the inferred
values (green line), i.e., imputation method, or with zeros
(pink dashed line), i.e., zero-padding method for (a) Bn

(left panel) and (b) Bt (right panel) at 2.1 sec of KSTAR
shot #20341. Probe #14 and 30 for Bn and Probe #4
and 8 for Bt are treated as the missing ones. Bottom pan-
els compare histograms of MSSIM and PSNR using the
imputation method (green) and the zero-padding method
(pink) for all the equilibria obtained from KSTAR shot
#20341.

It is clear that nn-EFIT with the imputation method
(green line) is not only much better than that with the
zero-padding method (pink dashed line) but it also re-
constructs the equilibrium close to the reference (black).
In fact, the zero-padding method is too far o↵ from the
reference (black line) to be relied on for plasma controls.

Motivated by such a successful result of the nn-EFIT
with the imputation method on the two missing values,
we have increased number of missing values as shown in
Figures 16 and 17 for the same KSTAR discharge, i.e.,
KSTAR shot #20341. Let us first discuss Figure 16 which
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FIG. 17. Same color code as in Figure 15. Missing values are
(a) eight Bn (except only Probe #37), (b) all nine Bn.

are with (a) the eight (except only Probe #6) and (b)
nine (all) missing values of Bt. Color codes are same as in
Figure 15, i.e., the reference is black, and nn-EFIT with
the imputation method green or with the zero-padding
method pink. It is evident that the nn-EFIT with the im-
putation method performs well at least up to nine missing
values. Such a result is, in fact, expected since the im-
putation method has inferred the missing values well as
shown in Figure 14(b) in addition to the fact that a well-
trained neural network typically has a reasonable degree
of resistance on noises. Again, the nn-EFIT with the
zero-padding method is not reliable.

Figure 17 (a) and (b) are results with the eight (ex-
cept only Probe #37) and nine (all) missing values of
Bn, respectively. Color codes are same as in Figure 15.
We find that the nn-EFIT with the eight missing values
reconstructs the equilibrium similar to the reference one,
while the reconstruction quality becomes notably worse
for nine missing values. This is caused mostly due to
poor inference of Probe #37 by the imputation method
(see Figure 14(a)). Nevertheless, the result is still bet-
ter than the zero-padding method. Figure 18 shows the
reconstruction results with the same color codes as in Fig-
ure 15 when we have (a) 4+4 and (b) 9+9 combinations
of Bn and Bt missing values simultaneously.

All these results suggest that the nn-EFIT with the im-
putation method reconstructs equilibria reasonably well

FIG. 18. Same color code as in Figure 15. Combinations
of missing Bn and Bt are examined: (a) four missing Bn and
four mssing Bt case and (b) nine missing Bn and nine missing
Bt case.

except when the imputation infers the true value poorly,
e.g., Bn Probe #37 in Figure 14(a) and Table II. In fact,
the suggested imputation method [50] infers the miss-
ing values based on the neighboring intact values (using
Gaussian processes) while satisfying the Maxwell’s equa-
tions (using Bayesian probability theory). Consequently,
such a method becomes less accurate if (1) the neigh-
boring channels are also missing AND (2) the true val-
ues change fast from the neighboring values. In fact, Bn

Probe #37 happens to satisfy these two conditions, i.e.,
Probe #35 is also missing, and the true values of Probe
#35, #37 and #38 are changing fast as one can discern
from Figure 14(a).

V. CONCLUSIONS

We have developed and presented the neural network
based Grad-Shafranov solver constrained with the mea-
sured magnetic signals. The networks take the plasma
current from a Rogowski coil, 32 normal and 36 tangen-
tial components of the magnetic fields from the magnetic
pick-up coils, 22 poloidal fluxes from the flux loops, and
(R,Z) position of the interest as inputs. With three fully
connected hidden layers consisting of 61 nodes each layer,
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the network outputs a value of poloidal flux  . We set
the cost function used to train the networks to be a func-
tion of not only the poloidal flux  but also the Grad-
Shafranov equation �⇤

 itself. The networks are trained
and validated with 1, 118 KSTAR discharges from 2017
and 2018 campaigns.
Treating the o↵-line EFIT results as accurate magnetic

equilibria to train the networks, our networks fully re-
construct magnetic equilibria, not limited to obtaining
selected information such as positions of magnetic axis,
X-points or plasma boundaries, more similar to the o↵-
line EFIT results than the rt-EFIT is to the o↵-line EFIT.
Owing to the fact that (R,Z) position is a part of the
input, our networks have adjustable spatial resolution
within the first wall. The imputation method supports
the networks to obtain the nn-EFIT results even if there
exist a few missing inputs.
As all the necessary computation time is approxi-

mately 1 msec, the networks have potential to be used
for real-time plasma control. In addition, the networks
can be used to provide large number of automated EFIT
results fast for many other data analyses requiring mag-
netic equilibria.
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Appendix A: Real-time preprocess on magnetic
signals

As shown in Figure 2 and discussed in Section II,
normal (Bn) and tangential (Bt) components of mag-
netic fields measured by the magnetic pick-up coils and
poloidal magnetic fluxes ( FL) measured by the flux
loops tend to have residual drifts after calibrating the
magnetic diagnostics (MDs). We train the neural net-
works with preprocessed, i.e., drift adjusted, magnetic
signals. Therefore, we must be able to preprocess the
signals in real time as well. Here, we introduce how we
preprocess the magnetic signals in detail. The same pre-
process is applied to all the training, validation and test
data sets. Note that we do not claim that how we adjust
the magnetic signals corrects the drifts completely.

1. Real-time drift adjustment with information
obtained during the initial magnetization stage

To adjust the signal drifts, we deem a priori that the
signals drift linearly in time [63–65]. Of course, non-

FIG. 19. An example of temporal evolutions of (a) currents
in the PF coils, (b) normal and (c) tangential components
of magnetic fields measured by the magnetic pick-up coils,
respectively, and (d) poloidal flux measured by one of the
flux loops during the initial magnetization stage, i.e., t < 0,
for a typical KSTAR discharge. Information from the time
interval d1 (d2) is used to estimate a

m
i (bmi ).

linear drift may well exist in the signals. However, we
need to come up with a very simple and fast solution to
adjust the drifts in real time with the limited amount of
information. One can consider such linearization in time
as taking up to the first order of Taylor expanded drifting
signals. Therefore, we take the drifting components of
the signals (ymi ) from various types (the magnetic pick-
up coils or the flux loops) of MDs to follow:

y

m
i = a

m
i t+ b

m
i , (A1)

where t is the time. a

m
i and b

m
i are the slope and the

o↵set, respectively, of a drift signal for the i

th magnetic
sensor of a type m (magnetic pick-up coils or flux loops).
Then, our goal simply becomes finding a

m
i and b

m
i for all

i and m of interests before a plasma starts or the blip
time (t = 0) so that ymi can be subtracted from the mea-
sured magnetic signals in real-time, i.e., preprocessing
the magnetic signals for the neural networks.

We use two di↵erent time intervals during the initial
magnetization stage, i.e., before the blip time, for every
plasma discharge to find a

m
i and b

m
i , sequentially. Figure

19 shows an example of temporal evolutions of currents
in the poloidal field (PF) coils, Bn and Bt and poloidal
magnetic flux up to the blip time (t = 0) of a typical
KSTAR discharge.

During the time interval d1 in Figure 19, all the mag-
netic signals must be constant in time because there are
no changes in currents of all the PF coils as well as there
are no plasmas yet that can change the magnetic signals.
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Therefore, any temporal changes in a magnetic signal
during d1 can be regarded as due to a non-zero a

m
i . With

the knowledge of ami from d1 time interval, we obtain the
value of bmi using the fact that all the magnetic signals
must be zeros during the time interval d2 because there
are no sources of magnetic fields, i.e., all the currents in
the PF coils are zeros.
Summarizing our procedure, (1) we first obtain the

slopes ami based on the fact that all the magnetic signals
must be constant in time during d1 time interval, and
then (2) find the o↵sets b

m
i based on the fact that all

the magnetic signals, after the linear drifts in time are
removed based on the knowledge of ami , must be zeros
during d2 time interval.

2. Bayesian inference

Bayesian probability theory [51] has a general form of

p (W|D) =
p (D|W) p (W)

p (D)
, (A2)

where W is a (set of) parameter(s) we wish to infer, i.e.,
a

m
i and b

m
i for our case, and D is the measured data, i.e.,

measured magnetic signals during the time intervals of
d1 and d2 in Fig. 19. The posterior p (W|D) provides
us probability of having a certain value for W given the
measured data D which is proportional to a product of
likelihood p (D|W) and prior p (W). Then, we use the
maximum a posterior (MAP) to select the value of W.
The evidence p (D) (or marginalized likelihood) is typi-
cally used for a model selection and is irrelevant here as
we are only interested in estimating the parameter W,
i.e., ami and b

m
i .

We estimate values of the slope a

m
i and the o↵set b

m
i

based on Equation (A2) in two steps as described above:

Step (1) : p(ami | ~Dm
i,d1) / p( ~Dm

i,d1|ami )p(ami ), (A3)

Step (2) : p(bmi | ~Dm
i,d2, a

m⇤
i ) / p( ~Dm

i,d2|bmi , a

m⇤
i )p(bmi ),

(A4)
where ~Dm

i,d1 ( ~Dm
i,d2) are the time series data from the

i

th magnetic sensor of a type m (magnetic pick-up coils
or flux loops) during the time intervals of d1 (d2) as
shown in Fig. 19. a

m⇤
i is the MAP, i.e., the value

of a

m
i maximizing the posterior p(ami | ~Dm

i,d1). Since we
have no prior knowledge on a

m
i and b

m
i , we take pri-

ors, p(ami ) and p(bmi ), to be uniform allowing all the
real numbers. Note that a correct p(ami ) would be

equal to 1/
h
⇡

⇣
1 + (ami )2

⌘i
[66], but we sacrifice rigor

to obtain a fast solution. Furthermore, the poste-

rior for b

m
i should, rigorously speaking, be obtained by

marginalizing over all possible a

m
i , i.e., p(bmi | ~Dm

i,d2) =R
p(bmi | ~Dm

i,d2, a
m
i )p(ami | ~Dm

i,d1)da
m
i . Again, as we are in-

terested in real-time application, such a step is simplified
just to use a

m⇤
i .

With Equation (A1), we model likelihoods, p( ~Dm
i,d1|ami )

and p( ~Dm
i,d2|bmi , a

m⇤
i ), as Gaussian:

p( ~Dm
i,d1|ami ) =

1p
(2⇡)L|�m

i,d1|

⇥exp

0

BBB@
�

LP
tl2d1

h
a

m
i (tl � t0)�

⇣
D

m
i,d1(tl)�

D
D

m
i,d1(t0)

E⌘i2

2(�m
i,d1)

2
)

1

CCCA
,

(A5)

p( ~Dm
i,d2|bmi ,a

m⇤
i ) =

1p
(2⇡)K |�m

i,d2|

⇥exp

0

BBB@
�

KP
tk2d2

h
b

m
i �

⇣
D

m
i,d2(tk)� a

m⇤
i tk

⌘i2

2(�m
i,d2)

2

1

CCCA
,

(A6)

which simply state that noises in the measured signals
follow Gaussian distributions. Here, �m

i,d1 and �

m
i,d2 are

the experimentally obtained noise levels for the i

th mag-
netic sensor of a type m (magnetic pick-up coils and flux
loops) during the time intervals of d1 and d2 in Figure
19, respectively. tl and tk define the actual time intervals
of d1 and d2, i.e., tl 2 [�6,�1] sec and tk 2 [�14,�13]
sec with L and K being the numbers of the data points
in each time interval, respectively. t0 can be any value
within the d1 time interval, and we set t0 = �2 sec in

this work.
D
D

m
i,d1(t0)

E
, removing the o↵set e↵ect to ob-

tain only the slope, is the time averaged value of Dm
i,d1(t)

for t 2 [t0 � 0.5, t0 + 0.5] sec. We use the time averaged
value to minimize the e↵ect of the noise in D

m
i,d1(t) at

t = t0.
With our choice of uniform distributions for priors in

Equations (A3) and (A4), MAPs for a

m
i and b

m
i , which

we denote them as am⇤
i and b

m⇤
i , coincide with the max-

imum likelihoods which can be analytically obtained by
maximizing Equations (A5) and (A6) with respect to a

m
i

and b

m
i , respectively:

a

m⇤
i =

LP
tl2d1

h⇣
D

m
i,d1(tl)�

D
D

m
i,d1(t0)

E⌘
(tl � t0)

i

LP
tl2d1

[tl � t0]
2

, (A7)

b

m⇤
i =

1

K

KX

tk2d2

⇥
D

m
i,d2(tk)� a

m⇤
i tk

⇤
. (A8)

Now, we have attained simple algebraic equations based
on Bayesian probability theory which can provide us val-
ues of the slope ami and the o↵set bmi before the blip time,
i.e., before t = 0.
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Since the required information (ami and b

m
i ) to adjust

drifts in the magnetic signals is obtained before every
discharge starts, we can preprocess the magnetic signals
in real time. This is how we have adjusted the drift
signals shown in Figure 2.

Appendix B: Image relevant figures of merit - PSNR
and MSSIM

In Section IV, we used two image relevant figures of
merit, namely PSNR (peak signal-to-noise ratio) [60, 61]
and MSSIM (mean structural similarity) [62], to examine
performance of the developed neural networks. Although
these figures of merit are widely used and well known,
we present short descriptions of PSNR and MSSIM for
the sake of readers’ convenience. Notice that we treat
a reconstructed magnetic equilibrium as an image whose
dimension (a number of pixels) is set by the spatial grid
points.

1. Peak signal-to-noise ratio (PSNR)

PSNR is calculated as

PSNR = 10⇥ log10

2

64
max

�
y

Target
�2

1
M

PM
i=1

⇣
y

Target
i � y

?
i

⌘2

3

75 , (B1)

where yi is the value of either  or �⇤
 at the i

th posi-
tion of the spatial grid (analogous to a pixel value of an
image), and M for the total number of the grid points,
i.e., either 286(= 22⇥ 13) or 4225(= 65⇥ 65) depending
on our choice for reconstructing an equilibrium. max(·)
operator selects the maximum value of an argument, and
y

Target is an array containing ‘pixel’ values of a reference
EFIT ‘image’, that is a reconstructed magnetic equilib-
rium. y

? is also an array, and depending on whether
we wish to compare the o↵-line EFIT result with either
rt-EFIT result or nn-EFIT result, we select the corre-
sponding values.

2. Mean structural similarity (MSSIM)

MSSIM is calculated as

MSSIM =

�
2µyTargetµy? + C1

� �
2�yTargety? + C2

�
⇣
µ

2
yTarget + µ

2
y? + C1

⌘⇣
�

2
yTarget + �

2
y? + C2

⌘
,

(B2)
where µyTarget and µy? are the mean values of yTarget and
y

?, respectively. Here, yTarget and y

? mean the same as in
Section B 1. �2

yTarget and �2
y? are the variances of yTarget

and y

?, respectively; while �yTargety? is the covariance
between y

Target and y

?. C1 and C2 are used to prevent
a possible numerical instability, i.e., denominator being
zero, and set to be small numbers. Following [62], we
have C1 = 10�4 and C2 = 9⇥ 10�4.
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enberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,”
(2015), software available from tensorflow.org.

[58] R. Ge, F. Huang, C. Jin, and Y. Yuan, CoRR
abs/1503.02101 (2015), arXiv:1503.02101.

[59] L. Bottou, in in COMPSTAT (2010).
[60] Q. Huynh-Thu and M. Ghanbari, Electronics Letters 44,

800 (2008).
[61] JPEG vs. JPEG 2000: an objective comparison of image

encoding quality (2004).
[62] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-

celli, IEEE Transactions on Image Processing 13, 600
(2004).

[63] E. J. Strait, J. D. Broesch, R. T. Snider, and M. L.
Walker, Review of Scientific Instruments 68, 381 (1997).

[64] Xia, Yu-Jun, Zhang, Zhong-Dian, Xia, Zhen-Xin, Zhu,
Shi-Liang, and Zhang, Rui, Measurement Science and
Technology 27, 025104 (2015).

[65] Ka, E M, Lee, S G, Bak, J G, and Son, D, Review of
Scientific Instruments 79, 10F119 (2008).

[66] U. von Toussaint, Rev. Mod. Phys. 83, 943 (2011).

Page 17 of 17 AUTHOR SUBMITTED MANUSCRIPT - NF-103442.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1503.02101
http://arxiv.org/abs/1503.02101
http://arxiv.org/abs/1503.02101
http://dx.doi.org/10.1103/RevModPhys.83.943

