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Zusammenfassung

Die durch Korrelationen entstehenden Feinheiten in der Elektronenstruktur von Molekülen
sind weitgehend für das Auftreten vieler chemischer Phänomene verantwortlich. Werden die-
se Korrelationen stark, resultieren daraus wichtige Mechanismen wie das Aufbrechen moleku-
larer Bindungen oder Ladungsmigration. Diese Effekte korrekt zu beschreiben fällt oft sogar
den er- folgreichsten theoretischen Methoden wie der Dichtefunktionaltheorie schwer. Dies
liegt oft an der Art der verwendeten Approximationen, was die Entwicklungen neuartiger Her-
angehensweisen erforderlich macht. Des Weiteren zeigen jüngste Experimente im Bereich der
quantenelektrodynamischen Chemie eindrucksvoll, dass wichtige Mechanismen wie die zuvor
genannten durch den Einsatz photonischer Umgebungen stark modifiziert werden können,
was ein weites Feld für neue Anwendungen eröffnet. Theoretische Werkzeuge, die solche Si-
tuationen basierend ausschließlich auf grundlegenden physikalischen Prinzipien beschreiben
können, kommen erst jetzt auf den Markt.

Für die erste der genannten Herausforderungen, wird eine selbstkonsistente Dichtefunktional-
Embedding-Methode entwickelt, die von den üblichen Approximationen des Energiefunktio-
nals absieht und stattdessen direkt die exakte Dichte-Potenzial-Abbildung der Dichtefunktio-
naltheorie. Inspiriert durch die Density-Matrix Embedding Theory, wird das zu untersuchende
Gesamtsystem auf einen Satz von Fragmenten projiziert, welche dann sehr präzise beschrieben
werden können. Durch stetiges Zusammenführen der Einzelergebnisse wird das Kohn-Sham
Potenzial des Gesamtsystems aktualisiert, welches dann wiederum zu Konstruktion besserer
Projektionen für die Fragmente verwendet wird. Die Methode wird anhand einfacher Zwei-
Elektron-Modellsysteme getestet, die jedoch für übliche Dichtefunktional- Approximationen
herausfordernd sind. Dabei liefert die entwickelte Embeddingstrategie präzise Ergebnisse. Un-
ter anderem werden Signaturen starker Korrelationen, die in anderen Methoden fehlen, hier
mit bemerkenswerter Genauigkeit reproduziert. Daher bietet das vorgestellte Konzept einen
vielversprechenden Ansatz für die Funktionalentwicklung in der Dichtefunktionaltheorie und
ihren Erweiterungen, wie der quantenelektrodynamischen Dichtefunktionaltheorie.

Als vielversprechendes Instrument für polaritonische Chemie wird eine Coupled-Cluster Theo-
rie für stark gekoppelte Elektron-Photon Systeme konzipiert. Mit der entwickelten Methode
werden unter anderem Absorptionsspektren von Modellmolekülen in optischen Resonatoren
berechnet und mit numerisch exakten Ergebnissen verglichen. Dabei werden alle wesentli-
chen Merkmale der Referenzspektren für alle ausgewählten Kopplungsstärken mit der erwei-
terten Coupled-Cluster Theorie reproduziert, einschließlich der Rabi-Aufspaltungen der Ab-
sorptionspeaks und der Multiphoton-Prozesse, wobei Letztere bisher mit keiner anderen Ab-
initio-Methode gezeigt wurden. Dies eröffnet Anwendungsperspektiven, die sowohl über die
der Quantenoptik hinausgehen, da nun die Elektronenstruktur explizit miteinbezogen wird, als
auch über die der vorhandenen Ab-initio-Methoden. Die vorgestellte konzeptionelle Erweite-
rung der Coupled-Cluster Theorie hat das Potential einfach in bestehende quantenchemische
Computerprogramme integriert zu werden um damit Experimenten auf dem Gebiet der pola-
ritonischen Chemie zu interpretieren und präzise zu modellieren.
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Abstract

Subtleties in molecular electronic structure that arise from electronic correlations dictate most
of chemistry. Important processes such as molecular bond breaking or charge migration are
direct consequences of these correlations becoming dominant. Even the most successful the-
oretical approaches, such as density functional theory, however, still often struggle to describe
these effects due to the nature of employed approximations and therefore require additional
developments. Moreover, recent experiments in the field of quantum electrodynamical chem-
istry show that important chemical mechanisms such as those described above can be dras-
tically modified by using photonic environments, which opens a whole new field of possible
applications. Theoretical tools that address these situations from first principles are only now
being developed.

To address the first of the outlined challenges, we present a novel self-consistent density-func-
tional embedding technique, which directly targets at approximating the density-potential
mapping of exact density functional theory and therefore leaves the realm of standard energy-
functional approximations. Inspired by the density-matrix embedding theory, we project the
full system onto a set of small interacting fragments that can be solved accurately. Based on the
rigorous relation of density and potential in density functional theory, we then invert the frag-
ment densities to local potentials. Combining these results in a continuous manner provides
an update for the Kohn-Sham potential of the full system, which is then used to update the
projection. We benchmark our approach for notoriously difficult examples of molecular bond
stretching in one and two dimensions and show that in these cases the scheme provides accu-
rate approximations for densities and the Kohn-Sham potentials. We demonstrate that signa-
tures of strong correlations present in the exact exchange-correlation potential, even those that
so far have been missing in all approximate approaches, are reproduced by our method with
remarkable accuracy. Therefore, the methods provides a promising new path for functional de-
velopment in density functional theory and its extensions, such as quantum electrodynamical
density functional theory.

To provide a theoretical tool for quantum electrodynamical (or polaritonic) chemistry, we de-
velop a coupled-cluster theory for systems of electrons strongly coupled to photons. We show
benchmark results for ground and excited state properties of a model molecule in high-Q op-
tical cavities. By comparing to full configuration interaction results, we demonstrate that our
method quantitatively captures all key features present in the exact reference, including Rabi
splittings and multi-photon processes in all considered coupling regimes. Therefore, not only
does our method go beyond standard quantum optical approaches, since it includes an accu-
rate treatment of electronic structure, it also goes beyond existing ab intio methods in terms of
accuracy. A clear path on how to incorporate the developed extension of coupled-cluster theory
into existing quantum chemistry programs is provided, paving the way for high-accuracy mod-
eling and interpretation of experiments in the field of polaritonic chemistry with a perspective
of application to all types of fermion-boson coupled systems.
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1Introduction

"Chemistry is dead. Long live chemistry!" – P. M. A. Dirac1

With the formulation of the Schrödinger equation and its successful application to the hydro-
gen atom [2] and the hydrogen molecule [3], Quantum Chemistry was born. This field focuses
on applying principles of quantum mechanics to describe the behavior of atomic, molecular, or
even solid state systems. Given the fact that underlying equations can (almost) never be solved
exactly, approximate mathematical and computational tools have to be developed. Following
Pople [4], these tools ideally should assist the interpretation of observed phenomena on the
one hand and predict outcomes of new experiments on the other hand. In this spirit, reliable
predictive modeling is vital for the design of novel compounds, the optimization of chemical
processes, or even the discovery of new physical phenomena.

On the journey towards predictive modeling, an extensive toolbox was developed over the past
decades [5], with methods varying in range of applicability, accuracy, and computational cost.
These span from the almost exact full configuration interaction (FCI) calculations for diatomic
molecules [6] to combined quantum-mechanics/molecular-mechanics (QM/MM) approaches
for enzymatic reactions in biological systems [7]. And, in order to cover an increasing range of
applications, this toolbox is constantly extended and improved.

We can identify two fundamental types of challenges that drive method development in quan-
tum chemistry: first being posed by the limitations of established theoretical methods and sec-
ond resulting from experimental insights, both exemplified in the following.

New approach within an established method

Over the past decades, Density Functional Theory (DFT) has become a very successful method
able to accurately describe molecular and condensed matter systems. The theory is based
on an exact reformulation of the electronic Schrödinger equation, where all observables be-
come unique functionals of the low-dimensional electronic density [8] instead of the high-
dimensional electronic wave function. DFT is usually employed in its Kohn-Sham version,
where the density of the targeted interacting system is calculated via an auxiliary non-interact-
ing system [9], making the method very computationally efficient. All interactions and correla-
tions present in the system are mimicked by the so-called exchange-correlation (xc) potential
which is usually determined as the derivative of the xc energy functional Exc[n]. This func-
tional is unknown and has to be approximated in practice [9–11]. Hence, method development
in DFT usually boils down to construction of new functionals.

The approximate character of Exc[n] is both blessing and curse of DFT. For instance, the the-
ory is often believed to be incapable of describing strong electronic correlation, a drawback
that is indeed not intrinsic to the theory itself, but caused solely by the currently employed ap-
proximations to the exact energy functional. Additionally, a recent study showed that modern
functionals that produce better energies do not automatically serve as better approximations
to the exact functional [12], encouraging the quest for radically new strategies within the DFT
framework [13].

1paraphrased from [1]
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2 Introduction

Methods that explicitly target electronic correlations can provide strategies for novel develop-
ments within the DFT framework. For small systems, correlations are considered by directly
targeting the wave function by means of e.g. FCI [14], coupled-cluster theory [15], or density-
matrix renormalization group (DMRG) [16]. A strategy for using these insights on a larger scale
is provided by embedding theories, such as dynamical-mean-field theory (DMFT) [17–19] and
density-matrix-embedding theory (DMET) [20–22]. These approaches that combine accurate
calculations of parts of a system with computationally cheap treatment of the rest.

In part II of this thesis, we propose a DMET-inspired density-functional embedding approach
that does not construct yet another approximate energy functional but targets directly the map-
ping between the electronic density and the Kohn-Sham potential. We also do not derive an
explicit expression of this potential but rather employ a direct numerical construction based
on local approximations to the density-potential mapping that are obtained from interacting
fragment wave functions.

Established method addressing new challenges

Driven by experimental progress in the design and control of nanostructures, an exciting field
of applications has emerged at the interface between quantum optics, quantum chemistry and
material sciences. Through the collective coupling of many emitters to a cavity mode [23] or by
placing single molecules in plasmonic nanostructures [24], the interaction strength between
light and matter can be increased to a hundredfold or more of its free-space analog, the fine
structure constant α≈ 1/137. Hybrid light-matter states, called polaritons, emerging as a con-
sequence of this strong light-matter coupling can substantially change chemical and physical
properties of molecular systems [25–28], examples being altered chemical reactions [29, 30] or
modifications of intersystem crossings [31].

Understanding these polariton-mediated phenomena requires theoretical approaches, where
both, light and matter, are treated on an equal quantum mechanical footing [32–34]. An exten-
sion of existing quantum chemical methods to include photons provides a natural route in this
direction, on which several electronic structure methods embarked in the recent years [35–45].
Surprisingly, one of the most accurate and reliable methods available in quantum chemistry,
the coupled-cluster (CC) theory, is so far not among the aforementioned methods. In part III
of this thesis, we are aiming on closing this gap.

CC theory is based on an ansatz for the electronic wave function that allows for an approximate
incorporation of all electronic configurations arising from a given mean-field reference state
into the ground state. That the requirements for a computationally tractable CC theory can
be met also for bosonic degrees of freedom was demonstrated by its application to molecular
vibrations [46]. Through fermionization of bosonic excitations we are able to extend the theo-
retical framework of CC theory such that coupled electron-photon systems can be addressed.
We illustrate the potential of such an approach to describe the behavior of polaritonic molecu-
lar systems with a computational cost that scales polynomially in system size.

Physical sciences are at their heart experimental disciplines, meaning that a theory is not worth
much if it is not verified by an experiment. Same applies to every approximate method de-
veloped within an established theory: in the end, its predictions have to be checked against
experimental findings.
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However, it can take an enormous amount of effort either to implement a new method effi-
ciently so that it can simulate an experiment, or to design and perform an experiment that in
principle can exhibit the theoretically proposed features. Instead, we provide a simple proof
of concept for both introduced approaches by testing them against more accurate theoretical
methods, serving as an intermediate step towards their final verification.





Part I:

Theoretical foundations

In this part of the thesis, we introduce the main concepts of the quantum
many-body problem of molecular physics, name important state-of-the-
art approaches to solve it, and briefly explain their benefits and shortcom-
ings. We further extend the many-body problem to electronic systems
coupled to photons, which require novel approaches to treat both, light
and matter, on equal quantum mechanical footing.





2Quantum many-body problem

We begin by introducing the many-body problem of atomic, molecular and condensed matter
physics, which will be further reduced to an electron-only problem. We further regard only
systems, where relativistic effects do not play a role. Also, only closed systems, i.e. systems
that exchange neither particles nor energy with their environment, are considered. In case of
more than one electron, we will only deal with systems that have the same amount of spin-up
and spin-down electrons and, hence, an even number of particles. Those systems are called
closed-shell systems.

2.1 Schrödinger equation

In standard quantum mechanics, a closed system at a given time t is uniquely described by
a vector |Ψ(t )〉1 in an abstract complex Hilbert space H that we will discuss in section 2.2 in
greater detail. Here, we just establish the fact that to this space we can assign a dual space H ∗

(also a Hilbert space), such that elements of this dual space 〈Ψ| ∈ H ∗ are linear functionals
that map vectors from H onto complex numbers [47, 48]

H ∗ = [〈Ψ|; 〈Ψ| : H −→C; 〈Ψ| linear] (2.1)

The main principle in physics is that information about a system is gained by measuring it and
we call every measurable quantity an observable. In quantum mechanics, an observable O is
represented by a linear self-adjoint2 operator Ô on H and it’s measured value is given by

〈O〉 = 〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 , (2.2)

if the system is in state |Ψ(t )〉 6= 0. The states are usually normalized 〈Ψ|Ψ〉 = 1.

Perhaps the most important observable of a system is the energy. The corresponding operator
is called the Hamiltonian Ĥ of the system. It fully determines the dynamics of a system for a
given initial state |Ψ(t0)〉 via the time-dependent Schrödinger equation

iħ ∂

∂t
|Ψ(t )〉 = Ĥ |Ψ(t )〉. (2.3)

Specifically, for time-independent Hamiltonians the time-dependent Schrödinger equation can
be solved by separating a solution |Ψ j (t )〉 in its spatial and temporal part and considering the
temporal part first. The state

|Ψ j (t )〉 = e−i
Ei
ħ t |Ψ j 〉 (2.4)

is a solution, which is easily verified by inserting it into Eq. (2.3)

iħ ∂

∂t
|Ψ j (t )〉 = e−i

Ei
ħ E j |Ψ j 〉 = e−i

Ei
ħ Ĥ |Ψ j 〉. (2.5)

1We will often drop the functional dependence on time, if it is not particularly important.
2For H finite the attribute self-adjoint is equivalent to hermitian.

5



6 Quantum many-body problem

In this way we have eliminated the time-dependence from Eq. (2.3). The remaining part is the
time-independent Schrödinger equation

Ĥ |Ψ j 〉 = E j |Ψ j 〉, (2.6)

which we from now on simply call Schrödinger equation. The states |Ψ j 〉 are called eigenstates
of Ĥ . The lowest eigenstate, if it exists, is the ground-state of the system |Ψ0〉 with the energy
E0.

To solve Eq. (2.6) for a certain set of systems is the major task in electronic structure theory.
It is a high-dimensional problem and requires approximations in most cases, some of which
we will introduce in section 3.1. But first, we will discuss underlying Hilbert spaces H and
Hamiltonians in the rest of this chapter.

2.2 Spaces in quantum mechanics

2.2.1 One-particle Hilbert space

We begin the investigation of spaces in quantum mechanics with the simplest case of one (spin-
less) particle moving in some external potential v(r ). In position space it is described by a
complex-valued ϕ(r ), which is called (position-space) wave function. It is related to the state
|ϕ〉 via

ϕ(r ) = 〈r |ϕ〉 or |ϕ〉 =
∫

drϕ(r )|r 〉. (2.7)

Here, the Hilbert space is spanned by position vectors |r 〉 and ϕ(r ) are the expansion coeffi-
cients of the state |ϕ〉 in this space3. The scalar product in this case simplifies to the L2-scalar
product

〈ϕ′|ϕ〉 =
∫

dr
∫

dr ′ϕ′∗(r ′)ϕ(r ) 〈r ′|r 〉︸ ︷︷ ︸
δ(r ′−r )

=
∫

drϕ′∗(r )ϕ(r ). (2.8)

The Hamiltonian is obtained by promoting the canonical coordinate r and momentum p in
the corresponding classical Hamiltonian (sum of kinetic energy T and potential energy V ) [47]

H = p2

2m
+ v(r ) (2.9)

to operators r̂ and p̂ . In real-space these operators are [49]

p̂ =−iħ∇ r̂ = r (2.10)

Hence, we obtain the following one-particle Hamiltonian in real-space representation4

ĥ =−ħ2∇2

2m
+ v(r ). (2.11)

The eigenstates of this Hamiltonian that follow from

ĥϕi (r ) = εiϕi (r ) (2.12)

3Note that also the state |ϕ〉 is often called wave function as well as any other representation of |ϕ〉 such as the
momentum-space representation ϕ(p).

4We use lowercase symbols like ĥ for operators that contain only one coordinate at a time (one-body operators)
and uppercase symbols like Ĥ for operators that depend on more than one coordinate (many-body operators),
respectively.
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are complex functions that span the full Hilbert space H (1) of the problem. Examples are plane

waves5 ψ(r ) = e
i
ħ p·r with fixed momenta that are solutions of the one-body Schrödinger equa-

tion for v(r ) = 0 or hydrogen atomic orbitals for the electrostatic potential of one proton. In the
continuum, the number of these eigenfunctions is uncountably infinite. In practice, however,
their amount is reduced to a finite number.

To make the description of an electron complete, we need to add a spin that is accounted for by
a two-dimensional space. Non-relativistic one-particle Hamiltonians without magnetic fields
do not contain spin-dependent terms, so their spectra are not affected by the spin. Hence,
one-electron wave-functions can simply be written as a product of a spatial and a spin wave
function

ψ (x) =
{
ϕ(r )σ(χ) ≡ψσ (r ) ,

ϕ(r )σ′(χ) ≡ψσ′
(r ) ,

(2.13)

where σ(′) are two orthonormal functions accounting either for spin up (↑) or for spin down
(↓). The wave function ψ is called a spin orbital. For the sake of convenience, we will use a
combined variable x = (r ,σ) and denote a spin orbital simply by ψ (x). We will refer to spin
orbitals also as one-particle basis functions of the Hilbert space. The dimension of the one-
particle Hilbert space equals to the number of considered spin orbitals that we denote by 2N ,
with N being the number of spatial orbitals ϕ(r ). In this thesis, we only will use orthonormal
basis sets with

〈ϕ′|ϕ〉 =
∫

drϕ′∗(r )ϕ(r ) = δϕϕ′ . (2.14)

2.2.2 Many-particle Hilbert space

Many-particle Hilbert spaces are build from one-particle Hilbert spaces and many-body wave
functions are build from spin orbitals. If we assume two non-interacting distinguishable elec-
trons, their two-body wave function would be

Φdist.(x1, x2) =ψ1(x1)ψ2(x2). (2.15)

Electrons, however, are indistinguishable particles, meaning we could not tell them apart by
performing any kind of measurement. The spin-statistic theorem [50] states that there are only
two kinds of particles:

• bosons that have integer-spin and whose wave function has the same value (is symmet-
ric) when the coordinates of any two particles are swapped,

• fermions that have half-integer-spin and whose wave function changes sign (is anti-
symmetric) when the coordinates of any two particles are swapped.

Electrons are fermions and therefore the wave function of two electrons has to fulfill the con-
ditionΦ(x1, x2) =−Φ(x2, x1), from which follows that

Φ(x1, x2) = 1p
2

(
ψ1(x1)ψ2(x2)−ψ1(x2)ψ2(x1)

)
. (2.16)

This is in accordance to the Pauli exclusion principle, which states that two particles cannot
occupy the same spin orbital.

5Strictly speaking, plane waves are generalized eigenstates of the kinetic energy operator, since they are defined
on an infinite space and cannot be normalized. In physics literature, however, this subtlety is usually neglected.
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The function in Eq. (2.16) is also regarded as the anti-symmetric product of two spin orbitals.
The generalization to the Ne-particle case is given by

Φ
(

{x i }
)= 1

p
Ne!

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) · · · ψ1(x Ne )
ψ2(x1) ψ2(x2) · · · ψ2(x Ne )

...
...

. . .
...

ψNe (x1) ψNe (x2) · · · ψNe (x Ne )

∣∣∣∣∣∣∣∣∣∣
, (2.17)

|Φ〉 = 1
p

Ne!

Ne∧
i=1

|ψi 〉 ≡ |ψ1 · · ·ψNe〉−, (2.18)

where ∧ denotes the per construction anti-symmetric wedge product6 [51]. In Eq. (2.18) we
introduced the general form of a Slater determinant and in Eq. (2.17) its real-space representa-
tion.

For a given set of orbitals, all possible Slater determinants build the Ne-particle Hilbert space
of the problem. For the space itself we write

H (Ne)
− ≡

Ne∧
i=1

H (1) ⊂ Ne⊗
i=1

H (1) ≡H (Ne). (2.19)

The Ne-electron Hilbert space H (Ne)− is anti-symmetrized by construction, since it is spanned
by all possible Ne-particle Slater determinants that can be built from 2N basis functions. It’s
dimension is given by a binomial coefficient

dim H (Ne)
− =

(
2N

Ne

)
. (2.20)

As indicated in Eq. (2.19), H (Ne)− can be viewed as a subspace of a larger Hilbert space H (Ne)

that does not include particle-exchange symmetry. In practice, it is often used even though it
has unphysical states, since it is easier to construct. In these cases, wave functions with the
proper symmetry are chosen.

2.2.3 Fock space

Usually, when relativistic effects are neglected and the system is closed, the electronic Hamil-
tonian conserves the number of particles, i.e. an Ne-particle wave function propagated in time
remains an Ne-particle wave function. So it is sufficient to consider only Ne-particle Hilbert
spaces introduced in the previous section. However, it will prove useful to consider more com-
plex spaces, the so-called Fock spaces, as they provide the basis for the formalism of second
quantization.

The electronic Fock space is given by a direct sum of Hilbert spaces with all possible numbers
of particles up to Ne, starting with 0 particles (vacuum space, which is identified byC)

F =C⊕H (1)
− ⊕H (2)

− ⊕·· ·⊕H (2N )
− . (2.21)

We can now relate Slater determinants with basis states in Fock space via

|Φi 〉→ 0⊕0⊕·· ·⊕ |Φi 〉⊕ · · ·⊕0. (2.22)

The basis is complete, if we further define the vacuum |0〉 ≡ |Φ0〉. We are now able to define the
identity operator on F as

1F =
4N∑
i=0

|Φi 〉〈Φi |, (2.23)

6a ∧b =−(b ∧a)
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where the limits result from summing over Hilbert-space dimensions from Eq. (2.20) for all pos-
sible electron numbers

dim F =
2N∑

Ne=0

(
2N

Ne

)
= 4N . (2.24)

By employing Eq. (2.23), any wave function can be represented as

|Ψ〉 =
4N∑
i=0

|Φi 〉〈Φi |Ψ〉︸ ︷︷ ︸
≡Ψi

(2.25)

and an operator as

Ô =
4N∑
i=0

4N∑
j=0

|Φi 〉〈Φi |Ô|Φ j 〉︸ ︷︷ ︸
≡Oi j

〈Φ j | (2.26)

The equations above provide a vector-matrix representation of states and linear operators in
Fock space.

2.3 Second quantization

Second quantization is a formalism that allows for efficient treatment of identical particles and
can be applied to both, fermions and bosons. Here we will consider only electrons and apply
the same concepts to bosons later in section 4.2, when we introduce photons as quanta of the
electromagnetic field.

In the formalism of second quantization, a basis function of a many-body Hilbert space is not
written as a complex function of spatial and spin coordinates of every particle, which includes
the bothersome anti-symmetrization embodied in its determinant structure (see Eq. (2.17)). It
is rather formulated in terms of occupation numbers of every basis function spanning the one-
particle Hilbert space. Due to the Pauli-exclusion principle, for fermions all these occupation
number are given by either 1 or 0.

Hilbert spaces with different particle numbers within the Fock space are then connected
through adding or removing particles from certain orbitals, meaning adding or removing cor-
responding rows and columns from Slater determinants. We call the described transition be-
tween neighboring Hilbert spaces creation or annihilation of a single electron. The correspond-
ing operators read

ĉ†
j : F →F

(
H (n)

− →H (n+1)
−

)
, (2.27)

|ψ1 · · ·ψn〉− 7→ |ψ jψ1 · · ·ψn〉−, (2.28)

and ĉ j : F →F
(
H (n+1)

− →H (n)
−

)
, (2.29)

ĉ j =
(
ĉ†

j

)†
, with ĉ j |0〉 = 0. (2.30)

Every basis state in the Fock space can be constructed as

|ψ1 · · ·ψn〉− = ĉ†
1 · · · ĉ†

n |0〉. (2.31)

The anti-symmetric character of fermionic states results in the following feature: when apply-
ing two annihilation operators, we obtain

ĉ2 ĉ1|ψ1ψ2 · · ·ψn〉− = |ψ3 · · ·ψn〉−, (2.32)

ĉ1 ĉ2|ψ1ψ2 · · ·ψn〉− =−ĉ1 ĉ2|ψ2ψ1 · · ·ψn〉− =−|ψ3 · · ·ψn〉−. (2.33)
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This can be generalized to the anti-commutator7 relations for fermionic creation and annihi-
lation operators {

ĉi , ĉ j

}
=

{
ĉ†

i , ĉ†
j

}
= 0,

{
ĉi , ĉ†

j

}
= δi j . (2.34)

We further define the occupation-number operator

ĉ†
i ĉi |Φ〉 = |Φ〉

{
1, if |ψi 〉 in |Φ〉,
0, if |ψi 〉 not in |Φ〉. (2.35)

Hence, a Slater determinant is fully determined by the number of particles and occupation
numbers of every orbitals.

At this point, we want to mention that the Fock space F itself can be equivalently constructed
(in the style of second quantization) as a tensor product of what we call spin-orbital Fock
spaces. In fact, we can assign a Fock space to each spin-orbital |ψ j 〉

F j ≡ |0〉 j ⊕|1〉 j , (2.36)

since every fermionic orbital is either empty (|0〉) or occupied (|1〉), resulting in a set of two-
dimensional orbital Fock spaces. The full Fock space is then constructed via

F =
N⊗

j=1
F j (2.37)

and we can associate e.g. for the vacuum

|0〉 =
N⊗

j=1
|0〉 j . (2.38)

This construction can be easily defined for a finite orbital set and is equivalent to the construc-
tion in Eq. (2.21).

Operators in second quantization

Since every basis state of the Fock space can be constructed by employing creation and anni-
hilation operators, also every linear operator on this space can be expressed in terms of these
operators. This is done by combining Eq. (2.26) and Eq. (2.31).

We will show this reformulation explicitly for a relevant set of operators, namely those that
conserve the number of particles in the system and that depend on at most two particle coor-
dinates, since all electronic Hamiltonians considered here share these features (see section 2.4
for more details). Generalization to other types of operators is straight-forward.

We begin by writing an operator Ô as a sum of its one and two-body components

Ô =
Ne∑
i

Ô(1)
i + 1

2

Ne∑
i , j

Ô(2)
i , j , (2.39)

meaning that Ô(1)
i acts on particle i and Ô(2)

i , j on particles i and j simultaneously. From section
2.3 we know that Slater determinants can be mapped onto each other with help of creation and
annihilation operators. As an example, consider two determinants with the same number of
electrons |Φi 〉 and |Φ j 〉 that differ by only one orbital, |ψi 〉 in |Φi 〉 and |ψ j 〉 in |Φ j 〉, respectively.

7{a,b} = ab +ba



2.4 Molecular Hamiltonian 11

We can relate them via
|Φi 〉 = ĉ†

i ĉ j |Φ j 〉. (2.40)

If we now apply the one-body part of Ô to a Slater determinant

Ne∑
i

Ô(i )
1 |Φ j 〉 =

Ne∑
i
|ψ1 · · ·Ô1ψi · · ·ψNe〉−, (2.41)

we immediately see that only those matrix elements 〈Φi |Ô|Φ j 〉 can differ from zero, for which
|Φi 〉 and |Φ j 〉 differ at most by only one orbital. Hence, we can conclude that

Ne∑
i

Ô(i )
1 →

Ne∑
i , j=1

〈ψi |Ô1|ψ j 〉ĉ†
i ĉ j . (2.42)

For the two-body part, the expression

1

2

Ne∑
i , j

Ô(i , j )
2 → 1

2

Ne∑
i , j ,k,l

〈ψiψ j |Ô2|ψkψl 〉ĉ†
i ĉ†

j ĉl ĉk (2.43)

can be derived in the same manner.

2.4 Molecular Hamiltonian

In this section, we introduce a typical Hamiltonian used in atomic, molecular and condensed
matter physics. It is constructed from the kinetic energies of the nuclei (subscript n) and the
electrons (subscript e) as well as all possible electrostatic particle-particle interactions (Ŵ -
operators)

Ĥen = T̂e + T̂n +Ŵee +Ŵnn +Ŵen. (2.44)

At this point, no external potentials like e.g. electromagnetic potentials are included.

In real space individual terms in atomic units8 read:

T̂e = −
Ne∑
j=1

∇2
r j

2
(2.45)

T̂n = −
Nn∑
J=1

∇2
R J

2M J
(2.46)

Ŵee =
Ne∑
j=1

Ne∑
k> j

1

|r j − r k |
(2.47)

Ŵnn =
Nn∑
J=1

Nn∑
K>J

ZJ ZK

|R J −RK |
(2.48)

Ŵen =−
Ne∑
j=1

Nn∑
K=1

ZK

|r j −RK |
(2.49)

Here, lowercase letters are used for electrons and uppercase letters for nuclei, respectively. The
symbol M J denotes the mass and ZJ the atomic number of the nucleus J . This Hamiltonian
can be obtained from classical mechanics in the same fashion as the one-body Hamiltonian in
section 2.2.1 with additional pairwise interactions between all charged particles, which here is
accounted for by the Coulomb interaction.

8We use atomic units starting from here throughout the thesis, if not stated otherwise.
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2.4.1 Born-Oppenheimer approximation

The Hamiltonian in Eq. (2.44) is often simplified by applying the Born-Oppenheimer (BO) ap-
proximation [52]. This approximation is based on the fact that nuclei are much heavier than
electrons and therefore usually much slower. Consequently, it is a reasonable approximation to
consider electrons that move in an electrostatic field created by fixed nuclear charges. The nu-
clear kinetic energy is then approximately zero and nuclear coordinates enter the Schrödinger
equation not as variables, but as parameters.

Hence, we can approximately solve the Schrödinger equation for Ĥen, if we first solve the elec-
tronic Schrödinger equation for every set of nuclear coordinates

Ĥe, {R J }|Ψe〉{R J } = Ee, {R J }|Ψe〉{R J }, (2.50)

with

Ĥe, {R J } =−
Ne∑
j=1

1

2
∇2

r j︸ ︷︷ ︸
T̂

+
Ne∑
j=1

Ne∑
k> j

1

|r j − r k |︸ ︷︷ ︸
Ŵ

+ v{R J }
(

{r i }
)

︸ ︷︷ ︸
V̂

(2.51)

and

v{R J }
(

{r i }
)=−

Ne∑
j=1

Nn∑
K=1

ZK

|r j −RK |
. (2.52)

Here, the subscript
{

R J
}

denotes the parametric dependence on nuclear coordinates. We will
drop this dependence later and just refer to the electrostatic potential of the nuclei as some
external potential vext(r ).

Although it is much simpler than the original molecular many-body problem, solving the pure-
ly electronic Schrödinger equation accurately for many-electron systems remains one of the
main challenges in electronic structure theory. Due to the instantaneous electron-electron re-
pulsion, all electrons have to be taken into account simultaneously, which does not allow for
any simple additional separation (parametric treatment of electronic coordinates).

We will dedicate large parts of this thesis to approximate methods for solving the electronic
many-body problem. But before considering these methods, let us briefly discuss how we
would proceed with the solutions. In the clamped-nuclei approximation, additionally to the
energy of the electrons Ee, {R J }, the total energy of the system must include the (in this case
constant) repulsion energy of the nuclei

Ee, {R J } +
Nn∑
J=1

Nn∑
K>1

ZJ ZK

|R J −RK |
. (2.53)

Further, we already have established that within the BO approximation, the electrons react
instantaneously to nuclear motion. Hence, if we try to solve for the ground state of the full
system, we can always assume that the electrons are in their ground state for any particular
molecular configuration. In the light of the above, for the nuclear Hamiltonian we write

Ĥ BO
n =−

Nn∑
J=1

1

2M J
∇2

R J
+Ee, {R J } +

Nn∑
J=1

Nn∑
K>1

ZJ ZK

|R J −RK |︸ ︷︷ ︸
V BO({R J })

. (2.54)

Here, the clamped-nuclei energy of the system as defined in Eq. (2.53) serves as a potential
energy surface V BO

({
R J

})
on which the nuclei move.
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The BO approximation provides remarkably good results for a large range of problems, es-
pecially for energetically low-lying potential energy surfaces [53]. In this thesis, we will al-
ways work within the BO approximation and concentrate on solving the electronic Schrödinger
equation in Eq. (2.50), especially for the electronic ground state.

2.4.2 Electronic Hamiltonian in second quantization

We reformulate the clamped-nuclei Hamiltonian of Eq. (2.51) in terms of particle creation and
annihilation operators as introduced in section 2.3

Ĥe = T̂ + V̂︸ ︷︷ ︸
≡ĥ

+Ŵ = ∑
i , j ,σ

hi j ĉ†
iσĉ jσ+

1

2

∑
i , j ,k,l ,σ,σ′

Wi j kl ĉ†
iσĉ†

jσ′ ĉlσ′ ĉkσ . (2.55)

By following Eqs. (2.42)-(2.43), the pre-factors in Eq. (2.55) are given by

hi j =
∫

dr ϕ∗
i (r )

[
−1

2
∇2

r + vext(r )

]
ϕ j (r ), (2.56)

Wi j kl =
∫

dr
∫

dr ′ϕ∗
i (r )ϕ∗

j (r ′)
1

|r − r ′|ϕl (r ′)ϕk (r ). (2.57)

These quantities are often referred to as one- and two-electron integrals over spatial orbitals.

More generally, two-electron integrals for spin-orbitals in physicists’ notation9 are defined as

〈i j |kl〉 =
∫

d x
∫

d x ′ψ∗
i (x)ψ∗

j (x ′)
1

|r − r ′|ψl (x ′)ψk (x) (2.58)

and certain pairs of these integrals are summarized as

〈i j ||kl〉 = 〈i j |kl〉−〈i j |lk〉. (2.59)

We will use these expressions later in section 3.1.3.

9In chemistry, usually a different notation due to different order of orbitals is used.
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Even though the complexity of the Schrödinger equation for a molecular or condensed matter
system can be reduced significantly by applying the BO approximation, it still can be solved
exactly only for a small range of problems. This is caused by the fact that the Hilbert space of
the problem grows exponentially with the number of single-particle basis states (see Eq. (2.20)
and Eq. (2.24)), a problem that is known as the exponential wall of many-body physics.

In this chapter, we briefly introduce popular methods to attack this wall. We will only consider
ab initio methods, which means that only physical constants and mathematical principles are
used to develop approximations and no empirical knowledge e.g. from experiments is used. Ab
initio electronic structure methods can be roughly divided into two categories (see Fig. 1):

• Wave-function methods: These are methods that aim at directly approximating the
many-body wave function of the system. Here, we will concentrate on popular meth-
ods used in quantum chemistry [5] with emphasis on coupled-cluster theory [15]. Most
wave-function methods are still computationally expensive and can only be applied to
rather small systems.

• Functional methods: These methods replace the wave-function as a descriptor for the
system by a lower dimensional object. Observables are then calculated in terms of this
lower dimensional object. Here, we will introduce probably the most popular of these
methods – density-functional theory [8]. Its computational efficiency makes it applicable
to a large range of problems. The accuracy of results, however, strongly depends on the
particular system as well as the chosen functional.

Methods from both groups provide results with different levels of accuracy, depending on ap-
proximations utilized in them as well as the particular system to which a method is applied.
Methods that combine high-level with low-level approaches are commonly referred to as em-
bedding theories [7, 54, 55]. Those methods enable the quantum treatment of large system by
combining an accurate description of parts of a system with computationally cheap treatment

Figure 1. Overview of strategies to solve the electronic Schrödinger equation. Roughly speaking, elec-
tronic structure methods either target directly the many-body wave function of the system or a derived
lower dimensional object. Combination of both strategies is given by (wavefunction-in-functional) em-
bedding methods.

15
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of the rest. Here, we introduce a simple but effective quantum embedding framework given by
the DMET approach [20–22].

3.1 Wave function-based approaches

The starting point for method development is the Rayleigh-Ritz variational principle [5]. It
states that the energy functional defined on an Ne-electron Hilbert space takes its minimum (if
it exists) at the ground-state wave function of the system

E0 = 〈Ψ0|Ĥ |Ψ0〉 = min
{|Ψi 〉6=0}

〈Ψi |Ĥ |Ψi 〉
〈Ψi |Ψi 〉

, (3.1)

which is basically a reformulation of the Schrödinger equation in Eq. (2.6).

Now, since this minimization on the full Hilbert space of the problem is in general not feasible,
in practice only a subset of vectors in H (Ne) is chosen. The energy is then minimized with
respect to few parameters that define this subset. Methods that obey the principle in Eq. (3.1)
are called variational methods.

3.1.1 Hartree-Fock method

In the Hartree-Fock (HF) method [56, 57], the subset of wave functions on which the mini-
mization of Eq. (3.1) is performed, consists of Slater determinants. The HF solution is obtained
via optimizing the spin-orbitals

{|ψi 〉
}

from which the Slater determinant |Φ0〉 is built (see
Eq. (2.18)). This means, the many-body problem is reduced to the following set of N one-body
problems

f̂ |ψi 〉 ≡ ĥ|ψi 〉+
∑
i 6= j

〈ψ j |Ŵ |ψ j 〉|ψi 〉−〈ψ j |Ŵ |ψi 〉|ψ j 〉 = εi |ψi 〉, (3.2)

with the following real-space representation of the interaction integrals

〈ψa |Ŵ |ψb〉|ψc〉 ≡
[∫

d x ψ∗
a(x)ψb(x)Ŵ (r ,r ′)

]
ψc (x ′). (3.3)

The spin-orbitals |ψi 〉 are eigenstates of the introduced Fock operator f̂ = f̂
[{|ψi 〉

}]
, mean-

ing that Eq. (3.2) provides a fixed-point scheme and can be solved trough a self-consistent field
(SCF) algorithm [5, 58]. It consists of:

1. constructing the Fock operator f̂ (0) from an initial set of orbitals
{|ψi 〉

}(0);

2. diagonalizing f̂ (0) to obtain a new set of orbitals
{|ψi 〉

}(1);

3. repeating this procedure until self-consistency is reached.

In this framework, the HF method boils down to an optimization of the single-particle orbitals
from which an approximate ground-state wave function, the HF Slater determinant, is con-
structed.

The HF Slater determinant is often referred to as the mean-field solution, since the HF approx-
imation can be understood in a way that every electron feels the average Coulomb repulsion of
all other electrons, their mean field1.

1Generally, mean-field approximation of a product of two one-body operators Â and B̂ means disregarding
fluctuation terms from the expansion ÂB̂ = Â〈B̂〉+〈Â〉B̂ −〈Â〉〈B̂〉+(((((((hhhhhhh

(
Â−〈Â〉)(B̂ −〈B̂〉) .
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All observables can be calculated as expectation values with respect to the HF Slater determi-
nant, e.g. the HF energy is given by

EHF = 〈Φ0|Ĥ |Φ0〉 =
Ne∑

i=1
εi − 1

2

Ne∑
i , j=1

〈ψi |〈ψ j |Ŵ |ψi 〉|ψ j 〉. (3.4)

HF theory is the simplest and computationally cheapest wave-function method. The numer-
ically demanding part of the algorithm is the construction of the Fock operator from the two-
body interaction term Ŵ , which, if N is the measure of system size, formally scales as N 4. In
practice, this scaling is reduced to N 2 by using screening techniques [58] or even to linear scal-
ing [59].

Although based on a crude approximation, the HF method provides surprisingly good results
for a large range of problems, often accounting for more than 99% of the total energy. Unfortu-
nately though, the energy differences that matter for chemical processes are usually far below
1% and better approximations are necessary. For many problems, however, the HF Slater de-
terminant provides a good starting point for more accurate methods that basically consist of
imposing corrections onto the HF solution by accounting, in one way or another, for missing
correlations. These approaches are called post-HF methods and we will summarize basic con-
cepts behind them in the following.

3.1.2 Configuration interaction

An Ne-particle wave function is an element of a many-particle Hilbert space introduced in sec-
tion 2.2.2 and hence can be expressed in terms of Slater determinants. For an interacting sys-
tem, this expansion always consists of more than just one Slater determinant. Since with the HF
method we have obtained an optimized basis, we can expand the ground state wave function
in terms of all Slater determinants built from this basis. They can be built by exciting electrons
from the HF Slater determinant. This means, we destroy electrons in energetically lower (oc-
cupied) spin-orbitals |ψi 〉, |ψ j 〉 etc., and create the same number of electrons in energetically
higher (unoccupied) spin-orbitals |ψa〉, |ψb〉, etc., respectively2. E.g., we define

|Φa
i 〉 ≡ ĉ†

a ĉi |Φ0〉, |Φab
i j 〉 ≡ ĉ†

b ĉ†
a ĉi ĉ j |Φ0〉. (3.5)

The resulting determinants are either simply called excited determinants or configurations,
where the name configuration interaction (CI) originates from. We refer to different orders
of excitation as singles, doubles, etc. (see Fig. 2 for visualization).

We can now expand the ground-state of our interacting system as

|ΨFCI〉 =C0|Φ0〉+
∑
i ,a

C a
i |Φa

i 〉+
∑

i , j ,a,b
C ab

i j |Φab
i j 〉+

∑
i , j ,k,a,b,c

C abc
i j k |Φabc

i j k 〉+ · · ·

≡C0|Φ0〉+
∑
µ

Cµτ̂µ|Φ0〉, (3.6)

where we have defined excitation operators τ̂µ = ĉ†
a ĉi , ĉ†

b ĉ†
a ĉi ĉ j , . . .

The CI approach [5] consists of minimizing the energy by optimizing the coefficients C in the
expansion, after the expansion is truncated at a desired order. E.g. in CI singles doubles (CISD)
only singly and doubly excited determinants are included. This procedure is equivalent to di-
agonalizing the Hamiltonian in the subspace of chosen determinants and therefore also calcu-
lation of excited states of the system is naturally included in the CI approach.

2In this context, indicies i , j ,k, l , . . . will always denote occupied orbitals and indicies a,b,c,d , . . . empty orbitals.
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Figure 2. Visualization of HF and CI Slater determinants and their excitation order. Excited determi-
nants are built by promoting electrons from occupied HF spin-orbitals |ψi 〉, |ψ j 〉, etc. to energetically
higher, unoccupied HF spin-orbitals |ψa〉, |ψb〉.

If all possible determinants are kept in Eq. (3.6), the method is called full configuration inter-
action (FCI) [14] or, equivalently, exact diagonalization. Unfortunately, the dimension of this
problem is the same as the size of the Hilbert space and, hence, the computational cost grows
exponentially with system size. In contrast, the cost of truncated CI calculations grows polyno-
mially, e.g. in case of CISD as N 6 3.

Truncated CI methods are variational and linear in expansion coefficients. Unfortunately, they
are still computationally demanding and also suffer from size-extensivity (the total energy must
scale linearly with the number of particles) and size-consistency (the total energy is sum of sub-
system energies in case of non-interacting subsystems) issues [5]. The latter can be illustrated
by considering two separated hydrogen atoms with two spatial orbitals in each case. We will
denote two electrons (spin-singlet ↑↓) occupying the lower orbital by |g 〉 and two electrons oc-
cupying the upper orbital by |e〉, respectively. The CI doubles (CID) expansion of an individual
atom is

|ΨCID〉A/B =C0|g 〉A/B +C1|e〉A/B (3.7)

For a combined system we get

|ΨCID〉A+B = C̃0|g 〉A|g 〉B + C̃1|e〉A|g 〉B + C̃3|g 〉A|e〉B (3.8)

On the other hand, in order to provide a size-consistent energy for two non-interacting mole-
cules E A+B = E A +EB , the combined wave function has to factorize(

C0|g 〉A +C1|e〉A
)(

C0|g 〉B +C1|e〉B
)=

C 2
0 |g 〉A|g 〉B +C0C1|e〉A|g 〉B +C0C1|g 〉A|e〉B +C 2

1 |e〉A|e〉B . (3.9)

By comparing Eq. (3.9) with Eq. (3.8), we see that CID introduces a spurious correlation by ex-
cluding the quadruple excitation |e〉A|e〉B in the expansion, meaning that molecule A can be
excited only if molecule B is not and vice versa. This issue is solved in coupled-cluster theory.

3.1.3 Coupled-cluster theory

In the following, we will outline one of the most powerful approaches in quantum chemistry –
the CC theory. It provides a systematic way on how to approximate higher-order excited deter-
minants by lower-order coefficients. Within a certain level of approximation (singles, doubles
and perturbative triples), the method achieves energy resolutions on a level of chemical ac-
curacy while keeping the key-properties of the exact wave-function, such as size-extensivity,

3See section 3.1.3 or [60] for a more detailed discussion on scaling.
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intact and is therefore known as golden standard of quantum chemistry. An comprehensive re-
view on CC theory can be found in [15] and an excellent pedagogical introductions in [60, 61].

CC ansatz

Considering Eq. (3.9) reveals that, although the number of determinants needed for a size-
consistent description equals to four, all of them can be taken into account by just two ex-
pansion coefficients. This observation is utilized in CC theory as follows: similar to CI, in CC
theory we expand a ground-state wave function as a sum of HF and excited determinants, but
here we do it as a product ansatz

|ΨCC〉 =
∏
µ

(
1+ tµτ̂µ

) |Φ0〉. (3.10)

The excitation operators are the same that have been introduced in Eq. (3.6). The nomenclature
for the excitation order refers to the number of creation-annihilation operator pairs entering
the excitation operators. Through the product ansatz though, also higher excited determinants
enter the expansion: e.g. in CC doubles (CCD)4 we would obtain

|ΨCCD〉 = |Φ0〉+
∑

i , j ,a,b
t ab

i j |Φab
i j 〉+

∑
i , j ,k,l ,a,b,c,d

t ab
i j t cd

kl |Φabcd
i j kl 〉+ · · · (3.11)

The quadruply excited determinant |Φabcd
i j kl 〉 enters the expansion as it is created by applying a

product of two excitation operators, ĉ†
b ĉ†

a ĉi ĉ j and ĉ†
d ĉ†

c ĉk ĉl , to |Φ0〉. The corresponding coeffi-
cient, however, is not an independent variable in the later optimization but is approximated by
a product of amplitudes t ab

i j t cd
kl .

Note that for convenience reasons a different normalization of the wave function is chosen in
Eqs. (3.10)-(3.11)

〈ΨCC|ΨCC〉 6= 1, 〈Φ0|ΨCC〉 = 1. (3.12)

In literature, this is known as intermediate normalization.

The order, in which excitation operators are applied to |Φ0〉, is irrelevant, since they all com-
mute [τ̂µ, τ̂ν] = 0. Furthermore, for fermions the nilpotency of excitation operators (τ̂µτ̂µ = 0)
follows directly from the Pauli exclusion principle. Hence, instead of the product in Eq. (3.10),
we can write

|ΨCC〉 = e T̂ |Φ0〉, with T̂ =∑
µ

tµτ̂µ. (3.13)

The operator T̂ is called cluster operator.

With the cluster operator grouped by the excitation order T̂ = T̂1+T̂2+T̂3+·· · , we illustrate how
the level of truncation affects the theory. For CCD, CC singles doubles (CCSD), and CC singles
doubles triples (CCSDT), we expand Eq. (3.13) and bring the sum into a CI-like form of Eq. (3.6)

|ΨCCD〉 =
[

1 + T̂2 + 1
2 T̂ 2

2 +·· ·
]
|Φ0〉,

|ΨCCSD〉 =
[

1+ T̂1 + (
T̂2 + 1

2 T̂ 2
1

) +(
T̂2T̂1 + 1

6 T̂ 3
1

) + (1
2 T̂ 2

2 + 1
2 T̂2T̂ 2

1 + 1
24 T̂ 4

1

) +·· ·
]
|Φ0〉,

|ΨCCSDT〉=
[

1+ T̂1︸︷︷︸
single,

+ (
T̂2 + 1

2 T̂ 2
1

)︸ ︷︷ ︸
double,

+(
T̂3 + T̂2T̂1 + 1

6 T̂ 3
1

)︸ ︷︷ ︸
triple,

+ (
T̂3T̂1 + 1

2 T̂ 2
2 + 1

2 T̂2T̂ 2
1 + 1

24 T̂ 4
1

)︸ ︷︷ ︸
quadruple excitations

+·· ·
]
|Φ0〉.

(3.14)

4There is no CC singles only as well there is no CI singles only due to Brillouin’s theorem [5], which states that,
starting from a HF reference, for all singly excited determinants we have 〈Φ0|Ĥ |Φa

i 〉 = 0.
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We see that, while in the CCD expansion determinants with odd number of excitations are
missing, all possible excited determinant are included in both CCSD and CCSDT theories. As
opposed to CCSD, in CCSDT triple excitations are included explicitly, which makes the theory
more accurate. The above expansion converges to FCI and is equivalent to Eq. (3.6), when all
possible excitations (up to Ne-fold) are included in T̂ .

CC equations

Variational treatment of the CC energy with respect to amplitudes entering |ΨCC〉unfortunately
leads to exponentially scaling computational cost [61]. Instead, CC equations are obtained by
projecting the Schrödinger equation

Ĥe T̂ |Φ0〉 = E0e T̂ |Φ0〉 (3.15)

onto |Φ0〉 and onto all excited Slater determinants |Φµ〉 ≡ τ̂µ|Φ0〉. In this way, we obtain a set
of non-linear equations for the ground state energy E0 and the CC amplitudes tµ. For practical

reasons5, we multiply this equation with e−T̂ before projecting it and obtain

〈Φ0|e−T̂ Ĥe T̂ |Φ0〉 = E0, (3.16)

〈Φµ|e−T̂ Ĥe T̂ |Φ0〉 = 0. (3.17)

Eq. (3.16) is referred to as CC energy equation and Eq. (3.17) as amplitude equations. The oper-
ator

H ≡ e−T̂ Ĥe T̂ (3.18)

is called similarity transformed (ST) Hamiltonian. If T̂ is not truncated, the ST Hamiltonian
has the same eigenvalues as the untransformed Hamiltonian Ĥ . Moreover, we see that for a
complete T̂ , H has the HF reference |Φ0〉 as its ground state but with the exact ground-state
energy E0 . For a truncated T̂ , we basically assume that the ground state of H still has a big
overlap with |Φ0〉 and that then Eq. (3.16) is a good estimate for the ground-state energy.

A downside of CC theory is the fact that Eq. (3.16) does not result from the variational principle
Eq. (3.1) and therefore does not necessarily provide an upper bound for the true ground-state
energy.

Baker-Campbell-Hausdorff expansion

By using the Baker-Campbell-Hausdorff (BCH) [62–64] formula, we can rewrite the ST Hamil-
tonian as a sum of nested commutators of Ĥ and T̂

H = Ĥ + [Ĥ , T̂ ]+ 1

2!
[[Ĥ , T̂ ], T̂ ]+ 1

3!
[[[Ĥ , T̂ ], T̂ ], T̂ ]+ 1

4!
[[[[Ĥ , T̂ ], T̂ ], T̂ ], T̂ ]+·· · (3.19)

It can be shown that, if Ĥ contains at most two-body terms, which is the case in standard quan-
tum chemistry, the BCH always truncates at fourth order, independent of truncation level in T̂
[61]. This means that, operator combinations that enter Eqs. (3.16)-(3.17) can be obtained an-
alytically.

5With this trick, the energy equation (Eq. (3.16)) is decoupled the from amplitude equations (Eq. (3.17)). Fur-
ther, we can utilize the Baker-Campbell-Hausdorff expansion (see discussion hereafter in the section).
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CCSD equations

Here, we show the explicit form of CCSD equations (see e.g. [60, 61] for an explicit derivation).
The energy equation (Eq. (3.16)) takes quite a simple form

ECCSD = EHF + 1

4

∑
i j ab

〈i j ||ab〉
(
t ab

i j + t a
i t b

j − t b
i t a

j

)
, (3.20)

with the antisymmetrized two-electron integral 〈i j ||ab〉 as defined in Eq. (2.59).

Since in Eq. (3.16) we always project onto |Φ0〉, the amplitudes that enter the energy expression
are at most doubles for any truncation level of T̂ , meaning that Eq. (3.20) remains the same also
for CCSDT and for even higher orders of the theory. The particular values that enter Eq. (3.20),
however, change with the truncation level of T̂ (see Eq. (3.14)) and are related to the other am-
plitudes via Eq. (3.17).

In CCSD, these amplitude equations are for single-excitations

〈Φa
i |H |Φ0〉 = (εa −εi )t a

i +∑
kc
〈ak||i c〉t c

k

+ 1

2

∑
kcd

〈ak||cd〉t cd
i k + ∑

kcd
〈ak||cd〉t a

i t d
k − 1

2

∑
klc

〈kl ||i c〉t ac
kl −

∑
klc

〈kl ||i c〉t a
k t c

l

− 1

2

∑
klcd

〈kl ||cd〉t c
i t ad

kl − 1

2

∑
klcd

〈kl ||cd〉t a
k t cd

i l + ∑
klcd

〈kl ||cd〉t c
k t d a

li − ∑
klcd

〈kl ||cd〉t c
i t a

k t d
l

= 0, (3.21)

and for double-excitations

〈Φab
i j |H |Φ0〉

= (εa +εb −εi −ε j )t ab
i j +〈ab||i j 〉+P (i j )

∑
c
〈ab||c j 〉t c

i −P (ab)
∑
k
〈kb||i j 〉t a

k

+ 1

2

∑
kl
〈kl ||i j 〉t ab

kl +P (ab)
∑
kl
〈kl ||i j 〉t a

k t b
l + 1

2

∑
cd

〈ab||cd〉t cd
i j + 1

2
P (i j )

∑
cd

〈ab||cd〉t c
i t d

j

+P (i j )P (ab)
∑
kc
〈kb||c j 〉t ac

i k −P (i j )P (ab)
∑
kc
〈kb||i c〉t a

k t c
j

+ 1

2
P (i j )

∑
klc

〈kl ||c j 〉t c
i t ab

kl −P (i j )
∑
klc

〈kl ||ci 〉t c
k t ab

l j

+P (i j )P (ab)
∑
klc

〈kl ||i c〉t a
l t bc

j k + 1

2
P (i j )P (ab)

∑
klc

〈kl ||c j 〉t c
i t a

k t b
l

− 1

2
P (ab)

∑
kcd

〈kb||cd〉t a
k t cd

i j +P (ab)
∑
kcd

〈ka||cd〉t c
k t db

i j

+P (i j )P (ab)
∑
kcd

〈ak||dc〉t d
i t bc

j k − 1

2
P (i j )P (ab)

∑
kcd

〈kb||cd〉t c
i t a

k t d
l

+ 1

4

∑
klcd

〈kl ||cd〉t cd
i j t ab

i j + 1

4
P (i j )

∑
klcd

〈kl ||cd〉t c
i t d

j t ab
i j + 1

4
P (ab)

∑
klcd

〈kl ||cd〉t a
k t b

l t cd
i j

− 1

2
P (i j )

∑
klcd

〈kl ||cd〉t ab
i k t cd

j l − 1

2
P (ab)

∑
klcd

〈kl ||cd〉t ac
i j t bd

kl + 1

2
P (i j )P (ab)

∑
klcd

〈kl ||cd〉t ac
i k t db

l j

−P (i j )
∑

klcd
〈kl ||cd〉t c

k t d
i t ab

l j −P (ab)
∑

klcd
〈kl ||cd〉t c

k t a
l t db

i j +P (i j )P (ab)
∑

klcd
〈kl ||cd〉t c

i t b
l t ad

k j

+ 1

4
P (i j )P (ab)

∑
klcd

〈kl ||cd〉t c
i t d

j t a
k t b

l = 0. (3.22)

Above, we have used a permutation operator P , which is defined as

P (i j ) f (i , j ) ≡ f (i , j )− f ( j , i ). (3.23)
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These algebraic equations are quite cumbersome, but they can be formulated in a more com-
pact and elegant form with diagrammatic techniques. Further, they are non-linear in the am-
plitudes and are therefore solved through iterative root-finding algorithms. The CC energy is
then obtained from Eq. (3.20).

Scaling

The scaling of the theory depends on the truncation level of T̂ . We can relate the overall scaling
of the theory to evaluation of the most expensive term in Eq. (3.21) or Eq. (3.22). Assuming that
the number of occupied spin-orbitals Nocc is much smaller than the number of empty spin-
orbitals Nemp, we can identify 1

2

∑
cd 〈ab||cd〉t cd

i j as most expensive linear term in Eqs. (3.21)-
(3.22), since it contains four empty-orbital labels. The computational cost for this term is pro-
portional to N 4

emp ·N 2
occ for each iteration.

Although quadratic terms such as 1
4

∑
klcd 〈kl ||cd〉t cd

i j t ab
i j have more indices to contract, they

can be summed in stages [60] and do not increase the overall scaling of the methods. Hence,
CCSD scales, roughly speaking, as N 6. Note that the same term would also appear in CCD
equations. Therefore, CCD has the same scaling as CCSD6. CCSDT, on the contrary, scales as
N 8 due to the expensive evaluation of connected triples and is therefore considered too com-
putationally demanding for practical implementations [60].

The optimal trade-off between accuracy and computational cost for the ground state prop-
erties is achieved in CCSD with perturbative triples (CCSD(T)) [15]. There, a standard CCSD
computation (which scales as N 6) is performed and triple excitations are added in a perturba-
tive fashion afterwards through a single (non-iterative) step that scales as N 7.

Excited states in CC theory

Treatment of excited states in CC theory is not as straightforward as in CI approaches, since
the operator that is diagonalized in a chosen subset of Slater determinants is not the original
Hamiltonian but its ST version defined in Eq. (3.18). A simple CI-like strategy is utilized by the
equation-of-motion coupled-cluster (EOM-CC) approach [65] that we introduce in the follow-
ing.

The starting point of EOM-CC ansatz is the Schrödinger equation for an excited state

Ĥ |Ψk〉 = Ek |Ψk〉. (3.24)

In general, the state |Ψk〉 can be build by applying an excitation operator R̂k (consisting of all(!)
possible excitations) to the ground-state |Ψ0〉.
In EOM-CC, the ground state of the system is approximated by the CC ground state and the
operator R̂k is truncated at the same level as cluster operator T̂ of the ground-state theory

R̂k =∑
µ

rk,µτ̂µ. (3.25)

Hence, for an excited state we write

|ΨCC
k 〉 = R̂k |ΨCC

0 〉 = e T̂ R̂k |Φ0〉. (3.26)

And Eq. (3.24) additionally multiplied by e−T̂ becomes

e−T̂ Ĥe T̂ R̂k |Φ0〉 = H = EkR̂k |Φ0〉. (3.27)

6The scaling behavior of e.g. CISD is estimated in the same manner.
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Equation above is nothing but a linear equation determining the coefficients rk,µ that enter
R̂k . Put differently, we have to diagonalize the ST Hamiltonian in the subspace of excited de-
terminants entering the theory.

Since the ST Hamiltonian is not hermitian, it has different left and right eigenvectors. Hence,
within EOM-CC theory we obtain a bi-orthonormal set of eigenvectors that approximate ex-
cited states of the system. They are determined by the following set of equations

HR̂k = EkR̂k , (3.28)

L̂ j H = L̂ j E j , (3.29)

L̂ j R̂k = δ j k1. (3.30)

The right excited states are given by Eq. (3.26) and the left eigenstates accordingly by

〈Ψ̃CC
j | = 〈Φ0|e−T̂ L̂ j . (3.31)

The tilde emphasizes the fact that left and right eigenvectors are not hermitian conjugates of

each other 〈Ψ̃CC
j | 6=

(
|ΨCC

j 〉
)†

.

In terms of left and right eigenstates, expectation values of operators and transition moments
are in general approximated as [65]

〈Ψi |Ô|Ψi 〉 ≈ 〈Ψ̃CC
i |Ô|ΨCC

i 〉, (3.32)

|Oi j |2 = |〈Ψi |Ô|Ψ j 〉|2 ≈ 〈Ψ̃CC
j |Ô|ΨCC

i 〉〈Ψ̃CC
i |Ô|ΨCC

j 〉. (3.33)

The EOM-CC formalism provides a simple approach to excited states of a system in the frame-
work of CC theory. This method is able to describe correlated excited states and has the same
scaling as the underlying ground-state theory [66]. A disadvantage of EOM-CC is that it looses
size-extensivity for excited states [67].

3.1.4 Other honorable mentions

All of the methods introduced in this section perform well, when one Slater determinant is
enough to cover the coarse electronic structure of the system. There are systems, however,
where this is not the case, examples being stretched molecular bonds [58]. This type of corre-
lations are referred to as static correlations and we briefly introduce some popular approaches
to deal with such situations below.

The most prominent method in quantum chemistry to address static correlations is multi-
configurational self-consistent field (MCSCF) [68], which is a multi-configurational extension
of HF theory. There, HF-orbitals are optimized such that not only one Slater determinant but a
sum of selected Slater determinants has the lowest energy.

Another group of approaches addressing static correlations in a similar spirit are multi-refer-
ence methods. These methods use more than one Slater determinant as the starting point for
the expansion of the wave function, e.g. multi-reference CI [69] and multi-reference CC [15]
methods.

An entirely different strategy to handle strong correlations is given by DMRG [16]. This vari-
ational approach is based on an alternative representation of the wave function, namely as
a matrix product state. This method provides very accurate results for systems with short-
range interactions and long-range correlations, such as the Hubbard model [70] and is there-
fore widely used in solid-state physics. Although, by construction, it is mostly suited to de-
scribe one-dimensional systems, it has also been successfully applied for ab initio studies of
molecules [71]. The scaling of DMRG is polynomial but it also strongly depends on the consid-
ered system. For most realistic systems this method is often very expensive.
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3.2 Density functional theory

In this section, we outline the concepts of DFT [72], a functional theory that uses the ground-
state electronic density as the key variable.

Considering for simplicity a non-degenerate ground state of a closed-shell Ne-electron sys-
tem7, we define its spatial distribution of electrons, its electronic density, as

n(r ) = Ne

∫
d x Ne · · ·

∫
d x2

∫
dχ Ψ∗

0

(
x , x2, · · · , x Ne

)
Ψ0

(
x , x2, · · · , x Ne

)
, (3.34)

where by x we again denote the combined space and spin index (r ,χ).

DFT is based on the Hohenberg-Kohn (HK) theorem [8], which states that, for a fixed interac-
tion Ŵ , there is a one-to-one correspondence between the external potential vext(r ) of a given
system and its ground-state wave function |Ψ0〉, as well as there is a one-to-one correspon-
dence between the ground-state wave function of this system and its ground-state electronic
density

vext(r )
1:1←−−−−−−−−−−→ |Ψ0〉 1:1←−−−−−−−−−−→ n(r ). (3.35)

From the HK theorem we conclude that all ground-state properties of a many-body system are
uniquely determined by its ground state-density

|Ψ0〉 = |Ψ0[n]〉 ⇒ 〈Ô〉 = 〈Ψ0|Ô|Ψ0〉 = 〈Ô〉[n]. (3.36)

Especially for the energy we write

E [n] = 〈Ψ0[n]|Ĥ |Ψ0[n]〉 = 〈Ψ0[n]|T̂ + V̂ +Ŵ |Ψ0[n]〉
= T [n]+W [n]+

∫
dr vext(r )n(r ). (3.37)

From this formulation follows:

1. the energy functional has its minimum at the ground-state density of the system,

2. the functionals T [n] and W [n] are universal functionals of the density.

Therefore, knowing the functional form of T [n] and W [n] exactly would remove the necessity
of solving the Schrödinger equation to obtain the ground-state energy of a system. Unfortu-
nately, the exact functionals remain (and most certainly will remain) unknown and have to be
approximated for practical calculations. Specifically, the kinetic energy contribution T [n] is the
most difficult part and all direct approximations are so far insufficient [73].

3.2.1 Kohn-Sham DFT

There is a method to indirectly approximate T [n]. This is done by means of Kohn-Sham (KS)
DFT [9]. The KS construction is based on the HK theorem, from which follows that for any
interacting system there exists one and only one auxiliary non-interacting system with a local
potential vKS(r ), which has the same ground-state density. The potential vKS(r ) is called KS
potential.

Based on this connection, the ground-state density of an interacting system is found by solving
the one-body KS eigenvalue equations(

− ∇2

2
+vKS(r )

)
ϕKS

j (r ) = ε jϕ
KS
j (r ). (3.38)

7DFT itself is not restricted to such systems.
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Figure 3. Visualization of the Kohn-Sham construction in DFT: The electronic density n(r ) of an inter-
acting system in an external potential vext(r ) can be uniquely reproduced by a non-interacting system
in a different external potential vKS(r ).

The ground state of the auxiliary KS system is given by a Slater determinant |ΦKS〉 built from
spatial orbitals ϕKS

i (r ) and the density of both interacting and non-interacting system is ob-
tained via

n(r ) = 2
Ne/2∑
j=1

|ϕKS
j (r )|2. (3.39)

The kinetic energy of the non-interacting KS system is obtained in a straight-forward manner

TKS[n] =−
Ne/2∑
j=1

∫
drϕKS∗

j (r )

[∇2
r

2
ϕKS

j (r )

]
. (3.40)

We now can rewrite Eq. (3.37) as

E [n] = TKS[n]+ (T [n]−TKS[n]+W [n])︸ ︷︷ ︸
EHxc[n]

+
∫

dr vext(r )n(r ), (3.41)

where we have found an explicit expression for a big portion of the kinetic energy contributions.
The remaining kinetic correlations and electron-electron interactions are summarized in the
Hartree exchange-correlation (Hxc) energy functional EHxc[n], which is the term that is usually
approximated in KS DFT. This functional can be further decomposed into a part accounting for
classical electrostatic interactions (Hartree) and the rest (exchange-correlation)

EHxc[n] =
∫

dr
∫

dr ′n(r )W (r ,r ′)n(r ′)︸ ︷︷ ︸
EH[n]

+Exc[n]. (3.42)

Correspondingly, the difference between the KS potential and the external potential is called
the Hxc potential vHxc[n](r ) and can be connected to the Hxc energy functional via

vKS[n, vext](r )− vext(r ) ≡ vHxc[n](r ) = δEHxc[n]

δn
=

∫
dr ′W (r ,r ′)n(r ′)+ δExc[n]

δn
(3.43)

≡ vH[n]+ vxc[n]. (3.44)

In KS DFT, the set of equations (Eq. (3.38) and Eq. (3.39)) has to be solved self-consistently, while
updating vHxc[n](r ) for each step. For an explicit energy functional, the potential is constructed
via Eq. (3.43). Starting with an initial guess for e.g. a KS potential vKS we obtain a first guess for
the ground-state density n(0). From this a new Hxc potential vHxc[n(0)] and a new KS potential
are constructed. Then, the KS equations are solved again in order to obtain a new density n(1).
This procedure is repeated until convergence.
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Figure 4. Jacob’s ladder of functional approximations in DFT, adapted from [74].

3.2.2 Energy-functional approximations

Over last decades, a wide range of approximations to the functional form of EHxc[n](r ) with
different levels of complexity and corresponding accuracy has been developed.

Generally, we can write the xc energy functional as

Exc[n] =
∫

dr εxc ([n];r )n(r ), (3.45)

with the xc energy density εxc that depends on the full density distribution in space. This de-
pendence can be expanded as

εxc ([n];r ) = εxc
(
n(r ),∇n(r ),∆n(r ), · · ·), (3.46)

The simplest approximation for Exc[n] is known as the local density approximation (LDA) [9].
There εxc is assumed to depend only locally on the density and its explicit form is taken from a
homogeneous electron gas

E LDA
xc [n] =

∫
dr εHEG

xc (n(r ))n(r ). (3.47)

More accurate approximations are those, where not only the density but also its gradient at
a point in space are taken into account. They build a range of general gradient approxima-
tions (GGAs) [75], with Perdew-Burke-Ernzerhof (PBE) functional [10] being the most famous.
Within meta-GGAs higher derivatives of the density and in some cases orbital-dependent
quantities such the kinetic energy density τ(r ) are included (e.g. VS98 [76] or PKZB [77]). The
next level of accuracy is reached by including exact exchange (EXX) energy contributions to the
xc energy approximations of LDA, GGA or meta-GGA. EXX is calculated from occupied orbitals
and therefore the functionals become orbital-dependet. Examples are hybrid functionals such
as B3LYP [75, 78, 79] and PBE0 [80]. By including all KS orbitals into the calculation of EXX we
reach the last set of functionals, where functionals based on the random-phase approximation
(RPA) [81] are the best known examples. The outlined hierarchy is known as Jacob’s ladder of
density functional approximations [74] (see Fig. 4). Very good summaries on this topic can be
found in e.g. the original paper of Perdew et al [74] and a more recent literature [11].

3.2.3 Limitations of standard DFT

Despite its efficiency, there are still open issues in standard DFT that need to be addressed.
From a formal perspective, it has been shown that the exact functionals are not functionally dif-
ferentiable [82] and therefore regularizations need to be done [83]. Further, in contrast to wave-
function methods, where results can be improved by increasing the number of single-particle
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x xxx x xx x

Figure 5. Visualization of the decomposition of the system into fragment and bath and the projection
onto embedding (CAS) and environment part. The dots depict the sites, which correspond to our chosen
initial basis set and the crosses the orbitals after projecting. In order to describe the physics of the
fragment only the embedding part is considered. Graphic was originally published in [88].

orbitals or by including higher excitations, there is no systematic way on how to increase the
accuracy of a chosen functional approximation. Additionally, there is the often overlooked but
important issue of how to construct other observables from the KS Slater determinant, since
any observable that cannot be expressed directly in terms of the density needs to be approxi-
mated in terms of the latter.

From an application perspective, we need to mention that, although significant progress in
functional development over the years has been achieved, approximate DFT functionals usu-
ally still struggle to describe systems with strongly correlated electrons [13]. Dissociation of the
H2 molecule is a good example for a simple situation, which commonly used approximate DFT
functionals fail to describe correctly.

3.3 Density-matrix embedding theory

Density-matrix embedding theory [20–22] is a simple quantum embedding scheme for frag-
ments that are strongly coupled to the rest of the system. In such situation, the rest of the
system cannot be mimicked by a simple external potential as e.g. is usually done in DFT em-
bedding [54, 84–87]. It rather has to be interpreted as a bath to which an open quantum system
(the fragment) is coupled. The DMET method provides an algorithm to reduce the full bath to
a small set of orbitals (correlated bath) that effectively describe correlations between fragment
and rest of the system (see Fig. 5 for a visualization).

In DMET, single particle orbitals of the Fock space are divided into two groups: Nfrag spatial
orbitals that belong to fragment A (a.k.a. impurity) and (N−Nfrag) spatial orbitals that belong to
the rest of the system B , which we call bath. Without loss of generality, we assume Nfrag ≤ N /2.
For a real-space-grid basis this corresponds to spatial separation and is easy to visualize (see
Fig. 5). For the subsequent discussion we further assume that the fragment consists of the first
Nfrag sites.

Any wave function in the full Fock space can be decomposed as

|Ψ〉 =
4Nfrag∑

i

4(N−Nfrag)∑
j

Ψi j |Ai 〉⊗ |B j 〉. (3.48)

The object Ψi j is a 4Nfrag ×4(N−Nfrag)-matrix that we can rewrite by using its singular-value de-
composition (SVD) (see Fig. 6)

Ψi j =
4Nfrag∑
α

UiαΛαV †
α j . (3.49)
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Figure 6. Visualization of singular-value decomposition of a l ×L-dimensional matrix M . It has l left-
singular vectors that build the columns of an l×l -dimensional matrix U and L right-singular vectors that
are contained in an L×L-dimensional matrix V . Singular vectors are normalized, meaning U ·U † =1l×l

and V ·V † =1L×L . The matrix M has l singular values that build the diagonal ofΛ.

The matrix U consist of left-singular vectors and the V of right-singular vectors to the singular
valuesΛα. With Eq. (3.49) we rewrite the wave function as

|Ψ〉 =
4Nfrag∑
α
Λα

(
4Nfrag∑

i
Uiα|Ai 〉

)
⊗

(
4(N−Nfrag)∑

j
V †
α j |B j 〉

)
,

=
4Nfrag∑
α
Λα|Ãα〉⊗ |B̃α〉. (3.50)

With this reformulation we see that the number of many-body states in B that contribute to the
wave function boils down to the size of the fragment Fock space.

3.3.1 Single-particle projection

The reformulation in Eq. (3.50) is interesting but, for the time being, of no practical use for a
general |Ψ〉, since the new basis consists of unknown many-body states for which we would
have to solve the Schrödinger equation in order to obtain them. However, if the wave function
of interest is a Slater determinant, we can relate the SVD to a simple basis transformation. Here,
we follow the derivation from [89].

The ground-state wave function of a single-particle Hamiltonian ĥ is given by

|Φ〉 =
Ne∏

k=1
ψ̂†

k |0〉 =
Ne∏

k=1

2N∑
i=1

Ci k ĉ†
i |0〉, (3.51)

where operators ψ†
k create particles in corresponding spin-orbitals that are obtained by diago-

nalizing ĥ. The numbers Ci k are values of corresponding spin-orbitals on the real-space grid.
Note that for each site we have two possible spin configurations and, therefore, there are 2N
basis states in total in the original basis. We summarize the coefficients Ci k in the following
matrix

C =



ϕ1(1) · · · ϕk (1) · · · ϕNe/2
...

...
...

ϕ1( j ) · · · ϕk ( j ) · · · ϕNe/2( j )
...

...
...

ϕ1(N ) · · · ϕk (N ) · · · ϕNe/2(N )


︸ ︷︷ ︸

≡Cϕ

⊗
(| ↑〉 0

0 | ↓〉
)

. (3.52)

Here again, we assume even particle number Ne and therefore have Ne/2 spatial orbitals ϕk

occupied by one spin-up and one spin-down electron, respectively. We further assume 4Nfrag ≤
Ne for the subsequent derivation.
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As a next step, we consider a transformation of spatial orbitals into a new set of orbitals: 2Nfrag

orbitals that do have entries on the fragment and the remaining N −2Nfrag orbitals that do not.
This is done by performing a SVD on a fragment submatrix C A

ϕ of Cϕ

Cϕ =



• ϕk (1) •
...

...
...

... ϕk (Nfrag)
...

... ϕk (Nfrag +1)
...

...
...

...
• ϕk (N ) •


≡

 C A
ϕ

C B
ϕ

=

 UA ·λ ·V †
A

C B
ϕ

 . (3.53)

The matrices UA (Nfrag ×Nfrag) and VA (Ne/2×Ne/2) contain left- and right-singular vectors of
C A
ϕ (see Fig. 6 for visualization). Rotating the coefficient matrix Cϕ with VA results in

C̃ϕ =Cϕ ·VA =

 UA ·λ
∣∣∣∣ O

C B
ϕ ·VA

 and C̃ = C̃ϕ⊗
(| ↑〉 0

0 | ↓〉
)

. (3.54)

Here,O denotes a Nfrag × (Ne/2−Nfrag)-dimensional matrix consisting of only zeros. Through
the rotation the first Nfrag spatial orbitals in C̃ϕ have entries on all sites and we call them com-
plete active space (CAS) or embedding orbitals. The remaining Ne/2−Nfrag orbitals only have
entries on the bath. Those we call environment orbitals. In terms of spin-orbitals in C̃ we now
have 2Nfrag spin-orbitals in CAS and Ne −2Nfrag orbitals in the environment.

We can equivalently rewrite the Slater determinant defined in Eq. (3.51) in terms of the new
spin-orbitals in C̃ as

|Φ〉 =
Ne∏

k=1

2N∑
i=1

C̃i k ĉ†
i |0〉 =

2Nfrag∏
k=1

2N∑
i=1

C̃i k ĉ†
i︸ ︷︷ ︸

orbitals on A+B

Ne∏
k=(2Nfrag+1)

2N∑
i=(2Nfrag+1)

C̃i k ĉ†
i︸ ︷︷ ︸

orbitals solely on B

|0〉 (3.55)

=
2Nfrag∏
k=1


2Nfrag∑

i=1
C̃i k ĉ†

i︸ ︷︷ ︸
≡C̃ A

k â†
k

+
2N∑

i=(2Nfrag+1)
C̃i k ĉ†

i︸ ︷︷ ︸
≡C̃ B

k b̂†
k


Ne∏

k=(2Nfrag+1)

2N∑
i=(2Nfrag+1)

C̃i k ĉ†
i︸ ︷︷ ︸

≡C̃ B
k b̂†

k

|0〉 (3.56)

=
2Nfrag∏
k=1

(
C̃ A

k â†
k + C̃ B

k b̂†
k

) Ne∏
k=(2Nfrag+1)

C̃ B
k b̂†

k |0〉. (3.57)

We have defined (properly re-normalized on the respective Fock-subspaces of A and B) oper-
ators that create particles in orbitals whose entries are either purely on the fragment (â†

k ) or

purely on the bath (b̂†
k )

â†
k = 1√∑2Nfrag

i=1 |C̃i k |2

2Nfrag∑
i=1

C̃i k ĉ†
i , C̃ A

k =
√√√√2Nfrag∑

i=1
|C̃i k |2, (3.58)

b̂†
k = 1√∑2N

i=(2Nfrag+1) |C̃i k |2
2N∑

i=(2Nfrag+1)
C̃i k ĉ†

i C̃ B
k =

√√√√ 2N∑
i=(2Nfrag+1)

|C̃i k |2. (3.59)
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If we would explicitly rewrite the two products in Eq. (3.57) as a single sum, we could relate
individual terms to the many-body states in Eq. (3.50).

The crucial point to make here, however, is that we can identify one fixed part in every many-
body state in the expansion Eq. (3.57) and therefore also in Eq. (3.50), namely

Ne∏
k=(2Nfrag+1)

C̃ B
k b̂†

k |0〉 ≡ |0̃〉. (3.60)

This part is unimportant for the behavior of the fragment and can therefore be understood as a
new vacuum |0̃〉. For the Slater determinant we then can simply write

|Φ〉 =
2Nfrag∏
k=1

(
C̃ A

k â†
k + C̃ B

k b̂†
k

)
|0̃〉. (3.61)

In this way, we have removed Ne −2Nfrag (spatial) environmental orbitals from the Fock space
and can now consider a lower dimensional Fock space built from 2Nfrag spatial CAS orbitals in
order to describe the fragment.

In practice, the fragment part of CAS-orbitals (C̃ A
k ) is rotated back such that the orignal basis of

the fragment (real-space sites) is restored (also depicted in Fig. 5). We call the transformation of
the original basis into the CAS and the environment basis and subsequent removal the environ-
ment orbitals single-particle projection P , which for spatial orbitals is a N ×2Nfrag-dimensional
matrix

P =


1Nfrag×Nfrag ONfrag×Nfrag

ϕ̃B
1 (Nfrag +1) · · · ϕ̃B

Nfrag
(Nfrag +1)

O(N−Nfrag)×Nfrag

...
. . .

...
ϕ̃B

1 (N ) · · · ϕ̃B
Nfrag

(N )

 . (3.62)

Usually, this matrix is obtained from the one-body reduced density matrix (1RDM), whose ma-
trix elements are define as

γi j = 〈Φ|ĉ†
i ↑ĉ j ↑+ ĉ†

i ↓ĉ j ↓|Φ〉 = 2
Ne/2∑
k=1

ϕ̃∗
k (i )ϕ̃k ( j ) = 2

Nfrag∑
k=1

ϕ̃∗
k (i )ϕ̃k ( j )+2

Ne/2∑
k=(Nfrag+1)

ϕ̃∗
k (i )ϕ̃k ( j ).

(3.63)

If we now separate the 1RDM as

γ=
 γA γA−B

γA−B† γB

 (3.64)

and calculate γB explicitly

γB = 2
Nfrag∑
k=1

‖C̃ B
k ‖2ϕ̃B∗

k (i )ϕ̃B
k ( j )+2

Ne/2∑
k=(Nfrag+1)

ϕ̃∗
k (i )ϕ̃k ( j ), (3.65)

with C̃ B
k as defined in Eq. (3.59), we see that correlated-bath orbitals can be obtained simply by

diagonalizing γB. There are Nfrag orbitals with eigenvalues λ̃k = 2‖C̃ B
k ‖2 < 2 and exactly those

are the correlated-bath orbitals.
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3.3.2 Embedding interacting system

In general, the ground-state wave function of an interacting problem is a superposition of all
basis states (Slater determinants) of the Hilbert space

|Ψ〉 =
(2N

Ne)∑
α=1

Ψα|Φα〉 =
(2N

Ne)∑
α=1

Ψα

[
Ne∏

k=1
ψ̂†

k

]
α

|0〉, (3.66)

where the basis states |Φα〉 are build from all possible Ne-fold products of operators ψ̂†
k , that

create particles in one of the 2N spin-orbitals. We denote these combinations by [. . .]α.

In DMET, this expansion is reduced to the set of CAS orbitals that we have obtained from a
single Slater determinant in the previous section{

ψ̂†CAS
k

}
=

{{
C̃ A

k â†
kσ

}
,
{

C̃ B
k b̂†

kσ

}}
, with σ ∈ {↑,↓} and k ∈ {

1, . . . , Nfrag
}

. (3.67)

In total, we have 4Nfrag spin-orbitals in the CAS. The number of electrons that have to be dis-
tributed among these orbitals is reduced to Ne − 2Nfrag, since 2Nfrag electrons have been ab-
sorbed in the new vacuum (see Eq. (3.60)).

In the light of the above, the ground-state wave function of the interacting problem is approxi-
mated as

|Ψ〉 ≈
( 4Nfrag

Ne−2Nfrag
)∑

α=1
Ψ̃α|Φ̃α〉 =

( 4Nfrag
Ne−2Nfrag

)∑
α=1

Ψ̃α

[
Ne−2Nfrag∏

k=1
ψ̂†CAS

k

]
α

|0̃〉 ≡ Ψ̂†
emb|0̃〉. (3.68)

where we defined the notion of the embedding field operator Ψ̂†
emb for later use.

The approximation made in Eq. (3.68) means that, in DMET we assume that in the interact-
ing case we have the same set of fully occupied and completely empty orbitals as in the non-
interacting case and that correlation effects in the system are considered only within the CAS.
This, of course, is a crude approximation, but we assume that it provides good results for ob-
servables on the fragment.

The non-trivial part of |Ψ〉 is obtained by diagonalizing the embedding Hamiltonian Ĥemb,
which is obtained via the single-particle projection of the original many-body Hamiltonian
(Eq. (2.55)) as

Ĥemb = ĥemb +Ŵemb =
2Nfrag∑
a,b=1

∑
σ

hemb
ab ĉ†

aσĉbσ+
1

2

2Nfrag∑
i , j ,k,l=1

∑
σ,σ′

W emb
abcd ĉ†

aσĉ†
bσ′ ĉdσ′ ĉcσ , (3.69)

with

hemb
ab =

N∑
a,b=1

P †
ai hi j P j b , W emb

abcd =
N∑

a,b=1
P †

ai P †
b j Wi j kl Pkc Pld . (3.70)

The ground state of Ĥemb can be obtained with an accurate wave-function method, since the
dimensionality of the problem reduces significantly for sufficiently small Nfrag.

In single-shot DMET [22] already this result is used to calculate observables. From the full ap-
proximate wave function as defined in Eq. (3.68), we can obtain observables such as the energy
of the fragment by tracing out the bath

E A = ∑
i∈A

(
N∑

j=1
γi j hi j + 1

2

N∑
j ,k,l=1

Γi j kl Wi j kl

)
(3.71)
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with

γi j = 〈Ψ|∑
σ

ĉ†
i σĉ j σ|Ψ〉, Γi j kl = 〈Ψ| ∑

σ,σ′
ĉ†

iσĉ†
jσ′ ĉlσ′ ĉkσ|Ψ〉. (3.72)

Eq. (3.71) can equivalently be applied to any other observable.

The full system is described by treating every part of it as a fragment and, hence, by calculating
a set of embedding wave functions. In our example, the system would be described by N /Nfrag

fragments. Observables are then calculated by summing over the fragments.

3.3.3 Self-consitency

In most cases, however, the set of embedding wave functions is used to improve the projection
in a self-consistent manner. In this context, improving the projection is equivalent to optimiz-
ing the CAS orbitals. This means that the Slater determinant |Φ〉, from which they are con-
structed, has to be improved. This is achieved by updating the single-particle Hamiltonian ĥ
by adding a non-local correlation potential û to it

ĥ → ĥ′ = ĥ +∑
A

∑
i , j∈A

∑
σ

u A
i j ĉ†

iσĉ jσ (3.73)

This correlation potential is found by minimizing the difference between interacting and non-
interacting 1RDMs on the fragment

min
∑
A

∑
i , j∈A

∑
σ

∣∣∣〈ΨA|ĉ†
iσĉ jσ|ΨA〉−〈Φ|ĉ†

iσĉ jσ|Φ〉
∣∣∣2

(3.74)

or on the corresponding CASs

min
∑
A

∑
i , j∈CASA

∑
σ

∣∣∣〈ΨA|ĉ†
iσĉ jσ|ΨA〉−〈Φ|ĉ†

iσĉ jσ|Φ〉
∣∣∣2

. (3.75)

The orbitals are updated until the potential û does not change anymore.

3.3.4 Gains and drawbacks of DMET

DMET was developed for fermionic lattice systems such as the Hubbard model [20] and ex-
tended to closely related ab initio systems, such as hydrogen rings and grids [21]. For these
systems it provides results comparable to DMRG but with much lower cost, since only frag-
ments have to be calculated with an expensive wave-function method instead of the full sys-
tem. Moreover, systems to which DMET was initially applied, are translationally invariant,
meaning that only one fragment has to be considered in Eq. (3.74) or Eq. (3.75) and also for
calculating observables, reducing the overall computational cost. The size of the fragment de-
termines how much of correlation is captured within the projection and DMET results, there-
fore, can be improved by increasing the fragment size.

The DMET method, however, also has its downsides. One of the weaknesses is that both of the
proposed optimizations schemes for the correlation potential (Eq. (3.74) and Eq. (3.75)) have
their drawbacks

• 1RDMs of the embedding and the non-interacting system can be matched exactly on the
fragment. The solution of Eq. (3.74), however, is not unique [90], which leads to instabil-
ities and convergence problems [91].
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• Matching 1RDMs on the full CAS (Eq. (3.75)) does lead to a unique solution for the corre-
lation potential and hence provides a robust convergence criterion. Therefore, this type
of matching is used in common DMET implementations. However, the 1RDMs cannot
be made exactly the same [90], which raises questions about justification of the target
non-interacting system in the first place. This type of matching can e.g. result in wrong
particle numbers [90].

Another issue, which arises also in initially targeted systems, is symmetry breaking. It ap-
pears per construction when a translationally invariant system is projected onto a fragment
and bath; the embedding system does not have the same symmetry properties as the full sys-
tem. This fact, however, has its benefits. It is necessary in order to mimic important many-body
effects [91], e.g. appearance of the Mott gap in the Hubbard-Holstein model [92]. Unfortunately
though, symmetries of observables such as the density are often lost in DMET.

Generalization of the above issue is the appearance of density-discontinuities at fragment
boundaries in DMET [93]. Especially for inhomogeneous systems, this can lead to convergence
problems, since the correlation potential has to mimic these discontinuities. These errors are
then passed on to the next step, since they cannot be circumvented by periodic continuation
of the correlation potential as in the homogeneous case. Examples for this issue will be shown
in section 6.2.3.

The discontinuity problem of DMET is addressed e.g. in the Bootstrap embedding method [93],
where the boundaries of a fragment are matched to the center of a neighboring fragment such
that the density remains continuous. A simple alternative that uses overlapping patches was
introduced in [88] and we will discuss it in more detail in section 5.2.1.





4Light-matter interaction

This chapter of the thesis is dedicated to the description of electronic systems that interact with
electromagnetic fields, both classical and quantum. The underlying theory is called quantum
electrodynamics (QED), which is the first formulated quantum field theory [94] and which to
date provides some of the most accurate prediction, such as the Lamb shift of the energy levels
of hydrogen [95]. Here, we will discuss only relevant parts of the theory that will leads us to
the non-relativistic QED Hamiltonian in long-wavelength limit, which is used to describe the
behavior of molecular systems strongly coupled to cavity photons. Comprehensive derivations
and discussions on this topic can be found in [96, 97].

4.1 Classical electrodynamics

Maxwell’s equations

Maxwell’s equations [98] lie at the heart of classical electrodynamics. These are first order dif-
ferential equations for the electric field E and the magnetic field B

∇×E =−∂B

∂t
, (4.1)

∇×B =µ0 j + 1

c2

∂E

∂t
, (4.2)

∇·E = 4πρ, (4.3)

∇·B = 0, (4.4)

where ρ is the charge density and j the current density, which is caused by moving charged
particles, and µ0 is the magnetic permeability in vacuum. It is related to electric permittivity ε0

and velocity of light c in vacuum via c = (ε0µ0)−1/2. Here, we again use atomic units and also
omit the spatial and temporal dependencies (r , t ) of all quantities.

The energy of the field is given by [98]

Efield = ε0

2

∫
dr

(
E 2 + c2B 2) . (4.5)

Electromagnetic potentials

Following Helmholz’ theorem, E and B can be constructed from a scalar (electric) potential
Φ and a vector (magnetic) potential A. Generally, a twice continuously differentiable square-
integrable vector field on R3 can be separated in its transversal (source-free) and longitudinal
(curl-free) components, which further can be written in terms of a general scalar potential ΦF

and a vector potential AF [99]

F = F ‖+F⊥ =−∇ΦF +∇× AF . (4.6)

35
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From the Maxwell’s equation (4.4) we deduce that the magnetic field is always purely transver-
sal and that we can write

B = B‖ =∇× A. (4.7)

Here, we omitted the subscript in the magnetic vector potential AB = A. We will also omit the
subscripts in the electric scalar potential ΦE =Φ. For the electric field we combine Eqs. (4.1),
(4.2) and (4.7) to obtain

E = E‖+E⊥ =−∇Φ+∇× AE =−∇Φ− ∂A

∂t
, (4.8)

where the last equality follows from Eqs. (4.1) and (4.7)

∇×E =∇×E⊥ =−∂B

∂t
=− ∂

∂t
∇× A =∇×

(
−∂A

∂t

)
. (4.9)

Gauge freedom and gauge fixing

Both the scalar and the vector potential are not unique and can be modified in the following
way

Φ′ =Φ− ∂χ

∂t
, (4.10)

A′ = A +∇χ. (4.11)

with any twice-differentiable scalar function χ= χ(r , t ) without changing the physics. Put dif-
ferently, the Maxwell’s equations are invariant under the transformation above. This freedom
of choice is called gauge freedom and the transformation gauge transformation. The electric
and the magnetic field are gauge-independent.

A popular gauge choice, which we will also use in this thesis, is the Coulomb or transversal
gauge. Here, the vector potential is chosen to be purely transversal

∇· A = 0. (4.12)

This choice combined with Eqs. (4.3) and (4.8) implies that

∆Φ=−4πρ, (4.13)

which is known as the Poisson equation. This equation implies that the electric potential
changes instantly everywhere in response to a local change in charge distribution. The in-
stantaneous Coulomb interaction between charged particles that we already introduced in
our standard molecular Hamiltonian in section 2.4 is the direct consequence of the Coulomb
gauge.

Light waves

Without presence of charges, the Coulomb gauge becomes the radiation gauge

∇· A = 0, Φ= 0 (4.14)

and we can rewrite Eq. (4.2) as a wave equation for the vector potential on R3

(
∆− 1

c2

∂2

∂t 2

)
A(r , t ) = 0. (4.15)
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This equation has plane-wave solutions of the form

A = Aλk e i (kr−ωt ) ≡ Aλk (t )e i kr . (4.16)

Here, k is the propagation vector of the plane wave and Aλk the amplitude vector, which is
perpendicular to it: Aλk ·k = 0. Hence, in a three-dimensional space there are two possible
polarizations λ and we write Aλk = Aλk eλk with polarization vectors eλk . The frequency ω in
Eq. (4.16) is related to the wave vector via the dispersion relation of light in vacuum

ωk = c|k |. (4.17)

4.2 Quantization of the free electromagnetic field

We will now briefly discuss quantization of light waves introduced in the previous section fol-
lowing [100]. We will keep the radiation gauge and therefore consider only purely transversal
fields.

We begin by expanding a general vector potential in terms of plane waves of Eq. (4.16)

A(r , t ) = ∑
k ,λ

eλk

[
Aλk e i (kr−ωk t ) + A∗

λk e−i (kr−ωk t )
]

. (4.18)

For the fields we write accordingly

E⊥(r , t ) = i
∑
k ,λ

ωk eλk

[
Aλk e i (kr−ωk t ) − A∗

λk e−i (kr−ωk t )
]

, (4.19)

B (r , t ) = i
∑
k ,λ

k ×eλk

[
Aλk e i (kr−ωk t ) + A∗

λk e−i (kr−ωk t )
]

. (4.20)

With these we obtain for the energy of the radiation field (Eq. (4.5))

Eph = ε0V
∑
k ,λ

ω2
k

(
Aλk A∗

λk + A∗
λk Aλk

)
, (4.21)

where V is the quantization volume. In practice, the quantization is performed in a finite vol-
ume V and the full space is then constructed through periodic continuation of this volume,
which is equivalent to periodic boundary conditions.

We now promote the classical potential and the fields to field operators and the amplitudes
A(∗)
λk to photon creation and annihilation operators denoted by â(†).

Aλk → (2ε0Vωk )−1/2 â
λk , A∗

λk → (2ε0Vωk )−1/2 â†
λk . (4.22)

Inserting the above expressions into Eq. (4.21) leads to the Hamiltonian of the free electromag-
netic field

Ĥp = 1

2

∑
k ,λ

ωk

(
â
λk â†

λk + â†
λk â

λk

)
= ∑

k ,λ
ωk

(
â†
λk â

λk + 1

2

)
. (4.23)

For the last part of the equation, we have used the fact that photons are bosons and that the
corresponding creation and annihilation operators obey the bosonic commutator ([a,b] = ab−
ba) relations [

â
λk , â

λ′k ′

]
=

[
â†
λk , â†

λ′k ′

]
= 0,

[
â
λk , â†

λ′k ′

]
= δλλ′δkk ′ . (4.24)

The Hamiltonian in Eq. (4.23) is very simple. It consists of a sum of one-body operators only,
meaning that quanta of the free electromagnetic field do not interact with one another1.

1The actual reason for it is that QED is an abelian gauge theory, which means that the generators of the under-
lying symmetry group build a commutative Lie algebra. Quantizing an abelian gauge theory then results in having
non-interacting gauge bosons, see e.g. [101] for more details.
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The operators â
λk and â†

λk are defined on the photonic Fock space. In the following, we will
briefly discuss how this space is built similar to our discussion in the electronic case in sec-
tion 2.2. We start by defining the one-particle basis functions (photonic modes). For periodic
boundary conditions these are plane waves

φ(λ,k) =φλ(k) = 1p
V

e i kr , with k = 2π
3
p

V

m1

m2

m3

 and m1,2,3 = 0,±1,±2. . . , (4.25)

where we assumed a cubic quantization volume for simplicity. For other geometries and
boundary conditions, these basis functions are much more complicated and we usually do not
have their explicit analytical form [102].

Photons are bosons, which means that their many-body wave-function has to be symmetric
with respect to exchange of particles. This implies that photonic many-body basis states with
Np particles are, as opposed to Slater determinants for electrons, simple permanents

|Φp〉 =
Np∏
j=1

φλj (k). (4.26)

The symmetry further has the consequence that each photonic mode can in principle be occu-
pied by any possible number of particles. Here, the language of second quantization comes in
very handy: every basis state is fully determined by the number of particles nλ,k occupying the
corresponding mode φλ(k)

|Φp〉→ |{nλ,k }〉, with â†
λ,k â

λ,k = nλ,k |{nλ,k }〉, (4.27)

where â†
λ,k â

λ,k is the corresponding particle-number operator. We call the states |{nλ,k }〉 Fock
number states or Fock states. For creation and annihilation operators for a particular mode we
have the following relations in terms of Fock states

â†|n〉 =p
n +1|n +1〉 â |n〉 =p

n|n −1〉. (4.28)

Since most photonic observables like electric or magnetic fields do not conserve the number
of particles (see expansions in Eqs. (4.19)-(4.20)), photonic calculations have to be performed
in the Fock space.

First-quantization picture

Although the language of second quantization is much more convenient for photons, we here
will briefly derive the form of the photonic Hamiltonian Ĥp in the first-quantization picture.
Later, this formulation will make some transformations on the way to the non-relativistic QED
Hamiltonian easier to handle.

First, we establish that each mode in the expansion of the vector potential or the fields
(Eqs. (4.18)-(4.20)) can be associated with a quantum harmonic oscillator [100], if we relate

â
λk = 1p

2ωk

(
ωk q̂λk + i p̂λk

)
, â†

λk = 1p
2ωk

(
ωk q̂λk − i p̂λk

)
, (4.29)

or correspondingly

q̂λk = 1p
2ωk

(
â†
λk + â

λk

)
, p̂λk =−i

√
ωk

2

(
â†
λk − â

λk

)
. (4.30)
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The displacement operators q̂λk play the role of the set of canonical variables with conjugated
momenta p̂λk . The Hamiltonian of Eq. (4.23) then takes the form of a harmonic oscillator

Ĥp = 1

2

∑
k ,λ

p̂2
λk +ω2

k q̂2
λk . (4.31)

This form of Ĥp can be transformed back to the language of first-quantization by expressing
the operators in terms of generalized coordinates qλk [49] 2

q̂λk → qλk , p̂λk → i
∂

∂qλk
. (4.32)

Therefore, in the language of first quantization, the Hamiltonian of the transversal electromag-
netic field reads

Ĥp = 1

2

∑
k ,λ

− ∂2

∂q2
λk

+ω2
k q2

λk . (4.33)

4.3 Semi-classical approach to light-matter interaction

In this section, as a preliminary step towards full non-relativistic QED, we will discuss how to in-
clude interactions of quantized matter with a classical electromagnetic field into the Schröding-
er equation. We will consider only molecular Hamiltonians in the clamped-nuclei approxima-
tion introduced in section 2.4.1.

The form of light-matter interaction can be deduced from gauge-invariance of the electromag-
netic field and additional symmetry properties. For the electronic many-body wave function
we can identify the following very simple symmetry

|Ψ〉 → |Ψ′〉 = e i qχ|Ψ〉, (4.34)

the U (1) symmetry. This simply means that the wave function is defined up to a local phase
χ = χ(r , t ), since this phase does not affect observables. We can show this by considering a
general expectation value

〈Ψ′|Ô|Ψ′〉 = 〈Ψ|e−i qχÔe i qχ|Ψ〉
= 〈Ψ|Ô|Ψ〉+〈Ψ|

[
Ô,e i qχ

]
|Ψ〉+ 1

2
〈Ψ|

[[
Ô,e i qχ

]
,e i qχ

]
|Ψ〉+ · · ·

= 〈Ψ|Ô|Ψ〉, (4.35)

where we have used the BCH expansion introduced in Eq. (3.19) and the fact that all commu-
tators above vanish for hermitian operators

〈Ψ|Ôe i qχ−e i qχÔ|Ψ〉 = e i qχ
(
〈Ô†Ψ|Ψ〉−〈Ψ|ÔΨ〉

)
= e i qχ (〈Ô〉−〈Ô〉)= 0. (4.36)

We call the transformation defined in Eq. (4.34) a gauge transformation similar to Eqs. (4.10)-
(4.11) for electromagnetic potentials and choose the same scalar function χ(r , t ). Same as the
Maxwell’s equations in classical electrodynamics (see section 4.1), the electronic Schrödinger
equation has to be invariant under the gauge transformation of Eq. (4.34).

As a first step, we consider the Schrödinger equation for one electron in real space. We examine
the behavior of a general first-order differential operator D̂ under a local gauge transformation

D̂|Ψ〉 = D̂
(
e−i qχ|Ψ′〉

)
= e−i qχ

(
D̂ − i q

(
D̂χ

))
.|Ψ′〉 (4.37)

2See Eq. (2.10) for comparison to matter particles.
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Inserting this into Eq. (2.3), we obtain

i

(
∂

∂t
− i q

∂χ

∂t

)
|Ψ′〉 = 1

2

(
− i∇−q∇χ

)2|Ψ′〉. (4.38)

If we now insert the gauge freedom conditions of the scalar and vector potential Eqs. (4.10)-
(4.11) in the equation above

i

(
∂

∂t
− i qΦ+ i qΦ′

)
|Ψ′〉 = 1

2

(−i∇−q A′+q A
)2 |Ψ′〉, (4.39)

we deduce that the following transformation of the derivatives

∂

∂t
→ ∂

∂t
+ i qΦ, ∇ → ∇− i q A (4.40)

keeps the Schrödinger equation form-invariant under the gauge transformation of Eq. (4.34).
With this transformation behavior, the Schrödinger equation for an electron in the presence of
electromagnetic field is given by

i
∂

∂t
|Ψ〉 =

[
1

2

(−i∇+q A
)2 +qΦ

]
|Ψ〉. (4.41)

Here, we see that the scalar potentialΦ plays the role of an external potential. It is the potential
that is generated by clamped charged nuclei. The coupling constant q of the electromagnetic
field and the electron can be related to the electric charge of an electron −e. Hence, in atomic
units we have q =−1.

The transformation prescription in Eq. (4.40) is called minimal coupling. It is the simplest form
of derivative transformation that ensures form-invariance of the Schrödinger equation3 under
the given gauge transformation of Eq. (4.34).

For a many-electron system we can generalize the Hamiltonian in Eq. (4.41) in a straight-for-
ward manner. By further adding the energy of the electromagnetic field (Eq. (4.5)) we obtain
the Hamiltonian for semi-classical treatment of light-matter interaction

Ĥsemi−classical =
1

2

Ne∑
j=1

(
i∇ j + A(r j , t )

)2 −
Ne∑
j=1
Φ(r j , t )+ 1

2

Ne∑
j=1

Ne∑
k=1

1

|r j − r k |

+ ε0

2

∫
dr E 2

⊥(r , t )+ c2B 2(r , t ). (4.42)

4.4 Hamiltonain of non-relativistic quantum electrodynamics

Pauli-Fierz Hamiltonian

We proceed by replacing the classical quantities in Eq. (4.42) by their quantum counterparts
(Eq. (4.32) for Ĥp) and write in the language of first quantization

ĤPF = 1

2

Ne∑
j=1

(
i∇ j + Â(r j )

)2 −
Ne∑
j=1
Φ(r j )+ 1

2

Ne∑
j=1

Ne∑
k=1

1

|r j − r k |
+ 1

2

∑
k ,λ

− ∂2

∂q2
λk

+ω2
k q2

λk . (4.43)

Here, we work in the Schrödinger picture of quantum mechanics [47], in which operators of
the electromagnetic field do not have any explicit time dependence. The above Hamiltonian is
known as (spinless) Pauli-Fierz Hamiltonian.

3Same prescription holds for the relativistic counterpart of the Schrödinger equation, the Dirac equation [50],
since this transformation is also invariant under the Lorentz-transformation.
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Long-wavelength limit

In a typical optical set-up the size of atomic and molecular components (few ångström) is sig-
nificantly smaller than the wave length of used light (couple hundreds of nanometers). In these
cases, we can approximate mode functions of Eq. (4.25) as being constant in space (e±i kr ≈
1). With this, expressions for the vector potential and the electric field (quantized versions of
Eqs. (4.18)-(4.19)) can be simplified as

Â(r ) = Â = 1p
ε0V

∑
k ,λ

eλk q̂λk , (4.44)

Ê⊥(r ) = Ê = −1p
ε0V

∑
k ,λ

eλk p̂λk . (4.45)

The Pauli-Fierz Hamiltonian becomes

ĤPFV =
1

2

Ne∑
j=1

(
−∇2

j +2i Â ·∇ j + Â2
)
−

Ne∑
j=1
Φ(r j )+ 1

2

Ne∑
j=1

Ne∑
k=1

1

|r j − r k |

+ 1

2

∑
k ,λ

− ∂2

∂q2
λk

+ω2
k q2

λk . (4.46)

This form of the Hamiltonian is usually called Pauli-Fierz Hamiltonian in the velocity gauge.

Length gauge

In the Coulomb gauge the light-matter interaction in Eq. (4.46) is written in terms of the vec-
tor potential and is therefore gauge-dependent. This disadvantage can be removed by trans-
forming ĤPFV into a different gauge, the length gauge. This transformation is known as Power-
Zienau-Woolley transformation [103, 104]. It consists of a unitary transformation of the from
e−iχ Ĥe iχ with a fixed gauge function χ that mixes matter and photonic degrees of freedom
such that the interaction between the two becomes gauge independent.

Particularly, in the long-wavelength limit, this transformation is quite simple [35, 105]. The
gauge function becomes χ= Â · d̂ , where d̂ is the dipole operator of the system, here the dipole
operator of the electrons

d̂ =−
Ne∑
j=1

r j . (4.47)

Following [105], we now transform every term in Eq. (4.46) individually by consequently apply-
ing Eq. (4.37) to every relevant term in Eq. (4.46). Terms that transform non-trivially are

e i Â·r j

(
∇2

r j
e−i Â·r j

)
=∇2

r j
+2i Â ·∇r j − Â2, (4.48a)

e i Â·r j

(
Â ·∇r j e−i Â·r j

)
= Â ·∇r j + i Â2, (4.48b)

e−i Â·d̂
(
∂2

∂q2
λk

e i Â·d̂
)

= ∂2

∂q2
λk

+2i
eλk · d̂p
ε0V

∂

∂qλk
− 1

ε0V

(
eλk · d̂

)2 =−
(

i
∂

∂qλk
− eλk · d̂p

ε0V

)2

. (4.48c)

In the last part we used the relation given in Eq. (4.44). We insert Eqs. (4.48a)-(4.48c) in Eq. (4.46)
and perform the replacement in Eq. (4.32) backwards to obtain

ĤL =− 1

2

Ne∑
j=1

∇2
j −

Ne∑
j=1

1

c
Φ(r j , t )+ 1

2

Ne∑
j=1

Ne∑
k=1

1

|r j − r k |

+ 1

2

∑
k ,λ

(
p̂λk + eλk · d̂

ωk
p
ε0V

)2

+ω2
k q̂2

λk . (4.49)
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By performing the Power-Zienau-Woolley transformation, we have removed the coupling to
the vector potential from the electronic part of the Hamiltonian. The electronic part is now the
same as in Eq. (2.51). Instead, we now have an explicit dependence on electronic coordinates in
the photonic part of the Hamiltonian. The generalized momenta p̂λk are shifted by the electric
dipole contribution in polarization direction of the field. The classical analogon to this is that,
when electromagnetic fields are considered in matter, the electric field E is replaced by the
electric displacement field D in Maxwell’s equation Eq. (4.3) [98].

Usually, also the following unitary variable exchange of displacement and momentum coordi-
nates is performed: q̂λk →− 1

ωk
p̂λk and p̂λk →−ωk q̂λk

4, which results in the standard form of
the length-gauge QED Hamiltonian

ĤL = Ĥe +
∑
k ,λ

[
1

2

(
p̂2
λk +ω2

k q̂λk
)− ωk

ε0V
eλk q̂λk · d̂ + 1

ε0V

(
eλk · d̂

)2
]

(4.50)

Above, we have written down the individual parts of the Hamiltonian explicitly. The first term
after Ĥe is the Hamiltonian of quantum harmonic oscillators as already discussed in section
4.2. The next term corresponds to the light-matter-interaction Hamiltonian in dipole approx-
imation, which has the same form as its classical counterpart [106]. It corresponds to a linear
coupling of the electronic dipole d to the electric displacement field D . The last term, however,
does not have a classical counterpart. In the literature it is refered to as dipole self-energy. In
typical quantum optical set-ups it is rather small and, hence, it is often omitted [107]. How-
ever, it has been shown recently [105] that keeping this term is necessary, because otherwise
the light-matter Hamiltonian is not bounded from below and hence no variational principle
holds.

4In this way, the photonic Hamiltonian has the usual form of a shifted harmonic oscillator. Further, the dipole
operator of the electrons couples to the displacement field and not to its derivative, which makes subsequent cal-
culations easier [35].



Part II:

Self-consistent density-functional
embedding

In this part of the thesis, we develop a density embedding approach that
allows for construction of approximate exchange-correlation potentials,
which does not rely on an explicit form of the energy functional. To this
end, we introduce a fixed-point iteration scheme for the density-to-poten-
tial mapping that is approximated through a rigorous DMET-inspired
embedding scheme. The method is benchmarked for molecular-bond
stretching in one and two dimensions, for which we show energies, den-
sities, and potentials. Convergence test with fragment sizes are also pro-
vided. This part of the thesis is based on the publication [88].





5Method

In this chapter, we are going to introduce a fixed-point approach to DFT and develop the self-
consistent density-functional embedding (SDE) as not only the first but also as an efficient
approximation to it. SDE allows to explicitly construct approximations to the xc potential with
increasing accuracy without an underlying energy functional. By including insights from exact
wave functions of small fragments into KS description of the system through a self-consistent
embedding scheme, signatures of strong correlation can be naturally included into the DFT
framework. A path on how to calculated observables from the KS potential is also given.

5.1 Fixed-point approach to DFT

As already discussed in section 3.2.3, there are some issues with the standard DFT approach,
with the inaccessibility of the exact energy functional being the most prominent. Here, we
avoid these issue by following a different path that involves no explicit approximate expression
for EHxc[n] or vHxc[n]. Instead, we first introduce a formal approach that employs density-
potential mappings of DFT directly (see e.g. [108]) and then make this approach practical
by applying approximations to it. Following the HK theorem, for a given density n(i ) there
is a interacting system with the external potential v[n(i )] that produces this density. And ex-
actly the same density can be reproduced by non-interacting system with the potential vs[n(i )].
Hence, an interacting density n(i )(r ) can be uniquely inverted to both an interacting potential
v[n(i )](r ) and a non-interacting potential vs[n(i )](r ) . The Hxc potential is then defined by the
difference of those two potentials

vKS[vext,n(i )](r ) = vext(r )+ vS[n(i )](r )− v[n(i )](r )︸ ︷︷ ︸
vHxc[n(i )](r)

. (5.1)

Solving the single-particle eigenvalue equations Eq. (3.38) with vKS[vext,n(i )] we obtain the up-
dated density n(i+1) via Eq. (3.39). Starting with some initial density n(0), this scheme converges
at the true ground state density n that is produced by the external potential vext = v[n] and we
have also found the non-interacting potential vKS[n] = vS[n] to reproduce this density.

Note that the fixed-point iteration scheme from reference [108] that we have introduced above
does not need any explicit expression of an energy functional. However, it is obvious that the
scheme itself is not practical at all. In order to avoid solving the exact Schrödinger equation for
one interacting system with vext we ended up performing inversions not only to obtain the non-
interacting vS[n(i )], which in principle is feasible [109–113], but also to obtain the interacting
v[n(i )], which would involve solving the interacting Schrödinger equation multiple times at
each step and, hence, increase the numerical complexity of the problem instead of decreasing
it.

The embedding method that we develop here targets directly at approximating the fixed-point
iteration scheme in a way that no inversion for v[n] is necessary. Within our approach the
connection between v[n] and n is given by a DMET- inspired projection (see section 3.3.1) and
the exact Schrödinger equation is solved in smaller subsystems.
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Figure 7. General idea behind the self-consistent density-functional embedding approach: properties
of an interacting electronic system with an external potential vext and a ground-state wave function |Ψ0〉
are fully determined by its electronic density n(r ), that can be uniquely reproduced by a non-interacting
system (KS system). The interacting system is divided into fragments. For each fragment (orange) the
system is projected onto a smaller auxiliary interacting (embedded) system. The embedded system
consists of the fragment, which remains unchanged by the projection and the part of the system that
includes interaction and correlation with the fragment (depicted in violet). Each of the embedded sys-
tems is then solved on a wave-function level, yielding an accurate density which then can be uniquely
mapped onto an auxiliary non-interacting system with the same density. These accurate local poten-
tials are then used to improve the global KS description of the full system. The whole process is repeated
self-consistently until convergence of the global KS potential is reached. Graphic published in [88].

5.2 SDE algorithm

The fundamental idea of our density-functional embedding approach is to replace the map-
ping between the global KS potential and the corresponding density by dividing the system
into a set of fragments {i } and mapping those onto a set of auxiliary interacting systems with
a corresponding set of external potentials

{
v i

}
, interacting wave-functions

{|Ψ〉i
}

and densi-
ties

{
ni

}
. Here, no interacting inversion is needed and we also get an approximated mapping

between the KS Slater determinant |Φ0〉 and the ground-state wave function of the system |Ψ0〉.
The SDE method is depicted schematically in Fig. 7. It consists of the following steps:

• Global description: The full system is described in terms of its ground-state density n(r )
by means of KS DFT that we have introduced in section 3.2.1.

• Partition: The system is divided into fragments. Our proposed partition differs signifi-
cantly from other DFT embedding schemes [114, 115] and DMET [22] and we will intro-
duce our continuous partition in section 5.2.1.

• Projection: For each fragment, the full system is projected onto an embedded system,
where the fragment is embedded into an effective bath. Out of manifold of possible pro-
jectors [17, 20, 86], we here use the projector from the DMET approach, that we intro-
duced in 3.3.1. This projector is modified to treat small particle numbers that we will
consider for first applications () in 5.2.2.

• Fragment calculation: For each fragment, an accurate calculation is performed with
a wave-function method. The fragment wave functions are then used to calculate ac-
curate fragment densities. These wave functions also serve as a local approximation
to the mapping between the KS Slater determinant and the ground-state wave func-
tion |Φ0[n]〉 → |Ψ0[n]〉, from which we can directly calculate correlated observables via
O[n] = 〈Ψ[n]|Ô|Ψ[n]〉. Details on this part can be found in section 5.2.3.
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• Local-to-global mapping: Finally, for each fragment i an auxiliary non-interacting sys-
tem is found that reproduces the density ni and the set of obtained potentials

{
vS[ni ]

}
is

then used to update the global KS potential. How this is done in practice is explained in
subsection 5.2.4. The SDE scheme is applied self-consistently and the algorithm is also
explained in subsection 5.2.4.

In the remaining part of this chapter, we will outline general ideas behind some parts of the
algorithm (those parts that have not already been introduced in the theory part I), whereas
most details on the specific implementation of the algorithm are presented in appendix A.1.
One detail, however, we want to specify already here: in the following we will consider only
systems that are discretized on a real-space grid. This choice is necessary for our partitioning
(see section 5.2.1) and it simplifies the local-to-global mapping (see section 5.2.4).

5.2.1 Continuous partition

We begin by considering the task of dividing the full problem into fragments. Generally, the
fragments have to cover the full system and should be selected small enough to be calculated
with required accuracy.

In embedding approaches like subsystem DFT [87] and also in the framework of partition DFT
[114], the system is divided into non-overlapping fragments, which are weakly bounded to one
another. In other words, the partition is dictated by density distribution and correlations within
the system and cannot be chosen arbitrarily. Therefore, those approaches are not applicable
when connections along fragments become important.

In DMET the system is also divided into non-overlapping fragments (see section 3.3.4). The
partition itself can be chosen arbitrarily, as particle transfer between fragment and the rest of
the system is possible within this approach. The size of the fragments is dictated mostly by the
correlation length in the system [20]. Hence, the amount of correlation, which is captured with
the DMET method is constrained by the size of the fragment. Thus, by increasing the fragment
size, a convergence towards the exact solution is feasible, which makes the method systemat-
ically improvable. Dividing the system into non-overlapping fragments, however, causes arti-
ficial discontinuities in local observables such as density [93]1, which sometimes also leads to
convergence problems [116]. This is one reason why DMET can have convergence problems
when applied to inhomogeneous systems [116]. For such systems a simple single-shot embed-
ding is usually performed [22], which still provides very good results for the energies, which is
after all the target of the DMET method.

In SDE, we employ the same type of projection as in DMET but, since we are particularly tar-
geting the density, we further introduce a partition that guarantees that all fragments connect
smoothly to one another. Specifically, we define a continuous partition, where the system is
covered by overlapping fragments as is depicted in Fig. 8. The idea of using overlaps to remove
edges of a fragment was first introduced in Bootstrap Embedding [93], where densities of over-
lapping fragments are matched to one another though additional self-consistency loops. Here,
we use a much simpler scheme. We sweep through the system by just going one grid point fur-
ther for each fragment calculation and, when computing local observables such as the density,
we only take into account the grid point in the middle of each fragment. Grid points at systems
boundaries are included by considering non-local fragments, as exemplary depicted in purple
in Fig. 8(a), that artificially connect the boundary regions. Hence, our partition is constructed
such that the local observables are continuous on the real-space grid. The accuracy can be im-
proved by selecting the grid spacing appropriately. In practice, this has to be balanced with the
computational cost as for any real-space implementation.

1We show a numerical example in section 6.2.2
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Figure 8. Visualization of the partition procedure: In order to obtain a continuous density, we sweep
through the system by just going one site forward for each fragment calculation. Then, only the physical
properties of the centering site are taken into account when considering local observables. The image (a)
shows the partition in 1D and the image (b) illustrates the partition in 2D. Projections Pi onto embedded
systems as well as effective CASs are explained in sections 3.3.1 and 5.2.2. This partition procedure can
be extended to 3D in a straight-forward manner (not shown). Figure adapted from [88].

The introduced partitioning relies on a real-space formulation of the problem, as only there we
have an intuitive notion of overlapping fragments and the subsequent separation into middle
and edge sites. This notion has to be adapted for to more general basis sets in order to allow for
application of SDE to arbitrary molecular systems. The BE method has done some steps in this
direction with promising outcomes [117].

5.2.2 Modified single-particle projection

In section 3.3.1, we have introduced the single-particle projection as it is used in DMET. There,
the set of correlated bath orbitals is obtained from a mean-field 1RDM via separating it as

γ=
 γA γA−B

γA−B† γB

 (5.2)

and choosing those eigenstates ϕ̃B
k ofγB, whose eigenvalues λ̃k lie between zero and two. These

orbitals are then called correlated bath orbitals. In SDE, the global KS system plays the role of
the mean-field 1RDM, from which these orbitals are constructed.

The number of correlated bath orbitals in the CAS is equal to Nfrag as long as 2Nfrag < Ne <
2
(
N −Nfrag

)
holds [118], otherwise their number is smaller. Since DMET was initially construct-

ed for Hubbard-type lattice systems, for which the condition above mostly holds, in DMET the
orbital construction that we introduced so far is used without modifications.

In SDE, we have to modify the orbital construction of DMET in order to get Nfrag correlated bath
orbitals regardless of the particle number Ne. For the low particle numbers that are considered
here, we achieve this by artificially including correlations into the 1RDM of the full system by
occupying higher-energy single-particle orbitals. In order to do so, we adjust the formula of
Eq. (3.63) to

γi j =
Nfrag∑
k=1

ϕ̃B∗
k (i )ϕ̃B

k ( j ) ·


2 for k < Ne/2−1,

2−η(Nfrag −Ne/2) for k = Ne/2,

η for k > Ne/2,

(5.3)

with some small value η and then continue with the orbital construction from diagonalizing
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γB in Eq. (5.2) as before. The actual value of η is not of great importance2 as it is only used to
include higher-lying orbitals into the 1RDM and the same CAS would be obtained for different
values of η.

Note that Eq. (5.3) is valid only for Ne < 2Nfrag. For large particle numbers Ne > 2
(
N −Nfrag

)
the

procedure can be adapted in a straight-forward manner due to particle-hole symmetry.

5.2.3 Fragment calculation

For each fragment i the full system is projected onto an embedded systems by means of a
DMET-style single-particle projection (see sections 3.3.1 and 5.2.2), which is built from a global
KS system. The embedding Hamiltonian Ĥ i

emb of each fragment, which is obtained as de-
scribed in Eqs. (3.69)-(3.70), can be diagonalized with an accurate wave-function method. A
simple exact-diagonalization solver that we use to obtain results presented later in this the-
sis, is given in appendix A.1.2. Hence, we obtain the embedding wave function |Ψi

emb〉 of the

fragment i , with the corresponding density ni given as

ni
α =∑

σ
〈Ψi

emb|ĉ†
αĉα|Ψi

emb〉 for α ∈ CAS. (5.4)

The correlated embedding wave functions can then be used not only to calculate the density,
but any other observable such as the energy of the full system E0. The energy of the full system
E0 can be approximated as a sum of fragment energies, which are calculated calculated from
embedding wave-functions as described in section 3.3.2 and specifically in Eq. (3.71).

In the SDE approach for each fragment i only the middle site αi is considered for obtaining
properties of the full system (see section 5.2.1). The site value of an observable is calculated
by tracing out all orbitals of the system except for the site αi . An observable of the full system
is then obtained as a sum over values for every site. Hence, taking for example the energy, we
adopt the formulas in Eqs. (3.71)-(3.72) to

E0 = 〈Ĥ〉 ≈
N∑
i

Eαi =
N∑
i

(
N∑

j=1
γi
αi j hαi j + 1

2

N∑
j ,k,l=1

Γi
αi j kl Wαi j kl

)
, (5.5)

with

γi
αi j = 〈Ψi |∑

σ
ĉ†
αi σ

ĉ j σ|Ψi 〉, Γi
αi j kl = 〈Ψi | ∑

σ,σ′
ĉ†
αiσ

ĉ†
jσ′ ĉlσ′ ĉkσ|Ψi 〉 (5.6)

and

|Ψi 〉 = Ψ̂i †
emb|0̃i 〉. (5.7)

Here, |0̃i 〉 corresponds to the Slater determinant build from occupied bath orbitals of each
fragments. N is the number of fragments, which is equal to the number of grid points. With
Eqs. (5.5)-(5.7), we have approximated the full wave function |Ψ0〉 by a set of fragment wave-
functions

{|Ψi 〉}. The correlation length that can be captured within this approximation, is
limited by the fragment size.

The expression in Eq. (5.5) can be applied to any other observable. Thus, we circumvent the
usual problem in DFT of finding the explicit dependence between an observable of interest
O and the density n, i.e. the functional O[n], by simply using the embedding wave functions
instead of the density.

2In our implementation η= 0.01 is chosen.



50 Method

Before moving on to improving the KS description of the full system, we have to add an addi-
tional constrain to the fragment calculations. We have to make sure that, when patching the
system back together, we retain the correct particle number Ne in the full system

〈N̂e〉−Ne
!= 0. (5.8)

Following reference [22], we achieve this by adding and self-consistently optimizing a chemical
potential µ to the embedding Hamiltonian of each fragment

Ĥ i
emb → Ĥ i

emb +µ
∑

α∈Nfrag

n̂α, (5.9)

where n̂α denotes the density operator on site α and the index α runs over all fragment sites.
The constant µ in Eq. (5.9)) is added only to the fragment part of the embedding Hamiltonian
in order to achieve a correct particle distribution between fragment and environment. In other
words, the chemical potential is a Lagrange multiplier, which assures that the constraint in
Eq. (5.8)) is fulfilled.

In our implementation we use the secant method, details on which can be found in appendix
A.1.4. Additionally, the optimization is not performed at every step of the algorithm, since it
would involve unnecessary high numerical cost, but rather at the beginning and at the end of
the self-consistency cycle, which we also explain in detail in A.1.4.

5.2.4 Global KS system from local potentials

So far, we have discussed how to project the full system onto a set of interacting embedded
systems with

{
H i

emb ↔|Ψi
emb〉↔ ni

emb

}
starting from some guess for the global KS potential

vKS. We now want to use this set of embedded quantities to update this KS potential.

For each fragment i the Hamiltonian contains a one-body part ĥi
emb and a two-body part Ŵ i

emb

Ĥ i
emb = ĥi

emb +Ŵ i
emb, (5.10)

Following the KS construction, the corresponding density ni
emb can be reproduced by an auxil-

iary non-interacting system with

Ĥ i
emb,MF = ĥi

emb + v̂ i
emb,Hxc[ni

emb] (5.11)

where the correlations are mimicked by the Hxc potential v̂ i
Hxc,emb, that is defined as the dif-

ference of one-body terms of the interacting and the non-interacting systems. In practice, this
potential is obtained either by analytical [119] or numerical inversion [109–113], or by a robust
minimization routine as usually employed in DMET [22]. The analytical inversion scheme that
is used to compute the results presented later in the thesis can be found in appendix A.1.3.

We then approximate the Hxc potential of the full system vHxc on each site αi by the corre-
sponding value of v̂ i

Hxc,emb on the same site

vHxc(αi ) = v̂ i
Hxc,emb(αi ). (5.12)

The KS potential is then updated3 according to Eq. (5.1) as

v̂KS(αi ) = v̂ext(αi )+ v̂ i
Hxc(αi ). (5.13)

This yields the new KS Hamiltonian ĤKS = T̂ + V̂KS, which is then used to obtain a new set of
projections Pi .

3For technical details on the potential update see A.1.5.
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Figure 9. Visualization of the SDE algorithm: The full system can be uniquely mapped onto a non-
interacting KS system. The system is divided into overlapping fragments such that a continuous recon-
struction of the full system is possible. An initial guess for the global KS system is made, from which
a projection is build for each fragment. Then, for each fragment the embedding Hamiltonian is calcu-
lated and the corresponding ground-state wave function and density are computed. A self-consistency
cycle is added to maintain the correct particle number. As soon as the correct particle number is en-
sured in the full system, the density of every fragment is inverted and yields an updated vHxc on each
site independently. This potential is then used to update the KS system. The procedure is repeated until
self-consistency. In pink we mark those parts of the algorithm that are close to the DMET approach.
Graphic adapted from [88].

The whole procedure is performed until convergence (see algorithm in Fig. 9). Eventually, we
obtain an accurate density and KS potential from which also correlated observables can be
calculated as described in Eq. (5.5). The SDE algorithm can be improved by increasing the frag-
ment size and it converges to the exact solution. Note that the choice of reproducing accurately
the density of the interacting embedded system by a non-interacting one, is crucial as it is based
on rigorous one-to-one relations between densities and potentials in DFT and gives us a well
defined target for the inversion4. This would not be the case with any other quantity such as
e.g. the 1RDM (which is used in DMET), since the 1RDM of an interacting system cannot be
reproduced exactly by a non-interacting one, as e.g. comprehensively discussed in reference
[120].

The SDE algorithm is strongly inspired by DMET. Therefore, in order to illustrate the distinction
between the two methods, we mark in Fig. 9 in pink, which parts of the algorithm SDE shares
with DMET. Both methods coincide for fragment size Nfrag = 1, as only then there is no differ-
ence in partition (single-site fragments cannot overlap) and also between density and 1RDM
on the fragment (as there are no off-diagonal elements).

4Note, however, that this part of the algorithm has to be formulated in real space, since the one-to-one relations
of DFT are given in real space.
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To complete the introduction of the SDE method, we now turn to an estimate for its numerical
cost. The cost of fragment calculations in SDE grows exponentially with the fragment size Nfrag

and the cost for the underlying calculation of the non-interacting system grows quadratically
with the total number of grid points N . This has to be multiplied by the number of fragments,
which is also N , and the needed self-consistency iterations η yielding a total scaling of 42·Nfrag ·
N 3 ·η. This estimate has to be validated by additional studies and we assume that the actual
numbers will as usual depend on implementational details as well as on the systems under
consideration.



6Application

The self-consistent density-functional embedding approach as developed in chapter 5 can in
principle be applied to any closed system that is properly described by the Schrödinger equa-
tion in the BO approximation. In the following, we benchmark the method for simple model
systems that on the one hand can be treated with numerically exact approaches and on the
other hand exhibit features that are notoriously difficult to capture for standard KS DFT [119].

To this end, in section 6.1 we introduce model systems that mimic the two-electron bond
stretching of homo- and heteroatomic molecules in one and two dimensions (1D and 2D, re-
spectively). We then discuss the properties of the one-dimensional H2 molecule in section 6.2,
for which we show the dissociation curve, the densities, and the KS potentials in comparison
to other established methods. In this particular case, we also study the convergence behavior
of the SDE approach. Eventually, we apply the method to heteroatomic molecule models and
2D systems in sections 6.3 and 6.4, respectively.

6.1 Diatomic molecule models

We begin by introducing the 1D diatomic molecule model. There our system is discretized on
the real-space (x) grid with an even number N of uniformly distributed sites in a finite volume
L with zero-boundary conditions. The distance between two sites is accordingly given by ∆x =
L/N . The corresponding spatial (site) orbitals are (see Fig. 10(a) for visualization)

ϕi (x) = 1p
∆x
Θ

∆x

2
−

∣∣∣∆x

(
i − N +1

2

)
︸ ︷︷ ︸

≡xi

−x
∣∣∣
 , with i ∈ {1, . . . , N } , (6.1)

where Θ denotes the usual Heaviside step function. These basis function are often called B-
splines of order p = 0 [121]. Having defined the single-particle basis, we can now consider
the one- and two electron integrals defined in Eqs. (2.55)-(2.57) in order to obtain the model
Hamiltonian.

For the one-electron integrals, we approximate the second derivative with second-order central
finite-difference approximation

∂2 f (x)

∂x2

∣∣∣∣
xi

≈ f (xi+1)+ f (xi−1)−2 f (xi )

∆x2 (6.2)

and obtain

hi j =
∫

d x ϕ∗
i (x)

[
−1

2

∂2

∂x2 + vext(x)

]
ϕ j (x),=


1
∆x2 + vi ,ext, if i = j ,

− 1
2∆x2 , if |i − j | = 1,

0, else,

(6.3)

with vi ,ext ≡ vext(xi ). The external potential vext(x) mimics the electrostatic field of the nuclei

53
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Figure 10. (a) Visualization of the one-dimensional heteroatomic molecule model. The real-space vol-
ume L is discretized on a grid with N sites with corresponding spatial orbitals ϕ j (x). The two atoms
are modeled through a asymmetric double well potential v1D

ext. The distance between the nuclei is given
by d and the difference of two charges by ∆z. (b) Generalization of the model to two dimensions. The
space is discretized on a two-dimensional Nx ×Ny grid (with total number of sites N = Nx ·Ny ) and the
nuclei are modeled by a two dimensional double-well potential v2D

ext. Here, a homonuclear case (∆z = 0)
is shown.

by a double-well potential. In 1D, it is given by

v1D
ext(xi ) =− z1√(

xi − d
2

)2 +α
− z2√(

xi + d
2

)2 +α
+ z1z2

2
√(

d 2 +α), (6.4)

where d is the distance between the two potential wells. The numbers z1 and z2 determine
the depth of each well, respectively. In our case they take values between 0 and 2 and we will
characterize the potential by their difference∆z = z1−z2. Note that we chose the soft-Coulomb
potential with some fixed softening parameter α instead of the true (∼ 1/|x|) electrostatic po-
tential. This regularization prevents the model Hamiltonian from being unbounded. Moreover,
the 1D soft-Coulomb potential is also known to closely mimic the behavior of realistic three-
dimensional (3D) systems [122]. The potential is visualized in Fig. 10(a).

For the two-electron integrals of our model, we also use the soft-Coulomb interaction to mimic
the repulsion of the electrons, which would otherwise have a singularity at x = x ′. This wide-
range interaction is therefore given by

Wi j kl =
∫

d x
∫

d x ′ϕ∗
i (x)ϕ∗

j (x ′)
1√

(x −x ′)2 +α
ϕl (x ′)ϕk (x ′) = 1√(

∆x(i − j )
)2 +α

δi kδ j l . (6.5)

We combine all of the above to obtain our 1D model Hamiltonian

Ĥ1D =− 1

2∆x2

∑
i ,σ

(
ĉ†

i+1,σĉi ,σ+ ĉ†
i ,σĉi+1,σ−2ĉ†

i ,σĉi ,σ

)
+∑

i ,σ
v1D

i ,ext ĉ†
i ,σĉi ,σ

+ 1

2∆x

∑
i , j ,σ,σ′

1√(
i − j

)2 +α
ĉ†

i ,σĉ†
j ,σ′ ĉ j ,σ′ ĉi ,σ, (6.6)

where ĉ†
i ,σ and ĉi ,σ are the usual creation and annihilation operators of an electron with spin

σ on site i . The simplest way to model bond-stretching of a 1D molecule is to diagonalize the
Hamiltonian in Eq. (6.6) in the two-electron Hilbert space. The exact diagonalization method
that we employ as fragment solver for SDE as well as to obtain the numerically exact reference
solution (later referred to as FCI) is outlined in appendix A.1.2.
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The model Hamiltonian of Eq. (6.6) can be generalized to the 2D case by now considering a
Nx ×Ny real-space grid with following spatial orbitals

ϕi (x, y) =ϕix (x)ϕi y (y) = 1

∆x
Θ

(
∆x

2
−

∣∣∣xix −x
∣∣∣)Θ(

∆x

2
−

∣∣∣yi y − y
∣∣∣) , (6.7)

with ix ∈ {1, . . . , Nx } and i y ∈
{
1, . . . , Ny

}
. Here, the coordinate xix is defined as xi in Eq. (6.1). We

further choose the same spacing ∆x for both x- and y-direction and therefore have

yi y ≡∆x

(
i y −

Ny +1

2

)
. (6.8)

We obtain the Hamiltonian for the 2D case by replacing the index i in Eq. (6.6) by the double
index (ix , i y ) and further identifying

i +1 → (ix +1, i y ), (ix , i y +1),

(i − j )2 → (ix − jx )2 + (i y − jy )2. (6.9)

The external potential takes the form

v2D
ext(xi , yi ) = v1D

ext(xi ) · 1√
y2

i y
+α

(6.10)

accounting for both, the charge distribution of the ions in x- and in y-direction. The general-
ization of the model to the 2D case is depicted in Fig. 10(b).

In 2D and 3D the softening of the Coulomb potential is not necessarily required for the Hamil-
tonian to be well-defined. In such situations, the singularities in the Coulomb potential lead to
the presence of cusps in the wave function and in the density at the positions of the nuclei [123],
which can become important for modeling of certain situations such as high-harmonic gener-
ation [124]. In real-space based implementations, however, the grid always provides a cutoff for
the Coulomb interaction, which qualitatively has the same effect as the softening. We therefore
do not expect additional challenges coming from the singularities of the true Coulomb poten-
tial in ab initio calculations, at least as long as a real-space basis is employed.

Summarizing the above, the Hamiltonian for modeling diatomic molecules in 2D is given by

Ĥ2D =− 1

2∆x2

∑
ix ,i y ,σ

ĉ†
(ix+1,i y ),σĉ(ix ,i y ),σ+ ĉ†

(ix ,i y+1),σĉ(ix ,i y ),σ+ ĉ†
(ix ,i y ),σĉ(ix+1,i y ),σ+ ĉ†

(ix ,i y ),σĉ(ix ,i y+1),σ

+ ∑
ix ,i y ,σ

(
v2D

(ix ,i y ),ext −
1

∆x2

)
ĉ†

(ix ,i y ),σĉ(ix ,i y ),σ

+ 1

2∆x

∑
ix ,i y , jx , jy ,σ,σ′

1√(
ix − jx

)2 + (
i y − jy

)2 +α
ĉ†

(ix ,i y ),σĉ†
( jx , jy ),σ′ ĉ( jx , jy ),σ′ ĉ(ix ,i y ),σ . (6.11)

The main difference to the 1D case is that here we have hopping to four nearest neighbors to
account for the kinetic energy of the electrons instead of hopping to two nearest neighbors in
the 1D case.

Also in the 2D case, we diagonalize the Hamiltonian in the subspace of two electrons. For prac-
tical calculations, the 2D model introduced above is mapped onto an effective 1D model and
the details for this mapping are given in appendix A.1.1 together with some technical details
regarding partitioning in 2D.
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Figure 11. Ground-state energy of the 1D H2 molecule, calculated with FCI (black dashes line), one di-
mensional LDA (green dashed line), five-sites single-shot DMET (turquoise circles), five-sites SDE (blue
stars) and single-site DMET/SDE (red dash-dotted line). While LDA and DMET(1)/SDE(1) fail to de-
scribe the correct long-distance behavior, both DMET(5s-s) and SDE(5) show excellent agreement with
the exact result. The following set of parameters has been used (see section 6.1 for details on model):
number of real space grid sites N = 120, box size L = 20, potential well difference ∆z = 0, softening
parameter α= 1. Plot was published in [88].

6.2 Properties of one-dimensional H2 molecule

6.2.1 Dissociation curve

Common DFT functionals like LDA [9] or GGA [10, 75] fail to describe the dissociation limit
of the H2 molecule. This failure is attributed to the static correlation error, which is related to
description of fractional spin states [125]. The issue can be understood by following the expla-
nation of Cohen et al. [125]: consider the closed-shell H2 molecule at the dissociation limit.
Half of this molecule is an an exotic system with fractional spins, namely a H atom with half
a spin-up electron and half a spin-down electron. The energy of this system though should
be exactly the same as of a H atom with an integer-spin state. This fact can be generalized to
the constancy condition for the exact functional: systems with fractional spins should have the
same energy as systems with integer spins. Common approximate functionals, however, vio-
late this condition and predict wrong energies for fractional spin states resulting in the wrong
dissociation limit.

Although there are methods such as the strictly-correlated electron functional [126], function-
als based on RPA [127, 128] and on GW combined with RPA [129], or the exchange-correlation
potential by Baerends et. al. [109, 130], which are able to describe strong static correlations
in specific cases, modeling the bond stretching of H2 remains a challenging test for any new
functional.

In Fig. 11, we show how the SDE method performs in this test case. We plot the ground-state
energy of the Hamiltonian in Eq. (6.6) with ∆z = 0 as function of interatomic distance d calcu-
lated with exact diagonalization (ED or FCI in the following), one-dimensional LDA-DFT [131],
one-site DMET (DMET(1)) that is equivalent to one-site SDE (SDE(1))1, single-shot DMET with
five fragment sites (DMET(5s-s)), and five-site SDE (SDE(5)). For both SDE and DMET the ini-
tial guess for the projection is build from the one-body part of the Hamiltonian in Eq. (6.6).
The exact energy curve shows the following well-known behavior: when varying the distance
of the two core potentials d , the curve has a minimum corresponding to a stable molecule. For

1DMET(1) is the only version of DMET that we could apply to the model systems studied here self-consistently.
It is also the only case in which DMET and SDE results coincide (see section 5.2.4 for a detailed discussion).
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Figure 12. Bond-stretching of a symmetric molecule. Plotted are the density distribution n(x) and the
KS potential vKS(x) obtained with SDE(5) (blue solid line), SDE(9) (orange solid line), SDE(1) (red dash-
dotted line), LDA (green dashed line) and FCI (black dashes line). The exact and the SDE solutions for
fragments sizes larger than one agree quantitatively. The SDE KS potential in these cases shows the ex-
pected peak in the center which mimics the electron-electron interaction. For Nfrag = 5, this peak is
slightly overestimated, but converges quickly to a quantitatively exact result for Nfrag = 9. The SDE(1)
and LDA results on the other hand differ significantly from the exact solution. The peak in the KS po-
tential is missing completely. The following set of parameters has been used: N = 120, L = 20, d = 10,
∆z = 0, α= 1. Data published in [88].

smaller core distances, the energy grows due to the repulsion of the two cores. Increasing the
distance d →∞ leads to the vanishing of the binding energy resulting in two separate atoms.

As discussed above, LDA does not predict the correct dissociation behavior of H2 due to the
static correlation error, the energy of the two separated atoms is overestimated. One-site em-
bedding methods DMET(1)/SDE(1) also fail to describe this behavior correctly as static corre-
lation cannot be captured with such small fragment sizes. They perform even worse than LDA
for large distances.

In contrast, both SDE and single-shot DMET show excellent agreement with FCI for Nfrag =
5. Both curves are on top of the FCI result. DMET even results in slightly better energies for
intermediate distances. This might seem surprising at first glance, but the SDE algorithm is
optimized to provide good densities and potentials and, as widely discussed in the literature
[12], this does not necessarily go hand in hand with more accurate energies. The difference in
energy between SDE and DMET is, however, negligible and in the next section we show that
SDE, indeed does provide excellent densities and KS potentials.

6.2.2 Capturing the peak of the exact KS potential

The KS potential of a two-electron system stretched in space exhibits signatures of strong static
correlation between the molecular fragments [109, 119, 130]. In case of the symmetric H2 mole-
cule, this signature is the appearance of a peak between the two potential wells. The peak
originates from the kinetic correlation term and its purpose lies in preventing the tunneling of
non-interacting KS particles between the two H atoms, which for real electrons is taken care of
by their Coulomb repulsion [119].

In Fig. 12, we plot the density and the KS potential of the stretched H2 molecule obtained with
SDE for fragment sizes of 1, 5 and 9 sites and compare them with the exact and with LDA-
DFT results. The density from the SDE calculations for the two larger fragment sizes agrees
quantitatively with the exact density. We also see a peak at position x = 0 in the KS poten-
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tial for both SDE(5) and SDE(9) calculations. This peak is slightly overestimated for Nfrag = 5,
but agrees quantitatively with the exact solution as the fragments gets bigger (Nfrag = 9). The
SDE(1)/DMET(1) results are also plotted. As already has been the case for the energy (see
Fig. 11), both density and potential deviate strongly from the exact solution. The peak in the
KS potential accounting for strong correlations in the system is missing completely and, hence,
also the density distribution deviates strongly from the exact solution. The same applies to
results obtained with LDA.

With this, we have shown that not only does the SDE scheme converge, but also it accurately
reproduces the peak in the KS potential, which is challenging for most DFT approximations.

6.2.3 Comparison with standard DMET implementations

In this section, we compare SDE densities and KS potentials to the ones from our real-space
implementation of single-shot DMET that showed good results for ground-state energies of
the model. Note that, the DMET correlation potential u (see section 3.3.3 for its definition) is
not supposed to be the KS potential. We still include it in the comparison for completeness on
the one hand and to show an example of how SDE differs from DMET in practice on the other
hand.

In Fig. 13, we plot the deviation of the approximate densities ∆n and potentials ∆u from the
exact ones for both methods for Nfrag = 5. Note that in DMET the embedding potential u is in
general non-local and not unique, as it is solely used to approximate the projection and is not
targeted itself by the method. In DMET, we further consider two different types of matching
[22] to obtain the potentials: matching of the interacting and non-interacting 1RDM on the
fragment (γ-matching, see also section 3.3.3) and matching of only the corresponding densities
(n-matching). In case of γ-matching, the embedding potential u is non-local and we compare
only its diagonal to the exact KS potential vKS.

We observe that the DMET density deviates stronger from the exact solution than the SDE den-
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Figure 13. Deviation of densities∆n and potentials∆u from FCI reference results for five-site SDE (blue
solid line) and five-site single-shot DMET with two approaches to obtain the potential: density matching
(turquoise solid line with circles) and 1RDM matching (violet solid line with triangles). For the densities
both DMET results are on top of each other as they do not depend on the type of matching in the first
embedding shot. DMET results for the potentials exhibit striking discontinuities that result from dis-
continuous densities. This is not surprising as the target of DMET is not to obtain a global description of
a system through a KS potential. SDE results show smooth behavior for both density and KS potential.
The following set of parameters has been used: N = 120, L = 20, d = 10, ∆z = 0, α= 1.
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sity. Furthermore, in DMET we clearly see a peculiarly shaped density, especially at fragment
boundaries. This behavior is caused by the fact that there is no smooth connection between
the fragments. This comparison reveals the need of our type of partitioning in order to have
accurate densities.

The discontinuity of both DMET embedding potentials is even more pronounced. The
strongest deviations appear at fragment boundaries as there embedding potentials have to
connect different basis sets of the fragments (site basis) and correlated bath orbitals. In case
of γ-matching we further observe asymmetric behavior of the embedding potential although
both the external potential and the density are symmetric. This behavior is a clear signature
of ambiguities in matching the 1RDMs on the fragment in DMET that we discussed in sec-
tion 3.3.4. In case of single-shot embedding, the potentials, however, are never used and they
are also not targeted by the DMET method. The issues of discontinuity and ambiguity of γ-
matching have to be fixed though, if the method needs to be applied self-consistently or if it
aims to calculate accurate densities and KS potentials. Both these aims are achieved within the
SDE approach.

6.2.4 Convergence behavior

In this section we show that the results obtained with our self-consistent density functional
embedding can be improved by increasing the size of the fragments. Moreover, from our nu-
merical evidence we deduce that this improvement is systematic. In Fig. 14 and 15, we plot
the deviation of SDE results from the exact solution for different properties Q of the system,
integrated over the whole space

∆Q =∑
i

∣∣QSDE
i −Qexact

i

∣∣ ·∆x. (6.12)

In Fig. 14, we plot the deviation of the density ∆n and the KS potential ∆vKS between the SDE
calculation and the exact result. We consider two different core distances (d = 0 and d = 10),
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Figure 14. Integrated deviation of the density (upper graph) and the KS potential (lower graph) of the
SDE calculation from the exact solution for weakly static correlated (d = 0) and strongly static correlated
electrons (d = 10). In both cases, we observe a decrease in the error between the two calculations. While
in the weakly correlated case the error estimate is higher for small fragments and decreases faster, in the
strongly correlated case already the calculations for small fragments are very good and decrease slower.
Already for (Nfrag = 3), the error is of the order of ∆n ≤ 10−4. Parameters for d = 0: N = 120, L = 10,
∆z = 0, α= 1; parameters for d = 10: N = 120, L = 20, ∆z = 0, α= 1. Data published in [88].
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Figure 15. Difference of the total energy between the SDE and the exact solution ∆E0 with and without
rescaling with respect to the particle number. We consider two different core distances (d = 0, upper
graph and d = 10, lower graph), which correspond to weak and strong correlation between the electrons.
For the weakly static correlated system, already for Nfrag = 9, the error between the two calculations is
below our selected accuracy limit. For strongly static correlated electrons, d = 10, we observe that the
energy estimate of the SDE calculations for Nfrag ≥ 9 is too low compared to the exact solution. The
deviation in energy is very low for small fragment sizes (∆E0 ≤ 10−5). Parameters for d = 0: N = 120,
L = 10, ∆z = 0, α= 1; parameters for d = 10: N = 120, L = 20, ∆z = 0, α= 1. Data published in [88].

which correspond to weak and strong static correlation between the electrons. In both cases
and for both chosen properties, we observe a monotonous decrease in∆Q with increasing frag-
ment size up to a quantitative agreement of the two solutions. Already for the smallest consid-
ered fragment size Nfrag = 3, the deviations are relatively small, that is of the order of the fourth
digit for the density∆n ≤ 10−4 and of the order of the first digit for the KS potential∆vKS = 10−1.

In Fig. 14, we show the deviation of the total energy E0 of the SDE method from the exact cal-
culation. Again, we consider one example with weakly static correlated electrons and one ex-
ample with strongly static correlated electrons. For weakly correlated electrons, the difference
in energy decreases and already for an fragment size of Nfrag = 7, the deviation from the exact
solution is below chemical accuracy of 1.6 mhartree.

For strongly (static) correlated electrons, we observe that the SDE energy becomes smaller than
the exact energy for a range of fragments between Nfrag = 9 and Nfrag = 20. This is because the
SDE method is not variational and the estimate for the energy therefore can also be lower than
the exact energy. Also for this observable though, already for small fragments our estimate is of
order ∆E0 ≤ 10−5hartree, which is far below chemical accuracy.

Since we approximate the wave function of the full system by a set of fragment wave functions,
the total particle number calculated with fragment wave functions is not necessarily correct.
The employed optimization of the chemical potential leads to the correct number for 〈N̂e〉 up
to a desired accuracy (|〈N̂e〉 − N̂e| < 10−5). As the energy difference is of the same order of
magnitude, we further rescale the energy with respect to the particle number

E SDE
0 → E SDE

0 · N̂e/〈N̂e〉, (6.13)

to see if we achieve a better convergence behavior. We indeed do, as we can also see in Fig. 15.
Nonetheless, the calculated energy can still be lower than the exact energy, meaning that we
still observe the non-variational nature of our approximation.
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Figure 16. Bond-stretching of a heteroatomic molecule. Plotted are the density distribution n(x) and the
KS potential vKS(x) for an asymmetric external potential obtained with SDE(5) (blue solid line), SDE(9)
(orange solid line) and FCI (black dashes line). Both SDE results agree with the exact solution and show
expected peak and step in the KS potential. The following set of parameters has been used: N = 120,
L = 20, d = 10, ∆z = 0.5, α= 1.

6.3 KS potential for heteroatomic molecules

As the next challenge we consider a generalization of the system studied in the previous section,
namely bond stretching of heteroatomic molecules such as Li H . These systems can also be
modeled by the Hamiltonian of Eq. (6.6) by considering an asymmetric external potential. The
SDE results for densities and KS potentials of such systems are plotted in Fig. 16. As already
in the symmetric case, we observe excellent agreement with exact results for both density and
potential. We observe an asymmetric density distribution, which is mimicked by a KS potential
that, in addition to the peak observed in the symmetric case in Fig. 12, has a step between the
two wells. The appearance of the step and its importance in KS DFT is to this day a widely
discussed issue in the literature [132–135].

Even though approximate functionals, e.g. those based on the exact-exchange approximation,
do reproduce the step in the KS potential [136], to the best of our knowledge, so far there does
not exist any approximate energy functional that can reproduce both peaks and steps of the
exact KS potential at the same time [137]. Within the SDE approach we achieve both claims
and that is why we believe that with SDE we provide a new path towards accurate KS potentials
even for strongly correlated systems.

6.4 Application to two-dimensional models

Here, we continue benchmarking the performance of the SDE approach by addressing higher-
dimensional systems, such as model H2 and model heteroatomic molecule in two dimensions.

In Fig. 17, we plot the density n, the KS potential vKS, the external potential vext, the Hxc po-
tential vHxc, and deviations from the exact solution ∆n and ∆vHxc for the two-dimensional H2

model. We observe a homogeneous density distribution around the two core potentials that is
consistent with the external potential. The Hxc potential which mimics the interactions of the
electrons as well the kinetic correlations in the interacting case, shows a peak in the middle of
the molecule. Our observations are consistent with the exact solution of this problem.
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Figure 17. The H2 molecule in two dimensions. Plotted are the density n, the Hartree-exchange-
correlation potential vHxc, as well as their difference from the exact reference∆n and∆vHxc, respectively,
the KS potential vKS, and the external potential vext with SDE(4×4). We observe a homogeneous density
consistent with the external potential. vHxc shows the peak accounting for the interactions of the two
electrons. We observe good agreement with the exact reference. The following set of parameters has
been used: Nx = 40, Ny = 20, Lx = 20, Ly = 10, d = 10, ∆z = 0, α= 1. Plot published in [88].
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Figure 18. Heteroatomic molecule in two dimensions. Plotted are the density n, the Hartree-exchange-
correlation potential vHxc, as well as their difference from the exact reference∆n and∆vHxc, respectively,
the KS potential vKS, and the external potential vext with SDE(4×4). We observe an asymmetric density
consistent with the external potential. vHxc again shows the peak accounting for the interactions of the
two electrons. Additionally, a step accounting for the asymmetric distribution of the density can be
observed. Again, we observe good agreement with the exact reference. The following set of parameters
has been used: Nx = 40, Ny = 20, Lx = 20, Ly = 10, d = 10, ∆z = 0.5, α= 1. Plot published in [88].
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For a model heteroatomic molecule, we plot the same properties as for H2 in Fig 18. The den-
sity for the heteroatomic molecule in the two-dimensional case is asymmetrically distributed
between the two cores, again consistent with the external potential. In the Hartree-exchange-
correlation potential, additional to the peak accounting for the interaction of the electrons, we
also observe a step that accounts for the asymmetric distribution of the density.
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With our novel self-consistent density-functional embedding, we have developed a method
that leaves the realm of standard energy-functional approaches in DFT and paves the way for
unconventional functional development. Instead of yet another energy functional, the method
directly targets the density to potential mapping that lies at the heart of KS DFT. To this end
we divide the target system into overlapping local fragments. By using a DMET-inspired pro-
jection, these fragments can then be addressed independently with exact denationalization
techniques. Based on rigorous relations in DFT, local fragment properties are then used to ap-
proximate the density and the KS potential of the global system in a self-consistent manner.
Through the set of the obtained correlated fragment wave functions, we additionally have a
way of calculating ground-state observables of the global system that are not easily accessible
with standard DFT approximations.

As a crucial step in ab initio method development, we have provided proof-of-principle bench-
mark calculations for model systems, for which a comparison with numerically exact results is
accessible. To this end, we have considered two-electron systems in one- and two dimensions.
For these models, SDE demonstrates results comparable in accuracy to FCI already for mod-
erate fragment sizes. Thereby, not only we can very accurately reproduce the exact potential
energy surfaces, but also all signatures of strong correlation that are present in the exact KS
potentials. This makes SDE e.g. the first approximate DFT approach to exhibit both peaks and
steps in the KS potential at the same time [137], which is necessary for an accurate description
of molecular dissociations. Additionally, from our numerical evidence the SDE method seems
to exhibit another feature that is lacking in standard DFT approaches. It appears to be system-
atically improvable by increasing the size of the fragments and moreover it converges to the
exact solution.

An implementation of the SDE approach that would allow for calculating real 3D molecules
needs to address the additional challenges, that we review in the following.

To calculate larger fragment sizes and particle numbers, more efficient solvers have to replace
the simple exact diagonalization approach that we so far use to obtain the fragment wave
functions. These can either be provided by more efficient exact diagonalization approaches
[18, 138, 139], or accurate approximate methods such as DMRG [71, 140] (for strong correla-
tions) and CC [141, 142] (for weaker correlations). While this might improve the computational
scaling of the overall approach, the use of approximate solvers will most probably result in
less accurate ground-state densities that can cause instabilities due to the subsequent density-
inversion procedure, as it is very sensitive to changes in the density. Overall, a balance between
computational cost and accuracy has to be maintained and additional studies are necessary to
quantify this.

The exact analytic inversion scheme that we use for the update of the global KS potential from
the fragment wave functions is unfortunately only valid in case of two electrons. Hence, to
treat larger particle numbers with SDE, the analytic inversion scheme has to be substituted
by a numeric one, as e.g. proposed in [109–113] for small atoms and molecules, or simply
be replaced by a robust but less accurate optimization scheme as in conventional DMET [22].
Finding a numerically stable inversion algorithm that at the same time is accurate enough for
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our purpose will probably become one of the main challenges in future developments of the
method.

Both extensions outlined above will allow to treat realistic molecular systems that are dis-
cretized on a 3D real-space grid. In such situations, a vast amount of basis states is required
to properly describe the molecule, which makes storage and manipulation of one- and two-
electron integrals numerically demanding, but in principle still feasible, since many compara-
ble approaches successfully employ real-space grids [143–146].

One possible strategy to avoid transformations of two-electron tensors is given by the non-
interacting bath formulation of DMET [22] that circumvents the treatment of the interaction
tensor for the full system altogether. Following this spirit, development of novel projection
techniques that are not based on the KS Slater determinant, which is the case now, but rather
on the density or the 1RDM of the global system might be a promising route for a further ad-
vancement. Such an approach would utilize the formally exact framework of DFT (or the one
of the reduced density-matrix functional theory (RDMFT)) even more efficiently.

Another way to approach realistic systems is to replace the real-space basis by more suitable
quantum chemistry basis sets. This, however, would require a novel strategy on how to define
overlapping fragments and the related continuous partition in such a basis. In a resent work
[117], Ye et al. proposed a generalized notion of overlapping fragments for generic ab initio
Hamiltonians in the framework of their bootstrap embedding. The definition is based on a
heuristic interaction-based metric that determines the interorbital connectivity and we believe
that similar concepts can be utilized for SDE, providing another promising path for the method.



Part III:

Coupled-cluster theory for light-matter
interaction

In this part of the thesis, we propose an extension of CC theory that en-
ables accurate treatment of coupled light-matter systems. We introduce
the ingredients for such an extension and develop a numerical framework
to test the theory. We apply the developed polaritonic coupled-cluster
theory to ground- and excited-state properties of simple model systems
and compare the results to FCI calculations. Extension of the theory be-
yond simple model systems and its scaling are also discussed. This part of
the thesis is based on the publication [147].
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In the following, we will discuss how the standard quantum chemical CC theory can be ex-
tended to the treatment of coupled fermion-boson, or specifically in our case, electron-photon
systems. As discussed in chapter 4, Hamiltonians that we consider are fixed-nucleus molecular
systems interacting with photonic fields in the non-relativistic dipole approximation. Here, us-
ing the quantum harmonic oscillator relations q̂ = (2ωk )−

1
2
(
â† + â

)
and p̂ = −i

p
ω/2

(
â† − â

)
,

we slightly rewrite the Hamiltonian given in Eq. (4.50) to

Ĥ = Ĥe +
∑
α

[
ωαâ†

αâα−γαωαd̂
(
â†
α+ âα

)
+γ2

αωαd̂ 2
]

. (8.1)

Additionally, we have summarized the mode and polarization indices λ,k to the index α and
introduced the normalized light-matter interaction strength γα ≡ (eα ·ed )

(p
2ωαε0V

)−1 [34].
The constant γα includes the projection of the mode polarization eα onto the direction ed of
the molecular dipole moment. The molecular dipole operator d̂ is an electronic one-body op-
erator of a general form d̂ = ∑

i , j ,σdi j ĉ†
iσĉ jσ. Additionally, we omit the photonic zero-point

energy
∑
α
ωα
2 in Eq. (8.1) that would yield just a shift in energy.

In the following, we develop a general framework for polaritonic CC theory. We discuss how
the three main ingredients – reference state, excitation operators, and cluster operator – of the
standard electronic CC theory can be adapted to the new situation. For simplicity and since
these are often settings utilized in cavity QED [34], we will involve only one photonic modeωα =
ωc into our derivation. Considerations regarding the straightforward multi-mode extension of
the theory as well as its overall practicability are discussed in section 8.2.

8.1 Ingredients for polaritonic CC theory

8.1.1 Reference state

In standard purely electronic CC theory (see section 3.1.3), a single Slater determinant is used
as a reference state. Usually, the HF Slater determinant |Φ0〉 = |Φe

0〉 is chosen, as it is a mean-
field solution that is energetically the closest to the actual ground-state and as it is assumed to
cover the coarse electronic structure of the system.

For the coupled electron-photon system, similar considerations apply. As a reference, we
choose a product state between an electronic reference |Φ̃e

0〉 and a photonic reference |Φ̃p
0〉

|Φ0〉 = |Φ̃e
0〉⊗ |Φ̃p

0〉. (8.2)

These components can be obtained as mean-field solutions of (single-mode) Eq. (8.1), which
would mean finding mean-field solutions for the following two coupled Hamiltonians

Ĥ MF
e = Ĥe +γ2ωc d̂ 2 −γωc d̂〈 â† + â 〉+〈Ĥp〉 Ĥ MF

p =ωc â†â −γωc〈d̂〉
(
â† + â

)
+〈Ĥe〉, (8.3)

where the expectation values are built with the respective other mean-field state, e. g.
〈 â† + â 〉 =̂ 〈Φ̃p

0 | â† + â |Φ̃p
0〉 or 〈d̂〉 =̂ 〈Φ̃e

0|d̂ |Φ̃e
0〉.
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The matter-dependent photonic mean-field Hamiltonian describes a shifted harmonic oscilla-
tor. Its ground state is given by the following coherent state

|Φ̃p
0〉 = ezâ†−zâ |0〉 = e−|z|

2/2
∞∑

n=0

zn

p
n!

|n〉, (8.4)

where the displacement z = γ〈d̂〉 is determined by the electrons. The photonic part of the
theory would then be formulated in terms of generalized coherent states, that are basically
Fock-number states that are built with respect to the state defined in Eq. (8.4) instead of the
bare vacuum [148].

The electronic mean-field solution would remain a HF Slater determinant, but of a new Hamil-
tonian

Ĥ MF
e = Ĥe +γ2ωc

(
d̂ 2 − d̂〈d̂〉)+〈Ĥp〉 (8.5)

containing additional terms that result from coupling to the photonic mode. Note that Ĥ MF
e

depends on |Φ̃e
0〉 through the photonic shift γ〈d̂〉 and has to be updated at each step in the HF

calculation.

In the following, we omit this step of finding the coupled mean-field solution by choosing
an even simpler reference state, namely one for the zero-coupling case where the mean-field
Hamiltonians are given by

Ĥ MF(0)
e = Ĥe, Ĥ MF(0)

p = Ĥp. (8.6)

With these Hamitonians, the reference solution is given by a simple product of the electronic
HF Slater determinant |Φe

0〉 and the photonic vacuum |0〉.

|Φ0〉 = |Φe
0〉⊗ |0〉. (8.7)

The above approximation is justified by the fact that the coupling usually has quite a small
impact on the ground state of the coupled system (we will discuss this in section 10.3) and a
posteriori by the excellent performance of polaritonic CC theory (see section 10.4).

8.1.2 Bosonic excitation operators

As we have discussed in section 3.1.3, the equality of the product ansatz and the exponential
ansatz in standard CC theory is guaranteed, if excitation operators τ̂µ meet the conditions of

Commutativity: [τ̂µ, τ̂ν] = 0; (8.8)

Nilpotency:
(
τ̂µ

)2 = 0. (8.9)

The natural excitation operator for a bosonic mode is simply the creation operator â†, but the
lack of nilpotency ((â†)2 6= 0) means that a formalism based on â† would lack the simple struc-
ture of electronic CC theory. However, if the number of photons in the system is limited to a
finite number nmax, which is anyway necessary for numerical treatment of bosons in the basis
of Fock number states (see section 9.1.1 for details), it is possible to map one bosonic mode to
a lattice of nmax+1 sites {|0〉, |1〉, . . . , |nmax〉}, each corresponding to a Fock number state. In this
case the excitation operators

τ̂n = |n〉〈0| (8.10)

clearly fulfill both the commutativity and nilpotency condition, while allowing any number
state to be addressed (see Fig. 19). For a basis cut-off nmax, we obtain in total nmax excitation
operators τ̂n for one bosonic mode. This framework can be understood as a fermionization.
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â†
<latexit sha1_base64="vZWH34leAbmcTe99F5Gp9epu5UM="></latexit>

â†
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Figure 19. Two types of excitation operators for a bosonic degree of freedom. Both can be used to
access any number state, and both are sets of commutative operators. Note that the operators τ̂n are
additionally nilpotent, simplifying CC formulations that use this form. Graphic published in [147].

One bosonic mode is represented by exactly one additional fermion with some exotic spin.
This particle can occupy in total nmax + 1 orbitals, but excitation operators can only excite it
from the lowest orbital corresponding to |0〉.
Additionally, bosonic excitation operators defined in Eq. (8.10) can be generalized to a coherent-
state basis in a straight-forward manner, if a coherent state given in Eq. (8.4) is chosen as a
photonic reference (see section 8.1.1 and [148]).

8.1.3 Cluster operator

Now, to build CC theory for electron-photon systems, we introduce a more general cluster op-
erator

T̂ =∑
µ

tµτ̂µ+
∑
n

tn τ̂n +∑
µ̃,ñ

tµ̃ñ τ̂µ̃τ̂ñ ≡∑
κ

tκτ̂κ, (8.11)

in which the electronic terms τ̂µ as introduced in Eq. (3.6) are supplemented by purely photonic
excitations τ̂n defined in Eq. (8.10) and connected light-matter excitations τ̂µ̃τ̂ñ . The tilde em-
phasizes the fact that although the coupled excitation operators are products of fermionic and
photonic operators, the sum can run over a different set of values µ̃ and ñ. Note that the set of
coupled amplitudes tµ̃ñ is independent of purely electronic amplitudes tµ and purely photonic
amplitudes tn . To every operator entering the extended cluster operator in Eq. (8.11) we assign
a new index κ.

To describe the truncation of each term in the cluster operator, we introduce following ter-
minology for acronyms in polaritonic CC theory: CC–’fermionic-excitation-level’–’photonic-
excitation-level’–’connected-excitation-level’. More specifically, in chapter 10 we will use the
following acronyms:

• CC-SD-S-0: refers to a superposition of electronic singles ĉ†
a ĉi and doubles ĉ†

b ĉ†
a ĉi ĉ j ,

and photonic singles |n〉〈0| without any coupled excitations;

• CC-SD-S-D: stands for electronic singles ĉ†
a ĉi and doubles ĉ†

b ĉ†
a ĉi ĉ j , photonic singles

|n〉〈0|, and connected doubles ĉ†
a ĉi ⊗|n〉〈0|;

• CC-SD-S-DT: denotes electronic singles ĉ†
a ĉi and doubles ĉ†

b ĉ†
a ĉi ĉ j , photonic singles

|n〉〈0|, connected doubles ĉ†
a ĉi ⊗|n〉〈0| and triples ĉ†

b ĉ†
a ĉi ĉ j ⊗|n〉〈0|.

These abbreviations reflect the fact that for single-mode problems the photonic excitation level
is at most singles. Multi-photon excitations within that single mode, however, are included due
to the structure of the corresponding excitation operators defined in Eq. (8.10). Also, the level
of connected excitations is at least doubles as at least single electronic and single photonic
excitation have to be included.
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The form of the energy and amplitude equations in polaritonic CC theory remains the same as
in the standard CC approach. We recall Eqs. (3.16)-(3.17)

〈Φ0|e−T̂ Ĥe T̂ |Φ0〉 = E0, 〈Φκ|e−T̂ Ĥe T̂ |Φ0〉 = 0, (8.12)

with the reference state defined in Eq. (8.2) or Eq. (8.7), respectively, and the extended cluster
operator as introduced above. The EOM-CC approach to excited states of a system also remains
unchanged by the extension to photons.

8.2 Scaling and multi-mode considerations

To complete the general introduction of the developed CC theory for light-matter interaction,
we here discuss its general scaling and how a multi-mode extension can be realized.

The polynomial scaling of CC theory is attributed to the fact that usually a polynomial number
of excitation operators enters T̂ and that the Baker-Campbell-Hausdorff expansion of the ST
Hamiltonian truncates at fourth order due to the form of the underlying molecular Hamilto-
nian (see section 3.1.3 and [61] for details). The same arguments apply to light-matter Hamil-
tonians, since the individual photonic creation and annihilation operators are quadratic ex-
pressions in the excitation operators

â =
nmax∑
n=1

p
n τ̂n−1τ̂

†
n , â† =

nmax∑
n=1

p
n τ̂n τ̂

†
n−1. (8.13)

Therefore, the free-field part in the single-mode version of Eq. (10.1) becomes a one-body in-
teraction

ωc â†â =
nmax∑
n=1

ωc n τ̂n τ̂
†
n (8.14)

and the light-matter part a two-body interaction∑
i , j ,σ

γωc di j ĉ†
iσĉ jσ

(
â† + â

)
= ∑

i , j ,σ

nmax∑
n=1

γωc di j
p

n
(
ĉ†

iσĉ jστ̂n−1τ̂
†
n + ĉ†

iσĉ jστ̂n τ̂
†
n−1

)
, (8.15)

respectively.

Thus, the equations of e.g. polaritonic CC-SD-S-DT theory are effectively identical to a subset
of the conventional CCSDT equations, but with removal of exchange diagrams and inclusion
of alternative values in place of two-electron integrals. The CC energy equation (Eq. (3.20)) in
CC-SD-S-DT, for instance, becomes

ECC-SD-S-DT = ẼCCSD − ∑
i a
γωc dai

(
t a

i , 1 + t a
i t1

)
. (8.16)

Here, t a
i is the amplitude of the electronic excitation ĉ†

a ĉi , t1 the one of the photonic excitation

|1〉〈0| and t a
i , 1 the one of the connected excitation ĉ†

a ĉi ⊗|1〉〈0|. Note that only excitations with
a maximum of one photon contribute to the energy as only one-photon excitations enter the
Hamiltonian. By the tilde in ẼCCSD we denote the fact that the dipole self-interaction has to be
included in its evaluation.

For algebraic expressions for the CCSDT amplitude equations we refer to literature, e.g. [60].
The computationally most expensive terms included in those equations are associated with
connected triple excitations like the term

∑
abcd 〈ab||de〉t dec

i j k , that scales roughly as N 8 ∼ N 5
emp ·

N 3
occ. In CC-SD-S-DT this term translates to

nmax∑
n=1

∑
abcd

(〈ab||de〉−γωc dad
p

n
)

t de
i j , n , (8.17)
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which scales as N 6 ·nmax. Usually, the photonic cut-off is much smaller than the number of
electronic orbitals1 and therefore we can argue that the scaling of CC-SD-S-DT is roughly the
same as the O (N 6) scaling of conventional CCSD theory.

An extension of the theory to multiple photonic modes is straightforward. Photons that be-
long to different modes are distinguishable and therefore adding a photonic mode to a theory
would simply mean having an additional single exotic particle that represents this mode (see
discussion in section 8.1.2). The cluster operator would have to be extended accordingly, where
naturally additional levels of truncation would be possible.

This multi-mode polaritonic CC theory would scale exponentially with the number of consid-
ered photonic modes, which is not a big issue, since in most cavity QED applications only few
photonic modes have to be considered. A reduction to a polynomial scaling, however, should
be possible e.g. by modifying the cluster operator and the set of considered excited states.

1The quantum character of light comes into play, when few photons are involved. For large photon numbers, a
classical description of light is mostly sufficient.
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In this chapter, we provide step-by-step instructions for our computational realization of po-
laritonic CC theory. How vector-matrix representations of all involved states and operators
(and therefore defining equations for CC and FCI theories) are constructed, is discussed in sec-
tion 9.1. It is important to stress, that our implementation serves as a numerical proof of con-
cept and has no claim of computational efficiency. The method, as implemented in the course
of this project, scales exponentially with the system size. However, as discussed in section 8.2,
this scaling can be reduced to a polynomial one using the same techniques as in standard CC
theory.

An algorithm for solving the CC equations is given in section 9.2. Additionally, in section 9.3
we briefly discuss the problem of (close-to-)degenerate eigenstates of the ST Hamiltonian and
develop a correction method for this issue.

9.1 Operator construction

9.1.1 Creation and annihilation operators

Fermionic operators

As discussed in section 2.2.3, for a given finite set of spin-orbitals quantum mechanics is re-
duced to simple linear algebra on the Fock space of the problem. Intuitively, one would start by
labeling every possible basis state in the Fock space (Slater determinant as defined in Eq. (2.22))

|Φk〉→ ( 0, . . . ,0, 1, 0, . . . ,0
↑

kth position

)T (9.1)

and determine matrix representations of operators (see Eq. (2.26)) according to this labeling.
This procedure becomes rather cumbersome very fast with larger basis sizes, since the labeling
is completely arbitrary.

Therefore, here we use a slightly different approach. We first construct matrix representations
of particle-creation and annihilation operators and then label the states according to these ma-
trices. For fermions this can be done systematically in terms of the Jordan-Wigner transforma-
tion [149] as follows

ĉ1↑ = 1 ⊗·· ·⊗ 1 ⊗ 1 ⊗σ+, ĉ†
1↑ = 1 ⊗·· ·⊗ 1 ⊗ 1 ⊗σ−,

ĉ1↓ = 1 ⊗·· ·⊗ 1 ⊗σ+⊗σz , ĉ†
1↓ = 1 ⊗·· ·⊗ 1 ⊗σ−⊗σz ,

ĉ2↑ = 1 ⊗·· ·⊗σ+⊗σz ⊗σz , ĉ†
2↑ = 1 ⊗·· ·⊗σ−⊗σz ⊗σz ,

...
...

ĉN↓ =σ+⊗·· ·⊗σz ⊗σz ⊗σz , ĉ†
N↓ =σ−⊗·· ·⊗σz ⊗σz ⊗σz . (9.2)

75
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The ingredients above are

σ+ =
(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σz =

(
1 0
0 −1

)
, 1=

(
1 0
0 1

)
, (9.3)

and N again denotes the number of spatial orbitals in the basis. The matrices σ−, σ+ play the
role of creation and annihilation operators for a single spin-orbital and σz ensures that the
matrices obey the necessary fermionic anti-commutator relations introduced in Eq. (2.34).

Note that here operator indices are assigned arbitrarily. This indexing, however, now deter-
mines the labeling of basis states |Φk〉 in the Fock space. The vacuum in this scenario is given
by |0〉=̂ (1,0, · · · ,0)T and each Slater determinant consisting of a set of spin orbitals

{
(i ,σ)

}
can

be constructed as

|Φ{
(i ,σ)

}〉 = ∑{
(i ,σ)

} ĉ†
i ,σ|0〉=̂ ( 0, . . . ,0, 1, 0, . . . ,0

↑{
(i ,σ)

} 7→ k

)T =̂ |Φk〉 (9.4)

with the bijective mapping
{
(i ,σ)

} 7→ k. The explicit knowledge of this mapping is mostly of no
practical use, since we are usually not interested in the explicit expansion of a wave function in
terms of Slater determinants but rather in observables, which all can be expressed in terms of
particle creation and annihilation operators as discussed in section 2.3.

However, it proves to be useful to reorder the basis states according to their particle number.
The particle-number operator is given by a diagonal matrix

∑
σ

N∑
k=1

ĉ†
i ,σĉi ,σ =̂

0
. . .

ni
. . .

 , with ni ∈ {0, . . . ,2N }. (9.5)

The frequency of occurrence of every ni is given by the size of the corresponding fermionic
ni -particle Hilbert space, namely

(2N
ni

)
(see Eq. (2.20) and corresponding discussion). Per con-

struction, the order in which the numbers ni occur is somewhat arbitrary. Therefore, we in-
troduce a (symmetric) permutation matrix P = P T that reorders the diagonal entries of the
particle-number operator in ascending order

P

0
. . .

ni
. . .

P =



0
1

1
. . .

2
2

. . .
2N −1

2N

 . (9.6)

This permutation is equivalent to reordering the basis states |Φk〉 with respect to their parti-
cle number. Creation and annihilation operators defined in Eq. (9.2) have to be transformed
accordingly

ĉi ,σ→ Pĉi ,σP, ĉ†
i ,σ→ Pĉ†

i ,σP. (9.7)

After this transformation, all matrices exhibit a particular block structure, which is shown ex-
emplary for N = 4 spatial orbitals in Fig. 20. Operators that conserve the number of particles in
the system have non-zero entries only within a block-diagonal. The individual blocks in this di-
agonal are of square shape and their sizes are given by the size of the corresponding ni -electron
Hilbert space (Eq. (2.19)).

Creation and annihilation operators build the first upper (ĉ ) and the first lower (ĉ†) block di-
agonals, such that they connect states that differ by one particle. This consideration, which is
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Figure 20. Visualization of a state (vector) and an operator (matrix) in the full fermionic Fock space
built from N = 4 spatial orbitals in a vector-matrix representation. The diagonal blocks, which are de-
picted in gray, correspond to non-vanishing matrix elements of particle-number conserving operators.
Blocks that contain non-zero matrix elements of creation and annihilation operators are depicted in
turquoise and pink, respectively. They connect all neighboring particle-number blocks. Block sizes are
determined by binomial coefficients (see Eq. (2.20)).

also visualized in Fig. 20, illustrates the following important fact: while particle creation and
annhilation operators are obliged to be constructed in the full Fock space, particle-number
conserving operators, such as electronic Hamiltonians considered in this thesis, can be repre-
sented by the individual particle-number blocks. This significantly reduces the dimensionality
of the problem, in the example shown in Fig. 20 from 44 = 256 states in the Fock space to maxi-
mum of 70 states in the subspace of 4 electrons.

In a similar manner, other symmetries of the electronic Hamiltonian, such as the total spin of
the system, can be used for an additional block-diagonalization of its matrix representation.

Bosonic operators

Matrix representations of bosonic operators are constructed as follows. For a single mode we
assign a unit vector to every Fock-number state |n〉 in ascending order, starting with the vac-
uum state

|0〉=̂ (1,0, · · · ,0)T. (9.8)
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Matrix representations of bosonic creation and annihilation operators then simply follow from
Eq. (4.28) and are given by

â =


0

p
1 0 0 · · ·

0 0
p

2 0 · · ·
0 0 0

p
3

. . .
...

...
...

. . .
. . .

 , â† =



0 0 0 · · ·p
1 0 0 · · ·

0
p

2 0 · · ·
0 0

p
3

. . .
...

...
. . .

. . .

 . (9.9)

These matrices are in principle infinite, since a bosonic mode can be occupied by any number
of particles. In practice, however, these matrices have to be truncated after some number of
photons nmax and their dimension then reduces to nmax +1.

This truncation of the photonic Fock space leads to a violation of the following bosonic com-
mutator relation

[â , â†] = â â† − â†â 6=1, (9.10)

which is caused by a wrong matrix representation of the first term

â â† =
1

. . .
nmax

0

 6=
1

. . .
nmax

nmax +1

 , (9.11)

The particle number operator â†â , on the contrary, has the correct structure

â†â =
0

1
. . .

nmax

 . (9.12)

Therefore, the impact of the outlined issue can be minimized by always maintaining the normal
ordering of bosonic operators. This means that all creation operators have to be placed to
the left of all annihilation operators in every product of operators. Regardless of the above,
convergence of the results with respect to the photon number cut-off nmax has to be checked.

I think in addition, still convergence of the results with respect to the number of included basis
states has to be checked.

Matrix representations of bosonic excitation operators defined in Eq. (8.10) are given by

τ̂1 =


0 0 · · · 0
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , τ̂2 =


0 0 · · · 0
0 0 · · · 0
1 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , · · · , τ̂nmax =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
1 0 · · · 0

 . (9.13)

If required, an extension to a multi-mode case for all bosonic operators is straight-forward and
we will briefly outline it in the following. Similar to the electronic case in Eq. (9.2), matrix rep-
resentations of bosonic creation and annihilation operators for M modes are given by

â1 =1⊗·· ·⊗1⊗1⊗ â, â†
1 =1 ⊗·· ·⊗1⊗1 ⊗ â†,

â2 =1⊗·· ·⊗1⊗ â ⊗1, â†
2 =1 ⊗·· ·⊗1⊗ â† ⊗1 ,

...
...

âM = â ⊗·· ·⊗1⊗1⊗1, â†
M = â† ⊗·· ·⊗1⊗1 ⊗1 . (9.14)

Here, fermionic ladder operators σ+ and σ− have been replaced by their bosonic analogs â
and â† and the fermionic matrix σz is replaced by an identity matrix 1 of the same dimension
as a and a† to ensure commutativity of the resulting operators. Photonic cut-offs and therefore
matrix dimensions can be chosen individually for each mode. Bosonic excitation operators can
be extended to the multi-mode case in the same manner.
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9.1.2 Hamiltonian matrix and FCI reference solution

The Hilbert space of the full problem denoted by H QED is a product space between the elec-
tronic and the photonic Hilbert spaces. As discussed in the previous section, there is not need
for us to use the full electronic Fock space, since all operators that enter Ĥe conserve the num-
ber of particles in the system and are therefore block-diagonal. Hence, it is sufficient to con-
sider only the Ne-electron Hilbert space H (Ne)− . In our implementation this is realized as fol-
lows, fermionic operators are first constructed in the full fermionic Fock space according to
Eq. (9.2) and then restricted to the Ne-particle subspace. We will use the same notation (e.g.
ĉ†

i ĉ j ) for these operators, but hereafter we will always mean the restricted domain H (Ne)− and
not the full Fock space, when talking about particle-number conserving fermionic operators.

For photons, on the contrary, we have to keep the full (in practice truncated) Fock space F p,
since the light-matter interaction term in Eq. (8.1) contains the particle-number non-conserv-
ing operator

(
â† + â

)
.

Hence, the Hilbert space of the full problem is given by

H QED =H (Ne)
− ⊗F p, (9.15)

Operators are constructed in this joint space as

ĉ†
i ĉ j , ĉ†

i ĉ†
j ĉl ĉk , . . . → ĉ†

i ĉ j ⊗1p, ĉ†
i ĉ†

j ĉl ĉk ⊗1p, . . . (9.16)

â , â† → 1e ⊗ â , 1e ⊗ â†, (9.17)

where 1e and 1p are identity matrices (corresponding to identity operators) on either of the
two spaces with corresponding sizes

dim 1e = dim H (Ne)
− =

(
2N

Ne

)
, dim 1p = dim F p = (nmax +1). (9.18)

With these consideration, we are now able to construct a matrix representation of a coupled
electron-photon Hamiltonian given in Eq. (8.1). For a FCI reference solution, the Hamiltonian
matrix is diagonalized numerically using the built-in routine from the Python NumPy library
[150]. Additionally, other observables of interest can be constructed as matrices on H QED in
the outlined manner.

9.1.3 Construction of CC equations

The non-linear set of CC amplitude equations given in Eq. (8.12) can be constructed using the
individual ingredients introduced so far. We begin with the photonic contribution: matrix rep-
resentations of photonic excitation operators are built from their matrix representation given in
Eq. (9.13) following the same prescription as creation and annihilation operators in Eq. (9.17);
the photonic portion of the reference state defined in Eq. (8.7) is the vacuum, whose vector
representation is given in Eq. (9.8).

The electronic part of the reference wave function in Eq. (8.7) is given by the HF solution of
He. Therefore, the HF scheme is implemented as described in section 3.1.1 with an additional
simplification: we optimize only the spatial parts |ϕi 〉 of the HF-spin orbitals |ψσ

i 〉 = |ϕi 〉|σ〉.
The HF Slater determinant is obtained by occupying each of the lowest Ne/2 spatial orbitals
with two electrons of opposite spin

|Φe
0〉 = |ψ↑

1ψ
↓
1 · · ·ψ↑

Ne/2ψ
↓
Ne/2〉−. (9.19)
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This approximation is known as (closed-shell) restricted HF [5].

HF orbitals are obtained in terms of the original (spatial) basis that we denote by {|l〉}

|ϕi 〉 =
N∑

l=1
〈l |ϕi 〉|l〉 =

N∑
l=1

ϕi (l )|l〉. (9.20)

The numbers ϕi (l ) can be understood as entries of a basis-transformation matrix that rotates
the original orbitals into the HF orbitals. This gives us a prescription for creation and annihila-
tion operators of particles in HF orbitals

ĉi ,σ =
N∑

l=1
ϕi (l )ĉl ,σ, ĉ†

i ,σ =
N∑

l=1
ϕ∗

i (l )ĉ†
l ,σ. (9.21)

where ĉl ,σ and ĉ†
l ,σ are constructed following Eq. (9.2) and Eq. (9.7).

With this, we can now build the fermionic (and therefore also the coupled) reference state

|Φe
0〉 =

Ne/2∑
i=1

ĉ†
i↓ĉ†

i↑|0〉 (9.22)

as well as fermionic excitation operators τ̂µ, where we have e.g. singles

ĉ†
a,σĉi ,σ , with i ∈ {1, . . . , Ne/2} , a ∈ {(Ne/2+1), . . . , N } , (9.23)

and doubles

ĉ†
b,σ′ ĉ

†
a,σĉi ,σĉ j ,σ′ , with i ∈ {1, . . . , Ne/2} , j ∈ {i , . . . , Ne/2} , a ∈ {(Ne/2+1), . . . , N } , b ∈ {a, . . . , N } .

(9.24)

These operators are then transformed into H QED as given in Eq. (9.16).

The cluster operator T̂ can be constructed following Eq. (8.11) for any given set of amplitudes

t . With the set of all considered excited references 〈Φκ| =
(
τ̂κ|Φ0〉

)†, we obtain a vector valued
function with entries

Ωκ(t) = 〈Φκ|e−T̂ (t)Ĥe T̂ (t)|Φ0〉, (9.25)

where Ĥ is the full Hamiltonian matrix that has been built in the course of section 9.1.2. The
vector functionΩ(t) becomes zero for the optimal set of CC amplitudes.

9.2 Iterative solution of CC equations

Roots of Eq. (9.25) can be found by employing the multi-dimensional Newton’s method. It is an
iterative technique where, starting with a close-enough initial guess t 0, the vector function for
the iteration step n is approximated as [151]

Ω(t(n) +∆t) ≈Ω(t(n))+Ω(1)(t(n))∆t . (9.26)

Here,Ω(1)(t) is the Jacobian matrix, whose entries are given by

Ω(1)
κλ

(t) = ∂

∂tλ
〈Φκ|e−T̂ (t)Ĥe T̂ (t)|Φ0〉 = 〈Φκ|e−T̂ (t) [Ĥ , τ̂λ

]
e T̂ (t)|Φ0〉. (9.27)

By solving

Ω(t(n) +∆t)
!= 0 ⇒ Ω(1)(t(n))∆t =−Ω(0)(t(n)), (9.28)
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we obtain a new estimate for the root ofΩ(t) as

t(n+1) = t(n) +∆t. (9.29)

and the procedure is repeated until the required accuracy is reached.

To avoid the need of solving Eq. (9.28) at each step, the Jacobian in Eq. (9.27) is often approxi-
mated by its diagonal contribution [151]

Ω(1)
κλ

(t) =∆εκδκλ, (9.30)

where

Ω(1)
κκ(t) = 〈Φκ|e−T̂ (t) [Ĥ , τ̂κ

]
e T̂ (t)|Φ0〉 = 〈Φκ|H(t)τ̂κ|Φ0〉−〈Φκ|τ̂κH(t)|Φ0〉

= 〈Φκ|H(t)|Φκ〉︸ ︷︷ ︸
Eκ(t)

−〈Φ0|H(t)|Φ0〉︸ ︷︷ ︸
E0(t)

≡∆Eκ(t) ≈∆εκ. (9.31)

Here, for all t, we approximate the energy difference∆Eκ by the following mean-field estimates

∆εκ =



εa −εi , if τ̂κ = ĉ†
a,σĉi ,σ ,

εa +εb −εi −ε j , if τ̂κ = ĉ†
b,σ′ ĉ

†
a,σĉi ,σĉ j ,σ′ ,

n ·ωc , if τ̂κ = |n〉〈0|,
εa −εi +n ·ωc , if τ̂κ = ĉ†

a,σĉi ,σ⊗|n〉〈0|,
εa +εb −εi −ε j +n ·ωc , if τ̂κ = ĉ†

b,σ′ ĉ
†
a,σĉi ,σĉ j ,σ⊗|n〉〈0|,

(9.32)

where εi , j are one-particle HF energies (see Eq. (3.2)) of occupied HF orbitals, εa,b are energies
of empty HF orbitals, into which the electrons are excited, and ωc is the photon energy.

This approximation of the Jacobian significantly simplifies Eq. (9.28), which now for every in-
dividual amplitude reads

∆tκ =−Ω
(0)
κ (t(n))

εκ
. (9.33)

The resulting approach is called quasi-Newton method. It performs well, when the mean-field
spectrum is close enough to the targeted solution.

9.3 Correction method for close-lying excited states in CC theory

After the ground-state CC equations have been solved, the excited-state properties of a sys-
tem can be calculated by employing the EOM-CC method introduced in the last part of section
3.1.3. Since we have constructed the full Hamiltonian matrix, performing EOM-CC boils down
to diagonalizing the ST Hamiltonian that is projected onto a subspace spanned by the reference
state and all considered excited references. Therefore, the matrix elements of the ST Hamilto-
nian are given by

Hκλ = 〈Φκ|e−T̂ Ĥe T̂ |Φλ〉, H 0λ = 〈Φ0|e−T̂ Ĥe T̂ |Φλ〉, Hκ0 = 0. (9.34)

As seen in the above equations, H is not symmetric and EOM-CC is therefore a non-hermitian
theory. This is not a problem, when the full space H QED is considered. In this case, H would
have exactly the same eigenvalues (even though different eigenstates) as the original Hamilto-
nian Ĥ . Polynomial scaling of the theory, however, comes with the price of considering only a
subset of states in H QED. There, non-hermicity of H often leads to difficulties for energetically
close eigenstates. This is a well-known problem in standard CC theory [152, 153], that often
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occurs at conical intersections of excited BO potential energy surfaces in molecules. There, the
different surfaces cross e.g. when inter-atomic distances are varied. In our case, we will observe
such intersections by modifying the cavity frequency.

In the following, we analyze these issues following Köhn and Tajti [152] and introduce a cor-
rection scheme, which is also based on [152]. Eigenvalues Eκ of the similarity-transformed
Hamiltonian H̄ are associated with a set of left (〈Ψ̃κ|) and right eigenvectors (|Ψκ〉) that fulfill
the bi-orthogonality condition (see Eqs. (3.28)-(3.30))

〈Ψ̃κ|Ψλ〉 = δκλ. (9.35)

The right eigenvectors are conventionally normalized, but generally non-orthgonal. The ele-
ments of the corresponding metric matrix S are Sκλ = 〈Ψκ|Ψλ〉, so we have Sκκ = 1 and Sκλ 6= 0
with κ 6=λ. The left and right eigenvectors are related via

|Ψ̃κ〉 =
∑
λ

|Ψλ〉
[
S−1]

λκ . (9.36)

This metric matrix is directly related to the asymmetry of H . To quantify this relation, let us
consider the matrix form of H in a subspace of two close-lying eigenstates

H |Ψ1〉 = E1|Ψ1〉, H |Ψ2〉 = E2|Ψ2〉 (9.37)

and additionally shift it by their mean energy (E1 +E2)/2. The eigenstates are gauged such that
their overlap S = 〈Ψ1|Ψ2〉 becomes real, which is achieved by applying the following gauge-
transformation

|Ψ2〉→ e iθ|Ψ2〉, θ = arctan

(
ImS

ReS

)
. (9.38)

The matrix H can be transformed such that it takes the following asymmetric form1

H =
( −∆ X +Y

X −Y ∆

)
. (9.39)

We call Y the antisymmetric coupling. Eigenvalues of H are given by

Λ± =±E2 −E1

2
=±

√
∆2 +X 2 −Y 2. (9.40)

Now, the following scenarios are possible:

• Y 2 <∆2 +X 2, meaning that we have distinct real eigenvaluesΛ±;

• Y 2 =∆2 +X 2, meaning that the eigenvalue splitting vanishes;

• Y 2 >∆2 +X 2, meaning that we have imaginary eigenvalues.

The last scenario is unphysical and has to be compensated for. Now, the value of Y can be
related to the overlap S as follows [152]

|Y | = S̃
√
∆2 +X 2 =

{
|S|

p
∆2 +X 2, ifΛ real

1
|S|
p
∆2 +X 2, ifΛ imaginary.

(9.41)

Here, we introduced the non-normalized overlap S̃, whose behavior reflects the transition be-
tween real and imaginary regimes for the splittingΛ.

1The corresponding new basis is called crude diabatic basis in literature [152].
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Figure 21. Visualization of the correction method for close-lying excited states. The upper plot shows
the original overlap of the states S (solid blue line), the non-normalized overlap S̃ (dotted blue line) and
the new overlapΣ (solid green line). As opposed to the original values,Σ is both, smooth and does not ex-
ceed a given threshold of Σmax = 0.5. The lower plot shows the corresponding original and corrected en-
ergies. If applicable, the imaginary part of a value is depicted as an offset from the real part (red crosses).
The corrected energies are real and, even though they build a narrow avoided crossing, they approximate
the true conical intersection (dotted green line) well enough. The exemplary system is described by the
Hamiltonian given in Eq. (10.1), with parameters: t0 = 0.5, U = 1.0, d = [−1.5,−0.5,0.5,1.5], nmax = 4.
The level of truncation is CC-SD-S-0.

In Fig. 21, we plot the overlaps |S| and S̃ (upper plot) as well as the corresponding energies
(lower plot) as functions of the cavity frequency for an exemplary system (parameters are given
in the caption of Fig. 21). We observe an increase in both overlaps as the energies get closer
until, at point of energetic degeneracy, S = S̃ = 1 is reached. After that, around the point of
the true conical intersection, the energies come in pairs of complex numbers that are complex
conjugates of each other (imaginary Λ). The non-normalized overlap S̃ takes on values larger
then one in this region, while S decreases again since it is bounded from above by construction.

Now, the idea behind the correction method employed in this thesis is to rotate the close-lying
eigenstates within their subspace such that their non-normalized overlap does not exceed a
certain threshold value, such that the implications described above become less pronounced.
The eigenvalues are also corrected according to the new overlap.

For the two right eigenstates of interest |Ψ1〉, |Ψ2〉, we write the metric matrix as

S =
(〈Ψ1|Ψ1〉 〈Ψ1|Ψ2〉
〈Ψ2|Ψ1〉 〈Ψ2|Ψ2〉

)
=

(
1 S
S 1

)
=

(
1 cosϕ

cosϕ 1

)
, (9.42)

where ϕ is the enclosed angle between the two states.

The states |Ψ1〉 and |Ψ2〉 can be othogonalized by multiplying them with

S−1/2 = 1

2|sinϕ|
( √

1−cosϕ+√
1+cosϕ −√

1−cosϕ+√
1+cosϕ

−√
1−cosϕ+√

1+cosϕ
√

1−cosϕ+√
1+cosϕ

)
. (9.43)
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We then choose a new smaller overlap Σ (with the corresponding new angle ϑ = arccosΣ),
which is defined as a function of the old overlap S̃. We further impose the condition that it has
to mirror the behavior of S̃ and be bounded from below by 0 and from above by a maximum
value Σmax. The specific form of the function is not that important and we take the functional
form used in [152]

Σ= sign(S) ·Σmax · tanh
(
S̃/Σmax

)
(9.44)

The new overlap Σ is also plotted in Fig 21 for a chosen region and it shows the required behav-
ior.

The orthogonalized eigenstates are then rotated again, this time to have the new overlap
Σ= cosϑ. The corresponding rotation matrix reads

Σ1/2 = 1

2|sinϑ|
(p

1−cosϑ+p
1+cosϑ

p
1−cosϑ−p

1+cosϑp
1−cosϑ−p

1+cosϑ
p

1−cosϑ+p
1+cosϑ

)
. (9.45)

Hence, the modified eigenstates are obtained via(|Ψ1〉
|Ψ2〉

)
corr

= Σ1/2S−1/2
(|Ψ1〉
|Ψ2〉

)
. (9.46)

Additionally, the vectors |Ψ1〉, |Ψ2〉 have to be normalized and the left eigenvectors have to be
transformed accordingly such that Eq. (9.35) holds.

Energy eigenvalues also have to be adapted with respect to the new overlap. Using the rela-
tion between eigenvalue splitting Λ and the antisymmetric coupling Y Eq. (9.40) as well as the
relation between Y and the overlap, we obtain

Λcorr =±Λ
p

1−Σ2√
1− S̃2

. (9.47)

The corrected eigenvalues are then given by

E1,corr = E1 +Λ−Λcorr, E2,corr = E2 −Λ+Λcorr. (9.48)

They are plotted in the lower part of Fig 21. We observe that the corrected values build an
avoided crossing with a small splitting. This behavior is not ideal, but, since we are for now not
particularly interested in describing conical intersections in cavity QED, but rather in stabil-
ity of the overall method, this result is good enough, especially since we know that describing
conical intersections correctly is a notorious issue in CC theory [152, 153].

Numerically, problems not only occur for complex values ofΛ but also for S → 1. In these cases,
the norm of the corresponding left eigenvectors diverges and for S = 1 the inverse of S simply
does not exist, as the right vectors |Ψi 〉 do not span the full space anymore. Therefore we will
apply the correction methods in cases where Λ and S fall under a certain threshold value. In
Fig. 21, this region is determined by S > 0.3.
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In this chapter we benchmark the developed polaritonic CC theory against FCI for a suitable
model system. The model system is introduced in section 10.1 and a set of observables that
we use to characterize it is discussed in section 10.2. In section 10.3, we then discuss some of
the exact properties of the model system. Finally, we show results calculated with polaritonic
CC theory, compare them to their FCI analogs and discuss the quality of the method in section
10.4.

10.1 Few-sites Hubbard model in a quantum cavity

In order to test the eligibility of our approach, we choose a model systems, which on the one
hand is simple enough to be treated with FCI and on the other hand is large enough such that
the CC approach is indeed an approximation. In the purely electronic case, CCSD is exact for
two particles and we hence want to choose a model with a richer electronic structure than the
two-level and two-electron models that are often used as a benchmark in quantum optics and
QED chemistry [36]. This is covered by the following model that has been discussed in the
community [154]. For the matter part we choose a one-dimensional Hubbard model with four
sites, four electrons and zero-boundary conditions. It is a simple model for correlated elec-
trons, where the kinetic energy is given by nearest-neighbor hopping with amplitude t0 and
the electron-electron interaction is mimicked by an on-site repulsion of strength U . Addition-
ally, a dipole moment ~d is assigned to the chain of electrons, which then couples to one cavity
mode with frequency ωc. The model is visualized in Fig. 22. The dipole operator is given by
d̂ =∑

σ
∑4

i=1 di ĉ†
i ,σĉi ,σ and the corresponding Hamiltonian reads

Ĥ =−t0
∑
σ

3∑
i=1

(
ĉ†

i+1,σĉi ,σ+ ĉ†
i ,σĉi+1,σ

)
+U

4∑
i=1

ĉ†
i↑ĉ†

i↓ĉi↓ĉi↑+ωcâ†â −γωcd̂
(
â + â†

)
+γ2ωcd̂ 2.

(10.1)

In the following, we consider three different regimes for the light-matter coupling strength –
weak, strong and ultra-strong – with corresponding values for γ. The characterization of dif-
ferent regimes can vary depending on the underlying experiment or the theoretical model. We
briefly discuss our choice of parameters below and refer the interested reader comprehensive
discussions in literature [34, 155].

In cavity QED, the coupling is usually considered to be strong, when the prefactor γωc in
Eq. (10.1) is large compared to losses in the cavity. In this case, the losses are so small that
the molecule (or any other emitter) can absorb and emit cavity photons before they are radi-
ated into the environment. These interaction processes are called Rabi oscillations. The re-
sulting excited-state spectrum of the coupled system differs significantly from the one of the
bare molecule. Formation of hybrid light-matter states, polaritons, is characteristic for this
regime. Since cavity losses are not explicitly included into our model, we use energy gaps be-
tween polaritonic states, their (Rabi) splittings, as measure for the coupling strength. The sys-
tem is considered to be in the strong-coupling regime, when the Rabi splitting takes the value
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Figure 22. A four-site Hubbard chain in half-filling serving as a model molecule. The molecule has a
dipole moment ~d , which is strongly coupled to the cavity mode with frequency ωc . Figure published in
[147].

of a non-negligible fraction of the underlying bare excitation and is therefore clearly visible. As
we show in section 10.3, γ = 0.07 is a reasonable choice for the strong-coupling regime. The
weak-coupling regime is represented by γ= 0.01.

Following [34], we consider systems with γ = 0.2 to be in the ultra-strong coupling regime.
This regime is mainly characterized by a breakdown of the rotating-wave approximation, which
is widely used in quantum optics [156], which e.g. results in a modification of the system’s
ground-state. The impact of the cavity on the molecular ground-state for weaker couplings is,
on the contrary, rather small [45, 157, 158].

10.2 Observables

In the course of this chapter, we discuss the following properties of our model system:

• Energy spectrum Eκ =ωκ
1: This is the first target for every wave-function method. We

also obtain the corresponding eigenstates |Ψκ〉, from which additional observables are
calculated. In the following, we use the index κ for electron-photon states and the index
k for purely electronic states (∈H (Ne)− ).

• Mode occupation 〈n̂p〉: This observable

〈n̂p〉 = 〈Ψκ|â†â|Ψκ〉 (10.2)

provides a simple and intuitive measure of the photonic contribution to the coupled
light-matter state.

• Purity of subsystem’s RDMs Γκ: It is a simple measure for correlation between the elec-
tronic and the photonic subsystem [45]. Estimating light-matter correlation on the FCI
level will help us understand how good a single-reference method, such as CC theory,
can perform in these situations.

The purity of a subsystem’s RDM is defined as

Γκ = Tr
[
ρ̂2

e

]= Tr
[(

Trp|Ψκ〉〈Ψκ|
)2

]
, (10.3a)

= Tr
[
ρ̂2

p

]
= Tr

[
(Tre|Ψκ〉〈Ψκ|)2] . (10.3b)

1Quick reminder that we use atomic units, where ħ= 1.
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Per construction, it is equal for the electronic and the photonic subsystem and we use
Eq. (10.3a) in our calculation. The purity is equal to 1 for a pure state, which is a product
state between an electronic and a photonic state and it is equals to 0.5 if the underlying
state is an equally weighted superposition of two product states.

• Absorption cross section σ(ω): This observable provides an excellent way to monitor
changes in the system caused by strong light-matter coupling in a way that can be also
directly accessed experimentally, as it is trivially related to the ground-state absorption
spectrum of the system [32, 159]. The absorption cross section describes the response of
the system to an external perturbation in form of a probe light field with frequency ω via

σ(ω) = 4π
ω

c
Im

∑
k

∣∣〈Ψκ|d̂ |Ψ0〉
∣∣2

(ωκ−ω0)−ω− iη

 . (10.4)

Here η is a small broadening parameter that accounts for the finite lifetime of excited
states.

10.3 Preliminary FCI studies of the model system

Structure of optical spectra and convergence with photon-number cut-off

Here, we discuss the absorption cross-section of the coupled system for a cavity in resonance
to the first optically active electronic transition (ωc =ωk −ωe

0 and |〈Ψk |d̂ |Ψ0〉| > 0) and examine
its convergence with the photon-number cut-off nmax.

The cross sections are plotted in Fig. 23 for weak, strong and ultra-strong coupling to the cavity
as well as for the bare molecule (upper plot). The splitting of the first absorption peak into two
polaritonic peaks can be observed for strong and ultra-strong coupling, whereas in the weak
coupling case it cannot be clearly resolved. This Rabi splitting becomes more pronounced with
increasing coupling strength. Moreover we see additional peaks in all coupled spectra com-
pared to the bare spectrum, whose height differs significantly between weak coupling regime
(very small) on the one hand and strong and ultra-strong coupling regimes (same order of mag-
nitude as the bare peaks) on the other hand. Off resonance, these lines can be understood as
replica of bare electronic states resulting from additional photons in the system. Not only the
size, but also the amount of additional peaks varies significantly between the different regimes.
While, in the strong-coupling case we still can recognize the original bare spectrum, it is not
possible in ultra-strong coupling, since there many states with different photon numbers are
involved.

A spectrum is considered as converged with the photon-number cut-off as soon as it does not
change anymore for growing nmax. From Fig. 23, we obtain the following values: nmax = 1 for
weak, nmax = 4 for strong, and nmax = 7 for ultra-strong coupling. These cut-offs are used in all
remaining calculations in this chapter.
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Figure 23. Absorption cross section σ(ω) (logarithmic scale) of the bare 4-site Hubbard chain and of the
same system coupled to a cavity in weak (γ= 0.01), strong (γ= 0.07) and ultra-strong (γ= 0.2) coupling
regimes for different photon-number cut-offs. The cavity is resonant to the first absorption peak of the
bare electronic system. A Rabi splitting of the first peak occurs for strong and ultra-strong coupling.
The spectra converge for nmax = 1 (weak), nmax = 4 (strong) and nmax = 7 (ultra-strong) coupling. The
following parameters have been used: ωc = 1.028, t0 = 0.5, U = 1.0, d = [−1.5,−0.5,0.5,1.5], η= 0.005.

Polaritonic-state properties

Here, we briefly discuss properties of the polaritionic states that are formed due to strong light-
matter interaction. In Fig. 24, we plot energy, mode occupation and purity for the states in-
volved in the Rabi splitting discussed above: ground state |Ψ0〉 and the first two optically active



10.3 Preliminary FCI studies of the model system 89

1.5

0.5

0.5

E

weak

0 1 2 zero coupling

strong ultra-strong

0.0

0.5

1.0

n p

0.6 1.0 1.4
c

0.5

1.0

pu
ri

ty

0.6 1.0 1.4
c

0.6 1.0 1.4
c

Figure 24. Energy, mode occupation and purity of the ground state |Ψ0〉 (blue) and the first two optically
active excited states |Ψ1〉 (red) and |Ψ2〉 (orange) of the coupled light-matter system in weak (γ= 0.01),
strong (γ= 0.07) and ultra-strong (γ= 0.2) coupling are plotted as functions of the cavity frequency ωc .
Properties of bare molecular ground and first excited states, as well as of bare molecular ground state
plus one cavity photon (black dotted lines) are shown as references. At the crossing of the later two,
the considered molecular transition is in resonance with the cavity. The state |Ψ1〉 (red) asymptotically
corresponds to the bare molecular ground state with one photon for small cavity frequencies and to the
bare molecular first excited state and photonic vacuum for large cavity frequencies; to |Ψ2〉 (orange) the
opposite applies. Avoided crossings of |Ψ1〉 and |Ψ1〉 appear around resonance and these signatures
of polaritonic state formation become more pronounced with growing coupling strength. We further
observe an increase in correlation between light and matter subsystems as the combined system enters
the ultra-strong coupling regime.

excited states |Ψ1〉 and |Ψ2〉 of the coupled system. These properties are plotted as functions of
cavity frequency ωc around resonance. Additionally, corresponding bare properties – molec-
ular ground state, molecular first excited state, and molecular ground state with an additional
cavity photon – are shown.

In the week coupling case (left panel), properties closely mirror those of the uncoupled case. At
resonance |Ψ1〉 and |Ψ2〉 become nearly degenerate, which results in a narrow dip in purities
and an almost step-like behavior of mode occupations.

For strong coupling case (middle panel), hybridization of the excited states becomes much
more pronounced and we observe an avoided crossing in energy. The step-like shape of mode
occupation curves for excited states is softened significantly. As already in the weak coupling
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case, they cross at 〈n̂p〉 = 0.5. Their zero- and one-photon character, however, is not restored
as quickly as before. A similar behavior can be observed for the purity: excited states of the
coupled systems do not exhibit a product-state character (Γ≈ 1) in most parts of the considered
region. The described behavior clearly shows that hybrid light-matter states are formed in the
strong-coupling regime.

The formation of the two polaritonic states can also be monitored in case of ultra-strong cou-
pling (right panel). Additionally, we observe a clear signature of this regime: modification of
the molecular ground state. This effect is most pronounced in decreasing purity of the state.
Moreover, as opposed to the strong-coupling regime, the purity curves of the excited states do
not (almost) coincide, which signalizes the fact that in this regime more than just two states
hybridize to form a new light-matter state.

When considering changes in the ground state, we perceive that not even ultra-strong light-
matter interaction leads to strong correlation between the electronic and the photonic subsys-
tem, which means that CC theory should be successfully applicable to such situations2. Corre-
lated excited states can be successfully described with EOM-CC theory [66] and this should not
change when photons are included in the theory.

10.4 CC results for the model system

10.4.1 Ground state properties

The polaritonic CC results for the ground-state energy E0 and photonic mode occupation 〈n̂p〉
in the system are summarized in Table 1 for the different coupling regimes. We show results for
the following levels of truncation: CC-SD-S-0, CC-SD-S-D, CC-SD-S-DT (see section 8.1.3 for
definition). Note that, since we have only one photonic mode, the level of photonic excitation is
at most singles and all possible photonic excitations are included on this level. The polaritonic
CC results are compared to FCI results for the coupled system and to FCI and CCSD results in
the limit of vanishing electron-photon coupling, FCI(0) and CCSD(0), respectively.

We observe an increasing impact of the cavity on the ground-state properties of the system for

Table 1. Ground-state energy E0 and mode occupation 〈n̂p〉 of the four-site Hubbard chain strongly
coupled to one cavity mode with selected coupling strengths for different levels of CC theory com-
pared with FCI as well as with FCI and CCSD for no electron-photon coupling (FCI(0) and CCSD(0)).
We observe excellent agreement of CC results with FCI. By including more excitations in the CC de-
scription the ground-state energy is improved. Further, purely photonic observables like mode occu-
pation become accessible. The following parameters have been used: ωc = 1.028, t0 = 0.5, U = 1.0,
d = [−1.5,−0.5,0.5,1.5], nmax = 1 (weak) nmax = 4 (strong) and nmax = 7 (ultra-strong).

weak coupling strong coupling ultra-strong coupling
γ= 0.01 γ= 0.07 γ= 0.2

E0 〈n̂p〉 E0 〈n̂p〉 E0 〈n̂p〉
FCI(0) −1.43797 — −1.43797 — −1.43797 —
CCSD(0) −1.43801 — −1.43801 — −1.43801 —
CC-SD-S-0 −1.43791 0 −1.43335 0 −1.40227 0
CC-SD-S-D −1.43795 2.14 ·10−5 −1.43551 1.04 ·10−3 −1.41745 7.75 ·10−3

CC-SD-S-DT −1.43796 2.24 ·10−5 −1.43561 1.09 ·10−3 −1.41873 8.57 ·10−3

FCI −1.43792 2.27 ·10−5 −1.43557 1.11 ·10−3 −1.41864 8.69 ·10−3

2This is different for purely electronic systems, where strong electron-electron interactions usually causes
strongly correlated ground states, for which CC does not provide good results.
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growing coupling strengths. For instance, the gap between CC-SD-S-0 and CCSD(0) energies
widens due to increasing importance of the dipole self-interaction term. The photon-mode
occupation, which is now accessible with CC theory, however, is zero for CC-SD-S-0 for all cou-
pling strength, which shows the intrinsic mean-field character of the CC-SD-S-0 approxima-
tion. The photon-mode occupation is captured well as soon as coupled excitation are included,
namely with CC-SD-S-D and CC-SD-S-DT approximations.

Also for the energy, we observe a very good agreement between CC and FCI results for all cou-
pling strength, when coupled excitations are included in the description. This agreement im-
proves when higher excitations are taken into account and is best for CC-SD-S-DT as was to
be expected. However, here we encounter one of the main drawbacks of the CC approach – its
non-variational character. In most cases shown in Table 1, the ground-state energy is predicted
too low with CC theory.

However, as already discussed in section 10.3, the impact of the cavity on ground-state proper-
ties of the system is rather small not only for weak, but also for strong light-matter coupling. A
considerable effect is observed only in the ultra-strong coupling regime, which is captured well
with CC theories that include coupled excitations. The power of CC theory therefore also lies in
the treatment of excited states.

10.4.2 Absorption spectra

We begin our discussion with the case of weak coupling (γ = 0.01) between light and matter.
The corresponding absorption cross sections are plotted as functions of cavity frequency ωc

(x-axis) and frequencyω of the incoming light field (y-axis) in Fig. 25. For reference, the panels
at either end show the bare matter FCI spectrum (left) and the full coupled light-matter FCI
spectrum (right). In between we show the results of EOM-CC calculations with various levels
of truncation of the cluster operator.

Figure 25. Ground-state absorption cross section σ(ω) of the half-filled four-site Hubbard chain in a
cavity as a function of cavity frequency ωc in the weak-coupling regime γ = 0.01 for different levels of
CC theory compared with FCI results (right-hand side) and zero-coupling limit (FCI(0), left-hand side).
We observe the usual non-dispersive matter absorption lines and additionally some low-intensity linear
dispersive branches for one-photon processes. No multi-photon processes or significant Rabi splittings
occur, meaning that treating the photon field pertubatively would be sufficient in this regime of light-
matter coupling. Parameters: t0 = 0.5, U = 1.0, d = [−1.5,−0.5,0.5,1.5], nmax = 1, η= 0.005. The figure is
published in [147].
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Figure 26. Ground-state absorption cross section σ(ω) of the half-filled four-site Hubbard chain in a
cavity as a function of cavity frequency ωc in the strong-coupling regime γ = 0.07 for different levels of
CC theory compared with FCI results (right-hand side) and zero-coupling limit (FCI(0), left-hand side).
We clearly observe the formation of polaritons in various regions of the spectrum, which is accurately
captured with CC theory. Parameters: t0 = 0.5, U = 1.0, d = [−1.5,−0.5,0.5,1.5], nmax = 4, η= 0.005. The
figure is published in [147].

The bare electronic spectra (FCI(0) and CCSD(0)) feature horizontal non-dispersive absorp-
tion lines; as expected, approximate EOM-CC accurately reproduces low-energy features in the
bare spectrum. When coupled to a cavity, the spectrum includes matter absorption lines and
additional linear dispersive branches for one-photon processes (lines where ω = ωc). The in-
tensity of these one-photon lines is very weak and avoided crossings cannot (or almost cannot)
be resolved. While overestimated in CC-SD-S-0, the intensity of the lowest one-photon line
is captured well in CC-SD-S-D and CC-SD-S-DT. And, while completely missing in CC-SD-S-
0, higher lying photon lines appear one after another with increasing amount of incorporated
excitations in CC-SD-S-D and CC-SD-S-DT. We observe excellent agreement for CC-SD-S-DT
and remaining deviations from FCI are largely caused by the truncation of the electronic part
of the cluster operator.

We continue with the case of strong light-matter coupling of γ= 0.07. Here, we again can iden-
tify molecular absorption lines, although here (in CC-SD-S-0 and CC-SD-S-D) we observe a
slight dispersion of these lines, which is caused by the dipole self-interaction. This dispersion,
however, is compensated in the more accurate calculations (CC-SD-S-DT and FCI). Further,
we observe linear-dispersing photon lines, whose intensity is now of the same order of mag-
nitude as the molecular lines. Additionally to one-photon branches, we can identify many-
photon processes with two and three photons, ω = 2ωc and ω = 3ωc, respectively. In regions
where molecular excitations are resonant with the cavity mode, we observe the famous strong-
coupling behavior – signature Rabi splitting of the absorption lines due to formation of polari-
tons. These features can be clearly seen in various regions of the FCI spectrum, and are well
captured by the EOM-CC approximation that includes coupled excitations. We observe that
CC-SD-S-DT does a much better job than CC-SD-S-D in capturing the high-energy details of
the spectrum. Those parts that are missing in CC-SD-S-D can be attributed to cavity-induced
replica of those bare electronic states that include doubly excited determinants to a significant
extent. The systematic improvement in the CC treatment as the cluster operator is extended
is therefore evident, and remaining deviations from FCI are, as already in the weak-coupling
case, largely caused by the truncation of the electronic part of the cluster operator.
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Figure 27. Ground-state absorption cross section σ(ω) of the half-filled four-site Hubbard chain in a
cavity as a function of cavity frequencyωc in the ultra-strong-coupling regime γ= 0.2 for different levels
of CC theory compared with FCI results (right-hand side) and zero-coupling limit (FCI(0), left-hand
side). Parameters: t0 = 0.5, U = 1.0, d = [−1.5,−0.5,0.5,1.5], nmax = 7, η= 0.005. The figure is published
in [147].

In Fig. 27 we plot absorption spectra for the remaining ultra-strong coupling case. Here, we
omit the CC-SD-S-0 and CC-SD-S-D approximations, since we have discussed their perfor-
mance already for the other coupling regimes and learned that they miss parts of the spec-
trum. The exact (FCI) spectrum in the ultra-strong case exhibits a very complicated structure.
Additional features appear beyond the simple combination of non-dispersive matter lines and
linear dispersive photon lines with Rabi splittings. These include induced transparencies in
regions of crossings of various absorption lines with the lowest one-photon line, and compli-
cated structures in the high energy part of the spectrum where many multi-photon processes
overlap in the spectrum. The CC-SD-S-DT calculation captures much of this complex struc-
ture, with remaining deviations again mainly caused by the truncation of the electronic cluster
operator. The low-energy part of the spectrum is reproduced extremely accurately, including
the induced transparencies. The qualitative features of the high-energy part of the spectrum
are also captured.
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In this part of the thesis, we have extended the framework of CC theory to coupled electron-
photon systems thus providing a promising tool for high-accuracy ab initio calculations in
cavity QED. To this end, we introduced an extended set of excitation operators including novel
fermionized photonic operators that enable a rather straightforward extension of the theory.

For the four-site Hubbard model coupled to a quantum cavity, we have shown that signatures
of strong and even ultra-strong light-matter interactions such as modifications in the molec-
ular ground-state, formation of polaritons, or multi-photon absorption can be captured very
accurately in the framework of polaritonic CC theory.

Although this work has focused on model systems, extension to real ab initio Hamiltonians is
straightforward, since the method itself does not depend on particular one- and two-electron
integrals entering the electronic Hamiltonian. We have also shown that, if the bare molecule
is suitable for standard CC theory, it is reasonable to assume that CC will perform excellent for
the same system put in a cavity.

In this work we have built the CC equations using the full Hilbert space of the problem, a frame-
work that comes with exponential scaling with the system size. However, we argued that po-
laritonic CC equations are equivalent to a subset of the conventional CCSDT equations and
the theory, at least in the single mode case, scales roughly the same as the O (N 6) scaling of
conventional CCSD theory. Therefore, affordable polynomial scaling implementations of po-
laritonic CC theory are feasible in the very near future, as they will very closely mirror standard
electronic CC codes.

Possible improvements of the theory include employment of alternative CC approaches for ex-
cited states, such as CC linear response theory [67], which ensure size-extensivity of the full
theory. Additionally, for a more accurate description of appearing conical intersections, an-
other recently introduced method [153] can be utilized.

Furthermore, the formalism developed here can be extended to CC theories for coupling of
electrons to polarization modes, phonons or thermal reservoirs, including coupling to multi-
ple boson modes and boson-boson interactions. With the aforementioned extension, wave-
function based ab-initio treatment of correlated electron-nuclear-photon systems becomes
feasible, paving the way for high-accuracy modeling and interpretation of experiments in these
regimes.
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12Conclusion and prospects

On the way towards predictive modeling of quantum effects in nature, we have developed two
promising methods in the course of this thesis.

The first challenge that we have addressed is posed by limitations of standard energy-func-
tional approximations in DFT, such as its struggle with strong static correlations or the lack of a
direct access to observables other than the energy. These issues of the otherwise very success-
ful method are so notorious that they require radically new strategies in functional develop-
ment [13]. In part II of the thesis, we have met this claim by proposing our new self-consistent
density-functional embedding (SDE) approach. The fundamental novelty of this method is that
it leaves behind the necessity of an energy functional by approximating directly the density-
potential mapping in Kohn-Sham DFT. To this end, a formally exact self-consistent embedding
algorithm, based on the density-matrix embedding theory, has been proposed such that the full
system is approximately described by a set of interacting wave functions. The method benefits
from the accuracy of wave-function approaches and from rigorous relations in DFT, allowing
for an accurate construction of the density and the Kohn-Sham potential of the full system.
Moreover, the fragment wave functions provide a direct access to any other observable of the
full system. The method has been benchmarked for notoriously difficult situations of molec-
ular bond-stretching in 1D and 2D model systems, showing excellent quantitative agreement
with the numerically exact reference calculations. Furthermore, SDE seems to overcome the in-
trinsic systematic-improvability issue of standard DFT by displaying accuracy that scales with
the fragment size. Therefore, we have demonstrated that the SDE approach indeed provides a
new pathway for functional development.

Even though the method has been formulated in a general way, its application to more real-
istic systems requires additional developments. The methodologically rather straightforward
extensions will include the substitute of the simple exact-diagonalization scheme employed in
the algorithm by more advanced wave-function methods [71, 140–142] and the replacement of
the analytic density-inversion scheme by a numeric one [109–113]. The resulting accuracy and
numerical stability of such an implementation has to be balanced with the computational cost
and this will become one major challenge for the future development. One promising route for
an advancement of the method is given by the development of novel projectors for the embed-
ded fragments. Especially those based on the density or the one-body reduced density matrix
of the global system rather then the Kohn-Sham Slater determinant would benefit from the
formally exact framework of DFT or RDMFT, respectively.

From a more fundamental perspective, we can identify another intriguing range of applications
for the SDE approach. The exact KS potential is only known for systems with one or two elec-
trons, which makes benchmarking of approximate methods beyond the two-electron case diffi-
cult. Moreover, we obviously cannot know whether there are any additional features present in
the exact functional that we are missing so far due to the outlined limitations. We can imagine
that SDE will close this gap by providing, if not exact, still very accurate Kohn-Sham potentials
for systems with more than two electrons.

We believe that density-functional embedding strategies can provide a promising route for ad-
vances in extended density-functional theories, such as current-DFT [160] or quantum elec-
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trodynamical DFT (QEDFT)[35–37, 161, 162], which do not have a wide range of approximate
functionals at their disposal. The latter extends the scope of DFT to cavity QED applications
by including photons into the theory. DMET, which has inspired our density-functional em-
bedding scheme, has recently been extended to fermion-boson systems [92] and we therefore
believe that similar paths can be taken for a density-functional embedding approach to QEDFT.

QEDFT is of particular importance as it is one of the few approaches that aims at describing
molecular systems strongly coupled to quantized light from first principles. The broad inter-
est in describing such coupled molecular-photon systems beyond simplified effective models
is driven by the tremendous experimental progress in the field, which demonstrated e.g. that
formation of polaritons can substantially change chemical and physical properties of molec-
ular systems [25–28]. These groundbreaking insight show great promise for future quantum
technologies.

In this spirit, we have developed polaritonic CC theory in part III of this thesis, a wave-function
approach to cavity QED that combines accuracy with computational feasibility. The method
extends standard CC theory, which is one of the most accurate methods in conventional quan-
tum chemistry, to coupled electron-photon problems by introducing novel excitation operators
for the coupled light-matter system. For molecular models in optical cavities we have demon-
strated that our CC approach is able to accurately reproduce all key features present in the exact
reference absorption spectra. These include not only Rabi-splittings of absorption peaks but
also multi-photon processes that, to the best of our knowledge, other ab initio methods so far
fail to describe.

The next step for polaritonic CC theory is to achieve the claimed polynomial scaling in practice.
Due to the proposed fermion-like incorporation of photons into the theory, we do not expect
any major difficulties for its efficient implementation, since the underlying equations are basi-
cally those of standard CCSDT theory. Quite the opposite, the new polaritonic CC theory will
benefit from the progress standard CC theory made over the last decades [15, 163]. Therefore,
we believe that the method will become a high-accuracy computational tool in QED chemistry
in the very near future, providing very accurate predictions for properties of small to interme-
diate size molecules in cavity experiments. Therefore, polaritonic CC theory will also serve as
a benchmark for other computational methods that are being developed in the field of polari-
tonic chemistry, just like CCSD(T) in conventional quantum chemistry.

The developed CC formalism is not limited in its application only to electron-photon systems
and can be extended to other coupled fermion-boson setups, such as electron-phonon and the
subsequent electron-phonon-photon problems. Addressing the later is necessary for under-
standing intriguing phenomena that have been observed in regimes of vibrational strong cou-
pling [27, 30], since in these regimes the BO approximation breaks down [36, 39] and molecular
motion has to be considered explicitly in terms of phonons.

On a larger scale, polaritonic CC can be combined with embedding approaches to enable first-
principle calculations of large systems, such as molecular ensembles, interacting strongly with
cavity modes [164, 165].



AAppendix

A.1 Technical details of our SDE implementation

Here, we will discuss technical details of our implementation of the self-consistent density em-
bedding algorithm that we have developed in part II of the thesis. Some of the parts are valid
for the special case of two electrons and some are more general. We will address the points as
they appear in the algorithm in Fig. 9.

A.1.1 Indexing and partitioning in 2D systems

We begin by addressing the 2D Hamiltonian in Eq. (6.11), which is quite impractical in this
form. In practice, we assign one index k to each pair (ix , i y ). In this way, we map the 2D system
onto an effective 1D system, which has some long-range hopping depending on how the index
is assigned. There is no unique way of mapping a double index (ix , i y ) onto a single index k,
and also no optimal way of doing it, since we are going to partition the system into different
fragments.

We choose a particular index mapping, which we show in Fig. 28 exemplary for an 8× 8-grid
with fragments of size 4×4. To each site we therefore assign an index k ∈ {1, . . . ,64}, where the
mapping follows the partition into the first set of patches.

Further, instead of only the middle site, which is not possible to define here, we keep the inner
square of 2×2 sites for the description of the global properties. We still consider this partition

1 2 3 4 17 18 19 20

12 13 14 5 28 29 30 21

11 16 15 6 27 32 31 22

10 9 8 7 26 25 24 23

33 34 35 36 49 50 51 52

44 45 46 37 60 61 61 53

43 48 47 38 59 61 63 54

42 41 40 39 58 57 56 55
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1 2 3 4 17 18 19 20

12 13 14 5 28 29 30 21

11 16 15 6 27 32 31 22

10 9 8 7 26 25 24 23

33 34 35 36 49 50 51 52
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Figure 28. Visualization of our 2D-to-1D mapping and patching for a 8×8-grid with Nfrag = 4×4. There
are in total 16 fragments that have to be considered in order to describe the full system. The middle 2×2
parts of each fragment that are used to put together the full system are marked with different colors.
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as continuous (see section 5.2.1). This type of partition results in having 16 fragments, all of
which are depicted in Fig. 28.

A.1.2 Exact diagonalization for two electrons

As introduced in section 3.3.2, for each fragment we obtain an embedding Hamiltonian of the
form (see Eq. (3.69))

Ĥemb = ĥemb +Ŵemb =
2Nfrag∑
a,b=1

∑
σ

hemb
ab ĉ†

aσĉbσ+
1

2

2Nfrag∑
i , j ,k,l=1

∑
σ,σ′

W emb
abcd ĉ†

aσĉ†
bσ′ ĉdσ′ ĉcσ , (A.1)

by employing the corresponding single-particle projection. Here, we have omitted the index i
for simplicity.

For the two-electron case that we consider here, we represent this Hamiltonian as a matrix
in the two-particle Hilbert space H (2), which does not include particle-exchange symmetry
explicitly (see Eq. (2.19) and the subsequent discussion). We can further decompose H (2) into
a spatial and a spin part

H (2) =H (2)
space ⊗

(|singlet〉 0
0 |triplet〉

)
, (A.2)

where possible spin states are given by

|singlet〉 = 1p
2

(| ↑↓ 〉− | ↓↑ 〉) , (A.3)

|triplet〉 ∈
{
| ↑↑ 〉; | ↓↓ 〉; 1p

2
(| ↑↓ 〉+ | ↓↑ 〉)

}
. (A.4)

The space H (2)
space is spanned by products of spatial CAS orbitals

Φab(r1,r2) =ϕCAS
a (r1)ϕCAS

b (r2). (A.5)

The one-body part of the Hamiltonian matrix in H (2)
space is given by

h(2)
emb = hemb ⊗12Nfrag×2Nfrag +12Nfrag×2Nfrag ⊗hemb (A.6)

with matrix elements of hemb defined in Eq. (3.70).

The construction of the two-body matrix results from the following reformulation of the inter-
action tensor

W emb
abcd ĉ†

aσĉ†
bσ′ ĉdσ′ ĉcσ =

(
W emb

ac ĉ†
aσĉcσ

)
·
(
W emb

bd ĉ†
bσ′ ĉdσ′

)
. (A.7)

The introduced decomposition of tensor elements W emb
abcd into matrix products Wac ·Wbd is

based on symmetry properties of the interaction tensor [5]. The corresponding part of the
Hamiltonian matrix on H (2)

space is constructed from these matrices similar to the one-body part
in Eq. (A.6), namely

W (2)
emb =W emb ⊗W emb +W emb ⊗W emb = 2W ⊗W. (A.8)
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In practice, the matrix W (2)
emb is built via a simple reshape of the interaction tensor W emb, which

we illustrate for the simplest case of Nfrag = 1

W emb =
{[(

W1111 W1112

W1121 W1122

)
,

(
W1211 W1212

W1221 W1222

)]
,

[(
W2111 W2112

W2121 W2122

)
,

(
W2211 W2212

W2221 W2222

)]}
(A.9)

→W (2)
emb = 2


W1111 W1112 W1211 W1212

W1121 W1122 W1221 W1222

W1211 W1212 W2111 W2112

W1221 W1222 W2221 W2222

 . (A.10)

The full Hamiltonian on H (2)
space is then given by the matrix

H (2)
emb = h(2)

emb +
1

2
W (2)

emb, (A.11)

which can be diagonalized by a built-in routine from the Python NumPy library [150].

The eigenvectors of H (2)
emb are either symmetric (Ψ(r1,r2) =Ψ(r2,r1))) or anti-symmetric

(Ψ(r1,r2) = −Ψ(r2,r1)). The former belong to spin-singlet states and the later to spin-triplets.
The ground state of H (2)

emb is always a singlet state and therefore has a symmetric spatial part
Ψ(r1,r2).

The corresponding ground-state 1RDM and 2RDM are calculated as

γemb
ab =∑

k
2Ψ∗

akΨkb , Γemb
abcd = 2Ψ∗

d aΨbc , (A.12)

withΨab =Ψ(r1a ,r2b ) =Ψ(r1b ,r2a ) =Ψba . These embedding density matrices can then be used
to calculate observables as given in Eq. (5.5). Note that, since with two electrons in the system
we do not have any occupied core orbitals, all full-system properties in Eqs. (5.5)-(5.7) such as
the wave-function |Ψ〉i can be replaced by the embedding properties ( |Ψemb〉i in this example).

A.1.3 Exact inversion for two electrons

One reason for choosing a problem that only includes two electrons is that for this example we
can analytically invert the density n of the interacting problem to yield the potential vS[n] of
the auxiliary non-interacting system that has the same density. Here, we follow the derivation
in [119], but generalize the real-space equations to more general set of orbitals, in our case the
CAS orbitals. This can be done, since there is a one-to-one correspondence between density
and potential for general quantum lattice systems [166].

We formulate the KS equations on our CAS as (see Eq. (3.38) for their real-space version)(
ĥemb + v̂emb,Hxc

)
ϕKS

j = ε jϕ
KS
j , (A.13)

where all operators and orbitals ϕKS
j are expressed in terms of CAS orbitals ϕCAS

a (xi ). Here, the

external potential is absorbed in ĥemb and we therefore have v̂emb,Hxc instead of v̂emb,KS in the
equation.

Since the ground-state of a two-electron problem is always a singlet-state, the ground-state
density of the system is obtained by taking into account only the lowest KS orbital

nCAS = 2
∣∣ϕKS

0

∣∣2
. (A.14)

By assuming a real-valued ground state orbital, which can always be met, and inserting nKS

into Eq. (A.13) we obtain

v̂Hxc[n] = ĥemb

p
nCAS

p
nCAS

+ε0. (A.15)
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A.1.4 Optimization of the chemical potential

For the optimization of the chemical potential that we introduced in section 5.2.3 and, more
specifically, in Eq. (5.9) we use the secant method, which is a simple robust root-finding algo-
rithm. The root x0 of a function f is approximated through the following recurrence relation

x(n+1)
0 = x(n)

0 − f
(
x(n)

0

) x(n)
0 −x(n−1)

0

f
(
x(n)

0

)
− f

(
x(n−1)

0

) . (A.16)

It requires two initial values x(0) and x(1) and in our code these values are x(0)
0 = 0 and x(1)

0 =
〈N̂e〉−Ne.

We do not optimize the chemical potential at every step of the algorithm, since it would involve
unnecessary high numerical cost. The optimization is performed once in the beginning of the
cycle, more precisely in the second iteration step, to ensure at least a roughly correct particle
number for the whole procedure and then at each iteration step k after the difference of the
Hxc potentials

∆v (k)
KS =∑

i

∣∣∣v (k)
KS (xi )− v (k−1)

KS (xi )
∣∣∣ ·∆x < ξµ (A.17)

falls below a certain threshold ξµ, meaning after a certain precision has been achieved in the
self-consistence cycle. In our implementation, this threshold value is chosen as ξµ = 10−4.

A.1.5 Potential update

In section 5.2.4, we have established the connection between the set of local KS potentials and
the global KS potential. In this section, we briefly specify some additional implementational
details for the potential update in the SDE self-consistency cycle.

Initial value

Every self-consistency cycle requires an initial value. Here, we choose the simplest initial po-
tential vKS = vext or equivalently vHxc = 0. This means that our initial guess does not include
any correlations or interactions.

Potential gauge

All potentials have a certain gauge freedom, meaning that they are defined up to a constant.
Same holds for vHxc. This means that, in order to obtain a self-consistent solution, we need to
fix the gauge at every step. In our algorithm, we choose the gauge such that vHxc vanishes at

the left boundary vHxc(x1)
!= 0.

Potential mixing

As in standard DFT [167], we include a potential mixing into our self-consistency cycle in order
to stabilize the algorithm. The update for the Hxc potential is constructed as

ṽ (k)
Hxc = ηv (k)

Hxc + (1−η)ṽ (k−1)
Hxc , (A.18)

where v (k)
Hxc is the potential that is built from local potentials of the fragments after the kth

iteration. In our implementation η= 0.9 is chosen.



Acronyms

1RDM one-body Reduced Density Matrix

2RDM two-body Reduced Density Matrix

BCH Baker-Campbell-Hausdorff

BO Born-Oppenheimer

CAS Complete Active Space

CC Coupled Cluster

CCD Coupled Cluster Doubles

CCSD Coupled Cluster Singles Doubles

CCSD(T) Coupled Cluster Singles Doubles perturbative Triples

CCSDT Coupled Cluster Singles Doubles Triples

CC-SD-S-0 Coupled Cluster - electronic Singles Doubles - photonic Singles

CC-SD-S-D Coupled Cluster - electronic Singles Doubles - photonic Singles - coupled
Doubles

CC-SD-S-DT Coupled Cluster - electronic Singles Doubles - photonic Singles - coupled
Doubles Triples

CI Configuration Interaction

CID Configuration Interaction Doubles

CISD Configuration Interaction Singles Doubles

DFT Density Functional Theory

DMET Density-Matrix Embedding Theory

DMFT Dynamical Mean-Field Theory

ED Exact Diagonalization

EOM-CC Equation-Of-Motion Coupled-Cluster

FCI Full Configuration Interaction

GGA General Gradient Approximation

HF Hartree-Fock

HK Hohenberg-Kohn
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Hxc Hartree exchange-correlation

KS Kohn-Sham

LDA Local Density Approximation

QED Quantum Electrodynamics

QEDFT Quantum Electrodynamical Density Functional Theory

RDMFT Reduced Density-Matrix Functional Theory

RPA Random Phase Approximation

SCF Self-Consistent Field

ST Similarity Transformed

SVD Singular Value Decomposition

xc exchange-correlation
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