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Abstract. Cosmological datasets have great potential to elucidate the nature of dark energy and test grav-
ity on the largest scales available to observation. Theoretical predictions can be computed with hi_class
(www.hiclass-code.net), an accurate, fast and flexible code for linear cosmology, incorporating a wide
range of dark energy theories and modifications to general relativity. We introduce three new functionalities
into hi_class: (1) Support for models based on covariant Lagrangians, including a constraint-preserving
integration scheme for the background evolution and a series of worked-out examples: Galileon, nKGB,
quintessence (monomial, tracker) and Brans-Dicke. (2) Consistent initial conditions for the scalar-field per-
turbations in the deep radiation era, identifying the conditions under which modified-gravity isocurvature
perturbations may grow faster than adiabatic modes leading to a loss of predictivity. (3) An automated quasi-
static approximation scheme allowing order-of-magnitude improvement in computing performance without
sacrificing accuracy for wide classes of models. These enhancements bring the treatment of dark energy and
modified gravity models to the level of detail comparable to software tools restricted to standard ΛCDM cos-
mologies. The hi_class code is publicly available (https://github.com/miguelzuma/hi_class_public),
ready to explore current data and prepare for next-generation experiments.
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1 Introduction

Universal and attractive, gravity is the main force shaping our cosmos. Despite the successful conceptual
description of the universe’s evolution and a wide range of phenomena on terrestrial and astrophysical scales,
Einstein’s General Relativity (GR) is tightly linked to a wide variety of open questions in fundamental
physics. A better understanding of gravity may shed light on problems such as the initial conditions for the
universe, the smallness of the cosmological constant, the nature of space-time singularities and the unification
of gravitational and quantum-mechanical phenomena. Many among the unsolved problems in physics are
connected, directly or indirectly, with the nature of gravity.1

The nature of Dark Energy (DE) and Dark Matter (DM) stand out among these open questions. On
one hand, there exists overwhelming observational support for their existence, making up 69 and 26% of
the Universe’s energy density today [1]. On the other hand, all the evidence collected so far relies on their
gravitational effects, making the inferred abundance and properties contingent on our understanding of
gravity. And while Einstein’s theory has been exquisitely validated in terrestrial, solar and astrophysical
systems [2], our only evidence for DM and DE stems from observations at galactic and cosmological scales on

1https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics
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which most tests of GR rely on assumptions about these dark components. Whether or not new gravitational
physics are necessary to explain cosmological data, testing GR is necessary to transform observations of the
universe into advances in fundamental physics.

The minimal working model of the universe, known as ΛCDM, assumes the validity of GR on all scales.
In it, late-time cosmic acceleration is provided by a cosmological constant (Λ) and cold dark matter (CDM)
drives structure formation. This remarkably simple model can be tested by a variety of methods, including
observations of the large-scale structure (LSS) of the universe, the cosmic microwave background (CMB) and
transient phenomena, including type Ia supernovae (SNe) and gravitational waves (GWs) (cf. Refs. [3–7]).
While most datasets are compatible, tensions have started to emerge when independent observables are in-
terpreted in the simple ΛCDM model. These discrepancies typically appear between the expected properties
of the late universe based on observations that probe the early universe (e.g. CMB) and direct probes of
this late-universe. These tensions include the cosmological expansion rate today [8–10], the amplitude of
cosmological perturbations (e.g. through weak lensing [11–15] or cluster counts [16]) and problems on small
scales [17]. The persistence of these discrepancies has motivated the exploration of possible solutions based
on extensions of the standard model involving new physics beyond Λ, CDM or GR (see Refs. [18–31] for
some examples).

The ambitious program to test GR and alternatives to ΛCDM is progressing steadily since the discovery
of the accelerated expansion of the universe [32, 33]. In the near future an array of observational campaigns
will improve vastly on the quantity and quality of data and provide new opportunities to test ΛCDM
and its foundations. Surveys such as the extended Baryon Oscillation Spectroscopic Survey [34], the Dark
Energy Spectroscipic Instrument [35], the EUCLID Satellite [36] and the Large Synoptic Survey Telescope
[37] will map the universe’s expansion history and matter distribution with unprecedented accuracy using
complementary techniques. These upcoming experiments will provide new opportunities to test fundamental
physics, likely producing a detection of neutrino mass [38] and a 10− 100× precision improvement in testing
deviations from GR [39]. In addition, GW observations from upcoming LIGO Virgo and Kagra observing
runs [40], the Laser Interferometer Space Antenna [41] and Next-generation Earth-based Observatories [42]
will provide novel ways to test gravity and DE [43–46].

Optimal exploitation of current and upcoming data requires accurate predictions across a wide range
of scenarios. Addressing the vast landscape of alternatives to GR and DE models (see Refs. [44, 47–50] for
recent reviews) requires new conceptual and computational frameworks flexible enough to encompass specific
instantiations. A unifying paradigm was realized by the re-discovery of Horndeski’s theory [51–53], a very
general action for scalar-tensor gravity that encompasses a large fraction of theories of gravity, including
many proposed models for DE and inflation. In parallel, the exploration of model independent descriptions
of gravity led to the formulation of the effective (field) theory of DE (EFT-DE) [54, 55] (see [56, 57] for
reviews), which can be matched to concrete models or used as an model-independent parameterization of
deviations from GR in cosmology. In order to test these scenarios against data, their predictions need to be
computed efficiently, fast enough to sample the parameter space of each model.

The theoretical advances in DE and tests of GR have been translated into flexible tools to compute
cosmological predictions. The hi_class code [58] provides a publicly available tool to study the phenomen-
ology of Horndeski theories in the linear regime of cosmological perturbations. This paper introduces new
features available in the second version of the code.

Code usage: The use of the public version of hi_class is free to the scientific community but
conditional on the inclusion of references to at least this article, the first hi_class paper [58] and
the original CLASS paper [59].

– 2 –



2 Horndeski’s Theory and the hi_class code

The purpose of the hi_class code is to provide a fast, flexible and accurate tool to compute predictions
and enable tests of general gravity and dark energy theories, with the level of detail and control available to
standard cosmology. hi_class is based on the Cosmic Linear Anisotropy Solving System (CLASS), a modern
and flexible Einstein-Boltzmann solver for linear cosmological perturbations [59, 60]. Most CLASS features
are available in hi_class, including neutrino and DM properties [61], general primordial power spectra,
including isocurvature modes and the computation of galaxy number counts [62]. Features not available
in the current hi_class version are non-flat universes [63], Newtonian gauge and non-linear calculations
consistent with deviations from GR. hi_class can be interfaced with any code that supports CLASS,
including MontePython [64, 65], CosmoSIS [66], FalconIC [67], the Core Cosmology Library [68] and Cobaya2.

hi_class is easy to use and to modify and is publicly available to the scientific community.3 The
structure of the code and the modifications with respect to the CLASS code are described in detail in the
first hi_class paper [58]. hi_class can be used to explore different aspects of gravitational theories and
their cosmological implications [69–73], test models against current data [19, 74–76] or in preparation for
future experiments [39, 77, 78].4 hi_class has been cross-validated against other codes both implementing a
general EFTDE framework (e.g. EFTCAMB [79], COOP [80]) and ones dealing with an approximation to it or
specific models of gravity (e.g. DASh [81], GalCAMB [82], EoS_class [83] or EFCLASS [84]) reaching the level
of accuracy needed by next-generation cosmological experiments [85]. Currently the publicly available version
of the hi_class code incorporates Horndeski’s scalar-tensor theory, a very general overarching framework
that incorporates a large class of DE and beyond GR theories.

Horndeski’s theory is the most general theory of gravity featuring a metric and a scalar field in four
space-time dimensions subject to the requirements of Lorentz invariance, locality and being described by
second order equations of motion [51–53]. The theory is given by the following action

S[gµν , φ] =
ˆ

d4x
√
−g

[ 5∑
i=2

1
8πGN

Li[gµν , φ] + Lm[gµν , ψM ]
]
, (2.1)

where the four Lagrangians Li

L2 = G2(φ, X) , (2.2)
L3 = −G3(φ, X)�φ , (2.3)

L4 = G4(φ, X)R+G4X(φ, X)
[
(�φ)2 − φ;µνφ

;µν
]
, (2.4)

L5 = G5(φ, X)Gµνφ;µν − 1
6G5X(φ, X)

[
(�φ)3 + 2φ;µ

νφ;ν
αφ;α

µ − 3φ;µνφ
;µν�φ

]
, (2.5)

encode the dynamics of the Jordan-frame metric gµν and the scalar field φ. The theory is fully specified
by four arbitrary Horndeski functions Gi(φ,X) of the scalar field value φ and its canonical kinetic term,
2X ≡ −∂µφ∂µφ; we use subscripts φ,X to denote partial derivatives, e.g. GiX = ∂Gi

∂X .5 Cosmological
solutions can be obtained from this covariant action by assuming homogeneity and isotropy.

The dynamics of background cosmology in any Horndeski model is then fully characterized by the (time-
dependent) equation of state of the dark energy w(τ) and the energy density fraction today ΩDE,0 ≡ E(τ0)/H2

0
of the Horndeski scalar (or equivalently the dark energy density E(τ))). At the level of linear perturbations,
we write the perturbed equations in terms of the scalar field velocity potential

2https://cobaya.readthedocs.io/en/latest/
3The code lives on https://github.com/miguelzuma/hi_class_public, resources are available on www.hiclass-code.net.
4For a complete and updated list of projects using hi_class see www.hiclass-code.net.
5Note that viable scalar-tensor theories beyond Horndeski are known [86–89], a class of which has already been implemented

in a private branch of hi_class [90].
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VX ≡ aδφ/φ′ . (2.6)

Then four additional time-dependent α-functions are sufficient necessary to fully describe the dynamics of
linear perturbations. The basis of these functions is chosen to separate physical effects to the largest extent
possible. They are defined in terms of the Lagrangians in appendix A:

• Kineticity αK(τ) modulates the kinetic term for scalar field perturbations, i.e. how hard/easy it is to
excite the scalar field. Larger values of αK lead to a smaller sound speed for the scalar and therefore
the field responds to external sources only on smaller scales. It receives contributions from all the four
Gi functions.

• Braiding αB(τ) measures the kinetic mixing between perturbations of the metric and the scalar field, i.e.
what combination of scalar field excitations and the gravitational potentials is a propagating degree of
freedom. In the presence of braiding the effective Newton’s constant for matter is modified. It receives
contributions from G3,4,5.

• Cosmological strength of gravity M2
∗ (τ) determines the ratio of the space-time curvatures per unit

mass between the cosmological background and the solar system. It receives contributions from G4,5.
Large-scale structure is sensitive only to its derivative, the Planck-mass run rate αM ≡ d log(M2

∗ )
d log(a) . The

value of this quantity today and Solar-System measurements of the strength of gravity are not directly
connected absent a particular model as a result of screening mechanisms in these theories and other
small-scale physics.

• Tensor Speed Excess αT (τ) captures the difference between GW speed and the speed of light c2g =
c2(1 + αT ). It receives contributions from G4,5. The observation of electromagnetic and gravitational
radiation from a neutron star merger [91] severely constraints αT today [92–98].6

Note that at least one of αM or αT must be non-zero in order to produce gravitational slip from perfectly-
fluid matter sources. On the other hand, this causes a modification of the propagation of gravitational waves
and the implied constraints from GW observations [100]. For further details on the α-functions and their
cosmological effects see [58, 101]. Note that as a result of the definition for VX (2.6), this efficient description
does not allow one to follow an evolution through φ′ = 0, e.g. a background scalar field oscillating around
some value.

The relationship between w, the α-functions and the Lagrangian is sufficiently non-trivial (see ap-
pendix A) that it leads to the expectation that any expansion history and any choice of time-dependence for
the α-functions can be achieved given sufficient tuning of the Gi and the initial conditions for the background
scalar field. This sort of structure with five unknown arbitrary functions of time defining the linear structure
formation equations was also derived using the approach of effective theory for dark energy [54, 102], where
one tries to derive the most general theory compatible with the symmetries of the cosmological background
and the requirement that there is just one degree of freedom in addition to GR.

There are thus two ways in which hi_class can be used to test gravity:

1. The effective-theory approach consists of providing a parametrization of the α-functions and the equa-
tion of state, independent of any underlying theory, with the aim of testing for particular physical ef-
fects. The implementation of the effective-theory approach was described in detail in the first hi_class
paper [58], and was, up to now, the only way of using the public version of the code.

6Note that GW constraints from ground-based detectors involve GW frequencies which are slightly beyond the limit of
validity of Horndeski as a low energy classical description (assuming a characteristic energy scale ∼ H0 consistent with DE
physics) [99]. A cg measurement at lower GW frequencies can be achieved with space detectors using galactic binaries [93] or
cosmological standard sirens [45].
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S[gµν , φ]
+initial cond.

Gi(X,φ)
∣∣∣
i=2,3,4,5

φ′(τ0), φ(τ0)









Expansion w(τ)

Kineticity αK(τ)

Braiding αB(τ)

Mp running αM (τ)

Tensor speed αT (τ)









H(z)

Cij`

P (k, z)

· · ·

Effective Description (linear)Covariant Theory Predictions

Effective theory approach

Covariant theory approach

Figure 1: Covariant action, effective-theory description and observables. In the covariant theory approach,
a model is specified through the Horndeski functions Gi(X,φ) (i = 2, 3, 4, 5) in the action 2.1, the free
parameters they may contain, and the initial conditions of the scalar field φ(τ0), φ′(τ0). This choice fully
fixes the expansion history (e.g. the equation of state w) and the alpha-functions that completely characterize
the evolution of (linear) cosmological perturbations, and provide a set of cosmological observables. In the
effective theory approach one parametrizes deviations from GR, irrespective of any underlying covariant
action.

2. The covariant-theory approach involves starting with a particular model defined in terms of the
Horndeski functions Gi (2.2-2.5). Upon specifying the initial conditions for the background field and
the additional parameters of the theory in the Gi functions, hi_class automatically computes the
cosmological background and the α-functions are fully determined. We are introducing this method to
the public version of hi_class with this release.

The two methods, summarized in Fig. 1, are complementary.7 The effective-theory approach is simpler to
implement and use because the α-functions only depend on time and are independent of the properties of the
cosmological background. Meanwhile the Horndeski functions depend on two variables (X,φ) and all results
depend on the field’s initial conditions and, through the scalar’s equation of motion, on the evolution of the
other matter species in the universe. In addition, the α-functions represent generic features of deviations
from GR present in theories other than Horndeski, and can be used for more agnostic tests.

An advantage of the covariant approach is that all properties of a model (background, perturbations...)
are computed from the same parameters. This approach often leads to tighter constraints on the model and
allows to address questions that involve the cosmic expansion history, such as the Hubble parameter tension
[19]. More importantly, having a covariant theory means that information from other regimes (e.g. beyond
linear perturbations, or the existence of screening mechanisms) or even other probes (e.g. gravitational waves,
local tests of gravity), can be folded in into the constraints. This is especially relevant in the case where e.g.
GW-speed constraints have reduced the functional freedom of the Horndeski action quite significantly, and
with it the ability to construct reasonable theories with an arbitrary background expansion and completely
independently choose the α-functions. By starting from a full covariant action, one is able to discuss the level
of fine-tuning required to explain both the background, perturbations and any other physics introduced by
the model. In the effective approach, combining different regimes would necessitate introducing additional

7A third alternative is to study phenomenological modifications of GR by introducing effective gravitational constants. This
requires two generic functions of time and scale, multiplying the source term in the equations for each gravitational potential
[103]. Such a description may not be connected to a consistent covariant theory, but it can in principle elucidate that physics
not allowed by known consistent theories are necessitated by the data. See Ref. [44, sec. 2.2] for a comparison of descriptions
of gravity in cosmology.
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α-functions, obscuring the connection to the linear regime [69, 104, 105]. Owing to their relative advantages,
both approaches are complementary and important for the optimal exploitation of cosmological and other
data to test gravity and dark energy.

In this paper we report on three major upgrades of the public version of the hi_class code:

(i) Dynamics of covariant Lagrangians: the evolution of the cosmological background, the scalar φ and the
α-functions can be solved self-consistently, given the functional form of a covariant action, the theory
parameters and initial conditions for the scalar (Section 3).

(ii) Initial conditions: the perturbations in the scalar field, gravitational potentials and all matter species
are solved starting from their attractor values deep in the radiation era, corrected for early dark energy
and deviations from GR (Section 4).

(iii) Approximation schemes: the equations for cosmological perturbations are optimized using suitable
approximations, speeding up the code — the so-called Quasi-Static regime — but only in conditions
where the scalar-field dynamics can be neglected without impact on accuracy (Section 5).

3 Background Evolution in Covariant Theories

Here we describe the implementation of theories based on covariant Lagrangians in hi_class (complementary
to the effective-theory approach, which was described in the first hi_class paper [58]). In section 3.1 we
discuss the difficulties of evolving the cosmological background in Horndeski theories. In section 3.2 we
present a solution inspired by numerical relativity methods and in 3.3 we discuss some practical considerations
such as adjusting the dark energy fraction today and discuss example models (Galileon gravity, nKGB,
Quintesence and Brans-Dicke Theory). These examples serve as a guideline for users to implement other
covariant theories in hi_class.

3.1 Cosmological Evolution in Generally Covariant Theories
The equations of generally covariant theories (such as GR and Horndeski) contain redundancies. The equa-
tions for the metric can be classified as: constraints, with at most one time derivative of the metric and
dynamical equations, with two time derivatives of the metric. The evolution of the metric is fully determined
by the dynamical equations given some initial conditions, which have to be compatible with the constraint
equations. Exact solutions are guaranteed to satisfy the constraints, but approximate or numerical solutions
induce constraint violations and may rapidly become unphysical. This is a known problem in numerical
relativity which can be solved by incorporating terms to the dynamical equations that damp the constraint
violations [106].

For a homogeneous and isotropic Friedman-Robertson-Walker (FRW) space-time with flat spatial sec-
tions

ds2 = a(τ)2 (dτ2 − d~x2) , (3.1)

the constraint and dynamical equations correspond to the Friedmann and acceleration equation

H2 = ρ+ E , (constraint) (3.2)
H ′ = − 3

2a
(
ρ+ p+ E + P

)
, (dynamical) (3.3)

where E , P are the effective energy and pressure density stemming from terms beyond GR (see Appendix A
for the definitions).8 The above equations correspond to the variation with respect to g00 and gii, defining

8We are using CLASS conventions in which the units are fixed by the Friedmann equation (3.2), primes denote derivatives
with respect to conformal time and the Hubble rate is H = a′/a2.
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the time coordinate according to (3.1) and with the remaining equations fixed by the symmetries of the
problem (homogeneity and isotropy). The space-time is fully determined by solving for the scale factor a(τ),
that fully specifies the metric, as well as the evolution of matter and scalar field (if present).

The standard approach in cosmological codes is to use the constraint equation (3.2) to integrate a(τ),
together with the matter conservation equations, which have analytic solutions for any matter fluid with a
constant equation of state. Using the constraint prevents the obtained solutions from becoming unphysical.
However, one still needs to specify whether the universe is contracting or expanding at a given time by
choosing the correct branchH = ±

√
ρ+ E . Although exotic in the standard cosmological scenario, H(τ)→ 0

might occur during the evolution. The universe then would either bounce (from expansion to contraction
or vice versa) or continue after coasting. From the point of view of the Friedman constraint, the difference
amounts to whether or not one switches the branch. One has to use the dynamical equation (3.3) to determine
the sign of H ′ and therefore the outcome.

Using the constraint equation to integrate a(τ) is far more involved in theories beyond GR. In Horndeski
theories the constraint is, in general, a cubic polynomial in H

C(H) ≡ E3H3 − E2H2 + E1H + E0 = 0 , (3.4)

where we have arranged Eq. (3.2), including E , by powers of H. The coefficients Ei depend on φ, φ̇ and
the model parameters, the exact expressions are provided in Appendix A. Eq. (3.4) has 1, 2 or 3 solutions
depending on the values of the coefficients.9 While it is possible to find all the solutions at any given time,
the true solution (as given by the dynamical equation) often evolves between different branches, making any
general scheme to integrate a(τ) based on Eq. (3.4) very difficult to implement for general theories. And
unlike in GR (where a branch switch can be readily interpreted as a bounce), there is little intuition for
what these branches mean in Horndeski gravity: they are quite generic even for simple scenarios and are
not associated to any sudden change in the dynamics of the cosmological expansion. Figure 2 shows this
phenomenon for two examples of Galileon gravity with different model parameters but identical expansion
history (see section 3.3.1 for details on the model).

An alternative method is to solve the dynamical equation (3.3) with initial conditions ȧ(τ0) consistent
with the constraint (3.2). However, directly solving this equation (e.g. with a standard Runge-Kutta integ-
rator) rapidly leads to a violation of the constraint and an unphysical solution with constant H. This is
true even for Einstein’s GR, as shown in Fig. 3. The dynamical equation (3.3) is delicate under numerical
evolution and is less robust than the constraint (3.2):

• A small numerical error in the dynamical equation ∆H ′ = εH2 (with ε dimensionless) is equivalent to
a constraint violation

H2 = ρ+ E + 2
ˆ
dτ εH3 +O(ε2) . (3.5)

The last term becomes approximately constant once H drops below a threshold value, and dominates
the evolution after ρ dilutes sufficiently (c.f. Fig. 3).

• The constraint equation is numerically robust for any source. In constrast, a cosmological constant Λ
does not contribute to Eq. (3.3), since the source term vanishes ρΛ + pΛ = 0. The difference between
a universe with Λ = 0 and Λ 6= 0 is encoded in the initial conditions, set by the constraint equation
through a negligible term ρΛ � ρm(τini). In order to capture Λ, the equations need to be solved with
astonishing precision ∼ ρΛ/ρm(τini) ∼ a3

ini, beyond the capability of any numerical code.

9If E3 6= 0 there can be up to 3 solutions, one of which diverges in the limit E3H → 0, including the GR limit (often satisfied
in the early universe for dark energy models). Closed form solutions and numerical methods exist, but they are difficult to
implement numerically when there is a large hierarchy in the Ei values.
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Figure 2: Difficulties solving the constraint equation in Horndeski theories. The dynamical evolution often
“jumps” branches in the constraint equation (3.4). Two quartic Galileon models (blue, red) with identical
background expansion (here rescaled for display, see Sec. 3.3.1) and E3 = 0, jump from the H+ branch (solid,
tends to the expanding GR solution H+ →

√
ρ) to the H− branch (dotted) at low z, producing a smooth

solution. Both branches intersect when the discriminant becomes zero (lower panel).
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Figure 3: Difficulties integrating the dynamical equation for H ′. The panels show numerical solutions
of the dynamical equation (3.3) and the relative deviation with respect to the solution obtained from the
constraint (3.2). The standard solution (red) fails to satisfy the constraint equation (black dotted) (3.2) at
a finite time, even with increased numerical precision. This issue is solved adding an artificial friction term
∝ γH C(H) to the dynamical equation, eq. (3.6). Large values of the friction coefficient γH ∼ 102 worsen
the convergence, although deviations remain very small (. 10−5). All curves correspond to a matter-only
universe evolving under Einstein’s GR, integrated using a fourth-order Runge-Kutta method.

A method to avoid unphysical solutions and incorporate information from the constraints can be ob-
tained inspired by the methods of numerical relativity [106]. The key idea is to numerically integrate a
combination of the dynamical and constraint equations. In the following we shall see that the correct branch
of the constraint equation is always chosen.
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3.2 Dynamical Evolution with Constraint-violation Damping
To solve the background dynamics numerically, hi_class integrates the dynamical equation (3.3), modified
as

H ′ = −3
2a
(
ρ+ p+ E + P

)
− aγ(H)C(H) . (3.6)

The new term is proportional to the constraint, Eq. (3.4). It vanishes identically when the solutions are
physical, C = 0, recovering the original dynamical equation. A suitable choice of the coefficient

γ(H) = γH · sign
(
∂C
∂H

)
, (3.7)

with γH > 0 ensures that the last term in Eq. (3.6) acts as a friction term, driving the evolution towards
C = 0.

Small violations of the constraint are exponentially damped by the new friction term. Let us express
the numerical solution as Hn = H + δH, where H is the physical solution satisfying both the constraint and
acceleration equation (3.2, 3.3). Then deviations are damped by the friction term in Eq. (3.6)

δH ′ = −aγ(H) ∂C
∂H

δH +O(δH2) ⇒ δH ∝ exp
(
− γH

∣∣∣∣ ∂C∂H
∣∣∣∣ t) , (3.8)

and constraint violations vanish exponentially on a timescale ∼
(
γH
∣∣ ∂C
∂H

∣∣)−1. This prescription drives the
evolution towards C → 0 and prevents unphysical results. Values of γH & 2 provide sufficient stability of
the constraint under time evolution, for typical precision parameters, as shown in Fig. 3. Note that it is not
necessary to solve for H in the constraint (3.4) to integrate equation (3.6), it suffices to evaluate C(H).

The constraint equation (3.4) needs to be solved only when the initial conditions for the background
are set. This gives a value of H that depends on the scale factor, the matter/radiation density and the initial
configuration of the scalar field φ(τini), φ′(τini). For models that approximate GR at early times, the usual
solution H = √ρM is good enough, but one has to be more careful for theories that modify gravity in the
early universe (a simple example is Brans-Dicke, in which M2

∗ ∝ φ(τ) can differ from unity and modify the
Friedmann equation at early times). Even in those situations, one expects that the corrections will be small,
and therefore an iterative correction to the GR solution (e.g. Newton’s root finder) is enough. Note also
that an initial violation of the constraint would also be damped by the prescription (3.6).

The method of constraint damping has been tested systematically in the simple setup shown in Fig. 3.
The results have also been validated against other codes for covariant theories (Brans-Dicke and Galileons),
as described in the Einstein-Boltzmann code comparison beyond GR [85]. All the performed tests showed
excellent agreement, with . 0.01% accuracy on the background expansion and sub-percent accuracy on
CMB and matter power spectra. Note that other codes did not rely on constraint damping because they are
restricted to relatively simple models, with either no branch jumps (e.g. Brans-Dicke) or where solutions are
fixed by a symmetry of the theory (e.g. Galileons, c.f. Section 3.3.1).

3.3 Initial and Final Conditions for the Background
The main difference between the covariant and effective-theory approach is the need to solve the dynamical
evolution of the background scalar field φ(τ). This requires specifying the scalar field initial conditions,
φ(τini), φ′(τini) together with parameters entering the Gi(X,φ) functions.10 In addition, model parameters
need to be adjusted to satisfy the final condition on the dark energy fraction today

H2
0 Ω(0)

DE = E(φ(τ0), φ′(τ0), H0) . (3.9)
10Note that the choice of background initial conditions might be restricted in some theories to less than two arbitrary choices

for the scalar and its velocity. This might be due to symmetry, the existence of attractor solutions or viability conditions (see
examples in Sec. 3.3.1, 3.3.2).
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Here the left-hand side involves cosmological parameters provided by the user and the right-hand side is
a result computed by the code given the parameters of the Horndeski model, (i.e. evolving the field from
initial conditions until today). The background evolution does not guarantee that the scalar field evolution
is compatible with other input cosmological parameters, such as the expansion rate H0 and the scalar field
energy fraction Ω(0)

DE.11 In some situations it might be desirable to adjust additional final conditions. An
example is Brans-Dicke theory, in which the absence of a screening mechanism requires a tuning of scalar
field value φ(τ0) to satisfy Solar System tests (see Section 3.3.2).

The correct final conditions (3.9) can be obtained by adjusting one or more of the model parameters
(which may include the scalar field initial conditions). While this choice is straightforward in simple dark
energy models, it can be highly non-trivial in general cases, often depending on the values of multiple
parameters at the same time. When they exist, solutions to Eq. (3.9) can be found numerically. Doing so
efficiently requires a good guess of the solution and its dependence with the parameter being varied, which in
turn requires a good understanding of the model’s dynamics. Finding the right initial and final conditions for
a Horndeski model is in itself a craft and no simple or universal recipe exists. While numerical root-finding is
often unavoidable, there are several tricks to understand the role of model parameters in the field equations
and improve the initial guess.

First, since it is only an unobservable variable, we can perform arbitrary field redefinitions on the scalar
field. The Horndeski family of actions is closed under redefinitions which only depend on the scalar field
value, i.e.

φ→ φ̃ = F (φ) , (3.10)

yielding an equivalent theory with different Horndeski functions G̃i [107–112]. A suitable choice may simplify
one of the Horndeski functions in simple theories (for a quintessence example see Ref. [75]). A constant
rescaling φ→ φ̃ = f · φ can often be used to fix one of the model parameters (see [82] and Sec. 3.3.1 for an
example with Galileon models).12

The modified Friedmann equation (3.4) can be used to understand the scale of the model parameters
(cf. 3.9) and provide some useful relations. Since it only contains first and zeroth time derivatives of the
metric and the scalar field, it provides a relatively simple relation between the expansion rate, the matter
energy density and the scalar field configuration at any time. Since the Friedmann equation is at most an
order 3 polynomial in H (order 2 if G5,X = 0), the solutions for H can be obtained in closed form. These
expressions can be used to identify the contributions of each term to the energy density and obtain a guess
for the model parameters.

Another important quantity is the equation of state for the scalar

w ≡ P
E
. (3.11)

This expression can be related to the evolution of the field by writing the scalar field equation as covariant
energy-momentum conservation

E ′

a
+ 3H(1 + w)E = 0 . (3.12)

Any bound on the value of w limits how rapidly the field’s energy density can evolve. For instance, if w > −1
then the energy density E can only decrease as the universe expands (e.g. in quintessence, Sec. 3.3.2).

11It is also possible to use all the Horndeski parameters (including field initial conditions) as input and treat H0 and Ω(0)
DE as

derived parameters when sampling the parameter space. Then the data would automatically prefer the right values, avoiding
the need to adjust final conditions. However, understanding the subset of parameters leading to reasonable values of H0 and
Ω(0)

DE is necessary for realistic convergence times, even in this type of approach.
12More complicated redefinitions, e.g. mixing the scalar and its derivatives, or even the scalar and the metric would also leave

the observables unmodified. However, the action would generically no longer be of Horndeski form and even contain higher
derivatives, which could be removed by new constraints. Such related actions have not been implemented in hi_class, which
assumes minimal coupling of the matter.

– 10 –



Further insight into the dynamics of the scalar field can be gained by writing the scalar equation of
motion as

J ′

a
+ 3HJ = Sφ . (3.13)

The left hand can be written as a covariant conservation law ∇µJ µ, for a Noether current J µ associated
with a shift symmetry in the scalar field φ → φ + c, while the right hand side includes contributions from
terms violating the shift symmetry. On a homogeneous and isotropic space-time the current J µ = (J ,~0) is
fully characterized by the shift charge density J . The shift charge density is an order 3 polynomial in H,
whose coefficients depend on φ′/a and φ through derivatives of the Horndeski functions (see Eq. (A.20) for
the full expression). In general, Horndeski theories include terms Sφ that violate shift symmetry (see Eq.
(A.21) for the full expression). These terms act as a source for J , which is no longer covariantly conserved
if Sφ 6= 0. Eq. (3.13) provides important insights into the dynamics of the theory, even when shift-symmetry
is broken.13 It is important to remember that hi_class integrates the full equations of motion, regardless
of whether the dynamics can be simplified due to shift symmetry.

Below we provide the details of several theories with and without shift-symmetry. These include models
already included in hi_class that may provide the basis for further implementations. We emphasize how
some of the above ideas can be used to understand the role of model parameters in fixing the initial and
final conditions for the theory. Other techniques from dynamical systems applied to cosmology may provide
further simplifications (see Ref. [113] for a review).

3.3.1 Shift symmetry and current conservation: covariant Galileon & nKGB
In shift-symmetric theories, covariant conservation of the shift-current (3.13) can be readily solved

J ′

a
+ 3HJ = 0 ⇒ J = J0a

−3 . (3.14)

That is, the shift charge density J dilutes with the universe’s volume, as expected of a conserved charge
[114]. As a consequence, the vacuum state J = 0 is a good approximation in the late universe unless the
shift charge density is substantial at early times. Moreover, unless the co-dependence of ΩDE (or any other
late-time deviations from GR) on J is negligible, the initial shift current needs to be very fine-tuned for its
value today to play a role: note that the shift charge density decreased by a factor & 1028 since primordial
nucleosynthesis, with this factor being much larger if initial conditions were set earlier (e.g. at the end of
inflation).

The condition J = 0 can have multiple solutions, which are vacua of the theory with vanishing shift-
charge density (see e.g. Ref. [115] for a discussion of the hydrodynamical interpretation of some such models).
In an expanding universe, all these vacua are stable attractors of the system, as can be seen from Eq. (3.14).
Which vacuum is reached depends on the initial conditions, and it may, in principle, never actually be
reached if the Universe bounces during is evolution (e.g. [116]).

Apart from very particular choices for Gi, involving fractional or negative powers of X, shift-symmetric
theories always allow for a trivial vacuum φ′ = 0 on which (1) all α-functions are zero (2) only a constant
term is allowed in E , so the cosmological predictions reproduce GR exactly (allowing at most a nonzero
cosmological constant Λ). However, it is not necessarily true that this vacuum is stable, but the scalar could
be a ghost, depending on the choice of the Horndeski functions. Other, non-trivial, J = 0 solutions can
exist depending on the choice of Gi. If they are stable, they are then the final states of evolution of the
cosmology, at least for some basin of attraction. These non-trivial vacua are often known as trackers, the
exact properties of which depend on the other matter content in the universe, but which typically evolve

13Note that it is sufficient that Sφ = 0 for a theory to be shift-symmetric. The simplest method of realising this is setting all
Gi,φ = 0, but it could well be a non-trivial condition. In principle, for a shift-symmetric theory that depends on φ, one should
be able to perform a field redefinition to obtain an equivalent theory which does does not depend on the scalar-field value, but,
to the authors’ knowledge, this has not been proven in the literature.
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toward a final accelerating state [114]. In this kind of models it frequently happens that the scalar field is a
ghost on flat spacetime, indicating that Minkowski spacetime is not a stable solution.

When the field reaches a tracker solution J ≈ 0 its dynamics are governed by an algebraic equation
relating H,φ′, φ and the parameters of the theory, as given by Eq. (A.20). Below we will see how this de-
pendence simplifies the treatment of two example theories, Covariant Galileon and Kinetic Gravity Braiding.

Covariant Galileon The covariant Galileon [117–119] is a Horndeski theory defined by

G2 = c1φ− c2X , G3 = c3
Λ3

3
X , G4 = M2

Pl
2 − c4

Λ6
3
X2 , G5 = 3c5

Λ9
3
X2 , (3.15)

where Λ3
3 = H2

0MPl (note that it is possible to rescale the field and fix one of the galileon coefficients
[120, Eq. 22]; see also the discussion in Appendix B). The theory is shift symmetric provided that the linear
potential vanishes c1 = 0. While Covariant Galileons are ruled out by a combination of gravitational wave and
cosmological observations, they have interesting properties as cosmological models (see Refs. [19, 82, 94, 121]
for updated constraints).

The shift charge density (A.20) only depends on the combination Hφ′/a. Defining the dimensionless
quantity

ξ ≡ Hφ′

aH2
0MPl

, (3.16)

(see Refs. [19, 82] for details), it can be expresed as
H

MPlH2
0
J = ξ

(
c2 − 6c3ξ + 18c4ξ2 + 5c5ξ3)→ 0 , (3.17)

Starting from initial conditions, the field velocity approaches the tracker ξ → ξ0, with J (ξ0) = 0 in Eq. (3.17),
as dictated by the dilution of the shift charge density, Eqs (3.14). As the solution approaches the tracker
ξ ∼ ξ0 is approximately constant and φ′ ∝ a/H as per Eq. (3.16). This behaviour is shown for different
initial conditions in Fig. 4. On the tracker, it is further possible to write the galileon contribution to the
energy budget as

Ω(0)
DE = c2

6 ξ
2
0 − 2c3ξ3

0 + c4
15
2 ξ

4
0 + c5

7
3ξ

5
0 . (3.18)

The problem of the final condition reduces to solving Eqs (3.17,3.18). In practice it is convenient to
treat ξ0 as a free parameter of the theory, and use it to fix one of the coefficients ci. It is conventional to
define 3 models, ordered by increasing complexity:

• Cubic Galileon: ξ0, c3 set by Ω(0)
DE, J = 0 with c4, c5 = 0.

• Quartic Galileon: ξ0 free, c3, c4 set by Ω(0)
DE, J = 0 with c5 = 0.

• Quintic Galileon: ξ0, c3 free, c4, c5 set by Ω(0)
DE, J = 0.

In all these models Eqs. (3.17, 3.18) are used to fix two parameters and c2 = −1 is set by the normalization
of the field — cubic models require c2 < 0 in order to have Ω(0)

DE > 0, quartic & quintic models allow c2 > 0
but are disfavoured by observations [120]. The initial conditions for φ′ are fixed by setting the field in the
tracker J = 0 initially — non-tracker solutions are possible, cf. [122], but fine tuned as discussed after Eq.
(3.14). Note that all shift-symmetric galileons contain a trivial tracker, leading to ξ → 0 for which E → 0,
αi → 0 as long as the initial conditions are sufficiently near ξ = 0.

One may in principle consider different initial conditions for the scalar field, parameterized by ξ(τini).
However, for most values of ξ(τini) the tracker solution will be reached while the galileon is subdominant
(see Fig. 4), leading to identical cosmological predictions. For the sake of simplicity it is conventional to set
ξ(τini) = ξ0. The initial conditions may change the model predictions only if the tracker solution is reached
at low redshift, when the galileon energy density is not negligible. Ref. [120] found that this possibility was
disfavoured by CMB data, placing a bound on ξ(τini) (or equivalent ρDE(τini), cf. right panel of Fig. 4).
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Figure 4: Covariant galileon dynamics: general initial velocities of the scalar field eventually converge to the
tracker solution ξ(z)→ ξ0 (left panel). The energy density of the galileon remains subdominant at all epochs
(left panel). The initial conditions do not affect cosmological predictions, unless the tracker is reached in the
late universe when DE is non-negligible. All lines are for the same quintic model with ξ0 = 2.43, c3 = −0.132.

nKGB nKGB is a two-parameter family of models in the class of Kinetic Gravity Braiding [114, 123, 124],
which generalizes the cubic galileon. In this theory, the propagation of gravitational waves is not modified
αT = 0. The Lagrangian is given by the choice

G2 = −X , G3 = g(2n−1)/2Λ
(
X

Λ4

)n
, G4 = M2

Pl
2 , G5 = 0 . (3.19)

with g a dimensionless constant, of order one if one chooses Λ4n−1 = H2n
0 M2n−1

Pl . Minkowski spacetime is
unstable in this model and the final state of the Universe is a self-accelerating vacuum with equation of state
w = −1, which is approached from below. The shift-symmetry of the action leads to a non-trivial vacuum
characterised by the dimensionless quantity

ξ ≡ φ′H1/(2n−1)

aH
2n/(2n−1)
0 MPl

, (3.20)

with ξ → const as the vacuum J = 0 is approached. In this vacuum state equation of state for DE is
tracking the external matter, w,

1 + w = − 1
2n− 1(1 + wm) , n 6= 1

2 , (vacuum,J = 0) (3.21)

where wm is the total equation of state for the standard relativistic and non-relativistic matter content,
weighted by density fractions. The density fraction in dark energy today is

Ω−1
DE,0 = g(2 · 32n)1/(2n−1) = 2

2n+1
2n−1 3

2n+2
2n−1 ξ−2 . (3.22)

Larger values of n lead to an equation of state closer to the consmological constant, and w = −1 is the final
state reached in any case in the asymptotic future for all parameter values. The choice of n and ΩDE,0 fixes
the parameter ξ (or g) and through the tracker equation (3.20), sets the initial condition for φ̇. The limit
n → 1

2 is singular: w → −∞ and the value of φ′ at initialisation rapidly decreases; for sufficiently small n,
G3X and G3XX exceed machine precision and the evolution cannot be followed properly.
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Away from the vacuum, when the energy density is dominated by the shift-current J , the scalar field
also tracks the matter. The shift charge dilutes as J ∝ a−3, while the energy density evolves with the
effective equation of state

w = 1
4n (1− wm) , (J � a−1φ′) (3.23)

i.e. for n > 1
2 redshifts more slowly that the radiation. If the initial shift-charge density is too large, a period

of shift-charge domination would occur prior to matter-radiation equality modifying the cosmic microwave
background significantly.

3.3.2 Broken Shift Symmetry: Quintessence & Brans-Dicke
General DE and modified gravity models break shift symmetry. This leads to richer dynamics and makes
it necessary to adjust the model parameters numerically to obtain the desired ΩDE. Even in that case,
understanding the dynamics as a sourced shift current can simplify the problem of the initial and final
conditions by providing a good guess of reasonable model parameters. Below we will describe the dynamics
of quintessence and Brans Dicke gravity, focusing on the initial and final conditions for the field.

Quintessence Quintessence is a class of models defined by

G2 = X − V (φ) , G4 = MPl

2 , G3 = G5 = 0 , (3.24)

i.e. a canonical kinetic term for the scalar field and a potential V (φ) that depends only on the scalar field
value. Quintessence only modifies the expansion of the universe and the growth of perturbations on horizon
scales due to the clustering of the scalar field (since c2s = 1, αB = αM = αT = 0), and is therefore not
considered as a modified gravity model. See Refs [125, 126] for comprehensive reviews of quintessence
models and their dynamics.

Quintessence can exhibit very rich dynamical behavior, despite the model’s apparent simplicity. Non-
etheless, some straightforward limits may be readily understood from the expression for the equation of
state

wDE ≡
P
E

= X − V (φ)
X + V (φ) −→

{
−1 (V � X)
1 (X � V )

. (3.25)

It is clear from this expression that −1 ≤ w ≤ 1, and the limiting cases appear when either the kinetic (X)
or potential (V ) energy dominate. The limit in which the potenial dominates corresponds to a cosmological
constant (i.e. V (φ) becomes a cosmological constant if φ is constant). The limit of negligible potential
corresponds to a very rapidly decaying energy density

E ∝ a−3(1+w) ∼ a−6 (if V � X) . (3.26)

This regime is usually known as kination.14 Another important limit is when the scalar field oscillates around
a minimum of the quintessence potential. If V (φ) = m2

φφ
2, then wDE oscillates between −1 and 1, with

average 〈wDE〉 = 0. The scalar field can act as dark matter if mφ is sufficiently large (see Ref. [127] for a
review).

Quintessence models can be divided into two main categories [128], depending on whether they evolve
from/into an effective cosmological constant

14This limit can be understood in terms of shift-symmetry alone. If Vφ → 0, shift symmetry is restoredand the tracker
condition (A.20), n ∝ φ′/a = 0, implies that the only vacuum is the trivial solution. This solution is approached as φ′/a ∝ a−3,
leading to a very rapidly vanishing kinetic energy X ≡ (φ′)2

2a2 ∝ a−6.
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Figure 5: Example quintessence models, showing the energy density (top) and equation of state (bottom) for
thawing and freezing dynamics (left/right panel respectively). Left panel: Monomial quintessence behaves
like a cosmological constant initially (X � V ⇔ wDE ≈ −1), but becomes dynamical when DE becomes
non-negligible. Right panel: Tracker quintessence follows the dominant matter component initially until
the field reaches a minimum of the potential. The larger the exponent coefficient Λ, the lower the amount of
early DE and the earlier the minimum of the potential is reached. Note that the tracker behaviour requires
an initially sizeable Eini: a very small value (e.g. ∼ H2

0 ) would lead to a thawing model.

• Thawing models start with X � V , then the scalar starts evolving when DE becomes non negligible.
An example of this is given by monomial quintessence, with

V (φ) = V0 · φN . (3.27)

The models behaves very close to a cosmological constant initially, deviating at late times (left panel
of Fig. 5).

• Freezing models are intially dynamical (e.g. X ∼ V ), until the field slows down, dominates and accel-
erates the expansion. An example is given by tracker quintessence, with

V (φ) = V0 ·
eλφ

φN
. (3.28)

Initially, the field’s energy density tracks the dominant matter component (hence the name, see Fig.
5, right panel), producing non-zero early dark energy. This solution is described in [125, Sec V]. Once
the field reaches the minimum of the potential φmin = N/λ, it starts oscillating around φmin until the
Hubble friction damps the oscillations into an effective cosmological constant with E ≈ V (φmin)� X.

While the classification between thawing and freezing is rather general, the details are tied to the specific
model (for other examples see [129]). These details are often critical to understand the initial and final
conditions of the model.

Two parameters play a very important role: the initial value of the field, φ(τini), and the energy scale of
the potential V0 (in Eqs. (3.27, 3.28). In most cases, the final condition for Ω(0)

DE can be obtained by varying
V0, starting with a guess value V0 ∼ Ω(0)

DEH
2
0 (monomial) or V0 ∼ Ω(0)

DEV (φmin) (tracker). However, whether
this is possible depends in general on the rest of the parameters: for instance, if φ(τini) is sufficiently close to
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a minimum and V (φmin) = 0 the only way to obtain a sizeable amount of DE is to choose a different initial
field value (this is the case in monomial quintessence 3.27).15

The initial field velocity, φ′(τini), is typically irrelevant for quintessence. In freezing models like tracker
quintessence (3.28), φ′(τini) is set by early time fixed-point solution in which the scalar mimics the dominant
matter component. Larger values lead to rapid kination until the tracker solution is reached, while smaller
values lead to dynamics that remain frozen until V ∼ ρm, after which the scalar starts behaving like a tracker.
If the field’s potential energy is frozen to a value V ∼ Ω(0)

DEH
2
0 , then the thawing behaviour is recovered.

In thawing models a large initial kinetic energy will be loss very rapidly, until dynamics are restored when
V ∼ ρm. Any sizeable residual kinetic energy requires that quintessence dominates in the early universe, cf.
Eq. (3.26), dramatically impacting recombination and big-bang nucleosynthesis, and violating bounds on
the abundance of additional species in those epochs.

Brans-Dicke Brans-Dicke theory [130] is characterized by the following action

G2 = ωBD

φ
X − Λ , G4 = φ

MPl

2 , G3 = G5 = 0 . (3.29)

The modifications of gravity stem from the coupling between the scalar field and the Ricci scalar, which is
characteristic of a broad range of gravitational theories, including chameleon, symmetron and f(R) models
[131].16 This coupling is modulated by the Brans-Dicke parameter ωBD. The GR limit is recovered for
ωBD → ∞: in that case the kinetic term is large and the scalar field becomes effectively “frozen” (i.e. it
becomes increasingly difficult ot excite the scalar field). The canonical Brans-Dicke theory has no potential
term. A cosmological constant Λ has been added to act as dark energy. The final condition is set by varying
Λ to obtain the desired Ω(0)

DE.
The initial field velocity can be set to φ′(τini) ≈ 0 via an approximate recovery of shift-symmetry in

the radiation era. Brans-Dicke violates shift-current via two terms. The first term is the coupling between
φ and the Ricci scalar R̄ = 6

(
2H2 +H ′/a

)
∝ ρm − 3pm + E − 3P, which vanishes for ultra-relativistic

matter (i.e. if p = ρ/3). The second term involves G2,φ ∝ X/φ2 and is proportional to the kinetic energy,
hence subdominant unless X is very large initially. This implies that in the radiation era the scalar field
approximately recovers shift symmetry, up to the sub-dominant contributions from non-relativistic matter
(ρm � ρr) and the field’s kinetic energy. Thus, φ′(τini) ≈ 0 is a good approximation for non fine-tuned
initial conditions, similarly to many quintessence models, c.f. Eq. (3.26).

Brans-Dicke theories have been used as a benchmark model to test gravity in different systems. The
coupling to gravity G4 ∝ φ produces two effects. First, the background value of φmodulates the gravitational
force, i.e. how much curvature is produced by unit mass. This can be seen via the expression for cosmological
strength of gravity

GFRW

G
= 1
M2
∗ (φ) = 1

2G4(φ) = 1
φ
, (3.30)

as it can be read off the modified Friedmann equation. Second, scalar-field excitations mediate an additional,
attractive interaction. The small-scale gravitational force experienced by non-relativistic test particles is
given by [47, 130]

GNR

G
= 1
M2
∗ (φ)

4 + 2ωBD

3 + 2ωBD
, (3.31)

were the first factor accounts for the strength of gravity and the second factor accounts for the scalar
force. On the other hand, ultra-relativistic species (e.g. light) do not experience the scalar force, with

15More generally, a model for which the abundance crosses Ω(0)
DE at any z > 0 will not be able to satisfy the final conditions.

This is because w > −1, and hence the energy density of quintessence never grows E ′ ≤ 0. Note that a change of φ(τini) can
often be absorbed by redefining other model parameters, such as V0 in the above examples.

16f(R) gravity is Brans-Dicke with ω = 0, but with a potential function Λ → V (φ) related to f [132]. Brans-Dicke theories
and some generalizations can be recast as GR plus an explicit conformal coupling between matter and the scalar field [107],
while such a relation is not possible in more general Horndeski theories ([108, 109]).
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GUR/G = M−2
∗ = GFRW/G. This difference implies that Brans-Dicke gravity violates the weak equivalence

principle and is therefore constrained by tests of gravity. In fact, since the canonical Brans-Dicke theory lacks
any screening mechanism, the strongest tests come from astrophysical systems [133]. Current cosmological
bounds set ωBD & 700 [134] (or & 300, depending on dataset and priors [135]), but future surveys will reach
a level comparable to astrophysical tests ωBD & 1.7 · 104 [39].

The above expression motivates several possible choices of initial or final conditions for the scalar field:

1. φ(τini) = 1 fixes the cosmological strength of gravity at early times, leading to a standard recombination
history and CMB predictions.

2. φ(τ0) = 1 fixes the cosmological strength of gravity today, leading to a standard ΛCDM behaviour at
late times.

3. φ(τ0) = 4+2ωBD
3+2ωBD

ensures the correct value of Newton’s constant, as measured by laboratory experiments.

Choice (1) sets the initial condition for the field φ(τini) directly. Choices (2,3) require adjusting the initial
field value φ(τini). All choices are in addition to fixing Ω(0)

DE by varying Λ.

4 Initial Conditions for Cosmological Perturbations

The new feature of hi_class compared to CLASS is the presence of an extra degree of freedom in the
perturbation equations. The initial conditions for this field’s perturbations must thus be appropriately set.
Depending on the values of the α-functions and the energy density in dark energy in the early universe (i.e.
early dark energy, e.g. [136]), these initial conditions may also affect the configuration of the standard species
at early times. In this release of hi_class, we introduce the proper initial conditions, allowing for a study
of consistent early modified gravity models, as well as a dynamical elimination of models of modified gravity
which exhibit instabilities in the early universe.

Einstein-Boltzmann codes such as hi_class begin solving the linear perturbation equations mode
by mode at a large redshift, some initial conformal time τ∗, significantly before recombination, but also
significantly after reheating, with some appropriate initial conditions for all the species. Observations of the
CMB require that the dominant mode is the adiabatic one (< 2% contribution from isocurvature modes to
the CMB power spectrum [137]). For this mode, the curvature perturbation ζ is conserved on superhorizon
scales. Thus the value of ζ at τ∗ — for the modes which are still superhorizon at that time — is the same
as when it was imprinted upon horizon exit during the initial phase of the evolution of the Universe, e.g.
inflation. It is only this fundamental assumption that allows us to relate the observations of the CMB to the
properties of this primordial power spectrum. As we modify the theory of gravity, we must bear in mind that
this connection must be maintained in order to interpret the output of the code in the standard manner.

In this section, we show that standard ΛCDM physics in the radiation era remains approximately
unchanged if two conditions are satisfied:

(i) the evolution of the scalar field fluctuations and the gravitational field is driven by the standard matter
species collapsing on superhorizon scales

(ii) the modification of gravity is such that no relevant new timescales are introduced through the dynamics
of the scalar and thus scaling attractor solutions can actually be found.

The first condition is violated whenever the dark-energy isocurvature modes grow faster than the adia-
batic mode: in such a case the configuration is dominated by the initial conditions for the scalar field set
at some primordial juncture. This is a typical outcome when the scalar is tachyonic in the radiation era
(cf. Ref. [58, section 2.3]). The most important result of this section is to find conditions under which this
happens so that such models can be discarded. It turns out that models with such pathological features
can easily be constructed, even starting from a covariant action (e.g. even a covariant galileon with some
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particular choices of parameters ci, see section 3.3.1). We discard such models since not only do they need
to be augmented with some sort of physics which would set the appropriate primordial initial conditions,
but also because these isocurvature modes can get sourced from numerical noise and in any case end up
dominating the solutions at late times, leading to a loss of predictivity.

The second is essentially the statement that (aH)−1 is the only relevant timescale in superhorizon
dynamics and therefore all the species settle to universal solutions (or alternatively, other timescales are
much longer or shorter and thus irrelevant for setting initial conditions for the mode). This requirement is
on some level already violated by the presence of the timescale of matter-radiation equality, which in the
end leads to the existence of (matter) isocurvature modes. For a simple well-behaved universal attractor,
one needs to initialise the modes deep in the radiation era.

A completely arbitrary Horndeski model will in general exhibit a variation of the α-functions with its
own time-scale even during radiation domination and therefore a universal attractor for the scalar field might
not even exist. If the field is subdominant gravitationally, then it is just a technical problem for finding the
right initial conditions for the scalar field. If it is not — this time variation will impact all the other species
and therefore it would in general be impossible to find universal initial conditions for any of them.

We thus concentrate on two quite general classes of models in which such a universal attractor exists:
the limit in which deviations from GR at early times are small and do not introduce corrections to the
dynamics of the standard species (Sec. 4.2), and then when deviations from GR are significant but time-
independent (Sec. 4.3). These conditions are specific, but should be at least approximately satisfied in any
reasonably model which is not very tuned.

For the models with a dominant adiabatic mode, we find that the correct superhorizon configurations
are in any case approached within a decade of initialisation in the scale factor. This allows us to delay the
time from which the modes are evolved without sacrificing accuracy, although this does not significantly
improve the run time. The proper identification of dark-energy isocurvature-mode dominated models is thus
the main result of this section.

4.1 Review of Perturbation Initial Conditions in General Relativity
Ma & Bertschinger [138] showed how to derive the appropriate adiabatic initial conditions deep in the
radiation-domination era: the Universe is dominated by a photon-baryon fluid and neutrinos redshifting
with a constant ratio of energy densities Rν ≡ ρν/(ργ + ρν). Pressure support for radiation disappears on
scales outside the sound horizon, k/aH � 1, and any radiation overdensities collapse under the force of
gravity.

The adiabatic mode: In synchronous gauge, the radiation-gravity system can be written down as a
fourth-order differential equation for the metric potential h (for each mode in Fourier space) with power-law
solutions,

h = A+B(kτ)−2 + C(kτ)2 +D(kτ) . (4.1)
It can be shown that the constant (A) and decaying (B) solutions are gauge modes, resulting from the fact
that the gauge is not completely fixed in synchronous gauge comoving with dark matter. The C and D
solutions are the physical solutions. The D solution actually represents a decaying mode for curvature η, so
it is neglected. The h = C(kτ)2, with C a dimensionless constant, is the one of relevance to us since it is
the dominant mode at late times, it corresponds to conserved curvature superhorizon and is the adiabatic
mode for perturbations. Its normalisation is chosen to as to give a fixed value of η = 1 to the curvature
perturbation superhorizon, i.e. C = 1/2.

Given this growing solution for the potential h, the configuration of the individual matter species can be
obtained by solving the individual Euler and continuity equations, assuming this solution for h and expanding
in kτ as an order parameter. This leads to the standard adiabatic initial conditions for the species, once the
choice is made to neglect the homogeneous part of the solutions, leaving only the particular solution:

δc,b = 3
4δγ,ν = −h2 = −1

4k
2τ2 , (4.2)
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vγ = vb = − 1
36k

2τ3 = 15 + 4Rν
23 + 4Rν

vν ,

σν = 2
3(15 + 4Rν)k

2τ2 ,

for the energy-density perturbation, δi, the velocity potential vi and the neutrino anisotropic stress σν , with
the subscript i ∈ {c,b, γ, ν} denoting the cold dark matter, baryons, radiation and neutrinos respectively.17

These are the superhorizon attractor solutions for the species during radiation domination which follow the
gravitational field created by the dominant collapsing radiation. Finally, the other scalar potential in the
synchronous gauge, η, can be shown to remain constant at leading order on superhorizon scales,

η = 1− 5 + 4Rν
12(15 + 4Rν)k

2τ2 . (4.3)

At superhorizon scales, η is equal to the curvature perturbation, the amplitude of which is the major
prediction of inflationary theory. Its normalisation is the amplitude of the primordial fluctuations, so for the
transfer functions being calculated here it is taken to be unity.

Isocurvature modes In addition to the adiabatic mode above, there are also four isocurvature modes,
which in the limit kτ → 0 have η = 0, but one of the other variables is non-zero: δc for CDI (CDM density
isocurvature), δb for BI (baryon density isocurvature), δν for NID (neutrino density isocurvature) and vν
for NIV (neutrino velocity isocurvature). These modes can be generated by new physics but there is no
evidence that any are present in the CMB anisotropies, and they are limited to approximately a maximum
2% contribution to the CMB power spectrum [137].

The method to derive their superhorizon attractor solutions is a power-law expansion in conformal time
in units of time of matter-radiation equality τ/τeq and was comprehensively derived in Ref. [139] and we
refer the reader for detail there. For our purposes, what is relevant is that all of these isocurvature modes
have the effect of producing an evolution of the metric potential h, which, to the relevant precision, can be
expanded as a sum of integer power laws in τ .

Let us now list, following Ref. [139] improved by some higher-order corrections, the evolution of h for
all the five types of modes in ΛCDM:

Adiabatic: h = (kτ)2

2 − 1
10ωk

2τ3 , (4.4)

CDI: h = Rcωτ −
8
3Rcω

2τ2 ,

BI: h = Rbωτ −
8
3Rbω

2τ2 ,

NID: h = RνRb

40Rγ
ωk2τ3 − Rνk

4τ4

36(15 + 4Rν) −
RνRb(Rν +Rb)ω2k2τ4

128R2
γ

,

NIV: h = 9RνRb

32Rγ
ωkτ2 − 3RνRb(3Rb + 5Rγ)

160R2
γ

ω2kτ3 − 4Rν
15(5 + 4Rν)k

3τ3 ,

where the Rν,γ ≡ ρν,γ/(ρν + ργ) are density fractions for radiative species, while Rc,b ≡ ρc,b/(ρb + ρc) are
the equivalent for the non-relativistic species. The time-scale ω ≡ a(ρc + ρb)/√ργ + ρν is a dimension-one
constant depending only on cosmological parameters, determining how close to matter-radiation equality τ∗
is.18

This power-series expansion is only valid provided that both kτ � 1 and ωτ � 1. For the neutrino
isocurvature modes, the hierarchy is not necessarily obvious since the relative size of k and ω depends on

17vc = 0 defines the synchronous gauge comoving with dark matter.
18Note the CLASS definition of density here, H2 = ρ.
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the mode and the time of initialisation of it by hi_class, so the higher-order terms must be included for
precision.

Introducing the Horndeski scalar field does not change these, provided that radiation remains dominant,
i.e. is approximately the only source of the gravitational field. The appropriate solution for the scalar-field
perturbation VX can be obtained by solving the equation of motion assuming the solutions (4.2) as an
external source. We will call this the external-field attractor initial conditions. On the other hand, if the
Horndeski scalar contributes significantly (i.e. it modifies gravity in the early universe), then an appropriate
self-consistent solution, involving both the radiation and the Horndeski scalar, must be developed. We will
call this setup the gravitating attractor initial conditions and show that this modifies the solutions (4.2).

4.2 External-Field Attractor Initial Conditions
The external-field attractor initial conditions are relevant when the scalar field does not source the grav-
itational potential during radiation domination, around τ∗ and the potential h is driven in the standard
manner for the mode under consideration by the matter species collapsing on superhorizon scales. This
requires that, at that time, ΩDE, αi � 1. We assume that this evolution can be described as a (sum of)
power law(s) h ∝ τnh . We obtain the solution for h = Anh

τnh (e.g. nh = 2 for the standard adiabatic mode,
giving A2 = k2/2) by assuming that there is no contribution of VX in the Einstein equations.

On the other hand, the equation of motion for VX mixes with time derivatives of h and η. We eliminate
η for h and therefore obtain an equation purely for VX and h. We use the previously obtained power-law
solutions for h to reduce the scalar equation of motion to a second-order differential equation for VX with
an explicit function of time for the source on the right-hand side:

τ2V ′′X +B1τV
′
X +B2VX = −B3Anh

τnh+1 . (4.5)

The Bi coefficients are functions of ΩDE and the αi and their derivatives, with only B3 also depending on
nh (the full expressions are very involved and can be found in the code, below we present a simple example).

If Bi are constant, then we have simple power-law in τ solutions for the VX . Time variation in the Bi
coefficients implies that there is also a time-scale other than H−1 in the problem and the attractor is at best
approximate.

On the assumption that the Bi be constant, the solution we are interested in is the particular solution

VX = Anh
τnh+1 , Anh

≡ − Anh
B3

n2
h + nh(B1 + 1) +B2

. (4.6)

with nh = 2,A2 = k2/2 for the dominant adiabatic mode. If there are multiple power laws in the source
coming from the expansion, then the total solution is just a sum of individual ones, since the equation is
linear.

Additional solutions exists, satisfying the homogeneous equation, left hand side of Eq. (4.6)

VX ∝ τn±+1 , n± = −1 +B1

2 ±
√

(1−B1)2

4 −B2 . (4.7)

These are the dark-energy isocurvature modes which have their initial condition set independently of the
standard modes of interest. If Re(n+) > 2, then they grow more quickly than the adiabatic solution and
eventually dominate. Quite generically such situations occur when B2 < 0 which implies that the scalar VX
is tachyonic and therefore are really a sign that there is an instability at large scales: the background of the
scalar implied by the choice of H,ΩDE and the α’s is not a good one over the timescales of the evolution
of the universe. On the other hand, this is just a Jeans instability, arrested at small scales by our stability
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requirement that the sound speed be positive, so one may argue that it is not a fundamental problem and
let observations decide.

Nonetheless, for reasons of predictivity, the default choice is to exclude models with dark-energy iso-
curvature modes growing relatively to the adiabatic solution during the radiation era, i.e. such models where
Re(n+) > 2 + ε, with some user-specified small parameter ε. Otherwise, if even a small admixture of the
DE isocurvature mode is present initially, it will completely dominate the evolution of the universe when
the scalar field begins to gravitate, unless another mechanism is introduced to erase it at small scales. The
prediction of the magnitude of this effect would not be universal but rather would depend on τ∗, the initial
time at which hi_class begins to evolve the mode. The appropriate solution for VX is given by a sum over
with each term in (4.4) giving a source for (4.6).

Since, by assumption, the scalar field does not gravitate, none of the coefficients in Eqs (4.4) contain
any corrections from ΩDE or αi. On the other hand, the Bi coefficients only depend on the model of gravity
and nh. The full expressions for a general Horndeski model are very lengthy and can be found in the code.
But here we show an explicit example in the simplified case αT = αM = 0 and M∗ = 1:

B1 = τα′K
αK

+ ΩDE(1− 3w) , (4.8)

B2 ≈ −2 + 18(1 + w)ΩDE − αB

αK
+ τ(α′K + 6α′B)

αK
,

B3 ≈ −nh
((3(1 + w)ΩDE + (nh − 1)αB) + τα′B)

2αK
.

where we present only the leading order terms. We can see from this that the conditions for the approximate
constancy of the Bi and therefore for the existence of the attractor are that ratios of those α’s and ΩDE
that are dominant are approximately constant and that the α’s evolve as power laws of conformal time τ .
This is the case when parameterisations such as αi ∝ ΩDE or αi ∝ ap, with p some constant power are used.
This is also the limit in full models derived from an action such as the covariant galileon. In principle, only
the slowest-varying parameters need to have a common time-dependence since the others will be negligible
sufficiently early, at least if they evolve monotonically. In figure 6, we present a comparison of the evolution
of VX for the external-field attractor initial conditions for the adiabatic mode comparing it with initialising
with VX = 0, showing that we place the field on its attractor correctly, avoiding a relatively slow approach
of the incorrect solution.

We note here that one can recover the results obtained in Ref. [140] for the case of a perfect-fluid dark
energy with constant parameters w and c2s by setting αK = 3ΩDE(1 + w)/c2s , αB = αT = αM = 0 and
M2
∗ = 1.

The implementation in hi_class of these external-field attractor ICs is quite generic: it assumes the Bi
are constant but uses the full expressions, evaluating the derivatives of the α’s numerically. Thus if the model
being considered happens to achieve the approximate constancy of the Bi in some non-trivial fashion (e.g. a
special cancellation), the implemented code should still give the approximately correct initial conditions.

Using these initial conditions when the variation of the Bi is fast, or some of the α’s or ΩDE are of
order 1 will not give the correct result. For example, initialising the evolution during a transient feature in
the behaviour of the α-functions can lead to an order-one misprediction of the initial value of VX . Forcing
the mode initialisation to occur at an earlier time is simplest way to properly evolve through such a feature.
Moreover, such features can source dark-energy isocurvature modes, but these decay back to the universal
external-field-attractor initial conditions in models where the isocurvatue modes grow less quickly than the
adiabatic, which is the default requirement we impose on the models.

We also stress that it is key that for isocurvature modes, all the modes are initialised sufficiently before
matter-radiation equality. The series expansion fails there and if initialised too close the final observables
can vary significantly from the correct solution.
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Figure 6: Comparison of evolution of VX with two choices of initial conditions for the scalar field for three
k-modes (k = 0.1, 0.03, 0.0001h Mpc−1) for the adiabatic mode in a model with w = −1 and αi = cia with
non-zero cK = 1.0, cB = 0.5, cM = 0.1 proportional to the scale-factor. The newly implemented external-
field attractor ICs put the field VX directly on the attractor solution, while allowing the mode to start with
VX = 0 leads to a convergence toward the attractor lasting around one decade in a. In the bottom panel we
show the relative difference between VX set on the external-field-attractor solution and zero ICs for different
k-modes.

We also note here that B2 is the effective mass of the scalar field fluctuation, in the superhorizon limit
during radiation domination. When it is large, B2 � 1, the initial condition for VX → 0 (at least for some
appropriate B3) and therefore any modification of gravity is switched off at early times. This is the case, for
example, in models such as f(R) gravity [141]. Despite this simple initial condition, the scalar perturbation
evolves by oscillating rapidly during radiation domination as a result of the large mass, resulting in a very
slow integration by hi_class. For such cases, we have implemented the quasi-static approximation which
removes the dynamics from the evolution of the scalar field at judiciously chosen time intervals to accelerate
the computation without affecting the final results, see section 5. For the purposes of this section, this
quasi-static approximation can be thought of as an alternative IC scheme for such models.

4.3 Gravitating Attractor Initial Conditions: Adiabatic Mode
The initial conditions derived in section 4.2 apply when gravity is not modified: i.e. they describe the
behaviour of the scalar field fluctuation VX during radiation domination when the gravitational potential is
being driven by relativistic matter collapsing superhorizon in the standard manner. The scalar is assumed
not to backreact onto the rest of the matter content and therefore all the other initial conditions are standard.
It is essentially the test-field approximation.

In this section, we describe the contrary situation, when the gravitational backreaction of the scalar field
is significant, i.e. gravity is modified by the scalar field already during radiation domination. We compute
the self-consistent initial conditions for all the matter species, including the scalar field VX . This is not
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the usual situation, but it applies in the case of early modified gravity, i.e. it allows one to test the extent
to which gravity is allowed to be modified e.g. during recombination (see Refs. [136, 142, 143] for some
examples). We call this the gravitating attractor initial conditions. At this time, we have only implemented
the gravitating-attractor initial conditions for the adiabatic mode. Isocurvature gravitating-attractor ICs
are not yet available, the code will return an error if this combination is requested. The rest of the discussion
in this section will assume that the mode is adiabatic.

The technical difference with respect to the external-field attractor is that, in this case, at least some of
the {ΩDE, αi} are not negligible during radiation domination. Since in the equations of motion the kinetic
terms for the gravitational potential h and the scalar field fluctuation VX mix with coefficients involving
αi, it is now inappropriate to solve the system in the standard manner, assuming that the solution for h
does not depend on VX . Instead, the (VX , h) system must be solved simultaneously. Since, in addition,
the coefficients of the (VX , h) system are generically not homogeneous in the {ΩDE, αi}, the only generic
possibility of obtaining an attractor similar to the standard case (i.e. one with a single timescale (aH)−1) is
when those α’s which are non-negligible are constant. In our solution, we thus assume that all of {ΩDE, αi}
are constant, which, for example, implies that the scalar during radiation domination tracks the radiation
energy density, w = 1/3.

We again present only the simple subcase of kinetic gravity braiding with constant α parameters,

ΩDE, αK, αB = const , (4.9)
αM = αT = 0 ,
M2
∗ = 1 ,

for readability. The hi_class code contains the full general expressions for Horndeski. We will comment
where appropriate to discuss the additional complications in this general case.

For KGB, eq. (4.9), the (VX , h) system during radiation domination becomes

2αKτ
2V ′′X − αBτ

3h′′ − 4ΩDEτ
2h′ + 4(12ΩDE − αK − 9αB)VX = 0 , (4.10)

2Dτ4h′′′ − 2αK(12ΩDE + αK − 3αB)τ2V ′′X + (6αK + αKαB + 6α2
B + 12ΩDEαB)τ3h′′+

(−6αK + αKαB + 4ΩDE(2αK + 3αB))τ2h′ − 2(αK − 6αB)(αK + 9αB − 12ΩDE)τV ′X
+ 2(αK − 6αB)(αK + 9αB − 12ΩDE)VX = 0 ,

where D ≡ αK + 3
2α

2
B > 0 is the normalisation of the kinetic term for the scalar degree of freedom. Note that

we have used a slightly different method here to arrive at the equations than the solution (4.1) in Ref. [138]:
we eliminate all η and density perturbations δ, leaving the system containing only the metric potential h and
the velocity potentials for the scalar VX and for the matter species. We then take the k → 0 limit, removing
the radiation/neutrino velocity potential terms vγ,ν . In the GR limit, this system is lower by one order than
the one considered by [138], with three of the four solutions in Eq. (4.1): the adiabatic C, and the gauge
A,B, but not the decaying D solution. This is enough for our purposes, since it recovers the adiabatic mode
and also the DE isocurvature modes.19

The two DE isocurvature solutions of eqs (4.10) are

h ∝ τn± , VX ∝ τn±+1 , (4.11)

n± = −1
2 ±

√
D − 8(1− ΩDE)(12ΩDE − αK − 9αB)

2
√
D

.

Again, models exist in which Re(n+) > 2 and the scalar field isocurvature grows faster than the adiabatic
mode, as given by the values of {ΩDE, αi} during radiation domination.

19Note that the exponents n± are in general not integers and therefore these modes do not appear in the standard approach
e.g. Ref. [139] where a power-law expansion is used. A resummation method generalising this approach, such as presented in
[144] would have to used to see these modes in such an expansion.
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Typically this is a result of some sort of tachyonic instability in the scalar field for this choice. In
inflation, if the scalar is light, it will obtain its own isocurvature initial conditions, and this mode will evolve
to eventually dominate the gravitational field over the standard adiabatic perturbations.

Thus, to retain the standard connection of cosmological observables to the properties of the primordial
power spectrum the default choice is to disallow such parameters enforcing Re(n+) < 2 to keep the DE
isocurvature modes subdominant with respect to the adiabatic mode. hi_class performs this test, in
addition to absence of ghost and gradient instabilities (D > 0 and Dc2s = 8ΩDE − αB − α2

B
2 > 0). These

constraints can be satisfied simultaneously in various disjoint ranges of parameters which can be easily
obtained from the above conditions, but are not particularly illustrative and we will not quote.20

Models with parameter choices which do pass these tests have an adiabatic solution very similar to
the standard one, but the coefficients are somewhat modified. In particular, we have, again for the KGB
sub-case,

h = C1

2C2
(kτ)2 , VX = (4ΩDE + αB)

4C2
k2τ3 , (4.12)

δc = δb = 3
4δγ = 3

4δν = −h2 ,

vγ = vb = − C1

36C2
k2τ3 ,

vν = − 1
36

(
8

15 + 4Rν(1− ΩDE) + C1

C2

)
k2τ3 ,

σν = 2
3(15 + 4Rν(1− ΩDE))k

2τ2 ,

η = 1 + 1
12

(
10

15 + 4Rν(1− ΩDE) −
C1

C2

)
k2τ2 ,

where to aid clarity we have defined two combinations of the α-functions:

C1 = 12ΩDE + 2αK − 9αB , (4.13)
C2 = 3D + (C1 − 3αK)(1− ΩDE) .

It can be seen that the amplitudes for the matter species are all reduced in order to keep the curvature
perturbation η at a fixed value superhorizon. This is a result of the fact that the scalar field VX now
gravitates and modifies the curvature perturbation produced by the other species. The velocity potential for
the species which have anisotropic stress (e.g. neutrinos) is further modified compared to the standard GR
case. However, whenever terms quadratic in {α,ΩDE} are negligible, C1/C2 → 1 and the solutions for the
matter species and metric potentials return to the standard GR results (4.2).

Note that the results above naively imply that when C1 = 0, there is some sort of cancellation. In this
limit, the standard power-law solution is corrected by a logarithm term, h ∼ τ2 log τ . This is a slowly evolving
correction, resulting from an accidental cancellation, and not important for the appropriate initialisation of
the system.

Provided that the cosmological strength of gravityM2
∗ does not run, αM = 0, the adiabatic mode always

has the metric potential evolving in the standard manner, h ∝ τ2. However, the moment that M2
∗ evolves,

it is no longer true that the solutions to Eqs (4.10) are power laws, since the coefficients now contain both
M∗ and αM. Nonetheless, provided that αM is sufficiently small, the solution is close to a power law and the
exponent slowly evolves with a correction linear in αM.

20Note that positive energy density, ΩDE > 0, is not a requirement: stable configurations with ΩDE < 0 are possible when
the DE energy-momentum tensor is not of perfect-fluid form, as happens whenever any of αB, αT, αM 6= 0. One should bear
this in mind when setting priors for the early Universe [114].
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Figure 7: Comparison of evolution of VX for three choices of initial conditions for three modes (k =
(0.1, 0.03, 0.0001)h Mpc−1) in a model with an early dark energy ΩDE = 0.3 and non-zero αK = 0.3, αB =
−1.5, αM = 0.03, proportional to the dark-energy density fraction. The newly implemented gravitating at-
tractor ICs put the field VX directly on the attractor solution. Both the external-field attractor and the
naive zero ICs oscillate around the real solution for approximately a decade in the scale factor a.
Bottom Panel: Relative difference between the evolution of VX on the gravitating attractor initial condi-
tions and starting at zero.

Technically, we obtain an approximate solution with αM 6= 0, by combining the two equations (4.10)
into a single higher-order ODE, producing two versions: one for h and one for VX . If the solution were exact
power laws, they would be the same for both. Since they are not, the approximate exponents differ slightly
and we use the average of these differences to set the initial conditions in the code. We find that for small
αM � 1 the system rapidly relaxes to the correct solution. We note here that despite the deviation of h
from the standard evolution when M2

∗ evolves, η is still conserved superhorizon in the standard manner. We
present the difference between the initial conditions in a case with early dark energy in figure 7.

We have thus presented two classes of approximate initial conditions: (i) the external-field attractor, in
which the modified gravity parameters are small but can be evolving in time in the early universe and (ii)
where the modified gravity parameters are constant in the early universe, but can be large. These initial
conditions can be used in many other scenarios, since in a situation with non-homogeneous evolution of
the parameters, only those which evolve most slowly will be relevant in the early universe and one of our
two scenarios might still be applicable. hi_class cannot automatically set correct initial conditions if the
modified gravity parameters were large and rapidly varying deep in the past, but such a specialised model is
likely to require a severe rethinking of the connection between the primordial initial conditions and the late
universe and an implementation on a case-by-case basis. We have also implemented isocurvature modes for
the case of the external-field attractor only.

Note that, in principle, it is possible that the choice of the modified-gravity model parameters is such
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that in the limit kτ → 0, terms higher-order in kτ do not become subdominant compared to lower-order
ones (most obviously, this happens in the case when the sound speed grows very rapidly to the past during
radiation domination, but a large mass for the scalar in the past is technically similar). In such a case, a
different method must be used to search for initial conditions: the mode cannot be initialised outside the
scalar’s mass horizon. Instead, we can use a quasi-static approximation scheme as a suitable initial condition.
This has been implemented and is discussed in Section 5.

5 Quasi-Static Approximation Scheme

The key difference between the original CLASS code and hi_class is the introduction of a new scalar degree
of freedom (d.o.f.) that acts as a source for DE and/or modifies the laws of gravity at cosmological scales.
In general, its full linear dynamics has to be taken into account at all times and scales of interest in order to
provide accurate results. Then, it seems a bit contradictory implement a Quasi-Static (QS) approximation
in the code. However, QS sometimes is the only method to properly evolve such a system, either because
hi_class would be too slow as a result of a highly oscillatory nature of the solution for the scalar field, or
it may not be able to carry out the computation at all.

To appreciate the usefulness of the QS approximation, it is instructive to look at the equation governing
the dynamics of the new d.o.f., which in synchronous gauge schematically reads

V ′′X + aHf (τ)V ′X + a2H2µ (τ, k)2
VX = S (τ, k, η, δρ, δp) . (5.1)

This equation has been obtained using the Einstein equations to diagonalize the scalar field equation. VX ≡
aδφ/φ′ is the extra d.o.f., f (τ) a dimensionless friction term, µ (τ, k) a scale-dependent mass term and S is a
source containing matter perturbations and the residual metric perturbation η. The full system of equations
that hi_class solves is given by the matter equations, Eq. (5.1) and the Einstein equations (which depend
only on VX and V ′X and not on V ′′X). The homogeneous part of Eq. (5.1) has oscillatory solutions with
decaying amplitude due to the friction term and frequency determined by the mass term µ. Models with
large mass have very high oscillation frequencies, and consequently Eq. (5.1) has to be integrated with very
small step sizes. This can cause the code to slow down and potentially to crash when the integration step
size becomes smaller than machine precision. On the other hand, as we shall see in the next section, these
models have a natural and safe QS limit which allows us to simplify Eq. (5.1) and obtain accurate results.

Before moving forward to discuss the regime of validity of the QS approximation and our implementation
in the code, it is important to stress here that the QS approximation in hi_class is considered model-by-
model, at specific scales and only during the necessary range of time. This is to say that, when running a
particular model, QS can be switched on/off as many times as needed in order to be conservative and use
it only when strictly necessary.21 This is in contrast with the other approximations used in CLASS, which
only need to be switched on/off once per scale, see Ref. [59] for details.

5.1 Validity of the Quasi-Static approximation
A simplistic, but effective, definition of the QS approximation could be: space derivatives are dominant w.r.t.
time derivatives on sub-horizon scales. This allows one to neglect time derivatives of the perturbations and
convert a system of differential equations into a system of algebraic equations.22 Usually, QS is considered
on sub-horizon scales (i.e. when k2 � a2H2) and assuming that the only time scale of the universe is the
Hubble rate (i.e. Φ′′ ∼ a2H2Φ, for any perturbation Φ). We showed previously that in the idealised case

21Strictly speaking, hi_class can switch the QS approximation 6 times for each scale. This is enough for most realistic
models, but it can be easily generalized if necessary. In the default implementation, if a model switches more than 6 times, the
fully dynamical evolution is considered after the 6th time.

22Clearly here we are talking about time derivatives of the additional scalar field and of constraints, such as the metric
perturbations. Neglecting time derivatives of other d.o.f., such as matter perturbation, would kill completely the dynamics of
our universe.
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of dust plus scalar field, the QS approximation is actually valid only inside the sound horizon of the scalar
d.o.f. (c2sk2 � a2H2) [145]. In order to take a step further and achieve a more rigorous definition of QS
useful for the algorithm in hi_class, it is useful to generalise this discussion.

The idea of the QS approximation is that there is a degree of freedom which can react on a timescale
much faster than any other in the system. Thus its dynamics can be neglected and its equation of motion
can be approximated as a constraint (effective infinite speed of propagation). Determining which degree
of freedom this is would require that one solves all the constraints, diagonalises the system of perturbation
equations into normal modes and then determining the relative natural timescales. Such a statement would be
gauge invariant. However, this is impossible not least since the universe is evolving the system of perturbation
equations is changing as a function of time: the normal modes at one time are not the same as they are
later.

Thus to remain practical, we make a particular choice of what we define as the QS approximation,
making it in the synchronous gauge in which hi_class is formulated. As we will show, in the range of scales
where the QS limit is valid, we recover the true dynamics of the full system, and therefore also the usual
Newtonian gauge QS approximation whenever it is valid:

• We define QS as neglecting the terms V ′′X and V ′X in Eq. (5.1), when they can be considered much
smaller than the term proportional to VX , because of the magnitude of µ2. On the other hand, there
is no need (and it would be incorrect) to neglect terms proportional to V ′X (or time derivatives of
other metric perturbations) in the Einstein equations, since such terms are typically not suppressed
by a small coefficient. Even in the QS regime, VX is time dependent, and clearly its time derivative is
non-zero;

• QS has to do with the dynamics of a d.o.f. being approximated, not generically with time derivatives.
The QS limit is reached when the amplitude of the homogeneous solutions of Eq. (5.1) is much smaller
than the amplitude of the particular solution driven by the source term;

• QS is a mathematical statement about the solutions of a differential equation. This is to say that QS
has to be discussed in the particular gauge used. Eq. (5.1) would be different in a different gauge, and
so the physical meaning of the perturbations changes. hi_class uses the synchronous gauge and here
we discuss the synchronous gauge QS;

• If S, µ and f are evolving smoothly, there is not a large hierarchy (i.e. there are not rapid oscillations
in the background and in the perturbations due to radiation pressure) then the only time-scale of the
universe is the Hubble rate, which means that d/dτ ∼ O(aH), e.g. V ′′X ∼ O(a2H2VX). Thus, for
k2 � a2H2 the QS approximation reduces to a sub-horizon approximation.

Given these considerations, we are now able to show the system of equations that hi_class is going to solve in
the QS regime. On top of the usual matter and Einstein equations (considered without any approximation),
we replace Eq. (5.1) with

VX = S (τ, k, η, δρ, δp)
a2H2µ (τ, k)2 , (5.2)

V ′X = d

dτ

[
S (τ, k, η, δρ, δp)
a2H2µ (τ, k)2

]
. (5.3)

As already discussed, Eq. (5.3) is necessary to feed the V ′X terms into the Einstein equations, and it is
obtained by taking the analytic time derivative of Eq. (5.2).

Now that we have the system of equations required to be solved in the QS regime, we are ready to
discuss four situations where the QS approximation potentially fails:
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(i) when the coefficients of the perturbations (ΩDE, αi) are varying rapidly. In this regime there are clearly
additional time-scales in our universe on top of H. It is then important to keep time derivatives in
order to follow the proper dynamics of the universe;

(ii) during the radiation era when radiation pressure can make the source S oscillate. As in the previous
point, when k-modes are entering the sound horizon of radiation, new time-scales are introduced, and
we have to properly follow their dynamics;

(iii) when µ(τ, k)2 < 0, the solution to the homogeneous equation is tachyonic and does not decay away.
In fact, we must ensure that the source S grows relative to the solution being neglected, which is a
slightly more complex condition [145]. As an example, it is instructive to think about standard DM
perturbations. DM has a small tachyonic mass term (caused by zero sound speed), and clearly it is not
possible to apply QS to this fluid;

(iv) when µ (τ, k)2 . 1. If the mass term is not sufficiently large, it can not be considered the leading
contribution on the left hand-side of Eq. (5.1).

Note that we have not diagonalised Eq. (5.1): the right-hand side contains η. Solving for η using Ein-
stein equations bring a dependence of h′ which cannot be eliminated without taking derivatives of Einstein
equations, which cannot be sensibly implemented within the structure of hi_class. Moreover, as discussed
earlier, VX is in any case only a part of the actual combination of variables forming the normal mode.

We thus in principle make an error in e.g. the definition of the mass, but given sufficiently conservative
criteria for the thresholds over which the QS approximation can be applied, this is not going to be a relevant
source of error.

Thus our QS approximation refers purely to the solution for the value of the scalar-field perturbation
VX . We should stress here that even if this solution were grossly incorrect, it does not necessarily mean
that observables are affected. For that to happen, the scalar field must also gravitate, so that any error is
translated to the gravitational field and therefore the matter species. The effect on the gravitational field is
mostly communicated through coefficients involving the α-functions, so only when those are non-negligible it
is necessary to worry about the correct solution. This is similar to the situation for setting the correct initial
conditions, described in Section 4, where, provided that a model is well-behaved, an error in the very early
Universe does not significantly change the final observables. Thus, in many cases it may not be material to
worry about the correct solution for VX at high redshifts. Nonetheless, it definitely is important to obtain
the correct approximate solution in the late universe, and it may be important to obtain at early times in
the case of early modified gravity.

5.2 Conditions for Quasi-Staticity
In CLASS, and consequently in hi_class, the approximation schemes are evaluated for each mode inde-
pendently prior to evolving the perturbations. The strategy then is to formulate and implement conditions
to use an approximation based only on the particular k-mode, combinations of background functions and on
triggers that are user defined, but not on perturbation variables or actual solutions for them. The goal of
this Section is to illustrate how we implemented the conditions discussed in Section 5.1 (for a step-by-step
description of the alghorithm used see Section 5.3). We define the following precision parameters:

• Onset of forced dynamics (zFD): Observables are most sensitive to deviations from GR at late times, at
least for typical Dark Energy models. zFD allows the user to prevent the use of the QS approximation
at late times z < zFD, in order not to miss any interesting dynamics associated to DE.

• Mass trigger (Tµ): In order to ensure that the effective mass µ of the scalar field is sufficiently large
we impose that

µ2 > T 2
µ � 1 , (5.4)
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where Tµ is a user defined trigger (we will discuss typical values for all the triggers in the next section).
This allows for a hierarchy to be introduced in the equation of motion (5.1).

• Radiation trigger (Tr): Inside the radiation sound horizon, radiation pressure supports the relativistic
species against collapse, leading to oscillations and damping of the gravitational potential. These sound
waves gravitate and interact with the Horndeski scalar field through the source term S in Eq. (5.1).
We thus require that

µ2
r ≡

µ2

Ω2
r

×
(
aH

crk

)2
> T 2

r , (5.5)

where Tr is the radiation trigger and cr = 1/
√

3 is the radiation sound speed. This condition ensures
that radiation is either gravitationally subdominant (Ωr � 1), or, that the mass µ is large enough to
compensate for the oscillations inside the radiation sound horizon. Note that µ2 ∝ k2 at small scales,
so the left hand side approaches scale independence for large enough k.

• Decay factor (εdecay): After the matter and radiation triggers are satisfied, we wait long enough for
the full solution to approach the QS one, so their relative difference is at most a small factor εdecay.23

The decay rate of the full, oscillating solution will depend on the friction term f and the time variation
of the effective mass µ′. On the assumption that f be constant and µ be described by a power law,
Eq. (5.1) is a Bessel equation, with the amplitude of the deviation from the QS solution described by

VX − V QSX

V QSX

∝ a−s , (5.6)

where s is the slope of the oscillations given by

s = −1
4

[
1− 2f −

(
µ2)′
Hµ2 + 3p+ P

ρ+ E

]
. (5.7)

Note that oscillations decay toward the QS solution if s > 0. Then, if Eqs. (5.4) and (5.5) are first
satisfied at time τini, we check for an additional condition before switching on QS, namely

VX − V QSX

V QSX

∣∣∣∣∣
τfin

<
VX − V QSX

V QSX

∣∣∣∣∣
τini

εdecay , (5.8)

where τfin is the time at which the amplitude of the oscillations has decayed by a factor εdecay (specified
by the user). Eq. (5.8) can be rewritten as

afin > ε
−1/s
decayaini . (5.9)

This is not an exact solution in general, but for sufficiently slowly varying f and µ′/Hµ, it is usually
good enough. The most tricky point of this approach is that we can estimate how much the oscillations
decayed after a certain amount of time, but we cannot a piori know what the amplitude of the
oscillations was when the mode ke entered the mass horizon. In our investigations, we found that(
VX − V QSX

)
/V QSX ' O(1) at the time of mass-horizon crossing.

23Eqs. (5.4) and (5.5) form a set of necessary but not sufficient conditions for the validity of QS. To understand why, suppose
that in our system a mode ke enters the mass horizon at some time τe, i.e. µ (τ > τe, ke)2 > 1. This mode at τ > τe oscillates
with a – at least in principle – decreasing amplitude, towards the QS solution (V QSX ). Ideally the code should switch to the QS
approximation only once the amplitude of the oscillations is much smaller than the amplitude of the QS solution. Unfortunately,
this moment can not be predicted in full generality without solving for the perturbations. We can nonetheless estimate when
this happens with a few assumptions.
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Figure 8: Conditions for the QS approximation (top panel), as a function of the physical mode k and
redshift 1 + z for an example Galileon model (cf. Sec. 3.3.1). The regions are defined by comparing the
triggering functions for mass (bottom left panel) and radiation (bottom right panel) to the choice of precision
parameters, in this case Tµ = 100, Tr = 10. Black line represents the cosmological horizon. Note that we are
not considering the decay factor εdecay or onset of forced dynamics zFD, which would further reduce the region
in which the quasi-static evolution is considered valid. The performance of the quasi-static approximation
for this model is shown in Fig. 9.

In Figure 8 we show epochs and scales on which the different conditions apply. These regions follow
from the time and scale dependence of the mass, Eq. (5.4), and radiation, Eq. (5.5), triggering functions for
a particular model. As naively assumed, the effective mass µ is large at small scales, in principle admitting
a QS approximation. One should note that all modes at early times are deeply superhorizon and therefore
the QS approximation at early times typically is poor. This nonetheless may not translate to a meaningful
error, since DE is subdominant and does not significantly affect the gravitational potentials. On the other
hand, radiation oscillations have no effect on large scales, but subhorizon, especially at early times, they
drive the oscillations of the gravitational potential invalidating the QS approximation also at small scales
and high redshift. This behaviour is typical but not universal: e.g. models with low kineticity lead to large
values of the mass µ on all scales at prior to acceleration era.

5.3 Implementation and Performance of the Quasi-static Approximation
For each run of hi_class, the user can choose between three different methods to solve for the scalar field:
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• Fully Dynamic (FFD): force the fully dynamic evolution of the perturbations at all times;

• Quasi Static (FQS): force the quasi-static evolution of the perturbations at all times;

• Automatic (AUTO): use the approximation scheme implemented (see following description).

In AUTO mode, the QS approximation scheme performs the following steps for each k-mode:

1. All the relevant quantities are sampled in time: time itself τ , µ2 for Eq. (5.4), µ2
r for Eq. (5.5) and s

for Eq. (5.9). The time step is chosen as

δτ =
∣∣∣∣ 2µ2

(µ2)′
√
NminNmax

∣∣∣∣ , (5.10)

in order to be smaller when the mass is varying rapidly and larger when it is a smooth function. The
time steps are also regulated by two parameters, Nmin and Nmax. They set a minimum and maximum
number of steps that the sampler has to take to avoid extreme cases;

2. For each time step, if z < zFD we flag it as FD, otherwise the triggers Tµ and Tr are used to evaluate
Eqs. (5.4) and (5.5). If both are satisfied that time step is flagged as QS, otherwise FD;

3. The arrays are shortened in order to get just intervals where the approximation scheme is constant.
The array for τ will represent the list of times at which the code switches approximation (from FD to
QS or from QS to FD). The array for s is calculated with the weighted average of the slopes in all the
time intervals where the approximation scheme is constant.

4. At this point we use Eq. (5.9) to calculate the delay we have to apply to the switches from FD to QS
in order to have the oscillation amplitude decayed enough (note that from QS to FD there is no delay).
This is regulated by the trigger s. Suppose that at some time τi the system wants to switch from FD to
QS and at τi+1 back from QS to FD. Suppose also that according to Eq. (5.9) τf is the final time when
the oscillations have decayed enough. If τf < τi+1, τi is just replaced by τf . If τf > τi+1, the whole
interval between τi and τi+1 is flagged as FD;

5. If the approximation scheme calculated in this way predicts more switches than implemented, i.e. 6,
the first 6 switches are considered, and the rest is considered as FD. This is to be conservative, since
we prefer to have QS applied at early times when DE does not gravitate, than at late times.

There are a number of parameters that the user can modify within the QS approximation. First of
all, the method has to be explicitely set to AUTO, otherwise the FFD equations are evaluated. Then, we
chose default values of the parameters that should allow the users to run most of the safe models (with
no pathological instabilities) but without pushing them to extreme values that would optimize hi_class in
terms of speed. The reason is that those extreme values are very model dependent, and we prefer accuracy
over speed. It is the user’s responsibility to tune these parameters in order to have an optimal balance
between speed and accuracy for the particular model they are studying.

It is possible that a mode is approximated as QS at the initial time, if the effective mass µ evolved from
a very large value in the past. In theories where the actual mass of the scalar field becomes large in the
past, this is not a problem, since any fifth forces are suppressed. However, a choice of parameters leading
to a parametrically large sound speed for the scalar field in the past can allow for a modification of gravity
even at large superhorizon scales and therefore a resulting non-conservation of the curvature perturbation.
The connection to the primordial power spectrum is lost in such models. If a mode is to be initialised in a
QS regime, hi_class performs a test to ensure that the configuration implied by the QS solution does not
significantly modify the gravitational potentials and that they are still dominated by the radiation fluid. If
this test is passed, the mode is evolved, otherwise the code returns an error. Moreover, if the user chooses
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Figure 9: QS performance for the quartic galileon model used in Fig. 8 on the matter power spectrum (left
panel) and the perturbation evolution (right panel). Lines show the fully dynamic computation (black), full
quasi-static (dotted red) and automatic (dashed blue) with Tµ = 100, Tr = 10, εdecay = 0.01, zFD = 0. Gray
horizontal lines correspond to 1% accuracy.

to force FQS at all times, the standard stability tests for the isocurvature modes in the initial conditions
are still performed, unless disabled (i.e. the code uses the tests related to the gravitating attractor and
external field attractor initial conditions, see Section 4). This is to avoid the situation where forcing the QS
approximation at initial time may hide the fact that the real dynamics at early times would lead to a rapidly
growing solution of the homogeneous part of equation (5.1) and therefore that nothing like the QS solution
would ever be reached in reality.

We present the performance of the QS approximation and our implementation in Figure 9, for the
Galileon model and precision parameters shown in Figure 8. Here, we plot the matter power spectrum
(left panel) and the evolution of the perturbations (right panel) for a quartic Galileon model, which has a
scalar field sound speed of the order of the speed of light. The results are quantitatively similar across the
parameter space of viable quartic galileons. The AUTO implementation yields a factor ≈ 2.6 improvement
in execution time with respect to the FFD, with differences in results well below the sub-percent level. The
forced FQS computation improves the performance by a factor ≈ 6.5, but leads to considerable deviations
again on scales k . 10−3h/Mpc and which arises from the closeness of the cosmological horizon for these
modes. This scale can be considered as the boundary, beyond which QS approximation results cannot be
trusted, at least for DE/MG models designed to drive the late-times accelerated expansion of the universe.
This is in agreement with the results found in [146].

The results for Brans-Dicke theory under different approximation schemes are shown in Figure 10.
The model includes substantial deviations from GR, with ωBD = 50 and M2

∗,0 = 1 and scalar speed of
sound c2s = 1 at all epochs. The plot shows how the effective gravitational constant µ(k, z = 0) and
the ratio of gravitational potentials η(k, z = 0) agree with the fully-dynamic implementation on all scales
for the automatic implementation (Tµ = Tr = 100, εdecay = 0.1, zFD = 0), while the forced quasi-static
approximation is a correct description for k & 10−3Mpc−1, roughly where the scale dependence of growth
sets in. We note that this model has µ2 < 0 around horizon scales in the matter era, hence the forced
quasi-static approximation is implemented setting Tµ = 0, εdecay = 1, Tr = 100, zFD = 0. For this model the
AUTO and FQS schemes improve the computation speed by factors 2 and 1.25 relative to the FFD calculation.
On small scales all calculations agree with the k →∞ quasi-static limit derived in the conformal Newtonian
gauge [47], as expected from the gauge-independence of perturbations in this limit.
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Figure 10: QS performance for Brans-Dicke theory with ωBD = 50,M2
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Poisson equation) for different quasi-static approximation schemes. The fully dynamic (black) and automatic
(dashed blue) agree on all scales while the quasi-static calculation (red dotted) agrees only on sufficiently
small scales. All schemes reproduce the analytic quasi-static result computed in the conformal Newtonian
gauge (gray dot-dashed) on sufficiently small scales.
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The performance of the QS approximation scheme on a substantially different model is shown in Fig-
ure 11, allowing the kineticity (and hence the scalar’s sound speed) to vary by several orders of magnitude.
On one hand, models which have large sound speeds or scalar-field masses (leading to rapid oscillations)
benefit from a very significant speed up — by orders of magnitude for small kineticity — when evolved in
QS approximation. Without such an approximation these models cannot be sensibly studied. While this
approximation is excellent at small scales, modes with k < 10−3 h/Mpc are inaccurate at more than 1% level
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in the FQS runs, even in the case of very superluminal sound speeds. The size of the cosmological horizon
sets a hard limit to the potential accuracy of the QS approximation. k ∼ 10−3 h/Mpc should be thought of
as the largest scale at which QS can be used to model modified gravity in the best-case scenario.

On the other hand, as the sound speed of the scalar-field fluctuations decreases, performance benefits
of the QS approximation disappear. Simultaneously, the scale at which the error in the amplitude of the
spectra breaches 1% shrinks, to the extent that for sound speeds c2s . O(10−4) there is no scale at all where
both linear perturbation theory is valid and the prediction of the QS approximation is accurate to < 1%.

The lines of Figure 11 are obtained by varying a single parameter within one model, thus are very
likely to all be explored in single MCMC. This demonstrates that the code must make a choice dynamically
between applying the approximation during a part of the evolution and evolving the full system dynamically
at other times. Indeed, we show that our AUTO implementation still benefits from the improved performance
when it is appropriate, but predicts accurate spectra at all linear scales. The above examples demonstrate
why the AUTO algorithm must be sufficiently complex to be applicable to a variety of models.

6 Conclusions

hi_class’s new features bring the code to the level of detail usually available to standard cosmology, while
extending its functionality to a wide class of gravitational theories. The covariant theory approach allows
the user to work from a model’s Lagrangian directly, probing the cosmological expansion and the growth
of structures and their codependence simultaneously. Identification of the initial conditions of the field
perturbations sheds light on the connection between the primordial universe and the radiation era, allowing
the study of deviations from GR in the early universe. A flexible approximation scheme improves the code
performance without sacrificing accuracy, by using quasi-static evolution on scales and epochs in which it
correctly describes the scalar field dynamics.

The main advances of the code and conclusions can be summarized as follows:

1. We have developed a method to integrate the background evolution in covariant Horndeski theories,
allowing hi_class applications beyond the effective-theory approach. The equations are stable against
violations of the Hamiltonian constraint resulting from numerical errors.

2. Analysis of covariant Horndeski theories requires understanding the initial and final conditions of the
scalar field. While these choices are highly model-specific, we have presented methods to analyze the
dynamics of several well-known models, which can serve as a template for further implementations.

3. We have derived consistent intial conditions for the scalar-field perturbations in two limiting cases:
external-field attractor, in which Einstein’s GR is recovered at early times, and gravitating attractor,
when gravity is significantly modified at early times but in a time-independent manner.

4. We have identified the conditions under which Horndeski isocurvature modes can grow faster than the
(standard) adiabatic mode. Models that violate this condition require a separate analysis and new
physical principles to connect primordial power spectrum to the late-time cosmological observables.

5. The initial conditions are correctly set for adiabatic mode in all cases including early modified gravity,
and for the standard matter isocurvature modes in the case of the external-field attractor.

6. We have implemented flexible quasi-static approximation schemes that allow hi_class to speed-up
calculations by neglecting the scalar field evolution in certain epochs/scales. The validity of this
approximation relies on several physical triggers, whose thresholds can be set by the user.

7. Approximating with conservative triggers can lead to O(1) performance boost retaining sub-percent
accuracy on all scales. Aggressive triggers can improve performance further, but lose accuracy on large
scales.
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8. Approximation schemes allow computations for models with low/vanishing kineticity, such as those
based on f(R) gravity, in which the performance improves by orders of magnitude.

These improvements of the code are available to the community, and can be readily used to test dark
energy and constrain gravity with cosmological datasets. hi_class users can now easily implement and test
covariant models beyond those described in section 3.3, exploring the rich dynamics of cosmological back-
ground expansion beyond GR (e.g. bouncing models, coasting, future singularities...). The use of covariant
models facilitates the joint study of the expansion history and the evolution of perturbations beyond ΛCDM,
a program that might provide new insights into solving cosmological tensions. The careful study of initial
conditions beyond GR allows new questions to be addressed regarding the connection of dark energy and the
very early universe. Finally, the inclusion of flexible approximation schemes not only increases the applic-
ability of hi_class to a larger set of models, but also allows users to save valuable time and computational
resources when exploring the viability of any model. We encourage the scientific community not only to use
hi_class to obtain scientific results, but also to join the effort and contribute improving and extending this
publicly available software.

Future observations of the universe will provide great opportunities to test the standard cosmological
model, either pointing out the need for new physics, or strengthening it by ruling out alternatives beyond
ΛCDM. Through current and future improvements, hi_class will become an even more versatile tool to
narrow down posible explanations of cosmic acceleration and the properties of gravity on the largest scales
available to observations. It is the interface between cutting-edge theoretical ideas, flexible computational
tools and extensive datasets that will lead to the great discoveries of fundamental physics in the 21st Century.
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A Background equations

In this section we present the background equations for Horndeski models. We show three equivalent for-
mulations for the benefit of the reader. The first reflects what is implemented in hi_class. The second
one defines an effective density and pressure of the additional d.o.f., while the third uses the shift-current
description.

A.1 Dynamical system
In hi_class we implemented the two Friedmann equations and the scalar field equation. As described in
Section 3.2 we use the Friedmann constraint to regularize the solution of the equation for the evolution of
H ′. The complete system used to solve for the expansion of the universe and the scalar field evolution is

− C ≡ −E0 − E1H + E2H
2 − E3H

3 = 0 , (A.1)

φ′′ = AP − FR
BF −AM

, (A.2)
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H ′ = −R+Bφ′′

A
+ aγ(H)C . (A.3)

Here γ(H) is defined in Eq. (3.7) and Ei, A, B, F , M , P , R are time dependent functions defined as

E0 =1
3 [3ρm −G2 + 2X (G2X −G3φ)] , (A.4)

E1 =2φ′

a
[−G4φ +X (G3X − 2G4φX)] , (A.5)

E2 =2 [G4 −X (4G4X − 3G5φ + 2X (2G4XX −G5φX))] , (A.6)

E3 =2φ′X
3a (5G5X + 2XG5XX) , (A.7)

A =− 2
9M

2
∗ , (A.8)

B =2H2X

9a (3G5X + 2XG5XX) + 2
9a [−G4φ +X (G3X − 2G4φX)] (A.9)

+ 4Hφ′

9a2 [G4X −G5φ +X (2G4XX −G5φX)] ,

F =6HX
a

(3G5X + 2XG5XX) + 6
Ha

(XG3X −G4φ − 2XG4φX) (A.10)

+ 12φ′

a2 (G4X + 2XG4XX −G5φ −XG5φX) ,

M =2H2φ′

a3 [3G5X +X (7G5XX + 2XG5XXX)] (A.11)

+ 1
Ha2 [G2X − 2G3φ + 2X (G2XX −G3φX)]

+ 6φ′

a3 [G3X − 3G4φX +X (G3XX − 2G4φXX)]

+ 6H
a2 [G4X −G5φ +X (8G4XX − 5G5φX + 2X (2G4XXX −G5φXX))] ,

P =− 2H3X [−3G5X + 4X (2G5XX +XG5XXX)] (A.12)

− 4H2φ′

a
[−3G4X + 3G5φ +X (3G4XX − 4G5φX + 2X (3G4XXX − 2G5φXX))]

− 1
H

[G2φ − 2X (G2φX −G3φφ)]

− 2φ′

a
[−G2X + 2G3φ +X (G2XX − 4G3φX + 6G4φφX)]

− 6H [2G4φ +X (−G3X +G5φφ + 2X (G3XX − 4G4φXX +G5φφX))] ,

R =− 16
9 H

3φ′X (2G5X +XG5XX) (A.13)

+ 4
9aH

2 [3G4 − 7XG4X − 2X2G4XX + 4XG5φ − 2X (5 (G4X −G5φ) + 2X (5G4XX − 3G5φX))
]

+ 1
9a [−9ρm + 2G2 − 3pm − 4XG3φ + 8XG4φφ − 6X (G2X − 2G3φ + 2G4φφ)]

− 4
9Hφ

′ [3XG3X − 4G4φ − 6XG4φX +X (2G3X − 6G4φX +G5φφ)] .
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A.2 In terms of densities
A more familiar description can be achieved by analogy with standard matter fluids. It is possible to define
the energy density and pressure of an effective fluid that describes the evolution of the scalar field. The
Friedmann equations and the conservation of the energy-momentum tensor read

H2 = ρm + E , (A.14)
2H ′

3a +H2 = −pm − P , (A.15)

E ′ + 3aH (E + P) = 0 , (A.16)

where E and P are the energy density and pressure respectively and are defined as

E =2H3φ′X

3a (5G5X + 2XG5XX) + 1
3 [−G2 + 2X (G2X −G3φ)] (A.17)

+ 2Hφ′

a
[−G4φ +X (G3X − 2G4φX)]

+H2 [1− 2G4 +X (2 (4G4X − 3G5φ) + 4X (2G4XX −G5φX))] ,

P =2H3φ′X

3a (G5X + 2XG5XX) (A.18)

+ 2H ′

3a

[
−1 + 2G4 − 2X (2G4X −G5φ)− 2Hφ′X

a
G5X

]
+ 1

3H
2 [−3 (1− 2G4) + 2X (−2G4X −G5φ + 2X (4G4XX − 3G5φX))]

+ 2φ′′

3a2

[
−H2X (3G5X + 2XG5XX) +G4φ −X (G3X − 2G4φX)

]
− 4Hφ′φ′′

3a3 [G4X −G5φ +X (2G4XX −G5φX)]

+ 1
3 [G2 − 2X (G3φ − 2G4φφ)] + 2Hφ′

3a [G4φ +X (G3X − 6G4φX + 2G5φφ)] .

A.3 Shift-current
The equation for the evolution of the scalar field can be rewritten equivalently as

J ′

a
+ 3HJ = Sφ , (A.19)

where J represents a shift charge density describing (on a cosmological background) a Noether current
associated with a shift symmetry in the scalar field. On the other hand Sφ is a source that violates shift-
symmetry. They are defined as

J =φ′

a
(G2X − 2G3φ) + 6HX (G3X − 2G4φX) (A.20)

+ 6H
2φ′

a
[G4X −G5φ +X (2G4XX −G5φX)] + 2H3X (3G5X + 2XG5XX) ,

Sφ =G2φ − 2XG3φφ −
2X
a2 (φ′′ − aHφ′)G3φX (A.21)

+ 6
(

2H2 + H ′

a

)
G4φ + 6Hφ′′φ′

a3 G4φX + 2H3φ′X

a
G5φX − 6H2XG5φφ ,

and they can be useful to have insights on the dynamics of the scalar field without numerically solving the
background equations (cf. Sec. 3.3).
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B Dimensionless Lagrangian Functions for Solver

In this release, hi_class obtains the ability to directly solve for a model from the Lagrangian: the appropriate
background equations of motion are computed automatically and then the resulting α functions on these
backgrounds are derived.

In this section, we discuss how to bring the (dimensionful) Lagrangian functions defining the particular
Horndeski model into their appropriate dimensionless form which can be entered into the code when adding
the user’s choice of model.

Internally, all the variables in the code are dimensionless. hi_class expresses all dimensionful output
using the fixed lengthscale of L ≡ 1 Mpc. In particular, all derivatives are understood to be taken with this
lengthscale as the unit. Secondly, all the energy densities and pressures are also given in units of Mpc−2 by
absorbing a factor M−2

Pl = 8πGN. As already mentioned, in the code the units are such that M−2
Pl = 1, here

we restore it to make all the units explicit. In particular, the best way to derive the dimensionless form of
the Lagrangian functions is to redefine the volume element in the (dimensionless) action:

S =
ˆ
d4x
√
−gL =

ˆ [
M2

PlL
−2d4x

]√
−g L

M2
PlL
−2 . (B.1)

We then have made the choice to use φ̃ ≡ φ/MPl as the dimensionless representation of the scalar field value
φ. This combined with the lengthscale L fixes the units of the time derivative to give the dimensionless
φ̃′ ≡ Lφ′ and therefore gives the only consistent representation of the dimensionless

X̃ ≡ XL2/M2
Pl . (B.2)

This implies that the appropriate dimensionless representation of the Lagrangian for a canonical massive
scalar field would be

L̃ ≡ L
M2

PlL
−2 = X̃ − 1

2(mL)2φ̃2 , (B.3)

where mL is the mass of the scalar in units of Mpc−1. For the purpose of hi_class we can now self-
consistently replace every L (or in this case, a particular choice of function G2(X,φ)) with L̃ and its deriv-
atives L,X and L,φ with the dimensionless derivatives applied to the tilded variables L̃,φ̃ and L̃,X̃ . We stress
that only this particular choice of the units of X and φ makes the calculation of X from the derivative of φ
in the code correct.

Let us now generalise this to generic choice of the Gi functions. For example, for G2, one has an
arbitrary function of dimension 4, which is a series with φ/M and X/Λ4

2 as dimensionless order parameters,
e.g.

G2(X,φ) = Λ4
2g2

(
X

Λ4
2
,
φ

M

)
, (B.4)

with some scales Λ2 and M typifying the variation in X and φ and g2 some dimensionless function of two
variables. The appropriate dimensionless version to be implemented in hi_class would then be

G̃2(X̃, φ̃) = Λ4
2

M2
PlL
−2 g2

(
M2

PlL
−2

Λ4
2

X̃, φ̃
MPl

M

)
. (B.5)

The choice of scales Λ2 and M is of course determined by the underlying theory from which a particular
model arises. But, from the form of expression (B.5), it is clear that if the functional form of G2 is to be
relevant for dark energy, i.e. contribute O(H0) modifications to H at late times, then one would expect that
the scales M = MPl while Λ2

2 = MPlH0 (i.e. derivatives have typical scales H0). This then simplifies the
expression to G̃2 = (H0L)2g2

(
X̃/(H0L)2, φ̃

)
, with H0L the value of the Hubble constant in units of Mpc−1.
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For the other functions, G3,4,5, the appropriate expressions can be obtained by introducing another
scale, Λ3, related to the typical size of the second derivatives of the scalar, �φ. This then leads to the
following dimensionless functions,

G̃3(X̃, φ̃) ≡ Λ4
2

Λ3
3MPl

g3

(
M2

PlL
−2

Λ4
2

X̃, φ̃
MPl

M

)
, (B.6)

G̃4(X̃, φ̃) ≡ 1
2 + Λ8

2
Λ6

3M
2
Pl
g4

(
M2

PlL
−2

Λ4
2

X̃, φ̃
MPl

M

)
,

G̃5(X̃, φ̃) ≡ Λ8
2

MPlΛ9
3L

2 g5

(
M2

PlL
−2

Λ4
2

X̃, φ̃
MPl

M

)
,

with the gi some dimensionless functions of two variables. Again, there may be a fundamental reason for the
choice of some particular Λ3, but from the above expressions, one can see that the choice Λ3

3 = MPlH
2
0 gives

contributions from Gi functions which are relevant for dark energy when the dimensionless Taylor-expansion
coefficients for the gi are of order one.

When defining a particular Lagrangian-based model in hi_class, one needs to enter all necessary
derivatives of the functions Gi: these should all be understood to be the appropriate derivatives of the G̃i
with respect to X̃ and φ̃ once the Gi are brought to the standard forms (B.5) and (B.6).
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